
Blending Grounding and Compilation for Efficient ASP Solving

Carmine Dodaro , Giuseppe Mazzotta , Francesco Ricca
University of Calabria

carmine.dodaro@unical.it giuseppe.mazzotta@unical.it francesco.ricca@unical.it

Abstract

Answer Set Programming (ASP) is a widely recognized
formalism for Knowledge Representation and Reasoning.
Traditional ASP systems, that employ the ground and
solve architecture, are subject to the grounding bottle-
neck (i.e., variable-elimination can exhaust all computational
resources). Compilation-based approaches have recently
demonstrated how grounding can be effectively bypassed by
compiling rules into propagators that simulate them. How-
ever, compiling an entire ASP program is not always advan-
tageous. In this paper, we present both a program rewriting
technique and an algorithm for the compilation of grounding
that allow for unrestricted blending of grounding and com-
pilation. We implement these techniques in a hybrid ASP
system that compares favourably with state-of-the-art ASP
solvers on established benchmarks.

1 Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011; Gelfond and Lifschitz 1991) is a well-
known formalism for Knowledge Representation and Rea-
soning. ASP has been applied in several areas (Erdem, Gel-
fond, and Leone 2016), some notable examples are Plan-
ning (Son et al. 2023), Scheduling (Dodaro and Maratea
2017; Cardellini et al. 2023), Robotics (Erdem and Patoglu
2018), Natural Language Processing (Cuteri, Reale, and
Ricca 2019; Mitra et al. 2019; Schüller 2016; Yang, Ishay,
and Lee 2023), and Databases (Eiter et al. 2008; Are-
nas, Bertossi, and Chomicki 1999; Manna, Ricca, and Ter-
racina 2015). Notably, ASP is the core technology in many
real-world applications of industrial interest (Francescutto,
Schekotihin, and El-Kholany 2021; Barbara et al. 2023;
Müller et al. 2024; Rajaratnam et al. 2023).

The applicability of ASP is mostly due to two fea-
tures: a comparatively expressive language that can model
hard problems (Dantsin et al. 2001), and the availability
of efficient implementations (Gebser et al. 2018). On the
one hand, the language of ASP has established roots in
the stable model semantics (Gelfond and Lifschitz 1991;
Lifschitz 2010) and a standardized syntax (Calimeri et al.
2020). On the other hand, the enhancement of ASP systems
is still a compelling research area, as system performance is
often fundamental in the development of effective applica-
tions (Gebser et al. 2018).

Traditional ASP systems are based on the Ground&Solve
approach (Kaufmann et al. 2016). In few words, the in-
put program is first “grounded” to compute a variable-
free equivalent propositional program; then, the grounded
program is “solved” by employing a CDCL-like algo-
rithm (Marques-Silva, Lynce, and Malik 2021) that com-
putes its answer sets. Ground&Solve systems such as
CLINGO (Gebser et al. 2016) and DLV (Alviano et al.
2017) are serving honorably the cause. However, they in-
trinsically suffer from the so-called grounding bottleneck,
i.e., getting rid of variables already consumes all the compu-
tational resources (i.e., time and/or space) in several cases
of practical interest (Calimeri et al. 2016; Ostrowski and
Schaub 2012).

The grounding bottleneck (Gebser et al. 2018) has been
approached from several perspectives. These include hy-
brid formalisms (Balduccini and Lierler 2017; Gebser et
al. 2016; Ostrowski and Schaub 2012; Susman and Lier-
ler 2016), lazy grounding architectures (Bomanson, Jan-
hunen, and Weinzierl 2019; Lefèvre and Nicolas 2009;
Lierler and Robbins 2021; Palù et al. 2009; Weinzierl 2017),
complexity-driven program rewritings (Besin, Hecher, and
Woltran 2023; Besin, Hecher, and Woltran 2022), propa-
gators and program compilation (Cuteri et al. 2019; Cuteri
et al. 2020; Mazzotta, Ricca, and Dodaro 2022; Dodaro,
Mazzotta, and Ricca 2023). Hybrid approaches basically
circumvent the problem of ASP systems by expanding the
language with novel constructs and connecting ASP sys-
tems with external sources of computation. Lazy ground-
ing techniques perform grounding during the search, aim-
ing to prevent computing unnecessary instantiations; how-
ever, they have yet to match the performance of state-of-
the-art systems (Weinzierl, Taupe, and Friedrich 2020) in
common cases. Program rewriting methods (Besin, Hecher,
and Woltran 2022; Besin, Hecher, and Woltran 2023) tackle
the problem by transforming the original normal program
into a different form, such as targeting a different formalism
like propositional epistemic logic programs or generating a
smaller ground disjunctive program. The programs result-
ing from the transformation are easier to evaluate, although
the translation process can be exponential in the worst case
(yet highly promising in practical scenarios) (Besin, Hecher,
and Woltran 2022). Compilation-based approaches demon-
strated that the grounding can be skipped in some relevant

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

317

cases by compiling rules in propagators that simulate rules.
The first iterations of compilation-based approaches were ef-
fective in compiling subprograms acting as constraints (Cu-
teri et al. 2020; Mazzotta, Ricca, and Dodaro 2022). More
recently, the PROASP system (Dodaro, Mazzotta, and Ricca
2023) demonstrated that it is possible to devise a compiler
also for rules “generating” answer sets (i.e., involving non-
stratified negation). In PROASP, a tight (Erdem and Lif-
schitz 2003) non-ground (aggregate-free) input program is
first pre-processed by applying a rewriting encompassing
program completion (Clark 1977) and normalization (i.e.,
it produces rules of two kinds). Then, the compiler gener-
ates code for both Herbrand base generation and rule prop-
agators. That code is injected in the CDCL solver GLU-
COSE (Audemard and Simon 2009) to initialize variables
and simulate the presence of ground rules, respectively. In
this way, the PROASP compiler produces a solver specific
for the non-ground program in input that needs no grounder.
Clearly, PROASP implements an approach that is basically
at the antipodes of Ground&Solve, since it requires that all
rules of a program are compiled in propagators.

Empirical evidence shows that compiling all rules of an
ASP program does not pay off in all cases w.r.t. traditional
approaches (Mazzotta, Ricca, and Dodaro 2022). This is not
surprising. On the one hand, it is well-established that there
is no free lunch in ASP solving (Gebser, Maratea, and Ricca
2020), i.e., no single algorithm is the best in all cases; on
the other hand, the following example makes it more intu-
itive that the same principle also applies to the choice be-
tween grounding and compilation. First, consider the case
of a small groundable instance of a program modelling a
complex problem P . It is likely that a highly optimized
solver like CLINGO is the best choice to solve it. How-
ever, when faced with a large, non-groundable instance of
the same problem P , opting for PROASP might be a wiser
choice. Now, what about intermediate cases? Under typ-
ical operational scenarios, it is plausible that certain rules
of the program can be efficiently grounded and, thus, are
amenable to be processed using the traditional architecture;
whereas, for the remaining part of the program, which is
made of rules that are subject to the grounding bottleneck,
a compilation-based system could offer a viable solution for
their evaluation. This latter case (which is more common in
practice than one might expect) cannot be approached in the
best possible way with current state-of-the-art ASP systems,
that either ground or compile everything.

In this paper, we focus on this latter scenario. We build on
the ground of PROASP and enhance its compilation-based
architecture to seamlessly blend grounding and compilation.
This novel approach allows for an unrestricted blending of
both methods, and aims at achieving superior performance
by combining the advantages of both approaches. Specifi-
cally, to achieve our objectives, we have extended PROASP
in multiple directions providing the following contributions:

1. A program rewriting technique that rearranges the pro-
gram so that grounded rules (no matter if they are in-
volved in the same negative cycles or not) can coexist with
those that will be handled by propagators, and extends the
PROASP one also to handle aggregates.

2. A compilation algorithm for grounding that processes
non-ground rules to generate specific imperative code that
performs variable elimination.

3. A hybrid ASP solver that extends PROASP to support in
the same system both grounding and compilation of ASP
programs with aggregates.

