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Abstract

We study synthesis and verification of probabilistic models
and specifications over finite traces. Probabilistic models are
formalized in this work as Markov Chains and Markov De-
cisions Processes. Motivated by the recent attention given
to, and importance of, finite-trace specifications in AI, we
use linear-temporal logic on finite traces as a specification
formalism for properties of traces with finite but unbounded
time horizons. Since there is no bound on the time horizon,
our Markov chains generate infinite traces, and we consider
two possible semantics: “existential (resp. universal) prefix-
semantics” which says that the finite-trace property holds
on some (resp. every) finite prefix of the trace. For both
types of semantics, we study two computational problems:
the verification problem — “does a given Markov chain sat-
isfy the specification with probability one?”; and the synthe-
sis problem — “find a strategy (if there is one) that ensures
the Markov decision process satisfies the specification with
probability one”. We provide optimal algorithms that follow
an automata-theoretic approach, and prove that the complex-
ity of the synthesis problem is 2EXPTIME-complete for both
semantics, and that for the verification problem it is PSPACE-
complete for the universal-prefix semantics, but EXPSPACE-
complete for the existential-prefix semantics.

1 Introduction
Linear-temporal logic on finite traces (LTLf) is a speci-
fication formalism for properties of traces with finite but
unbounded time horizons (De Giacomo and Vardi 2013).
It, and its variants, are extensively used in AI and CS,
e.g., in Planning to represent trajectory constraints (Bacchus
and Kabanza 2000; Baier and McIlraith 2006; Gerevini et
al. 2009), and in Business Process Management to spec-
ify services and processes (Pesic and van der Aalst 2006;
Montali et al. 2010; De Giacomo et al. 2014; Geatti, Mon-
tali, and Rivkin 2024). Moreover, interpreting temporal log-
ics not only on traces but also on state-transition systems
allows one to model and reason about planning domains and
business processes (rather than just plans or logs).

In this work, we study computational problems of
LTLf on discrete-time probabilistic state-transition systems:
Markov decision processes (MDPs), which model an agent
operating strategically in a probabilistic environment; and
Markov chains, which model an agent’s policy executing in
a probabilistic environment. In the probabilistic setting, one

associates a probability to each specification property, i.e.,
the probability that an execution of the system (consistent
with a given policy in the MDP case) satisfies the property.

In this work we focus on the probabilistic analogue of sat-
isfaction, i.e., that this probability is equal to one. In con-
trast, the standard notion of satisfaction says that every sys-
tem execution satisfies the specification.

Since we are interested in systems that generate execu-
tions that are of finite but unbounded length, our probabilis-
tic systems should generate traces of arbitrary finite length.
This can be done in a number of natural ways: (i) for a pa-
rameter L ∈ N, have the system generate a trace of length
exactly L (and consider increasing values of L); (ii) require
that the Markov chains are absorbing, and condition on the
event that the trace reaches an absorbing state (which hap-
pens with probability 1); (iii) have the system only generate
infinite traces, and interpret the logical formula on prefixes
of the trace. In this work we follow the third approach be-
cause we feel it provides a rich and natural setting that does
not constrain the system as (ii) does, and does not initially
bound the length of the traces as (i) does. (Note that (i) or
(ii) may also be appropriate design choices, depending on
the application).

To implement (iii) we must define what it means for an
infinite execution to satisfy an LTLf formula, whose usual
semantics is given only for finite traces. We use the “exis-
tential prefix semantics” that says that the property holds on
some finite prefix of the execution, and its dual — “univer-
sal prefix semantics” — that says that the property holds on
every finite prefix of the execution. Note that the existential
(resp. universal) prefix semantics intuitively corresponds to
the agent (resp. environment) using a ’stop’ action.

