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Abstract

Multi-agent epistemic planning (MEP) is about achieving an
epistemic goal in a multi-agent environment using agents’ ac-
tions that have epistemic preconditions and effects. Recently,
MEP has received interest from both the dynamic logic and
planning communities, leading to the development of several
innovative planners. One such state of the art planner is
MEPK. In this paper, we propose two novel strategies to
enhance the search methods within MEPK. Our first strategy,
the enhancement strategy, dynamically updates the heuristic
based on the search path to the first goal-reachable node,
potentially reducing the number of nodes that need to be ex-
plored to find a solution. Our second, the belief lock strategy,
prevents the planner from continuing to search a particular
state that cannot progress to a goal state due to the possession
by an agent of a certain belief. Our experiments on existing
benchmarks show that the new strategies can indeed accel-
erate the problem solving. We also construct new harder
instances and demonstrate that our strategies significantly
improve the performance on these hard benchmarks. Overall,
we consider our new planner a significant improvement over
the existing one in terms of computational efficiency.

1 Introduction
Multi-agent epistemic planning (MEP) is automated plan-
ning that involves epistemic reasoning for multiple
agents (Baral et al. 2017; Belle et al. 2023). The actions of
the agents in this domain usually include epistemic precon-
ditions and effects, the goal is also epistemic, and the reason-
ing algorithms need to deal with nested beliefs of agents. For
example, a goal could be that agent a and c want to know a
secret p, and the current state is the situation in which “agent
b does not know that p, or even that b does not know that they
(a and c) know p”. MEP has promising potential in various
domains involving autonomous agents, such as multi-agent
coordination and cooperation (Thielscher 2017) and real-
world planning with social intelligence (Dissing and Bolan-
der 2020; Bolander, Dissing, and Herrmann 2021).

In recent years, multi-agent epistemic planning has
received attention from both dynamic logic and automated
planning communities. There are many theoretic studies on
MEP. Bolander and Andersen (2011) and Löwe, Pacuit, and
Witzel (2011) initially conceptualized MEP using dynamic
epistemic logic (DEL) (van Ditmarsch, van der Hoek, and
Kooi 2007). The DEL framework models states as Kripke

models, actions as action models (also called event models).
These action models describe agents’ capacities to distin-
guish different events, and utilize product update operation
to update Kripke models. Aucher and Bolander showed
that solving MEP problems is undecidable in general. This
complexity is further highlighted by the discovery that MEP
remains undecidable when restricted to purely epistemic
actions (Aucher and Bolander 2013). Furthermore, Charrier,
Maubert, and Schwarzentruber (2016) have demonstrated
that this undecidability continues even with action pre-
conditions constrained to a modal depth of two. Recent
work by Cong, Pinchinat, and Schwarzentruber (2018) has
also shown the undecidability of MEP in two-agent S5
models with fixed actions and goals. However, there are
some decidable fragments of MEP (Yu, Wen, and Liu 2013;
Cooper et al. 2016a), and Cooper et al. (2016b) examined
the “gossip problem” within the context of MEP, revealing
its polynomial-time solvability but also its escalation to
NP-completeness when negative goals are introduced.

For the implementation of multi-agent epistemic plan-
ning. Kominis and Geffner (2015) and Muise et al. (2015;
2022) exploit classical planning to solve restricted versions
of MEP problems. By translating restricted MEP problems
to classical planning problems, both works generate linear
plans by performing conformant planning. Similarly, the
EL-O framework (Cooper et al. 2021) takes a syntactic
restriction and compiles the problem of epistemic planning
into classical ones. Engesser et al. (2017) studied decentral-
ized planning with implicit coordination. Based on earlier
works on the action language mA and finitary S5-theories,
Le et al. (2018) presented the planner EFP, where the initial
state is specified by a finitary S5-theory. Then Fabiano et
al. (2020) introduced EFP 2.0 using alternative state rep-
resentations that deviate from the commonly used Kripke
structures, improving the performance of EFP. Hu, Miller,
and Lipovetzky (2022) decompose epistemic planning by
delegating reasoning about epistemic formulas to an exter-
nal solver. Recently, Wan, Fang, and Liu (2021) proposed
a local MEP planner in a syntactic approach called MEPK.
In their framework, states are described by syntactically
restricted formulas, called alternating cover disjunctive for-
mulas (ACDFs). Because ACDFs have the full expressive
power of epistemic logic, MEPK can describe a wide range
of MEP problems and produce conditional plans (policies)
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in a contingent planning framework.
However, Wan, Fang, and Liu (2021) only evaluated the

viability of MEPK in rather easy domains collected from the
literature. In this paper, we revisit MEPK and propose two
new strategies based on our observations of the previous
results of MEPK. Firstly, we propose the enhancement
strategy by utilizing the information on the path from the
initial node to the first goal-reachable node (for contingent
planning, an action tree becomes a feasible solution only
if each branch of it achieves the goal). The basic idea is
to update the explore order of the nodes by changing their
attached enhancement value during the search. Then, we
identify a scenario of “belief lock” during planning in some
specific domains and propose a strategy that prevents the
planner from exploring the nodes that are valueless under
the scenario of “belief lock”. By incorporating the two novel
strategies, the performance of MEPK is improved. Then,
we build hard instances based on the existing benchmarks
to evaluate the performance of the new strategies on hard
benchmarks. Finally, the experimental results affirm the
effectiveness of the new strategies, marking a significant
leap in computational efficiency for MEP.

2 Preliminaries
In this section, we review the background of multi-agent
modal logic KD45n and the MEPK modeling framework.

2.1 Multi-agent Modal Logic KD45n
Consider a finite set of agents A and a finite set of atoms P .
We use ϕ and ψ for formulas, Φ and Ψ for sets of formulas.

Definition 1. The languageLKC of multi-agent modal logic
with common knowledge is generated by the BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | Cϕ, where

p ∈ P , a ∈ A, ϕ ∈ LKC . LK is used for the language with-
out the C operator, and L0 for the propositional language.

Intuitively, Baϕ means that agent a believes ϕ holds,
and Cϕ means ϕ is common knowledge among all agents.
The original MEPK does not support arbitrary common
knowledge, so we also restrict our attention to the case of
propositional common knowledge i.e., Cϕ where ϕ ∈ L0,
and the propositional formula ϕ is called a constraint.

We let ⊤ and ⊥ represent true and false respectively. We
let

∨
Φ (resp.