4. An empirical analysis that assesses the behaviour of the
new approach and compares it with state-of-the-art alter-
natives on well-known ASP benchmarks.

In our approach, users can distinguish between the rules
of the ASP program that need to be grounded and those
that need to be compiled. The system first applies a
pre-processing technique that extends the normalization of
PROASP to allow grounded rules to coexist with propaga-
tors, no matter if they are involved in a recursive defini-
tion. Then, the rules to be compiled follow the usual path
of PROASP, i.e., they are compiled in propagators; whereas
the remaining rules are compiled in a code that performs
grounding, i.e., code that generates propositional clauses
that are stored in the GLUCOSE data structures. The re-
sulting ASP system can blend compilation and grounding.
Moreover, we remark that a compiled grounder has never
been proposed in the literature. Indeed, the compilation was
focused on the generation of propagators (i.e., code perform-
ing inference, not grounding), and the compilation of aggre-
gates, introduced by Mazzotta, Ricca, and Dodaro (2022),
was not supported by the previous version of PROASP.

The results of the experiment presented in the paper con-
firm that grounding and compilation can be blended effec-
tively. Indeed, our approach can outperform state-of-the-art
ASP solvers on benchmarks that are either ground-intensive
or solving-intensive (or both).

2 Preliminaries
In this section we provide some basic knowledge of the
language of Answer Set Programming (ASP), and we re-
call the main working principles of Ground&Solve and
Compilation-based ASP systems, that are needed to dive
into the details of the main contributions of this paper.

2.1 The Language of ASP
In ASP terms are either variables (i.e. strings starting with
an uppercase letter) or constants (i.e. integer numbers or
strings starting with a lowercase letter). A standard atom is
an expression of the form p(t1, . . . , tn) where p is a pred-
icate of arity n ≥ 0, and t1, . . . , tn are terms. A standard
literal is either a standard atom a or its negation not a, where
not represents negation as failure. Given a standard literal
l = a (resp. l = not a), l denotes the complement of l,
that is not a (resp. a), and T (l) denotes the list of terms
appearing in l. A standard literal is ground if it does not
contain any variable. A symbolic set is a pair for the form
〈V : Conj〉, where V is a list of variables and Conj is
a conjunction of standard literals. A ground set is a set of
pairs of the form 〈t : conj〉, where t is a list of constants
and conj is a conjunction of ground standard literals. An
aggregate function is an expression of the form f(S), where

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

318

f ∈ {#sum,#count} is an aggregate function symbol, and
S is a symbolic or ground set. An aggregate atom is an ex-
pression of the form f(S) ≺ t, where f(S) is an aggregate
function, ≺∈ {≤, <,≥, >} is a comparison operator, and t
is a term called guard. An atom is either a standard or an
aggregate atom. A literal is either an atom a or its negation
not a. A literal of the form a is said to be positive, oth-
erwise it is negative. A rule is an expression of the form
h ← l1, . . . , ln where h is a standard atom referred to as
head that can also be omitted, and l1, . . . , ln, with n ≥ 0,
is a conjunction of literals referred to as body. For a rule r,
Hr denotes the set of standard atoms in the head of r, Br

denotes the set of standard literals in the body of r, and Ba
r

denotes the set of aggregate literals in the body of r. With-
out loss of generality in this paper we assume that for each
rule r, |Ba

r | ≤ 1. A rule r is a constraint if Hr = ∅ or
it is a fact if Br = Ba

r = ∅. Given a rule r, the global
variables of r are all the variables appearing in Br or in the
guard of an aggregate in Ba

r ; r is safe if each global vari-
able and each variable in Hr appears in some positive literal
in Br. A program is a set of safe rules. Given an ASP ex-
pression ε (i.e. literals, rule, etc.), V(ε) and P(ε) denote,
respectively, the set of variables and predicates in ε. Given
a program Π, H(Π) denotes the set of atoms appearing in
the head of some rules in Π; the dependency graph of Π,
denoted by GΠ, is a directed labeled graph whose nodes are
the predicates in Π and there exists an edge (u, v,+) (resp.
(u, v,−)) if there exists a rule r ∈ Π such that u appears
in some positive (resp. negative) literal in the body of r
and v appears in the head of r. A program Π is said to be
tight (Fages 1994) if GΠ has no loops involving only pos-
itive edges. Such definition has been successively relaxed
by Fandinno and Lifschitz (2022), introducing the class of
locally tight programs, that are programs free of positive
recursion after grounding. In the following we restrict our
attention to locally tight programs that is the class ASP pro-
gram supported by our approach. Let p ∈ P(Π), Πp denotes
the set of rules r ∈ Π such that p appears in Hr. Given a
program Π, the Herbrand Universe of Π, denoted by UΠ,
is the set of constants in Π; the Herbrand Base of Π, de-
noted by BΠ, is the set of ground standard atoms that can be
built from predicates in Π and constants in UΠ. A substitu-
tion σ w.r.t. Π, is a mapping from a set of variables V to
constants in UΠ. Given an ASP expression ε occurring in a
program Π, a substitution σ from V(ε) to constants in UΠ is
a well-formed substitution, and σ(ε) denotes the expression
obtained from ε by replacing variables with values they are
mapped to. Given a symbolic set S, inst(S) denotes the
ground set {σ(S) | σ is a well-formed substitution for S}.
Given a rule r ∈ Π, a global substitution for r is a sub-
stitution from the global variables of r to constants in UΠ;
and ground(r) denotes the set of ground instantiation of the
form σ(Hr) ← σ(Br), A, where σ is a global substitution
for r, and A = f(inst(σ(S))) ≺ σ(T) if Ba

r = {f(S) ≺
T}, otherwise A is omitted. For a program Π, ground(Π) is
the set of ground instantiations of rules in Π.

Regarding the semantics of ASP, we recall that, given a
program Π, an interpretation I (i.e. a set of standard literals
over atoms in BΠ) is an answer set of Π iff (i) I is total and

consistent (i.e., for each a ∈ BΠ either a ∈ I or not a ∈ I);
(ii) I is a model, namely for each rule r ∈ ground(Π) either
the head of r is true w.r.t. I or the body of r is false w.r.t.
I; and (iii) I is a minimal model of its FLP-reduct (Faber,
Pfeifer, and Leone 2011).

A program Π is said to be coherent if it admits at least
one answer set, otherwise it is incoherent. For further de-
tails about the ASP semantics, we refer the reader to (Gel-
fond and Lifschitz 1991; Faber, Pfeifer, and Leone 2011;
Calimeri et al. 2020).

2.2 Evaluation of ASP Programs

The Ground&Solve Approach. Traditional ASP solvers em-
ploy the Ground&Solve approach, which is based on two
components, grounder and solver. The former takes as in-
put a program P and produces ground(Π), which is later
on processed by the solver to produce answer sets. Specifi-
cally, answer sets are produced using a CDCL-based (Silva
and Sakallah 1999) algorithm, extended with propagators
specific for ASP (Kaufmann et al. 2016). The algorithm is
based on three main components, a choice heuristic, a prop-
agation function, and a learning strategy. The idea is to
build an answer set step-by-step starting from an empty in-
terpretation I . At each step, a literal is heuristically selected
and added to I (choice). Then, propagators are used to ex-
tend I with the deterministic consequences of this choice
and their reason, i.e., literals in I leading to the propagation.
If the propagation leads to an inconsistency in I (i.e. p, p ∈ I
for some p ∈ B), the algorithm learns a new constraint us-
ing the reason of each propagated literal, undoes the choices
leading to the inconsistency, and restores the consistency of
I . This process is repeated until I is an answer set or the
consistency of I cannot be restored, showing that no answer
sets can be found.
Compilation-based Approach. Compilation-based ASP-
solving was revealed to be very promising in tack-
ling the grounding bottleneck problem that affects the
Ground&Solve approach (Ostrowski and Schaub 2012; Cal-
imeri et al. 2016). The idea behind such approaches is to
compile an ASP program into a set of custom propagators
that are able to simulate rules’ inferences during the solv-
ing without grounding them at all. Recently, a compilation-
based ASP solver, known as PROASP, has been intro-
duced (Dodaro, Mazzotta, and Ricca 2023). Briefly,
PROASP produces an ad-hoc solver for a non-ground pro-
gram that could be used to solve multiple instances of such
a problem expressed as a set of facts. More precisely, given
a non-ground program P , the compilation stage generates
two modules, the Generator and the Propagator. The for-
mer generates the set of relevant atoms needed to compute
the answer sets, while the latter simulates the inferences of
rules in P during the execution of the CDCL algorithm. To
this end, the input program Π is used to generate two pro-
grams Πgen , and Πprop . Πgen is compiled into a set of pro-
cedures that will be used to perform a bottom-up evaluation
of rules in Πgen starting from a set of input facts. These pro-
cedures are assembled by following the topological sort of
the dependency graph of Πgen , and originate the Generator