We study two foundational problems: synthesis and ver-
ification. The synthesis problem with LTLf objectives is a
form of planning with temporally extended goals, and has
recently been applied to synthesizing controllers for robots,
e.g., manipulation domains (Wells et al. 2021) and motion
planning and control (Lahijanian et al. 2010); and to model
stochastic actions in the form of the trembling-hand problem
for LTLf planning (Yu et al. 2024). Verification is a coun-
terpart to synthesis: if a procedure (e.g., that uses machine
learning) returns a policy claimed to solve a given problem,
verification can be used to check that it indeed does.

Specifically, the probabilistic verification problem is to
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decide, given a Markov chain M and an LTLf formula F ,
if the probability that some (resp. every) finite prefix of a
random trace generated by M satisfies F . The probabilistic
synthesis problem is, given a Markov Decision Process D
and an LTLf formula F , to find a strategy S (if one exists)
such that the probability that some (resp. every) finite prefix
of a random trace generated by M and S satisfies F . The
corresponding decision problem, called realizability, simply
asks to decide if there is such a strategy.

We provide algorithms for all these problems, following
an automata-theoretic approach that first compiles, in linear
time, the given LTLf formula into an equivalent alternating
finite automaton (AFA). The verification algorithms rely on
characterizations of when the probability that some (resp.
every) finite prefix of a random trace is accepted by the AFA;
the case of universal semantics is straightforward, while the
existential semantics is quite more subtle. The synthesis al-
gorithms first compile the AFA into equivalent deterministic
finite automata (DFA), take a product of the MDP with the
DFA, and solve the synthesis problem for the simpler reach-
ability objective on the product.

To show that our algorithms are optimal, we provide
matching lower bounds. For verification, once again the
universal semantics is straightforward, while the existen-
tial semantics is subtle and reduces from the acceptance
problem for exponential-space Turing machines. This is
done by adapting the encoding from (Vardi and Stock-
meyer 1985), also found in (Kupferman and Vardi 2000;
Bansal et al. 2023), to the probabilistic setting. Intuitively,
those techniques show how to produce a polynomial sized
formula (in the size of the input word to the Turing machine)
expressing the existence of an accepting run. Unfortunately,
a single trace has probability zero and thus, the challenge
is to construct things in such a way that a single accepting
run yields a positive probability of satisfying the formula,
while maintaining a zero probability for satisfying the for-
mula if there is no accepting run. For synthesis, we reduce
from the LTLf synthesis problem, known to be 2EXPTIME-
complete (De Giacomo and Vardi 2015). This problem has a
natural universal semantics (is there a strategy such that ev-
ery finite trace consistent with it satisfies the given formula).
Thus, once again, the universal semantics is straightforward,
while the existential semantics is subtle since it requires sim-
ulating the universal semantics by the existential semantics.

Related Work Probabilistic model-checking (Baier et al.
2018) traditionally focuses on infinite-trace properties, e.g.,
those described in LTL (Courcoubetis and Yannakakis 1995)
or even those expressible in probabilistic variants of branch-
ing time logics (Bianco and de Alfaro 1995). The same
goes for strategic logics such as Probabilistic Strategy
Logic (Aminof et al. 2019) in which one can naturally ex-
press different forms of synthesis.

In planning for reachability goals, so-called “strong-
cyclic solutions” are strategies that ensure, with probabil-
ity 1, that the goal state is reached (Cimatti et al. 2003;
D’Ippolito, Rodrı́guez, and Sardiña 2018), i.e., probabilistic
synthesis for the LTLf formula F goal under existential se-
mantics. While this problem is equivalent to synthesis under

state-action fairness, this equivalence breaks down for gen-
eral LTLf formulas (Aminof, Giacomo, and Rubin 2020).
Stochastic best-effort synthesis is a refinement of strong-
cyclic planning that more fully exploits stochasticity, and
has been studied under existential semantics (Aminof et al.
2022) and for LTL (Aminof et al. 2023).