∧
Φ) denote the disjunction (resp. conjunc-

tion) of members of Φ. The modal depth of a formula ϕ in
LK is the depth of nesting of modal operators in ϕ.

Definition 2. A frame is a pair (W,R), where W is a
nonempty set of possible worlds; for each agent a ∈ A,
R : A → 2W×W assigns to each a ∈ A an accessibility
relation Ra.

We say Ra is serial if for any w ∈ W , there is w′ ∈ W
s.t. wRaw

′; we sayRa is transitive if whenever wRaw1 and
w1Raw2, we get wRaw2; we say Ra is Euclidean if when-
everwRaw1 andwRaw2, we getw1Raw2. A KD45n frame
is a frame whose accessibility relations are serial, transitive,
and Euclidean.

Definition 3. A Kripke model is a triple M = (W,R, V ),
where (W,R) is a frame, and V : W → 2P is a valuation
map. A pointed Kripke model is a pair s = (M,w), where
M is a Kripke model and w is a world of M , called the
actual world.

Definition 4. Let s = (M,w) be a pointed Kripke model
where M =(W,R, V ). We interpret formulas in LKC by
induction:

• M,w |= p iff p ∈ V (w);
• M,w |= ¬ϕ iff M,w ̸|= ϕ;
• M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ;
• M,w |= Baϕ iff for all v s.t. wRav, M, v |= ϕ;
• M,w |= Cϕ iff for all v s.t. wRAv, M,v |= ϕ, where
RA is the transitive closure of the union of Ra for a ∈ A.

A model of ϕ is a KD45n Kripke model (M,w) s.t.
M,w |= ϕ. We say ϕ is satisfiable if ϕ has a model. We
say ϕ entails ψ, written ϕ |= ψ, if any model of ϕ is also a
model of ψ. We use C∗ϕ to denote ϕ∧Cϕ, and say that ϕ is
satisfiable w.r.t. constraint γ ∈ L0 if ϕ ∧ C∗γ is satisfiable;
we say that ϕ entails ψ w.r.t. constraint γ, written ϕ |=γ ψ,
if ϕ ∧ C∗γ |= ψ ∧ C∗γ.

2.2 Modeling Framework of MEPK
We briefly introduce the MEPK modeling framework.
Please refer to (Wan, Fang, and Liu 2021) for more details.

Definition 5. A multi-agent epistemic planning problem Q
is a tuple ⟨A,P,D,S, I, G, γ⟩, where A is a set of agents;
P is a set of atoms; D is a set of deterministic actions; S is a
set of sensing actions; I ∈ LK is the initial knowledge base;
G ∈ LK is the goal; and γ ∈ L0 is the constraint.

The propositional constraint is similar to the domain
closure axiom in classical planning domains (Lin 2004).
For example, in a domain with a single box and two rooms,
the constraint γ = in(box, room1) ∧ (¬in(box, room2)) ∨
(¬in(box, room1))∧ in(box, room2) indicates that the box
must be located in exactly one room.

There are three types of actions: ontic, communication,
and sensing actions. The first two types share the same
representation, called deterministic actions.

Definition 6. A deterministic action is a pair ⟨pre, eff ⟩,
where pre ∈ LK is the precondition; eff is a set of
conditional effects, each of which is a pair ⟨c, e⟩, where c,
e ∈ LK indicate the condition and effect, respectively.

Definition 7. A sensing action is a triple ⟨pre, pos,neg⟩
of LK formulas, where pre, pos, and neg indicate the
precondition, the positive result, and the negative result,
respectively.

Sensing actions are used to gather information from the
environment. For example, agents can sense the status of
the lighting in a room, which leads to two possible results:
the light is on (pos) or off (neg).

An action a is executable w.r.t. a KB ϕ ∈ LK if
ϕ |=γ pre(a). This means that a is executable in each
model of ϕ. Suppose a is executable w.r.t. ϕ. The progres-
sion of ϕ w.r.t. a is defined by resorting to a higher-order
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revision operator ◦γ and a higher-order update operator ⋄γ ,
where γ is a constraint (Wan, Fang, and Liu 2021).

The basic idea of these two operators is to reduce
the change of higher-order epistemic formulas to that of
lower-order epistemic formulas, and as a basis, it resorts to
a change of propositional formulas.

The following is the progression for the sensing action.
Definition 8. Let ϕ ∈ LK , and a a sensing action. If
ϕ ∧ pos(a) is propositionally unsatisfiable w.r.t. γ, then
the progression of ϕ w.r.t. a with positive result is ⊥.
Otherwise, the result is ϕ ◦γ pos(a). The progression of ϕ
w.r.t. a with negative result neg(a) is defined similarly.

The progression for deterministic action is more complex.
In short, it is done by splitting KB ϕ based on the satisfia-
bility of conditions ci for each effect ei, and considering all
possible splittings to determine the overall progression.

We now introduce the concepts of action tree, which is
essential for defining a solution.
Definition 9. The progression of ϕ w.r.t. a se-
quence of actions is inductively defined as follows:
prog(ϕ, ϵ) = ϕ, where ϵ represents the empty sequence;
prog(ϕ, (a;σ)) = prog(prog(ϕ, a), σ) if ϕ |= pre(a), and
undefined otherwise.
Definition 10. LetQ be an MEP problem ⟨A,P,D,S, I,G,
γ⟩. The set T of action trees is inductively defined:

1. ϵ is in T , here ϵ represents the empty tree;
2. if ad ∈ D and T ∈ T , then ad;T is in T ;
3. if as ∈ S , T+, T− ∈ T , then as; (T+ | T−) is in T .
Definition 11. LetQ be an MEP problem ⟨A,P,D,S, I,G,
γ⟩. Let T be an action tree. We say a branch

σ of T achieves the goal if prog(I, σ) is defined, and
prog(I, σ) |=γ G; and if prog(I, σ) is not ⊥, we say σ
properly achieves the goal. We say T is a solution of Q if
each branch of T achieves the goal, and at least one branch
properly achieves the goal.

We explain the concept of solution using an example.
Selective-communication (Kominis and Geffner 2015) is a
domain of MEP: There are several rooms in a corridor. The
agents can move from one room to a neighboring room.
When agent i gives some information, all other agents in
the same room or in a neighboring room can hear what was
said. Initially, each agent is in one of the rooms. The goal
is for some agents to get to know some information while
some other agents do not.
Example 1. Consider an instance with four rooms and
three agents a, b, and c. Only agent a has the ability to
move, sense and tell the information p. Initially, the agents
a, b and c are in room 1, 2, and 3, respectively, while the
information p is located in room 2. The goal is to ensure
that agents a and c know p while b not. Figure 1 is an
example of feasible solutions. The action tree is a solution
if both the sequences of (right; sense+; right; right; tell)
and (right; sense−; right; right; tell) achieve the goal.
Node 1 is the initial node. The sensing action, sense, can
yield two possible results: p and ¬p. In the planning
process, nodes 6 and 10 are found to entail the goal.