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

319

module of the output solver. On the other hand, the program
Πprop is first rewritten by applying an algorithm that resorts
the completion (Clark 1977) of the program, adjusted for the
non-ground setting. Then, the resulting program is compiled
into custom propagators that will be further integrated into a
dedicated module of the output solver, that is the Propagator.
The third component of the PROASP solver is an extended
version of the SAT solver GLUCOSE (Audemard and Simon
2009), which is initialized with the atoms produced by the
Generator and integrates the generated Propagator module,
which is used during propagation and learning stages.

3 Blending Grounding and Compilation
In this section, we describe the compilation of a hybrid
solver starting from a tight program Π. Initially, we partition
Π into two distinct programs, denoted as G and C. Sub-
sequently, the hybrid solver incorporates a grounder mod-
ule responsible for generating rule instantiations of rules in
G, and a set of specialized propagators tailored for rules in
C. Initially, rules in G are rewritten as described below,
and then grounded. The resulting ground rules are then
processed by the CDCL algorithm, where Clark’s comple-
tion (Clark 1977) is first applied, and then they are directly
integrated into the solver.

One of the problems of creating a hybrid solver is to in-
terleave the main CDCL algorithm and the set of dedicated
propagators. Specifically, the CDCL algorithm operates on
Clark’s completion of its input program. However, in our
hybrid approach, the CDCL algorithm operates only on a
portion of the input program, i.e. the ground instantiation
of the rules in G, and the other rules are compiled as a set
of dedicated propagators. As a consequence, Clark’s com-
pletion may be incorrect in this case. As an example, con-
sider that Π includes the rules r1 : p(X) ← a(X) and
r2 : p(X) ← b(X), where p(X) appears in the head. If
both r1 and r2 are in G, Clark’s completion of each atom
over the predicate p, say p(1), would include a set of clauses
to state that p(1) is true iff one between a(1) and b(1) is true.
However, if only r1 is in G, the completion would include a
set of clauses stating that p(1) is true iff a(1) is true, which
is incorrect. To address this issue, we perform an additional
rewriting technique, described in the following.
Definition 1. Let Π be a program partitioned into two
subprograms G and C, then blend(Π) = G ∪ C where
G is obtained from G by adding a rule of the form
p(V1, . . . , Vn) ← p′(V1, . . . , Vn), for each predicate p ∈
P(H(G)) ∩ P(H(C)) of arity n, where V1, . . . , Vn is a list
of distinct variables, and p′ does not occur in Π. Instead,
C is obtained from C by rewriting each rule of the form
p(t1, . . . , tn) ← l1, . . . , lm as p′(t1, . . . , tn) ← l1, . . . , lm,
where p ∈ P(H(G)) ∩ P(H(C)), and p′ is not in Π.

Intuitively, for an atom p, p′ represents an alias of p for the
rules inC, then the Clark’s completion of p includes also the
atom p′ so that the truth of p′ is handled using propagators
created from C. The following example should clarify the
rewriting technique.
Example 1. Let Π be a program partitioned into two
subprograms G and C, where G = {a(X,Y) ←

b(X,Y), not c(Y)} and C = {r1, r2}, with r1 =
a(1, Y) ← d(Y) and r2 = a(X, 1) ← e(X). Then
blend(Π) = G ∪ C where G is the program:

a(X,Y)← b(X,Y), not c(Y)
a(X1, X2)← a′(X1, X2)

and C is the program:

a′(1, Y)← d(Y) a′(X, 1)← e(X).

Starting from blend(Π), the goal is to construct a pair
of programs 〈Πprop,Πgen〉 to create a solver following the
PROASP approach, extended with the compilation of some
rules into a compiled grounder. Specifically, all rules in G
are stored in Πgen. The rewriting techniques described be-
low are applied to C, resulting in some rules added to Πprop

and others to Πgen. Rules added to Πgen that are also in
G are compiled into a grounder (as detailed in Section 4),
while other rules are compiled into a generator, which has
the role of generating the atoms to be added in GLUCOSE
by simulating the grounding procedure on the rules of Πgen

without producing the ground instantiation.
To show how 〈Πprop,Πgen〉 are created, we introduce dif-

ferent transformations used to process an input program Π.
The first transformation is applied to rules containing ag-

gregates and is described in the following.

Definition 2. Let Π be a program, and a rule r ∈ Π of the
form:

Hr ← Br, f{V : Conj} ≺ T (1)

agg(Π, r) denotes the pair 〈Πprop
r ,Πgen

r 〉. Specifically,
Πprop

r denotes the program:

asr(S, V) ← dmr(S), Conj
aggr(S) ← dmr(S), f{V : asr(S, V)} ≺ T

Hr ← Br, aggr(S)

where S is the set of global variables of r that appear also
in f{V : Conj} ≺ T , asr, and aggr are fresh predicates
and dmr denotes a fresh predicate modelling the domain of
variables in S for the rule r.
Instead, Πgen

r denotes the program {aggr(S) ← dmr(S)},
where S is the set of global variables of r that appear also
in f{V : Conj} ≺ T , and dmr denotes a fresh predicate
modelling the domain of variables in S for the rule r.

Intuitively, Definition 2 resorts the transformation intro-
duced by Mazzotta, Ricca, and Dodaro (2022) and is used to
split the propagations of a rule r of the form (1) into more
affordable steps. More precisely, agg(Π, r) introduces: (1)
a rule for modelling the truth of all the literals in Conj by
means of atoms over the fresh predicate asr; (2) a rule that
models the truth of the aggregate atom by means of atoms
over the fresh predicate aggr; (3) a rule to reconstruct the
original rule r; and (4) a generator rule that defines the do-
mains of the fresh predicate aggr according to the domain of
the global variables of r. The domain of the global variables
is modeled by external atoms (Gebser et al. 2016) of predi-
cate dmr. More precisely, such atoms are determined during
the generation process by projecting the possible values of
variables in S from the instantiations of Br.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

320

Example 2. Let r ∈ Π be a rule of the form:

a(X)← b(X,Y),#count{Z : c(Y,Z), not d(Z)} ≥ 2

Then agg(Π, r) = 〈Πprop
r ,Πgen

r 〉 where Πgen
r =

{aggr(Y)← dmr(Y)} and Πprop
r is the program:

asr(Y,Z) ← dmr(Y), c(Y,Z), not d(Z)
aggr(Y) ← dmr(Y),#count{Z : asr(Y,Z)} ≥ 2

a(X) ← b(X,Y), aggr(Y)

The second transformation is instead applied for optimiz-
ing the completion of rules forming an even loop through
negation and is detailed in the following.

Let Π be a program, and SCC be the strongly connected
components of GΠ, neg(Π) denotes the set of components
{p, q} ∈ SCC such that Πp ∪Πq is of the form:

p(t1, . . . , tn)← l1, . . . , lm, not q(t1, . . . , tn)
q(t1, . . . , tn)← l1, . . . , lm, not p(t1, . . . , tn)

Definition 3. Let Π be a program, and Comp = {p, q} ∈
neg(Π), then neg completion(Π, Comp) denotes the pair
of programs 〈Πprop

Comp,Π
gen
Comp〉, where Πprop

Comp denotes the
program:

auxp,q(~t) ← l1, . . . , lm
← p(~t), not auxp,q(~t)
← q(~t), not auxp,q(~t)
← auxp,q(~t), p(~t), q(~t)
← auxp,q(~t), not p(~t), not q(~t)

and Πgen
Comp denotes the program:

p(~t)← auxp,q(~t) q(~t)← auxp,q(~t)

where ~t = t1, . . . , tn are the terms appearing in the head
of the rules in Πp ∪ Πq , and auxp,q is a fresh predicate not
appearing in Π.