Algorithms for verification of LTL properties have been
treated both syntactically on the structure of the for-
mula (Courcoubetis and Yannakakis 1995), and more gen-
erally with alternating Büchi automata (Bustan, Rubin, and
Vardi 2004). We also take an automata-theoretic approach,
but only need to compile the given LTLf formula into the
simpler alternating automata on finite words (using classic
subset constructions), and handle the prefix-quantification
separately. We remark that “existential prefix semantics” in-
troduces an alternation of quantifiers that is not present in the
case of ordinary LTL (with infinite-trace semantics). Prac-
tical algorithms for solving the probabilistic synthesis prob-
lem for LTLf specifications under existential semantics are
explored in (Wells et al. 2020).

Motivated by bringing the power of LTLf as a declarative
specification language to bear on probabilistic processes, Al-
man et al. 2022 study probabilistic declarative process min-
ing. That work considers different computational problems
than we do, i.e., constraint discovery, monitoring, and con-
formance checking, and uses probabilities slightly differ-
ently: it gives a probabilistic interpretation to a log (finite
multi-set of finite traces), interpreting multiplicities as fre-
quencies. In particular, its sample spaces of interest are fi-
nite, while ours are infinite. Indeed, in our setting we are
given access to the underlying probabilistic process, allow-
ing a single process to generate infinitely many traces. Sim-
ilarly, Maggi, Montali, and Penaloza 2020 define a prob-
abilistic logic (PLTLf) whose models are finite trees and
study satisfiability and the computation of the most likely
trace. In contrast to us, their sample spaces are again finite.

Model-checking and formal reasoning of nondetermin-
istic systems, i.e., systems with non-probabilistic uncer-
tainty, have a long history (Clarke et al. 2018). Of par-
ticular relevance to our EXPSPACE result are techniques
that handle satisfiability of branching-time logic on finite
traces (Vardi and Stockmeyer 1985; Kupferman and Vardi
2000) (since, intuitively, path quantifiers are related to prefix
quantification) as well as model-checking nondeterministic
systems for LTLf with existential semantics (Bansal et al.
2023). The latter work, motivated by the problem of model-
checking finite-state history-dependent policies (aka, strate-
gies) against LTLf specifications, proves that the verification
problem for nondeterministic systems against LTLf spec-
ifications with existential-prefix semantics is EXPSPACE-
complete. Our EXPSPACE upper bound, however, requires
more sophistication since we are not checking that all traces
satisfy the property, only that almost-all do. The EX-
PSPACE lower bounds here and in (Bansal et al. 2023) build
on lower-bound techniques from (Vardi and Stockmeyer
1985; Kupferman and Vardi 2000). Bansal et al. also con-
sider “terminating semantics” in which the system only gen-
erates finite executions ending in a given set of ”terminating
states”, akin to (ii) mentioned in the introduction.
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2 Preliminaries
In this section we recall the definitions of Linear-temporal
logic on finite traces (LTLf), alternating, non-deterministic,
and deterministic automata on finite words (AFA, NFA,
DFA), Markov chains (MC), and Markov Decision Pro-
cesses (MDP).

Sequences Let Σ denote a finite alphabet. The set of finite
(resp. infinite) sequences over Σ is denoted Σ∗ (resp. Σω).
The empty sequence is denoted ε. Indexing will start with
0, so we write x = x0x1 · · · . The length of a sequence x is
denoted |x| ∈ N ∪ {∞}. For i < |x|, the prefix x0x1 · · ·xi
of x is denoted x≤i (note that it has length i+1). For a finite
sequence h ∈ Σ∗ let last(h) ∈ Σ denote its last element. If
h is a prefix of h′ we say that h′ extends h; if, in addition,
h ̸= h′, then we say that h is a proper prefix of h′ and that h′
is a proper extension of h. For a subset L of X , the comple-
ment of L in X may simply be denoted L if X is clear from
the context. If x ∈ Σ∗ we let cone(x) ⊆ Σω denote the set
of infinite sequences that extend x. Sequences will also be
called words. If Σ = 2AP for a setAP of atoms (aka atomic
predicates), then sequences over Σ are called traces. If L is
a set of traces and τ ∈ L then we say that τ satisfies L.