Figure 1: A solution to an instance of Selective-communication.

Algorithm 1: Planning
Input: An MEP problem Q = ⟨A,P,D,S, I,G, γ⟩.
Output: A solution or null.

1 if I |= G then
2 return an empty tree
3 else
4 Let n0 = I, state(n0) = unexplored,
5 connected(n0) = true, N = {n0}, T = ∅
6 while there are unexplored nodes do
7 Choose the next node n with some method
8 explore(n)
9 if initial node is goal-reachable then

10 return build plan(T )
11 if initial state is dead then
12 return null

13 return null

The planner uses a knowledge base (KB) to model an
epistemic state. When an action is performed, it revises or
updates the current KB with the action’s effects. MEPK
adopts the PrAO (Pruning AND/OR search) algorithm for
contingent planning (To, Son, and Pontelli 2011) as the plan-
ning algorithm, which allows the planner to significantly
prune the search space. Algorithm 1 presents the framework.
The algorithm takes an MEP problem as input and aims to
find a solution or return “null” if no solution is found.

Each node n is a knowledge base. We use state(n) to
indicate the state of n, which is one of the following values:
goal meaning goal-reachable if there is a path (sequence
of actions) leading to the goal; dead meaning that the node
is not goal-reachable and there is no outgoing edges from
it; unexplored if it is newly added to the search graph;
explored after it is chosen for expansion. During planning,
nodes can be disconnected and reconnected to the search
graph. We use connected(n) to denote whether node n
can be reached from the initial node via a path. Lines 1-5
return an empty tree if I |= G; otherwise, initialize the
search graph, i.e., set the initial node n0 to the initial KB,
and let connected(n0) = true. We use N and T to denote
the set of all nodes and the search graph, respectively. The
algorithm then enters a loop that continues as long as there
are nodes unexplored.

Within the loop, it selects an unexplored node n using a
specific method such as breath-first search (BFS) or heuristic
search (line 7). The selected node n is then explored. If, af-
ter this exploration, the initial node becomes goal-reachable,
the algorithm build plan simply extracts the plan from the
expanded action tree (T ) and returns this plan as the solu-
tion. Thanks to the pruning technique, the remaining search
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graph is also the solution tree when a solution is found. If
the initial state is determined to be dead, indicating that no
action tree can route from the initial node while ensuring
all its terminals entail the goal, the algorithm returns “null”.
Please refer to (To, Son, and Pontelli 2011) for more details.

For contingent planning, the function explore(n) gen-
erates the children of node n by applying the executable
deterministic and sensing action separately.

The efficiency of this algorithm is heavily influenced
by the method used for node selection. For example, BFS
chooses nodes in the order they are generated, and the
heuristic search utilizes an auxiliary value to sort nodes.

3 Our Strategies
In this section, we first show our observations on the existing
results of MEPK and then present the new strategies.

3.1 Enhancement Strategy
We rerun the experiments of MEPK1 on all benchmarks and
collected statistics on the first reachable node2 and the total
number of explored nodes.

Instance |A| MEPK (BFS) MEPK (Heu)

*CC(2,3) 2 26/29 6/10
*CC(2,3) 3 46/277 8/23
*CC(2,4) 2 8/626 10/279
*CC(3,3) 3 32/254 6/19

FT(1,2) 1 1/1 1/1
FT(2,3) 1 1/40 1/10
FT(2,3) 2 1/297 1/30

Table 1: Statistics of searching results on *CC and FT.

Table 1 presents the statistics of the search results in
Collaboration-and-communication (CC) and Finding-the-
truth (FT). The details of CC and FT will be introduced
in Section 4.2. In Table 1, the first two columns indicate
the name of instance and number of agents. In the MEPK
columns (one for BFS and one for heuristic search), A/B
stands for A nodes explored to find the first goal-reachable
node, and B nodes explored in total.

In certain cases, such as *CC (2,4) and FT (2,3), it takes
only 8 and 1 nodes to identify the first goal-reachable node
by using BFS, which means a path from the initial node to
a goal-reachable node is built. However, the solution tree
has not yet been completed. There is a need to explore more
than ten times the number of nodes (626 and 40 nodes) to
find a final solution, significantly diminishing the efficiency
of the search process.

To reduce the cost of exploring redundant nodes, we pro-
pose the enhancement strategy utilizing the information on
the path from the initial node to the first goal-reachable node.

1The source code of MEPK can be accessed at https://github.
com/sysulic/MEPK.

2In contingent planning, identifying the first goal-reachable
node is not enough to find a solution; see the example of Figure 1.

Algorithm 2: explore(n)
Input: A node n.

1 foreach deterministic action d ∈ D do
2 if n |= pre(d) then
3 Compute the successor n′ of n after doing d
4 if n′ ̸= n and (n′ ̸∈ N or n′ is not dead) then
5 expand(n, d, n′)
6 if state(n′) = goal then
7 state(n)← goal
8 MAX← MAX +|N |
9 enhancement propagation(n, a, MAX)

10 goal propagation(n, d)
11 return

12 foreach sensing action e ∈ S do
13 if n |= pre(e) then
14 Compute the successor n1 of n after doing e+

15 Compute the successor n2 of n after doing e−
16 if (n1 ̸∈ N or n1 is not dead) and (n2 ̸∈ N or

n2 is not dead) then
17 expand(n, e+, n1)
18 expand(n, e−, n2)
19 if state(n1) = state(n2) = goal then
20 state(n)← goal
21 MAX← MAX +|N |
22 enhancement propagation(n, a, MAX)
23 goal propagation(n, e)
24 return

In contingent planning, the solution branches on sensing
actions (positive successor and negative successor). The
intuition behind the enhancement strategy is that if the
positive successor leads to the goal, the negative successor
usually also leads to the goal. If it fails in some specific
scenarios, the strategy will update the enhancement value
accordingly to prevent the search from worsening. The
basic idea is to use an enhancement value to sort the order
of node exploration and update the enhancement value
attached to each node during the search.

The main components of the enhancement strategy
consist of a revised algorithm explore, and two novel
algorithms enhancement propagation and update children.