Intuitively, if Π is a program of the form {a← not b, b←
not a}, then a is true if and only if b is false (since a and b
do not appear in any other rule of Π). This intuition is gen-
eralized by the transformation neg completion that, given
two rules r1, r2, introduces a rule for modelling the truth of
the shared body between r1 and r2 by means of a fresh pred-
icate, say auxr1,r2 , and a set of constraints that ensures (i)
whenever Hr1 or Hr2 are true then the corresponding auxil-
iary atom must be true; and (ii) for each true auxiliary atom,
it is not possible thatHr1 andHr2 are both true or both false.
Together with such rules, neg completion introduces two
generator rules that are used to generate the domain of pred-
icates in Hr1 and Hr2 by using the fresh predicate auxr1,r2 .
Example 3. Let Π be the following program:

a(X) ← b(X,Y), not c(Y), not na(X)
na(X) ← b(X,Y), not c(Y), not a(X)

Then, SCC comprises {b}, {c}, {a, na}, and
neg(Π)={{a, na}}. Let Comp = {a, na}, then
neg completion(Π, Comp) = 〈Πprop

Comp,Π
gen
Comp〉 where

Πprop
Comp is the program:

auxa,na(X) ← b(X,Y), not c(Y)
← auxa,na(X), a(X), na(X)
← auxa,na(X), not a(X), not na(X)

and Πgen
Comp is the program:

a(X)← auxa,na(X) na(X)← auxa,na(X).

Finally, the Clark’s completion is applied to the program
by performing the transformations described in the follow-
ing.
Definition 4 ((Dodaro, Mazzotta, and Ricca 2023)). Let Π
be a program, p ∈ P(Π) be a predicate of arity m such
that Πp = {r1, . . . , rn}, with n ≥ 2, and ~V = V1, . . . , Vm
be a list of variables. Then unique(Π, p) denotes the
pair of programs 〈Πprop

p ,Πgen
p 〉 where Πgen

p = {Hr ←
supr(T (Hr)) | r ∈ Πp} and Πprop

p denotes the program:

supr(T (Hr))← Br, Bra ∀r ∈ Πp

← supr(T (Hr)), notHr ∀r ∈ Πp

← p(~V), not supr1(~V), . . . , not suprn(~V)

Basically, for a program Π and a predicate p ∈ Π,
unique(Π, p) rewrites all those rules r ∈ Π having p in
the head, by substituting p with a fresh predicate supr that
captures the existence of a supporting rule for an atom over
predicate p, and adds a set of constraints simulating the sup-
port propagations for the atoms over predicate p. More-
over, the generator program contains a rule for each pred-
icate supr that is used to generate the possible atoms over
predicate p.
Example 4. Let Π be the following program:

r1 : a(X) ← b(X,Y), not c(Y)
r2 : a(Z) ← d(Z), not c(Z)

unique(Π, a) = 〈Πprop
a ,Πgen

a 〉 where Πprop
a denotes the

program:
supr1(X)← b(X,Y), not c(Y)
supr2(Z)← d(Z), not c(Z)

← supr1(X), not a(X)
← supr2(Z), not a(Z)
← a(X1), not supr1(X1), not supr2(X1)

and Πgen
a denotes the program:
a(X)← supr1(X) a(Z)← supr2(Z).

Definition 5 ((Mazzotta, Ricca, and Dodaro 2022)). Given
a program Π, and a rule r ∈ Π such that r is of the form:

Hr ← Br (2)
where Hr 6= ∅, Br = l1, . . . , ln is a conjunction of standard
literals, and ~V = V(Br). Then completion(Π, r) denotes
the pair 〈Πprop

r ,Πgen
r 〉, where Πgen

r denotes the program
{auxr(~V)← l1, . . . , ln}, and Πprop

r denotes the program:

Hr ← auxr(~V)

← auxr(~V), l ∀l ∈ Br

← l1, . . . , ln, not auxr(~V).

Intuitively, completion transformation rewrites a rule r of
the form (2) for simulating the well-known Clark’s comple-
tion (Clark 1977) for the non-ground setting. This is done,
by introducing an auxiliary predicate auxr, and a set of con-
straints for each literal in Br. In this case, the generator
program contains a rule for generating all those atoms over
auxr starting from literals in Br.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

321

Example 5. Let r ∈ Π be the rule a(X)← b(X), not c(X).
Then completion(Π, r) = 〈Πprop

r ,Πgen
r 〉, where Πgen

r =
{auxr(X)← b(X), not c(X)}, and Πprop

r is the program:

a(X)← auxr(X)
← auxr(X), not b(X)
← auxr(X), c(X)
← b(X), not c(X), not auxr(X)

After applying the transformations described before, Π
can be compiled into a hybrid solver. Specifically, the goal is
to generate a pair of programs 〈Πgen,Πprop〉 such that Πgen

contains the rules that should be grounded together with the
rules that are used for generating the ground atoms that are
needed to compute the answer set of Π, while Πprop contains
the rules that should be compiled into a collection of custom
propagators. Thus, given a program Π partitioned in two
subprogramsG and C, as first step we compute blend(Π) =
〈G, C〉. Then, G is added to Πgen, while rules in C are subject
to further transformations. First of all, for each rule r ∈ C
of the form (1) we compute agg(C, r) = 〈Cpropr , Cgenr 〉. As
in the previous step, the rules in Cgenr are added to Πgen,
while r is replaced by aggregate-free rules in Cpropr . The
remaining rules in Cpropr (i.e., rules containing aggregates)
are added to the final propagator program Πprop. At this
point, the program C is transformed by looking at the SCCs
of C. More precisely, for each component c ∈ neg(Π),
we compute neg completion(C, c) = 〈Cpropc , Cgenc 〉. While
Cgenc is added to the final generator program Πgen, Cpropc
is substituted to the rules in C whose head predicate ap-
pears in c. The next step of the pipeline produces a program
whose predicate appears in at most one rule head. This is
achieved by computing unique(C, p) = 〈Cpropp , Cgenp 〉 for
each predicate p such that |Cp| ≥ 2. In particular, for such
predicate p, the rules in Cgenp are added to Πgen while the
rules in Cp are substituted by Cpropp . Finally, we apply the
completion introduced by Definition 5 to each rule r ∈ C
of the form (2). In particular, for such rules we compute
completion(C, r) = 〈Cpropr , Cgenr 〉 that will be added, re-
spectively, to Πprop and Πgen. The remaining rules in C are
basically constraints that are directly added to Πprop.

4 Compiled Grounder
In this section we describe the algorithm that allows to com-
pile the variable-elimination step (grounding). Given an
ASP program Π, the compiler for the grounding outputs the
code of a procedure that will compute the instantiation of
Π from the facts given in input to the solver. In the fol-
lowing, we adopt the code convention used by Mazzotta,
Ricca, and Dodaro (2022). More precisely, the code en-
closed between�� is printed by the compiler as it is, and
the code enclosed in JK , is first substituted with its run-
time value before being printed. For example, let V = X,Y
and Conj = a(X), b(Y), Algorithm 1 at line 12 prints
g set = g set ∪ σ(X,Y : a(X), b(Y)).