Probability Distributions For a finite set X , let Dbn(X)
denote the set of distributions over X , i.e., functions d :
X → [0, 1] such that

∑
x∈X d(x) = 1. If d(x) > 0, we will

write x ∈ d, and say that x is in the support of d.

Linear temporal logic on finite traces (LTLf) Fix a set
AP of atomic propositions. The formulas of LTLf over AP
are defined by the following BNF (where p ∈ AP ):

φ ::=p |φ ∨ φ |¬φ |Xφ |φUφ

Here X is called the next operator, and U the until operator.
We use the usual abbreviations, φ ⊃ φ′ .= ¬φ ∨ φ′, true .

=
p ∨ ¬p, Fφ .

= trueUφ (read eventually), Gφ .
= ¬F¬φ

(read always), X̃φ .
= ¬X¬φ (read weak next, which says

that if there is a next step, then φ holds in the next step), and
φ1 Wφ2

.
= Gφ1∨ (φ1 Uφ2) (read weak until). The size |φ|

of a formula φ is the number of symbols in it.
Given a finite trace τ , an integer n with 0 ≤ n < |τ |,

and an LTLf formula φ, the satisfaction relation (τ, n) |= φ,
stating that φ holds at step n of τ , is defined as follows:

• (τ, n) |= p iff p ∈ τn;

• (τ, n) |= φ1 ∨ φ2 iff (τ, n) |= φ1 or (τ, n) |= φ2;

• (τ, n) |= ¬φ iff it is not the case that (τ, n) |= φ;

• (τ, n) |= Xφ iff n+ 1 < |τ | and (τ, n+ 1) |= φ;

• (τ, n) |= φ1 Uφ2 iff (τ,m) |= φ2 for some m with n ≤
m < |τ |, and (τ, j) |= φ1 for all j with n ≤ j < m.

Write τ |= φ if (τ, 0) |= φ, read τ satisfies φ. The set of all
traces that satisfy φ is denoted L(φ).

Markov Chains A labeled Markov chain (MC) M =
(T, t0, P,AP, lab) consists of: a finite set T of states, an ini-
tial state t0 ∈ T , a probability measure P : T → Dbn(T ),
a finite set of atomic propositions AP , and a labeling func-
tion lab : T → 2AP . We will also write P (i, j) instead of

P (i)(j) (this suggestive notation reflects the idea that there
is a transition from i to j). A Markov chain induces a prob-
ability space in the usual way (Puterman 2014): the sample
space is Tω , and the probability function, written PrM (−),
is determined by its value on the cones, i.e., for a word x =

x0x1 · · ·xn, define PrM (cone(x)) to be
∏n−1

i=0 P (xi, xi+1)
if x0 = t0, and otherwise define it to be zero 1. Finite/infinite
words over T are called histories/plays. A history x is gen-
erated by M if PrM (cone(x)) > 0, i.e., if x0 = t0 and
P (xi, xi+1) > 0 for all i < n. A play x is generated by M
if all its proper prefixes are. We extend lab to histories/plays
component-wise, i.e., lab(x0x1 · · · ) = lab(x0)·lab(x1) · · · .
We say a (finite or infinite) trace w is generated by M ,
if there is some history/play x generated by M such that
w = lab(x). For a set of infinite traces L ⊆ (2AP )ω , we
define PrM (L)

.
= PrM (XL) for the set XL that consists of

all plays x with lab(x) ∈ L; we will only use this notation
where XL is measurable. If PrM (L) = 1 we say that the
Markov chain M almost-surely models L.

Markov Decision Processes A labeled Markov Decision
Process (MDP) D = (St , s0,Act ,∆, AP, lab) consists of:

• a finite set St of states,

• an initial state s0 ∈ St ,

• a finite set Act of agent actions,

• a transition function ∆ : St × Act → Dbn(St),

• a finite set of atomic propositions AP ,

• a labeling function lab : St → 2AP .