The Algorithm 2 explore receives an unexplored node
as input, then iterates over all deterministic actions (D)
available in the domain. For each action d, it checks if the
precondition is entailed by the current KB (line 2). If the
action is applicable and leads to a new, non-dead successor
state n′ (line 4), the algorithm calls the expand function to
incorporate n′ into the search space. If the newly generated
state is a goal state, the algorithm updates the state of the
current node to goal. The maximum enhancement value
is then increased by the number of existing nodes (N ),
ensuring that the subsequent boosted node is given priority
in exploration (line 8). In addition, it performs enhance-
ment propagation to update the search heuristic based on
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the path to the goal, followed by a goal propagation to
back-propagate the goal information through the planning
graph. The algorithm repeats a similar process for sensing
actions (S), generating two successors for each action based
on its possible outcomes (lines 12-24).

The key revision of explore is employing a new enhance-
ment propagation mechanism, Algorithm 2 dynamically
updates the search heuristic, potentially reducing the
number of nodes that must be explored to find a solution.
This method aims to improve the efficiency, especially in
complex instances where the search space is vast.

Example 1. (continued) Recall the nodes in Figure 1, and
suppose the planner is about to explore node 5: explore(5).
The domain contains three deterministic actions: D =
{tell, left, right}, and one sensing action: S = {sense}.

The Algorithm 2 first examines the deterministic actions
in D (line 1). It finds that KB at node 5 entails the
precondition of the action tell (line 2). Consequently, it
progresses the KB with respect to tell, computing a new KB
at node 6, which is found to entail the goal (line 6). Node
6 is then marked as goal-reachable, and this information
will be back-propagated later (line 10). The maximum
enhancement value is updated based on the number of
nodes (line 8), and finally the priority of the dual node of
node 3, i.e., node 7, for the action sense, is increased via
enhancement propagation (line 9).

The process is similar for sensing actions (lines 12-24).

Intuitively, Algorithm 3 enhancement propagation is re-
sponsible for propagating a new enhancement value through
the planning graph to dynamically refine the search strategy.
This algorithm is invoked when a goal state is reached, and
it backtracks from the goal state to the initial state, updating
the enhancement values of the nodes along this path.

The algorithm receives three inputs: the current node n,
the action t that led to n, and a new enhancement value v.
If n is the initial node, the propagation is complete and the
algorithm returns immediately as there is no predecessor. If
n is not the initial node, the algorithm identifies the prede-
cessor of n, denoted as n′, and the action t′ that expanded
to n′. Then it recursively calls itself the predecessor n′,
the action t′, and a decremented enhancement value v − 1,
effectively backtracking and updating the enhancement
values along the path from the goal state to the initial state.

The Algorithm 4 update children recursively updates the
enhancement value of a node and all its descendants in the
planning graph.

Together, these algorithms ensure that the search heuris-
tic is informed by the latest path information, guiding the
search process toward the goal states more efficiently. The
enhancement strategy is effective because, typically, if one
branch of an action tree achieves the goal, other branches
corresponding to the same sensing action are also likely to
lead to the goal.

The idea of the enhancement strategy is similar to the
AO* algorithm. A key difference is that the enhancement
strategy updates the enhancement value only after the first
goal-reachable node is identified bottom-up. This is because
doing high-order belief change is time-consuming. In con-

Algorithm 3: enhancement propagation(n, t, v)
Input: A node n, the action t expanding to n, and the

new enhancement value v.
1 if n is the initial node then
2 return
3 Let n′ be the predecessor node of n
4 if n′ is not the initial node then
5 Let a′ be the action that expands to n′
6 enhancement propagation(n′, t′, v − 1)

7 if a ∈ S then
8 update children(n, v)

Algorithm 4: update children(n, v)
Input: A node n, and enhancement value v.

1 n.enhancement value← v
2 Let N be the set of child nodes of n
3 foreach node n′ ∈ N do
4 update children(n′, v)

trast, the AO* algorithm adjusts cost estimates continuously
throughout the search process.

3.2 Belief Lock Strategy
Inspired by the idea of “the curse of knowledge” (Heath
and Heath 2006), saying that once people acquire a certain
knowledge, they cannot return to the state of not knowing
it, we propose the belief lock strategy.

We explain the intuition using an example in the domain
of Selective-communication (SC). Recall that the goal of
the instances from the domain SC is that some agents get to
know some information, while some other agents do not.
Example 2. Given an instance of domain SC. Let Bap ∧
Bbp ∧ Bcp be the KB of state i, ¬Bap ∧ ¬Bbp ∧ ¬Bcp the
KB of state j, andBap∧¬Bbp∧Bcp the goal of the instance.
The goal says that agent a and c get to know the information
p while agent b does not.

In planning, according to the heuristic strategy based on
the count of shared terms between the KB and the goal, state
i will be explored prior to the state j because there are two
agents’ beliefs that are consistent with the goal in state i, i.e.,
Bap and Bcp, while there is only one term ¬Bbp in state j.

However, within the SC domain, no actions can induce
agent b to forget the information p or believe ¬p. Con-
sequently, this implies that state i cannot progress to a
goal-reachable state in this domain.

We use the term “belief lock” to describe a scenario in
which a particular state is unable to progress to the goal
state due to an agent’s possession of certain knowledge.

Next, we express the idea of “the curse of knowledge” in
the language of MEP as the following proposition.
Proposition 1 (Belief Lock). Consider an MEP problem
Q = ⟨A,P,D,S, I,G, γ⟩. Let a ∈ A, p ∈ P , and σ a
sequence of actions. Then prog(prog(I, σ), τ) = ⊥ or
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prog(prog(I, σ), τ) ̸|=γ G for any action sequence τ if the
following hold:

1. prog(I, σ) |=γ Bap

2. G |=γ ¬Bap

3. ei ̸|=γ ¬Bap, where ⟨ci, ei⟩ ∈ eff (d), for any d ∈ D
4. pos(s) ̸|=γ ¬Bap and neg(s) ̸|=γ ¬Bap, for any s ∈ S

Intuitively, conditions 2-4 in Proposition 1 suggest that
dedicated domains do not involve actions that alter the belief
lock situation. If the search reaches a state where a specific
agent a is aware of the secret, and conditions 2-4 hold for
the domain, then progression for any subsequent action se-
quence leads to either⊥ or fails to entail the goal. A detailed
proof is provided in the appendix. See Section A below.