As in standard grounders (Kaufmann et al. 2016), the in-
put program Π is analysed to identify body-head dependen-
cies. In particular, the SCCs of the dependency graph GΠ of
Π, and the corresponding topological sort of GΠ are com-
puted. Then, since a rule r is associated with a SCC C such

Algorithm 1 CompileRuleGrounder
Input : A rule r, i.e., Hr ← Br, B

a
r

Output: Prints grounder procedure for the rule r
1 begin
2 �aggr = ∅�
3 �rules = ∅�
4 �constraints = ∅�
5 �σ = ε�
6 COMPILESTANDARDLITERALS(Br ,“l”)
7 if ∃ f{V : Conj} ≺ T ∈ Ba

r then
8 � v := σ(Jvars(Br) ∩ vars(Conj)K)�
9 � if @〈v, 〉 ∈ aggr then�

10 � g set = ∅�
11 COMPILESTANDARDLITERALS(Conj,“t”)
12 � g set = g set ∪ {σ(JV : ConjK)}�
13 CLOSELOCALSCOPES(Conj,“t”)
14 � aggr = aggr ∪ {〈v, g set〉}�
15 � U = U ∪ {auxagg(v)}�
16 � fi�

17 � body = σ(JBrK)�
18 if |Ba

r | = 1 then
19 � body = body ∪ {auxagg(v)}�
20 if ∃ h ∈ Hr then
21 � rules = rules ∪ {〈σ(JhK), body〉}�
22 else
23 �constraints = constraints ∪ {body}�
24 CLOSELOCALSCOPES(Br ,“l”)

that P(Hr) ⊆ C, each rule of Π is processed according
to that order, as in a bottom-up program evaluation (Kauf-
mann et al. 2016). Basically, the compiler prints the code of
each rule so that the resulting algorithm performs the same
evaluation of a standard grounder, which respects body-head
dependencies. (The code iterating over components is rather
straightforward and is omitted for space reasons).

Algorithm 1 reports the compiler code designed to pro-
cess a non-ground rule r, of the form Hr ← Br, B

a
r , and

prints a procedure capable of computing ground instanti-
ations of r. The resulting variable-elimination algorithm
works on a set of atoms F over predicates in Π, representing
the input facts, and a set of atoms U , representing undefined
atoms computed by evaluating preceding components.

The objective of the generated code is to compute the set
of pairs 〈h,B〉 where h is a ground instantiation of Hr and
B is a ground instantiation of Br, B

a
r having h in the head.

In detail, Algorithm 1 starts by printing the code that ini-
tializes the structures to accumulate the instantiations of r
(lines 2–4). Then, the initialization of a variable substitution
σ as an empty substitution is printed (line 5). The next step is
to compile the literals inBr by printing a sequence of nested
code blocks, one for each literal inBr, that iterates over pos-
sible instantiations of Br. This is done by means of Algo-
rithm COMPILESTANDARDLITERALS that prints the nested
loop join algorithm (Ceri, Gottlob, and Tanca 1990) used
for compiling the body of constraints by (Cuteri et al. 2020).
(More detail in the supplementary material.) Subsequently,
Algorithm 1 checks whether the body of r contains aggre-
gates (line 7). If this is the case, the code for grounding the

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

322

aggregate is generated within the innermost block process-
ing literals in Br. Since the grounding of aggregate atoms
relies on the global variables in r, the procedure creates a
ground set for each ground instantiation of these variables,
called shared variables, that appear in the aggregate (i.e. for
an aggregate f{V : Conj} ≺ T , V(Br)∩V(Conj)). Thus,
(line 9) an if-statement is printed that checks whether there
exists a ground set for the current instantiation of the shared
variables v, and the code for evaluating the aggregate set for
v is printed inside. The conjunction of the aggregate (Conj)
is processed, as done for rule bodies, by means of COMPILE-
STANDARDLITERALS; next, the code for accumulating in
the ground set g set the pair σ(V : Conj) is printed. Func-
tion CLOSELOCALSCOPES prints terminating delimiters for
each block of code generated up to now (for Conj). Once
the nested blocks (for Conj) are closed, the code stores
the newly generated ground set for the shared variables v.
Additionally, a fresh auxiliary atom (auxagg(v)) is gener-
ated (line 15) to represent the truth value of the aggregate
atom. This atom is then incorporated into the body (line 19),
to be managed in the solver via a dedicated propagator as
usual (Kaufmann et al. 2016). At this point (from line 17),
the compiler prints the code that generates an instantiation of
r from the current σ. Indeed, it prints the code that applies
σ to the body of r. In case r is not a constraint (Hr 6= ∅),
the code that applies σ to the head is printed, otherwise the
code instantiating a ground constraint of the form ← body
is printed. Finally, the nested blocks generated for handling
Br are closed (last line). (An example of code generated by
Algorithm 1 is reported in the supplementary material.)

5 Implementation and Experiments
In this section, we begin by outlining specific implemen-
tation details of our approach. Following this, we present
the results of an empirical evaluation assessing the perfor-
mance of the new approach. This evaluation was conducted
using publicly available benchmarks with the goal of pro-
viding an answer to the following questions: (i) Is compiled
grounding effective? (ii) Does the blending of grounding
and compilation provide advantages? (iii) Is there a way to
select what to compile and what to ground? (iv) What is the
overall impact of blending grounding and compilation?
Implementation. We implement our approach on the top
of the PROASP1 system. To achieve this, the input han-
dling was extended to apply the rewriting described in Sec-
tion 3, which enables blending grounding and compilation;
also, subprograms suitable for compilation or grounding are
identified. Then, an extended Generator Compiler pro-
duces either Herbrand base computation code or variable-
elimination code according to the methodology presented in
Section 4. We also extended the Propagator Compiler to
support the compilation of rules containing aggregates, as
proposed by Mazzotta, Ricca, and Dodaro (2022).
Hardware and Software Setup. The experiments were run on
a system with 2.30GHz Intel(R) Xeon(R) Gold 5118 CPU
and 512GB of RAM with Ubuntu 20.04.2 LTS (GNU/Linux

1https://github.com/MazzottaG/ProASP.git

5.4.0-137-generic x86 64). Execution time and memory
were limited to 1800 seconds and 8192 MB, respectively.
Each system was limited to run in a single core. All the
material needed to reproduce our experiment can be down-
loaded from https://t.ly/ yJIK.

Benchmarks. For our analysis, we considered several hard
benchmarks used in the literature to compare the perfor-
mance of ASP systems, including benchmarks from ASP
competitions (Calimeri et al. 2016), and benchmarks for
compilation-based ASP solvers (Mazzotta, Ricca, and Do-
daro 2022; Dodaro, Mazzotta, and Ricca 2023), for a total
of 14 benchmarks and 2366 instances. The full list of bench-
marks is reported in the first column of Table 1, where the
column # indicates the number of instances, column Gr.Int.
indicates whether the domain is grounding-intensive or not
(we flag a problem as grounding-intensive if the grounding
causes a system to exceed the memory limit in at least one
instance), columns SO and Sum t. indicate, for each com-
pared method, the number of solved instances and the sum
of solving times in seconds, respectively.

Compared methods. We compare the following methods:
The ASP system CLINGO (Gebser et al. 2016) (v.5.4.0)
as a representative of a state-of-the-art Ground&Solve im-
plementation, and eight variants of the PROASP system.
We label GROUND-ALL the PROASP version config-
ured to follow the Ground&Solve architecture (i.e., all
rules are grounded), where grounding is obtained via the
novel compiled-grounding technique of Section 4. We
label COMPILE-ALL the PROASP system following a
pure compilation-based approach, i.e., no rule is grounded.
COMPILE-ALL corresponds to the system presented in
(Dodaro, Mazzotta, and Ricca 2023) enhanced to sup-
port aggregates on the lines of (Mazzotta, Ricca, and Do-
daro 2022). Then, we consider six additional variants of
PROASP representing different ways of blending ground-
ing and compilation by splitting programs by rule type. We
opted for this pragmatic choice for the following reasons.
First observe that, given a program, the number of different
possible hybrid solvers that could be obtained is exponential
in the number of its rules, e.g., for a small program of 10
rules there are 210=1024 possible configurations. Addition-
ally, since different benchmarks employ different encodings,
it would be hard to draw general observations from such
a program-specific analysis. Thus, pragmatically we split
each each program according to a coarse-grained syntactic
criterion that solicits separately different types of propaga-
tors. This way, we identified the following three types of
rules: (CS) constraints, that is rules with an empty head not
containing aggregates; (AG) rules containing aggregates;
and (RL) all the other normal rules. Also, we consider their
combinations, i.e., RL+CS, RL+AG and CS+AG. (Note that
COMP-ALL would be COMP-RL+AG+CS). Thus, a label
of the form COMP-TYPE is used to label the variant config-
ured to compile rules of the type TYPE. In practice, we built
112 PROASP binaries (i.e., 8 versions for 14 domains).