Intuitively, the value ∆(s, a)(s′) is the probability of a
transition from s to s′ when action a is selected. If s′
is in the support of ∆(s, a) we will write s′ ∈ ∆(s, a).
We will also write ∆(s, a, s′) instead of ∆(s, a)(s′). Fi-
nite/infinite words over St are called histories/plays. The
set of all histories is denoted by Hist . A strategy is a func-
tion σ : Hist → Act ; intuitively, this tells the agent what
to do given what has happened before. A history/play x
is consistent with a strategy σ if x0 = s0 and for every
i ≥ 0 with i+ 1 < |x| we have that xi+1 ∈ ∆(xi, σ(x≤i)).
In this case, we say that x is a σ-play if x is infinite, and
a σ-history if x is finite. A Markov decision process D
and a strategy σ induce a probability space in the usual
way (Puterman 2014): the sample space is Stω , and the
probability measure PrD,σ(−) is determined by its value
on the cones, i.e., for a finite sequence h = h0h1 · · ·hn
of states, if h is a σ-history then define PrD,σ(cone(h)) =∏

0≤i<n ∆(hi, σ(h≤i), hi+1), and otherwise define it to be
zero. We extend the labeling function to plays/histories as
follows: lab(x) = lab(x0)lab(x1) · · · . For a set of infinite
traces L ⊆ (2AP )ω , we define PrD,σ(L)

.
= PrD,σ(XL) for

the set XL of all plays x with lab(x) ∈ L; we will only use
this notation where XL is measurable. If PrD,σ(L) = 1 we
say that the strategy σ almost-surely enforces L.

1As usual, the associated event space is the σ-algebra generated
by the cones cone(x) ⊆ Tω (for words x ∈ T ∗).
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Alternating Automata For a set S, let B+(S) denote the
set of positive Boolean formulas over S; these are con-
structed from elements in S, the logical constants ⊤,⊥,
conjunctions, and disjunctions. Elements of S are thus
also called atoms. A function f : S → {0, 1} is called
a valuation, and we will also view it as the set of atoms
{s ∈ S : f(s) = 1}. Thus, we may talk about a set
X ⊆ S satisfying a formula φ ∈ B+(S). For instance,
if φ = (s1 ∧ s2) ∨ s3 then the set {s1, s3} satisfies φ while
the set {s1} does not. An alternating finite-word automaton
(AFA) A = (Σ, S, δ0, δ, F ) consists of:

• a finite alphabet Σ of symbols,
• a finite set S of states,
• an initial formula δ0 ∈ B+(S),
• a transition function δ : S × Σ → B+(S).
• a set F ⊆ S of final states,

To define acceptance we first define Acc : Σ∗ → 2Q re-
cursively as follows: Acc(ε) = F ; Acc(aw) is the set of
states p such that for some X |= δ(p, a) we have X ⊆
Acc(w). A word w is accepted by A if there exists X |= δ0
such that X ⊆ Acc(w). The language of A, denoted L(A),
is the set of words for which A has an accepting run. If
L(A) = L(B) then we call A and B equivalent. The size
of an AFA, |A|, is defined as |δ0| +

∑
q∈S,x∈Σ |δ(q, x)|.

An AFA is called a nondeterministic finite-word automa-
ton (NFA) if δ0 and each formula δ(s, a) is a disjunction of
atoms; in this case we also view each such formula as the set
of its atoms (and thus, e.g., we can form the union of such
sets). An AFA is called a deterministic finite-word automa-
ton (DFA) if δ0 ∈ S and δ(s, a) ∈ S (for every s, a), i.e., if
each formula is an atom. Two representations of the same
language are called equivalent. For example, we call an
LTLf formula φ and an AFA A equivalent, if L(φ) = L(A).
Moreover, if τ ∈ L(A) we say that τ satisfies A. We recall
the following conversions that apply subset constructions:
Lemma 1. (Vardi 1995) 1. An AFA can be converted into
an equivalent NFA in exponential time. 2. An NFA can be
converted into an equivalent DFA in exponential time. 3. An
AFA can be converted into an equivalent DFA in double ex-
ponential time (by combining the two constructions above).