The Proposition 1 limits the scope of where the strategy
works. If the goal only involves the belief of some agents
that change over time during planning, such as the beliefs
of boxes’ location Ba(in(box1, room1)) from domain
Collaboration-and-communication, then the strategy does
not work and may even mislead the search.

Therefore, the belief lock strategy is suitable for the
domains where the goal involves maintaining certain
information as a secret, undisclosed to some specific agents,
and the domain itself cannot alter the belief lock situation,
such as the domains Selective-communication, Grapevine,
and Gossip.

To apply Proposition 1 to planning, we revise the
algorithm expand as in Algorithm 5.

Before planning, we initialize a set Ψ of formulas derived
from the goal G. Each formula in the set represents the
knowledge that the goal is to keep unknown to a particular
agent. The algorithm expand receives a node n, the action
t that led to a new node n′, and an enhancement value v.
Firstly, a new edge is added (line 1) and the enhancement
value of the new node is initialized (line 2). Then the state
of n′ is updated (lines 3-6). When the planner expands to
a new node, we check each formula for the node (line 7). If
the node entails any of the formulas (line 8), indicating the
occurrence of a “belief lock” scenario, we assign a minimum
value as the enhancement value for the new node (line 9).
Example 2. (continued) For the previous instance of
domain SC, Ψ = {¬Bbp}, and nj .enhancement value =
MIN after the node j is created. That is, the search priority
of the newly created node j is minimized (the node j can
even be tagged as dead if the problem are checked to satisfy
the conditions of Proposition 1). Thus, the planner will not
waste time exploring valueless nodes.

Due to the space limit, we only describe the new proposed
strategies and the revised parts of the algorithms. Please
refer to (To, Son, and Pontelli 2011) and the source code of
MEPK for more details of sub-algorithms.

4 Experimentation
In this section, we conduct two experiments. Firstly, we
evaluate the feasibility of two new strategies on existing
benchmarks used in the previous literature. Secondly, We
build hard instances based on the existing benchmarks by
increasing the number of agents, objects such as rooms,

Algorithm 5: expand(n, t, n′)

Input: A node n, the action t, the successor node n′, and
the enhancement value v.

1 T ← T ∪ {(n, t, n′)}
2 n′.enhancement value← v
3 if n′ ̸|= G then
4 state(n′) = unexplored

5 else
6 state(n′) = goal

7 foreach secret knowledge ψ ∈ Ψ do
8 if n′ |= ψ then
9 n′.enhancement value← MIN

10 break

11 N ← N ∪ {n′}

blocks, and secrets, and setting complex goals. Then, we
evaluate the effectiveness of the two new strategies in the
hard instances.

All the experiments are run on a Linux machine with a
2.90GHz CPU and 16GB RAM. The time limit for each run
is set to 3,600 seconds.

4.1 Experiments on Easy Benchmarks
Table 2 presents the results on easy benchmarks.

Evaluation of enhancement strategy To assess the
effectiveness of the enhancement strategy, we compare the
column BFS (resp. Heu) and BFS+ (resp. Heu+). The
improved results are underlined.

Recall that the enhancement strategy is trying to speed up
the search process after identifying the first goal-reachable
node. For the BFS method, there are 24 out of 41 instances
in which the first goal-reachable node is found before
exploring the last node to get the solution (B − A > 0).
The performance of 18 out of 24 instances is improved with
the enhancement strategy. For the heuristic search method,
there are 23 instances in which the first goal-reachable node
is found before exploring the last node to get the solution.
Performance has improved in 20 of the 24 instances, and,
notably, an instance previously unsolvable has now been
successfully resolved.

Evaluation of belief lock strategy To evaluate the belief
lock strategy, we consider the domains that involve the
goal of keeping certain information secret, undisclosed to
some specific agents. There are 15 instances from the three
domains: SC, Grapevine, and Gossip, which are the last
three domains listed in the table.

Table 3 presents a comparison within two sets of strate-
gies: BFS, BFS+, and BFS+K on the one hand, and Heu,
Heu+, and Heu+K on the other.

For each method (BFS and heuristic search), Table 3
counts the number of instances in which the corresponding
method explores the smallest number of nodes to obtain the
solution among the three variants.
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Instance |A| md BFS BFS+ BFS+K Heu Heu+ Heu+K

CC(2,4) 2 1 19.77 (130/130/263) 19.74 (130/130/263) 19.76 (130/130/263) 1.63 (11/11/45) 1.64 (11/11/45) 1.65 (11/11/45)
CC(3,4) 2 1 232.21 (130/130/263) 231.14 (130/130/263) 231.59 (130/130/263) 21.80 (11/11/45) 22.00 (11/11/45) 22.03 (11/11/45)
CC(4,4) 2 1 − − − 465.52 (11/11/45) 465.34 (11/11/45) 464.95 (11/11/45)

*CC(2,3) 2 1 0.38 (26/29/119) 0.39 (26/29/116) 0.39 (26/29/116) 0.10 (6/10/51) 0.09 (6/8/46) 0.10 (6/8/46)
*CC(2,3) 3 1 2.19 (46/277/1223) 0.31 (46/77/451) 0.31 (46/77/451) 0.04 (8/23/156) 0.03 (8/13/106) 0.03 (8/13/106)
*CC(2,4) 2 1 5.73 (8/626/1160) 0.27 (8/57/178) 0.27 (8/57/178) 1.94 (10/279/751) 0.22 (10/45/172) 0.22 (10/45/172)
*CC(3,3) 3 1 9.07 (32/254/1429) 1.57 (32/67/570) 1.56 (32/67/570) 0.16 (6/19/185) 0.33 (6/27/265) 0.33 (6/27/265)
†CC(2,3) 2 1 0.26 (60/63/342) 0.28 (60/65/371) 0.28 (60/65/371) 0.08 (8/31/188) 0.02 (8/10/92) 0.02 (8/10/92)
†CC(2,3) 3 1 0.19 (46/51/343) 0.32 (46/60/430) 0.32 (46/60/430) 0.05 (10/18/130) 0.04 (10/14/127) 0.04 (10/14/127)
†CC(2,4) 2 1 0.04 (8/11/49) 0.07 (8/15/78) 0.07 (8/15/78) 2.10 (11/330/850) 0.17 (11/29/147) 0.17 (11/29/147)
†CC(3,3) 3 1 0.54 (32/39/312) 2.42 (32/62/666) 2.42 (32/62/666) 0.31 (7/28/238) 1.03 (7/37/406) 1.03 (7/37/406)