Results. The results of the experiments are reported in Ta-
ble 1, where there is a line for each benchmark problem, and
the best-performing method in a domain is outlined in bold.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

323

https://t.ly/_yJIK

Benchmark # Gr. Int. CLINGO GROUND-ALL COMP-CS COMP-RL COMP-AG COMP-RL+CS COMP-RL+AG COMP-CS+AG COMP-ALL
SO Sum t. SO Sum t. SO Sum t. SO Sum t. SO Sum t. SO Sum t. SO Sum t. SO Sum t. SO Sum t.

Packing Problem 50 3 - - - - 48 1290.07 - - - - 19 2271.87 - - 48 1290.07 19 2271.87
Quasi Group 100 3 5 105.68 5 72.05 15 1079.8 5 63.82 5 72.05 15 432.28 5 63.82 15 1079.8 15 432.28
Non Part. Rem. Col. 110 7 110 825.95 110 353.77 110 53.05 110 536.81 110 353.77 110 176.12 110 536.81 110 53.05 110 176.12
Stable Marriage 314 3 209 22799.96 207 19145.57 236 6270.74 205 18546.01 207 19145.57 240 16086.1 205 18546.01 236 6270.74 240 16086.1
Graph Colouring 60 7 31 10480.28 28 10839.99 24 9981.4 27 10981.51 28 10839.99 24 10871.3 27 10981.51 24 9981.4 24 10871.3
Hanoi Tower 60 7 59 9115.25 60 2802.27 60 5793.16 53 18949.99 60 2802.27 52 18753.86 53 18949.99 60 5793.16 52 18753.86
Knight Tour 300 7 54 13559.99 300 1688.95 295 4303.56 300 11762.4 300 1688.95 300 9171.51 300 11762.4 295 4303.56 300 9171.51
Maximal Clique 50 7 50 52.77 50 26.42 50 23.91 50 40.56 50 26.42 50 39.83 50 40.56 50 23.91 50 39.83
Weighted Sequence 65 7 61 13980.69 56 17947.97 58 20581.17 44 24502.89 56 17947.97 47 29629.55 44 24502.89 58 20581.17 47 29629.55
Bottle Filling 100 7 100 803.8 100 784.49 100 847.97 100 683.96 100 3848.93 100 770.38 100 3802.24 100 3727.3 100 3678.29
Comp. Assignment 302 7 125 56264.24 226 6882.1 226 7361.74 219 23488.53 194 37028.71 216 19029.91 85 34775.51 193 36545.65 84 32975.39
Crossing Minim. 255 7 228 16889.52 189 43645.63 179 38633.15 166 60856.17 192 40463.01 165 59755.4 170 58014.91 183 38920.36 166 60502.43
Incr. Scheduling 500 3 85 21141.85 69 5765.6 151 1513.48 70 6679.62 68 5676.84 153 3252.5 68 3486.77 185 12709.91 153 11080.44
Visit All 100 7 62 4980.16 80 27215.43 63 13954.48 57 18061.3 60 23243.34 58 21753.64 41 3141.12 43 4859.79 43 7068.99
Overall 2366 - 1179 171000.14 1480 137170.24 1615 111687.68 1406 195153.57 1430 163137.82 1549 191994.25 1258 188604.54 1600 146139.87 1403 202737.96

Table 1: Comparison of the different degree of blending with state-of-the-art solver CLINGO.

(a) Overall (b) Grounding-intensive benchmarks (c) Grounding-feasible benchmarks

(d) Overall (e) Grounding-intensive benchmarks (f) Grounding-feasible benchmarks

Figure 1: Execution time and memory usage comparison.

First, we answer question (i), and we compare side by
side CLINGO with GROUND-ALL. We observe that the
latter solves more instances overall (1480 vs 1179). How-
ever, a domain-wise analysis shows that the two methods
have their own strengths. CLINGO is preferable in Graph
Colouring, Weighted Sequence, and Crossing Minimization,
whereas GROUND-ALL is faster in Hanoi Tower, Knight
Tour, Component Assignment, and Visit All. Diving into the
details, CLINGO is very fast in benchmarks where the pro-
gram simplifications it applies after grounding provide an
advantage; this is more visible in ground-intensive bench-
marks. GROUND-ALL seems faster where a direct and fast
instantiation leaves more time to solving.

We now broaden our analysis to study the behaviour of
all the compared methods. As expected, there is no solu-
tion that is definitely the best in all the domains. In Crossing

Minimization the Ground&Solve is the best approach; in-
deed, CLINGO is the fastest, and GROUND-ALL is the
best PROASP version. On the other hand, in Quasi Group,
the fastest is a pure compilation-based approach. Nonethe-
less, the best performance is often obtained by a hybrid
strategy. Indeed, the three best-performing methods overall
are COMP-CS, COMP-CS+AG, and COMP-RL+CS, which
solve 1615, 1600 and 1549 instances, respectively. We addi-
tionally report that we also run ALPHA system (Weinzierl
2017). Overall, ALPHA is not competitive with either
CLINGO or PROASP, solving less than 250 instances out
of 2366. On the same benchmarks, CLINGO solves 1179
instances and the best version of PROASP solves 1615 in-
stances. All in all, blending grounding and compilation is
often beneficial (this answers question (ii)).

Understanding the conditions under which compilation

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

324

and grounding are beneficial is crucial, especially to address
question (iii) and develop a strategy for selecting suitable
blends. Observe that the nature of compilation-based ap-
proaches prevents from applying existing algorithm selec-
tion strategies (Maratea, Pulina, and Ricca 2014). Indeed,
what to compile has to be decided at the beginning, and
there are different binaries for different domains. Running
all possible versions over all the instances is often unpracti-
cal. However, given a reasonable number of candidate ver-
sions, one can pragmatically sample the space of instances,
perform a short run, and then make an informed decision.
Our sampling approach is based on the instance size, mea-
sured by the number of facts (which impacts the grounding
size). First, we efficiently compute the number of facts for
each instance in a given benchmark. Then, we categorize in-
stances into four intervals based on quartiles. Subsequently,
we randomly select k instances from each interval to create a
sample of the benchmark. For this experiment, we set k = 2
(considering only a few instances), and for each domain, we
select the best PROASP version from the sample. We label
the resulting method SAMPLE-CHOICE, and we compare
it with the best possible choice (labelled BEST-CHOICE)
in each benchmark, and the extreme evaluation methods,
namely GROUND-ALL, COMP-ALL, and CLINGO. The
overall behaviour is shown in the cactus plots of Figure 1a
and Figure 1d, respectively plotting time and memory con-
sumption. In a cactus plot, instances are sorted by memory
or time usage. A point (i, j) denotes that a solver solves the
i-th instance within a limit of j MB or seconds, respectively.

Note that SAMPLE-CHOICE closely aligns with BEST-
CHOICE, validating the effectiveness of the sampling strat-
egy described earlier. Few instances were adequate to make
a sound decision (this answers question (iii)). Furthermore,
Figure 1a highlights the significant effectiveness of blending
grounding and compilation. In particular, BEST-CHOICE
solves 513, 212, and 289 more instances (in less time) than
CLINGO, GROUND-ALL, and COMP-ALL, respectively.
Figure 1d confirms that blending grounding and compilation
also leads to improved memory usage.