The importance of AFA is that they serve as a general
specification formalism for properties expressible in LTLf
(as well as other formalism such as LDLf — linear dynamic
logic on finite traces):
Lemma 2. (De Giacomo and Vardi 2013) For every LTLf
formula φ one can build an equivalent AFAAφ of size linear
in φ.

We will use that AFA are efficiently closed under comple-
mentation, i.e., one can convert an AFA into an AFA for the
complement language in linear time, see e.g., (Vardi 1995).

3 Statement of Problems and Results
As discussed in the introduction, since we are interested in
finite but unbounded time horizons, we consider Markov
chains that generate infinite executions. As a consequence,

we must extend the semantics of LTLf, which is given for
finite traces, to infinite traces. A natural way to do so is
to say that an infinite trace satisfies an LTLf formula if
some finite prefix of it does (De Giacomo and Vardi 2015;
Bansal et al. 2023); we call this the existential-prefix se-
mantics of LTLf on infinite traces, which we shorten to ∃-
semantics. This corresponds to the agent having a ’stop’
action. For symmetry, and inspired by the duality between
safety and guarantee properties in the hierarchy of (Manna
and Pnueli 1990), we also consider the case that the environ-
ment determines when to ’stop’; we call this the universal-
prefix semantics of LTLf on infinite traces, which we shorten
to ∀-semantics. We give a general definition:

Definition 1. For a set L ⊆ (2AP )+ of finite traces, and an
infinite trace τ ∈ (2AP )ω , we say that:

1. τ satisfies L with ∀-semantics if every finite prefix of τ is
in L,

2. τ satisfies L with ∃-semantics if some finite prefix of τ is
in L.

For α ∈ {∀, ∃}, write [L]α for the set of infinite traces τ
that satisfyLwith theα-semantics. We will use the following
shorthand: write [φ]α instead of [L(φ)]φ and [A]α instead
of [L(A)]α.

We have the following duality between the semantics:

[L]∃ = [L]∀ (1)

Intuitively, PrM ([L]∀) (resp. PrM ([L]∃)) is the probabil-
ity that every prefix (resp. some prefix) of an infinite trace
of M is in L.2 From (1) we immediately get:

Lemma 3. PrM ([L]∃) + PrM ([L]∀) = 1.

As the following example shows, it is not the case, in gen-
eral, that PrM ([L]∃) + PrM ([L]∃) = 1 (note that we com-
plemented the language but kept the existential semantics).

Example 1. Consider a Markov chain that captures repeated
flipping of a fair coin, with the coin initially showing Heads,
and an LTLf formula φ that captures that the coin always
shows Heads. Then the probability that some prefix satisfies
φ is 1 (since every trace has a prefix that does). On the
other hand, ¬φ says that the coin eventually doesn’t show
Heads, and this has probability 1. Formally, let AP = {H},
and let M be the following Markov chain: the state set is
{s0, s1}, the initial state is s1, the label of s0 is ∅, the label
of s1 is {H}, and the transition from si to sj (for i, j ∈
{0, 1}) is equal to 1

2 . Let φ be the LTLf formula GH . Then
PrM ([φ]∃) = 1 since indeed every trace has some prefix
that satisfies φ since H is true in the initial state s1; but also
PrM ([¬φ]∃) =

∑
i(

1
2 )

i = 1.

3.1 Probabilistic Verification
We now define two qualitative verification problems for
LTLf specifications, and state our results.

2The set of plays in M labeled by words in [L]α is a measurable
set, i.e., is a set in the event space. The reason for this is that [L]∃ is
a union of cones, and [L]∀ is the complement of a union of cones.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

30



Definition 2. Fix α ∈ {∃, ∀}. The probabilistic verifi-
cation problem for LTLf under α-semantics is to decide,
given a Markov chain M and an LTLf formula φ, whether
PrM ([φ]α) = 1.