FT(1,2) 1 1 0.01 (1/1/4) 0.01 (1/1/4) 0.01 (1/1/4) 0.01 (1/1/4) 0.01 (1/1/4) 0.01 (1/1/4)
FT(2,3) 1 1 0.06 (1/40/106) 0.01 (1/7/24) 0.01 (1/7/24) 0.01 (1/10/39) 0.01 (1/9/32) 0.01 (1/9/32)
FT(2,3) 2 1 6.51 (1/297/1423) 0.02 (1/8/62) 0.02 (1/8/62) 0.27 (1/30/251) 0.04 (1/11/87) 0.04 (1/11/87)

Coin(1) 3 1 0.01 (2/2/9) 0.01 (2/2/9) 0.01 (2/2/9) 0.01 (2/2/9) 0.01 (2/2/9) 0.01 (2/2/9)
Coin(2) 3 1 0.01 (9/9/31) 0.01 (9/9/31) 0.01 (9/9/31) 0.01 (3/3/18) 0.01 (3/3/18) 0.01 (3/3/18)
Coin(3) 3 1 0.02 (39/39/79) 0.02 (39/39/79) 0.02 (39/39/79) 0.03 (63/63/94) 0.03 (63/63/94) 0.03 (63/63/94)

HG 3 1 0.01 (1/1/3) 0.01 (1/1/3) 0.01 (1/1/3) 0.01 (1/1/3) 0.01 (1/1/3) 0.01 (1/1/3)
4 1 0.01 (2/6/42) 0.01 (2/5/37) 0.01 (2/5/37) 0.01 (2/11/50) 0.01 (2/5/37) 0.01 (2/5/37)
5 1 8.86 (38/185/1670) 16.74 (38/270/2532) 16.69 (38/270/2532) − 3.39 (8/113/1161) 3.38 (8/113/1161)

AL 2 2 0.01 (9/22/32) 0.01 (9/16/26) 0.01 (9/16/26) 0.01 (7/24/32) 0.01 (7/23/33) 0.01 (7/23/33)
2 3 0.01 (9/22/32) 0.01 (9/16/26) 0.01 (9/16/26) 0.01 (7/24/32) 0.01 (7/23/33) 0.01 (7/23/33)
2 4 0.02 (9/22/32) 0.02 (9/16/26) 0.02 (9/16/26) 0.03 (7/24/32) 0.03 (7/23/33) 0.03 (7/23/33)
2 5 0.05 (9/22/32) 0.03 (9/16/26) 0.03 (9/16/26) 0.06 (7/24/32) 0.06 (7/23/33) 0.06 (7/23/33)
2 7 0.32 (9/22/32) 0.21 (9/16/26) 0.22 (9/16/26) 0.39 (7/24/32) 0.35 (7/23/33) 0.36 (7/23/33)
2 10 5.06 (9/22/32) 3.28 (9/16/26) 3.32 (9/16/26) 6.02 (7/24/32) 5.51 (7/23/33) 5.52 (7/23/33)

SC(4) 3 1 0.01 (12/18/26) 0.01 (12/17/27) 0.01 (11/14/23) 0.01 (9/14/22) 0.01 (9/11/20) 0.01 (9/11/19)
SC(4) 7 1 0.01 (12/18/26) 0.01 (12/17/27) 0.01 (11/14/23) 0.01 (9/14/22) 0.01 (9/11/20) 0.01 (9/11/19)
SC(4) 8 1 0.02 (12/19/30) 0.02 (12/17/29) 0.02 (11/14/24) 0.03 (13/24/32) 0.02 (13/20/31) 0.01 (9/12/21)
SC(4) 3 3 0.01 (12/18/26) 0.01 (12/17/27) 0.01 (11/14/23) 0.02 (14/28/32) 0.02 (14/27/32) 0.01 (9/12/20)
SC(4) 3 4 0.02 (12/18/26) 0.02 (12/17/27) 0.01 (11/14/23) 0.02 (6/17/23) 0.02 (6/14/23) 0.01 (8/12/20)
SC(8) 3 1 0.03 (27/31/40) 0.02 (27/28/36) 0.02 (23/25/33) 0.03 (26/35/43) 0.03 (26/35/43) 0.02 (23/24/31)

Grap(2) 3 2 0.01 (4/4/15) 0.01 (4/4/15) 0.01 (4/4/15) 0.01 (3/3/15) 0.01 (3/3/15) 0.01 (3/3/13)
Grap(2) 4 1 1.58 (697/697/2607) 1.59 (697/697/2607) 1.10 (539/539/2068) 0.01 (13/13/61) 0.01 (13/13/61) 0.01 (13/13/67)
Grap(2) 4 2 0.02 (4/4/22) 0.02 (4/4/22) 0.02 (4/4/22) 0.02 (3/3/20) 0.02 (3/3/20) 0.02 (3/3/18)
Grap(2) 4 3 0.02 (4/4/22) 0.02 (4/4/22) 0.02 (4/4/22) 0.03 (3/3/20) 0.03 (3/3/20) 0.02 (3/3/18)
Grap(2) 4 4 0.04 (4/4/22) 0.04 (4/4/22) 0.04 (4/4/22) 0.06 (3/3/20) 0.06 (3/3/20) 0.04 (3/3/18)
Grap(3) 4 1 0.04 (4/4/27) 0.04 (4/4/27) 0.04 (4/4/27) 0.59 (115/115/472) 0.58 (115/115/472) 0.04 (3/3/21)
Gossip 3 2 0.01 (5/5/11) 0.01 (5/5/11) 0.01 (5/5/11) 0.01 (3/3/7) 0.01 (3/3/7) 0.01 (3/3/7)

4 2 1.65 (47/47/133) 1.66 (47/47/133) 1.66 (47/47/133) 0.16 (7/7/30) 0.16 (7/7/30) 0.16 (7/7/30)
5 2 2798.24 (2378/2378/6604) 2803.24 (2378/2378/6604) 2794.51 (2378/2378/6604) 1.04 (14/14/99) 1.05 (14/14/99) 1.05 (14/14/99)

Table 2: Experimental results on easy benchmarks. The first three columns indicate the name of instance, the number of agents, and the modal
depth of the KBs, followed by subsequent columns presenting the results from various methods. Each result is represented as T (A/B/C),
indicating T seconds of run time, A nodes explored to locate the first goal-reachable node, B nodes explored in total, and C nodes expanded
across the entire search graph. The symbol “−” indicates timeout. Results of the smallest number of nodes explored are in boldface.