Finally, we study the behaviour of grounding and com-
pilation (to answer question (iv)). The cactus plots of Fig-
ure 1b and Figure 1c summarize the performance of com-
pared methods depending on whether the problem is ground-
intensive or not, respectively. In the grounding-intensive set-
ting compilation is advantageous, indeed in Figure 1b the
COMP-ALL line is very close to BEST-CHOICE. Also note
that GROUND-ALL and CLINGO perform similarly. On
the other hand, in Figure 1c, i.e., where grounding is not
an issue, GROUND-ALL is almost superimposed to BEST-
CHOICE. Similar considerations hold from the perspective
of memory usage, cfr., Figure 1e and Figure 1f.

6 Related Work
In recent years, several techniques have been proposed in
order to mitigate the grounding bottleneck. Constraints An-
swer Set Programming (CASP) (Aziz, Chu, and Stuckey
2013; Balduccini and Lierler 2017; Cat et al. 2015; Os-
trowski and Schaub 2012; Susman and Lierler 2016), ASP
Modulo Theories (Gebser et al. 2016), and HEX programs

(Eiter, Redl, and Schüller 2016) opt for extending the lan-
guage with additional constructs for connecting ASP with
external solvers. Although these systems are effective, they
shift the complexity from ASP to external sources. Program
rewriting methods (Besin, Hecher, and Woltran 2022; Besin,
Hecher, and Woltran 2023) address the issue by converting
the input program into alternative forms, like epistemic logic
programs or disjunctive programs. While the resulting pro-
grams are easier to evaluate, the translation process may be
exponential in the worst case, yet highly effective in some
scenarios (Besin, Hecher, and Woltran 2022). Anyhow the
techniques of (Besin, Hecher, and Woltran 2022) that pro-
duce an ASP program are orthogonal and could be com-
bined with compilation. An alternative approach (Stéphan
2021) translates an ASP program into a Constraint Han-
dling Rules program. Lazy-grounding systems (Bomanson,
Janhunen, and Weinzierl 2019; Lefèvre and Nicolas 2009;
Lierler and Robbins 2021; Palù et al. 2009; Weinzierl 2017;
Weinzierl, Taupe, and Friedrich 2020), instead, tackle the
bottleneck by grounding rules during the search, i.e., when
their body is satisfied during the solving. Two prominent
examples are ALPHA (Weinzierl 2017; Weinzierl, Taupe,
and Friedrich 2020) and DualGrounder (Lierler and Robbins
2021). The former combines lazy instantiation with ASP
solving techniques (such as clause-learning, conflict-based
heuristics, etc.); while DualGrounder performs lazy instan-
tiation resorting to the multi-shot API of CLINGO. Both
outperform traditional ASP systems on grounding-intensive
benchmarks but are not competitive on solving-intensive
ones (Lierler and Robbins 2021). This is due to the fact that
they discover the space of propositional atoms during the
solving, which is advantageous only if the grounding is un-
feasible. Compilation-based approaches (Cuteri et al. 2019;
Cuteri et al. 2020; Mazzotta, Ricca, and Dodaro 2022;
Dodaro, Mazzotta, and Ricca 2023) avoid grounding by
compiling non-ground rules into ad-hoc propagators that are
able to simulate the inferences of such rules. Compilation-
based have broader applicability than lazy grounders, be-
cause they generate the Herbrand base in advance. The
first approaches (Cuteri et al. 2019; Cuteri et al. 2020;
Mazzotta, Ricca, and Dodaro 2022) targeted only con-
straints and aggregates; whereas the PROASP system (Do-
daro, Mazzotta, and Ricca 2023) removed the syntactic re-
strictions of previous approaches, and support the compi-
lation of tight programs (Erdem and Lifschitz 2003). Tight
programs are a relevant class of programs that has been play-
ing a central role in the development of modern SAT-based
ASP systems (Lierler and Maratea 2004; Janhunen 2022).

This work extends PROASP by incorporating aggre-
gate compilation (following (Mazzotta, Ricca, and Dodaro
2022)) and introduces the ability to blend grounding and
compilation. While PROASP also supports compiling the
grounding procedure, similarly to ASP grounders such as
GRINGO (Gebser et al. 2011) and IDLV (Calimeri et al.
2017), the key difference lies in how grounding is handled.
PROASP compiles grounding into code specific to the pro-
gram, whereas GRINGO and IDLV utilize general-purpose al-
gorithms and support a broader input language.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

325

7 Conclusion
This paper describes how to blend grounding and compila-
tion in a hybrid ASP system. The new approach involves:
(i) a program rewriting technique enabling the blending of
grounded rules with propagators and the compilation of ag-
gregates, and (ii) a compiler for the grounding phase, gener-
ating program-specific code for variable elimination. More-
over, we implemented the new techniques in an extended
version of the PROASP solver. The results of an experiment,
conducted on a rich collection of well-known benchmarks,
show that blending grounding and compilation can give sig-
nificant advantages over the base techniques and state-of-
the-art implementations.

As future work, our plan is to extend PROASP to support
the entire ASP-Core 2 standard, with a particular focus on
non-tight programs, and also to study a more fine-grained
(possibly automated) procedure for selecting the rules to
ground/compile. This is a non trivial task that cannot be ob-
tained by adapting existing algorithm selection techniques.
This is due to the unreleased nature of compilation, which is
a task that has to be performed before being able to execute
any instance of the problem.

Acknowledgements
This work was supported by the Italian Ministry of In-
dustrial Development (MISE) under project EI-TWIN n.
F/310168/05/X56 CUP B29J24000680005; and by the Ital-
ian Ministry of Research (MUR) under projects: PNRR
FAIR - Spoke 9 - WP 9.1 CUP H23C22000860006,
Tech4You CUP H23C22000370006, and PRIN PINPOINT
CUP H23C22000280006.

References
Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The ASP
system DLV2. In LPNMR, volume 10377 of Lecture Notes
in Computer Science, 215–221. Springer.
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In PODS,
68–79. ACM Press.
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In IJCAI, 399–404.
Aziz, R. A.; Chu, G.; and Stuckey, P. J. 2013. Stable model
semantics for founded bounds. Theory Pract. Log. Program.
13(4-5):517–532.
Balduccini, M., and Lierler, Y. 2017. Constraint answer set
solver EZCSP and why integration schemas matter. Theory
Pract. Log. Program. 17(4):462–515.
Barbara, V.; Guarascio, M.; Leone, N.; Manco, G.; Quarta,
A.; Ricca, F.; and Ritacco, E. 2023. Neuro-symbolic AI for
compliance checking of electrical control panels. Theory
Pract. Log. Program. 23(4):748–764.
Besin, V.; Hecher, M.; and Woltran, S. 2022. Body-
decoupled grounding via solving: A novel approach on the
ASP bottleneck. In IJCAI, 2546–2552. ijcai.org.

Besin, V.; Hecher, M.; and Woltran, S. 2023. On the struc-
tural complexity of grounding - tackling the ASP grounding
bottleneck via epistemic programs and treewidth. In ECAI,
volume 372 of Frontiers in Artificial Intelligence and Appli-
cations, 247–254. IOS Press.
Bomanson, J.; Janhunen, T.; and Weinzierl, A. 2019. En-
hancing lazy grounding with lazy normalization in answer-
set programming. In AAAI, 2694–2702. AAAI Press.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Calimeri, F.; Gebser, M.; Maratea, M.; and Ricca, F. 2016.
Design and results of the fifth answer set programming com-
petition. Artif. Intell. 231:151–181.
Calimeri, F.; Fuscà, D.; Perri, S.; and Zangari, J. 2017.
I-DLV: the new intelligent grounder of DLV. Intelligenza
Artificiale 11(1):5–20.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. Asp-core-2 input language format. Theory
Pract. Log. Program. 20(2):294–309.
Cardellini, M.; Dodaro, C.; Galatà, G.; Giardini, A.;
Maratea, M.; Nisopoli, N.; and Porro, I. 2023. Reschedul-
ing rehabilitation sessions with answer set programming. J.
Log. Comput. 33(4):837–863.
Cat, B. D.; Denecker, M.; Bruynooghe, M.; and Stuckey,
P. J. 2015. Lazy model expansion: Interleaving grounding
with search. J. Artif. Intell. Res. 52:235–286.
Ceri, S.; Gottlob, G.; and Tanca, L. 1990. Logic Program-
ming and Databases. Surveys in computer science. Springer.
Clark, K. L. 1977. Negation as failure. In Logic and Data
Bases, Advances in Data Base Theory, 293–322. New York:
Plemum Press.
Cuteri, B.; Dodaro, C.; Ricca, F.; and Schüller, P. 2019.
Partial compilation of ASP programs. Theory Pract. Log.
Program. 19(5-6):857–873.
Cuteri, B.; Dodaro, C.; Ricca, F.; and Schüller, P. 2020.
Overcoming the grounding bottleneck due to constraints in
ASP solving: Constraints become propagators. In IJCAI,
1688–1694. ijcai.org.
Cuteri, B.; Reale, K.; and Ricca, F. 2019. A logic-based
question answering system for cultural heritage. In JELIA,
volume 11468 of LNCS, 526–541. Springer.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Dodaro, C., and Maratea, M. 2017. Nurse scheduling via
answer set programming. In LPNMR, volume 10377 of Lec-
ture Notes in Computer Science, 301–307. Springer.
Dodaro, C.; Mazzotta, G.; and Ricca, F. 2023. Compilation
of tight ASP programs. In ECAI, volume 372 of Frontiers
in Artificial Intelligence and Applications, 557–564. IOS
Press.
Eiter, T.; Fink, M.; Greco, G.; and Lembo, D. 2008.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

326

Repair localization for query answering from inconsistent
databases. ACM Trans. Database Syst. 33(2):10:1–10:51.
Eiter, T.; Redl, C.; and Schüller, P. 2016. Problem solving
using the HEX family. In Computational Models of Ratio-
nality, 150–174. College Publications.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory Pract. Log. Program. 3(4-5):499–518.
Erdem, E., and Patoglu, V. 2018. Applications of ASP in
robotics. Künstliche Intell. 32(2-3):143–149.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of answer set programming. AI Mag. 37(3):53–68.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artif. Intell. 175(1):278–298.
Fages, F. 1994. Consistency of clark’s completion and exis-
tence of stable models. Methods Log. Comput. Sci. 1(1):51–
60.
Fandinno, J., and Lifschitz, V. 2022. Verification of locally
tight programs. CoRR abs/2204.10789.
Francescutto, G.; Schekotihin, K.; and El-Kholany, M.
M. S. 2021. Solving a multi-resource partial-ordering flex-
ible variant of the job-shop scheduling problem with hybrid
ASP. In JELIA, volume 12678 of Lecture Notes in Computer
Science, 313–328. Springer.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in gringo series 3. In LPNMR, volume 6645 of
Lecture Notes in Computer Science, 345–351. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with clingo 5. In ICLP (Technical Communications), vol-
ume 52 of OASICS, 2:1–2:15. Schloss Dagstuhl.
Gebser, M.; Leone, N.; Maratea, M.; Perri, S.; Ricca, F.; and
Schaub, T. 2018. Evaluation techniques and systems for
answer set programming: a survey. In IJCAI, 5450–5456.
ijcai.org.
Gebser, M.; Maratea, M.; and Ricca, F. 2020. The seventh
answer set programming competition: Design and results.
Theory Pract. Log. Program. 20(2):176–204.
Gelfond, M., and Lifschitz, V. 1991. Classical negation
in logic programs and disjunctive databases. New Gener.
Comput. 9(3/4):365–386.
Janhunen, T. 2022. Implementing stable-unstable semantics
with ASPTOOLS and clingo. In PADL, volume 13165 of
Lecture Notes in Computer Science, 135–153. Springer.
Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and solving in answer set programming. AI Mag.
37(3):25–32.
Lefèvre, C., and Nicolas, P. 2009. The first version of a new
ASP solver : Asperix. In LPNMR, volume 5753 of Lecture
Notes in Computer Science, 522–527. Springer.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: Sat-based
answer set solver enhanced to non-tight programs. In LP-
NMR, volume 2923 of Lecture Notes in Computer Science,
346–350. Springer.

Lierler, Y., and Robbins, J. 2021. Dualgrounder: Lazy in-
stantiation via clingo multi-shot framework. In JELIA, vol-
ume 12678 of Lecture Notes in Computer Science, 435–441.
Springer.
Lifschitz, V. 2010. Thirteen definitions of a stable model. In
Fields of Logic and Computation, volume 6300 of Lecture
Notes in Computer Science, 488–503. Springer.
Manna, M.; Ricca, F.; and Terracina, G. 2015. Taming
primary key violations to query large inconsistent data via
ASP. Theory Pract. Log. Program. 15(4-5):696–710.
Maratea, M.; Pulina, L.; and Ricca, F. 2014. A multi-engine
approach to answer-set programming. TPLP 14(6):841–868.
Marques-Silva, J.; Lynce, I.; and Malik, S. 2021. Conflict-
driven clause learning SAT solvers. In Handbook of Satisfia-
bility, volume 336 of Frontiers in Artificial Intelligence and
Applications. IOS Press. 133–182.
Mazzotta, G.; Ricca, F.; and Dodaro, C. 2022. Compilation
of aggregates in ASP systems. In AAAI, 5834–5841. AAAI
Press.
Mitra, A.; Clark, P.; Tafjord, O.; and Baral, C. 2019. Declar-
ative question answering over knowledge bases containing
natural language text with answer set programming. In
AAAI, 3003–3010. AAAI Press.
Müller, L.; Wanko, P.; Haubelt, C.; and Schaub, T. 2024.
Investigating methods for aspmt-based design space explo-
ration in evolutionary product design. Int. J. Parallel Pro-
gram. 52(1):59–92.
Ostrowski, M., and Schaub, T. 2012. ASP modulo CSP: the
clingcon system. Theory Pract. Log. Program. 12(4-5):485–
503.
Palù, A. D.; Dovier, A.; Pontelli, E.; and Rossi, G. 2009.
GASP: answer set programming with lazy grounding. Fun-
dam. Informaticae 96(3):297–322.
Rajaratnam, D.; Schaub, T.; Wanko, P.; Chen, K.; Liu, S.;
and Son, T. C. 2023. Solving an industrial-scale warehouse
delivery problem with answer set programming modulo dif-
ference constraints. Algorithms 16(4):216.
Schüller, P. 2016. Modeling variations of first-order horn ab-
duction in answer set programming. Fundam. Informaticae
149(1-2):159–207.
Silva, J. P. M., and Sakallah, K. A. 1999. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. Com-
puters 48(5):506–521.
Son, T. C.; Pontelli, E.; Balduccini, M.; and Schaub, T.
2023. Answer set planning: A survey. Theory Pract. Log.
Program. 23(1):226–298.
Stéphan, I. 2021. First-order ASP programs as CHR pro-
grams. In SAC ’21: The 36th ACM/SIGAPP Symposium
on Applied Computing, Virtual Event, Republic of Korea,
March 22-26, 2021, 881–888. ACM.
Susman, B., and Lierler, Y. 2016. Smt-based constraint
answer set solver EZSMT (system description). In ICLP
(Technical Communications), volume 52 of OASIcs, 1:1–
1:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

327

Weinzierl, A.; Taupe, R.; and Friedrich, G. 2020. Advanc-
ing lazy-grounding ASP solving techniques - restarts, phase
saving, heuristics, and more. Theory Pract. Log. Program.
20(5):609–624.
Weinzierl, A. 2017. Blending lazy-grounding and CDNL
search for answer-set solving. In LPNMR, volume 10377 of
Lecture Notes in Computer Science, 191–204. Springer.
Yang, Z.; Ishay, A.; and Lee, J. 2023. Coupling large lan-
guage models with logic programming for robust and gen-
eral reasoning from text. In ACL (Findings), 5186–5219.
Association for Computational Linguistics.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

328

	Introduction
	Preliminaries
	The Language of ASP
	Evaluation of ASP Programs

	Blending Grounding and Compilation
	Compiled Grounder
	Implementation and Experiments
	Related Work
	Conclusion