BFS BFS+ BFS+K Heu Heu+ Heu+K

|best| 8 8 15 8 10 15

Table 3: Results on domains SC, Grapevine, and Gossip.

The results show that the version with both the en-
hancement strategy and the belief lock strategy (BFS+K
and Heu+K) performs best in all 15 instances, showing
the significance of the belief lock strategy in the domains
where the goal involves maintaining certain information as
a secret, undisclosed to some specific agents.

Because the existing benchmarks are easily solved, the
improvements brought about by the enhancement strategies
are limited. Search efficiency may already have reached
optimal levels in certain domains, such as Grapevine,
limiting the scope for significant improvement through
these strategies.

4.2 Experiments on Hard Benchmarks
We conduct experiments on hard instances to further
evaluate the effectiveness of the two new strategies.

Benchmarks We build hard instances by increasing the
number of agents, objects such as rooms, blocks, and
secrets, and setting complex goals. Then, we only keep
the instances on which the BFS method finds the plan after
expanding more than 1,000 nodes or finds no plans within
3,600 seconds. Eventually, it results in 33 hard instances.

The benchmarks are described below.
Collaboration-and-communication (Kominis and

Geffner 2015). There is a corridor of some rooms. Several
boxes are located in some of the rooms. The agents can
move back and forth along this corridor. When an agent
enters a room, she can see if a box is in the room. An
agent can communicate information to another agent.
Furthermore, there is a variant with a cheat action. The
cheat action means agent i can mislead agent j about
whether box b is in room r.

Finding-the-truth (Le et al. 2018): There are several
boxes located in some rooms. The agents start with wrong
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Figure 2: Explored nodes of four methods on hard instances
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Figure 3: Run time (s) of four methods on hard instances

beliefs about the positions of the boxes. The agents can
move between the rooms and check if a box is in a room.
The goal is for the agents to find out the true locations of
the boxes.

Selective-communication (Kominis and Geffner 2015)
is introduced in Section 2.

Grapevine (Muise et al. 2015): A few guests attend a
meeting in a villa with n rooms. Each guest has her own
secret to share with others. Each guest can move between
the rooms, and broadcast her secret to the guests in the same
room. The goal is that only some of the guests obtain the
designated secrets.

Hexa Game (van Ditmarsch 2001): There are some
agents and cards, each with a unique color. Initially,
everyone is holding a card, and can only see the color of
her own card. A player can ask a question to another player
whether her card is of a certain color. The question should
always be honestly answered. The goal is for some agents
to know the cards of some players.

Gossip (Attamah et al. 2014): Each of several friends
has her own secret to share. Instead of sharing in public,
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Figure 4: Explored nodes of six methods on hard instances
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Figure 5: Run time (s) of six methods on hard instances

they are only allowed to make a call to each other. In each
call, they exchange all the secrets they know. The goal is
that some agents get to know the secrets of some friends
while some other agents do not.

Results Figure 2 and Figure 3 compare four methods: the
BFS, BFS equipped with the enhancement strategy (BFS+),
the heuristic search and the heuristic search equipped
with enhancement strategy (Heu+). The x-axis represents
various instances, arranged according to the increasing
number of nodes explored by the Heu+ method. Due to
the extensive scale range, the y-axis employs a logarithmic
scale (base 10) of the raw data.

The results in Figure 2 show that Heu+ explored the
smallest number of nodes to get the solution in most of
the cases among the four methods. Specifically, for all 33
instances, Heu+ performs best in 28 instances, and BFS+

performs best in 3 instances. Figure 3 reports the corre-
sponding time cost in the search, which is consistent with
the results of the nodes explored. In particular, in our ex-
periments, the enhanced version of BFS (BFS+) achieved a
substantial reduction in time cost, exceeding 80%, compared
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to the standard BFS in 7 distinct instances. Similarly, the
enhanced heuristic search with our strategy (Heu+) demon-
strated a significant time saving of over 80% compared to
the heuristic search in 8 instances. In summary, BFS+ and
Heu+ achieve the best result except in a single instance.

Figure 4 and Figure 5 compare six methods: BFS, BFS+,
BFS+ equipped with the belief lock strategy (BFS+K),
heuristic search, Heu+, and Heu+ equipped with the belief
lock strategy (Heu+K). The x-axis represents various
instances, arranged according to the increasing number of
nodes explored by the Heu+K method.

The results in Figure 4 show that the belief lock strategy
further improves the performance of BFS and heuristic
search. In the figure, BFS+K and Heu+K explored the
smallest number of nodes to obtain the solution in 30 out of
33 instances. The best-resulting method, Heu+K, performs
best in 29 instances. Figure 5 reports the corresponding
time cost in search. When integrated with the belief lock
strategy, BFS+K demonstrated a time saving of more than
50% compared to its predecessor BFS+ in 9 distinct cases.
Likewise, the Heu+K, which incorporates this strategy into
the heuristic search, yielded a time reduction of over 50%
when measured against Heu+ in 11 cases, underscoring the
significant efficiency gains achieved through this advanced
strategy. In summary, BFS+K and Heu+K achieve the best
except in 3 instances.

Because our new strategies are based on heuristic obser-
vations, there are instances where they may not be effective
and in some cases they might even lead to suboptimal
results. Consider, for instance, the domain of the Hexa
Game, where actions are only sensing actions, meaning
that the resulting solution (policy) to this domain is a full
binary tree under contingent planning. In such a scenario,
the simple BFS method may outperform all other methods.

5 Conclusions

Multi-agent epistemic planning is an emerging field at the
intersection of automated planning and epistemic logic. In
this paper, we have introduced two new strategies designed
to refine the MEPK search algorithms. The enhancement
strategy leverages information from the search path to
dynamically adjust heuristics, aiming to speed up the search
by decreasing unnecessary node exploration. The belief
lock strategy prevents the planner from continuing to search
a particular state that is unable to progress to the goal state
due to an agent’s possession of certain knowledge. Then,
we demonstrate that the performance of MEPK, equipped
with the new strategies, has improved. In addition, we have
constructed hard instances derived from existing bench-
marks. The evaluation results affirm the effectiveness of the
new strategies, marking a significant leap in computational
efficiency for MEP.

In the future, we plan to extend Proposition 1 to en-
compass more general scenarios, such as cases where the
information kept unknown to certain agents includes not
just literals, but also the beliefs of other agents.

Acknowledgements
We are grateful to anonymous reviewers whose comments
and suggestions have helped us improve the paper.

A Proof of Proposition 1
The higher-order revision operator in MEPK is defined
on ACDF, a normal form for KD45n to support efficient
reasoning and progression. First, we introduce the cover
modality and ACDF.

We let Laϕ stand for ¬Ba¬ϕ, and we use LaΦ to
represent the conjunction of Laϕ where ϕ ∈ Φ.

Definition 12. Let a ∈ A, and Φ a finite set of formulas.
The cover modality is defined as follows:

∇aΦ
.
= Ba(

∨
Φ) ∧ LaΦ.

Intuitively,∇aΦ means that each world considered possi-
ble by agent a satisfies an element of Φ, and each element of
Φ is satisfied by some world considered possible by agent a.

Definition 13. The set of cover disjunctive formulas (CDFs)
is inductively defined as follows:

1. A propositional term, i.e., a conjunction of propositional
literals, is a CDF;

2. If ϕ0 is a propositional CDF, and for each a ∈ B ⊆ A, Φa

is a finite set of CDFs, then ϕ0 ∧
∧

a∈B∇aΦa is a CDF,
called a CDF term;

3. If Φ is a non-empty finite set of CDF terms, then
∨

Φ is a
CDF, called a disjunctive CDF.

Definition 14. The non-alternating factor of a formula ϕ,
denoted by na(ϕ), is the number of modal operators of an
agent which directly occur inside those of the same agent.
We say that a formula is alternating if its non-alternating
factor is 0.

Definition 15. We call an alternating CDF an ACDF
(alternating cover disjunctive formula).

For example, ∇a{⊤, q} ∧ ∇b{⊤,∇a{⊤,¬q}} is an
ACDF; but the CDF∇a{∇b{p},∇a{∇a{¬q}}} is not, and
its non-alternating factor is 2 since it happens twice that ∇a

directly appears after∇a. Hales, French, and Davies (2012)
introduced the notion of ACDFs, and showed that in KD45n,
every formula in LK is equivalent to such a formula.

Next, we introduce the higher-order revision operator in
two cases used in MEPK.

Definition 16. Let ϕ and ϕ′ be ACDFs, γ a DNF formula.
The revision of ϕ with ϕ′ under γ, denoted ϕ ◦γ ϕ′, is
recursively defined as follows:

1. When ϕ and ϕ′ are propositional, the result is ϕ◦s(ϕ′∧γ),
where ◦s is Satoh’s revision operator (Satoh 1988).

2. When ϕ = ϕ0 ∧
∧

a∈B∇aΦa, ϕ′ = ϕ′0 ∧
∧

a∈B′∇aΦ
′
a,

and ϕ ∧ ϕ′ is satisfiable w.r.t. γ, ϕ ◦γ ϕ′ is defined as:

(ϕ0 ◦γ ϕ′0) ∧
∧

a∈B−B′∇aΦa ∧
∧

a∈B′−B∇aΦ
′
a∧∧

a∈B∩B′∇a[(Φa ◦γ
∨

Φ′
a) ∪ (Φ′

a ◦γ
∨

Φa)].
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The intuition of rule 2 is the conjunction property of cover
modality: ∇aΦ ∧∇aΦ

′ ⇔ ∇a[Φ ∧ (
∨
Φ′) ∪ Φ′ ∧ (

∨
Φ)].

Next, we present the proof.

Proof of Proposition 1. We prove by induction on the
sequence of actions τ .

Base case (τ consists of only one action t): For simplicity,
let us focus on the beliefs of agent a, and modal depth is 1.

Let prog(I, σ) = ϕ0 ∧Baϕa and G = ψ0 ∧Baψa, where
ϕ0, ϕa, ψ0 and ψa ∈ L0.

For computation, MEPK compiles prog(I, σ) and G to
ACDFs: ϕ0 ∧ ∇a{ϕa} and ψ0 ∧ ∇a{ψa}, respectively.
Note that in KD45, Baϕ |= Laϕ, so Baϕ⇔ ∇a{ϕ}.

1. If t is a sensing action which is a tuple ⟨pre, pos,neg⟩,
let the positive result pos(t) = ϕ′0 ∧ Baϕ

′
a, then the

progression of prog(I, σ) w.r.t. t with positive result is
as follows:

• If prog(I, σ) ∧ pos(t) is propositionally unsatisfiable
w.r.t. γ, then (by Definition 8)

prog(prog(I, σ), τ)⇔ ⊥

• Otherwise, we have

prog(prog(I, σ), τ)
⇔ prog(I, σ) ◦γ pos(t)

⇔ (ϕ0 ∧Baϕa) ◦γ (ϕ′0 ∧Baϕ
′
a)

⇔ (ϕ0 ∧∇a{ϕa}) ◦γ (ϕ′0 ∧∇a{ϕ′a})
⇔ (ϕ0 ◦γ ϕ′0) ∧∇a{ϕa ◦γ ϕ′a} (rule 2, Definition 16)

⇔ [ϕ0 ◦s (ϕ′0 ∧ γ)] ∧Ba[ϕa ◦s (ϕ′a ∧ γ)]

Given prog(I, σ) |=γ Bap, and pos(t) ̸|=γ ¬Bap, then
ϕa |=γ p, and ϕ′a ∧ p is satisfiable w.r.t. γ.
Thus [ϕa ◦s (ϕ′a∧γ)] |=γ p, and prog(prog(I, σ), τ) |=γ

Bap.
Also as G |=γ ¬Bap, then ψa |=γ ¬p, and ¬ψa |=γ p.
Thus [ϕa ◦s (ϕ′a ∧ γ)] ∧ ¬ψa is satisfiable.
However, prog(prog(I, σ), τ) |=γ G requires
[ϕa ◦s (ϕ′a ∧ γ)] ∧ ¬ψa to be unsatisfiable, which
is a contradiction. Thus prog(prog(I, σ), τ) ̸|=γ G.
The progression of prog(I, σ) w.r.t. t with the negative
result neg is similar.

2. If t is a deterministic action, the progression of prog(I, σ)
w.r.t. t is similar to sensing action except that the belief
change operator is higher-order update operator.

Induction step (τ consists of two or more actions): Let
τ = (t; τ ′), then

prog(prog(I, σ), τ)
⇔ prog(prog(I, σ), (t; τ ′))
⇔ prog(prog(prog(I, σ), t), τ ′)

By the base case, we have prog(prog(I, σ), τ) |=γ Bap.
Then, we repeatedly retrieve actions from τ ′ until it consists
of only one action.
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