We prove the following:

Theorem 1. 1. The probabilistic verification problem for
LTLf specifications under ∀-semantics is PSPACE-
complete.

2. The probabilistic verification problem for LTLf specifica-
tions under ∃-semantics is EXPSPACE-complete.

Remark 1. Following (Vardi 1985), the probabilistic veri-
fication problem “PrM (−) = 1?” may also be called the
probabilistic universality problem. Dually, the probabilis-
tic non-emptiness problem is to decide “”PrM (−) > 0?”.
In these terms, our work also solves the probabilistic non-
emptiness problem for LTLf with α-semantics. Indeed, by
Lemma 3 we have that PrM ([φ]∃) > 0 iff PrM ([¬φ]∀) <
1; and PrM ([φ]∀) > 0 iff PrM ([¬φ]∃) < 1. Since LTLf is
closed under negation, and deterministic complexity classes
are closed under complementation, we can rephrase Theo-
rem 1 as follows:

1. The probabilistic non-emptiness problem for LTLf under
∃-semantics is PSPACE-complete.

2. The probabilistic non-emptiness problem for LTLf under
∀-semantics is EXPSPACE-complete.

3.2 Probabilistic synthesis
We now define two qualitative synthesis problems for LTLf
specifications, and state our results.

Definition 3. Fix α ∈ {∃, ∀}. The probabilistic synthesis
problem for α-semantics is to decide, given a Markov Deci-
sion Process D and an LTLf formula φ, whether there exists
a strategy σ such that PrD,σ([φ]α) = 1.

We prove the following:

Theorem 2. 1. The probabilistic synthesis problem for LTLf
specifications under ∀-semantics is 2EXPTIME-complete.

2. The probabilistic synthesis problem for LTLf specifica-
tions under ∃-semantics is 2EXPTIME-complete.

4 Probabilistic Verification: Upper Bounds
In this section we prove the upper bounds in Theorem 1.
Let x be a history generated by M . For a language L ⊆
(2AP )∗, and α ∈ {∃, ∀}, write cone(x) ⊆ [L]α to mean
that every play x′ generated by M that extends x satisfies
lab(x′) ∈ [L]α. In this case we say that the cone of M at x
is contained in L under α-semantics. Obviously, if there is
such an x then PrM ([L]α) > 0 since PrM (cone(x)) > 0.
The converse also holds:

Proposition 1. Given a Markov chain M , a regular lan-
guage L ⊆ (2AP )∗, and α ∈ {∃, ∀}, we have that
PrM ([L]α) > 0 iff some cone of M is contained in L under
α-semantics.3

3We remark that for α = ∃ this holds even if L is not regular.

Proof. The forward direction is immediate because every
cone has positive probability. For the reverse direction, as-
sume that PrM ([L]α) > 0. We will show that some cone of
M is contained in L under α-semantics.

For the case that α = ∃, observe that PrM ([L]α) > 0
implies that there is some play y generated by M such that
lab(y) ∈ [L]∃. Let x be a prefix of y such that lab(y) ∈ L,
and note that cone(x) ⊆ [L]∃.

For the case that α = ∀, we will use the assumption that
L is regular, take a DFA A with L(A) = L. and form
the product Markov chain M ′ = A × M . Intuitively, the
product Markov chain runs both A and M at the same time:
if the current state of A × M is (s, t) then A determinis-
tically updates its state on input letter lab(t), and M ran-
domly generates its next state. Formally, given a DFA A =
(2AP , S, δ0, δ, F ), and an MC M = (T, t0, P,AP , lab),
the product A ×M is the MC (T ′, t′0, P

′, AP , lab′) where
T ′ = S × T ; and t′0 = (δ0, t0); and P ′((s1, t1), (s2, t2)) =
P (t1, t2) if δ(s1, lab(t1)) = s2, and is equal to 0 otherwise;
and lab′((s, t)) = lab(t).

If the play t = t0t1 · · · is generated by M then, writing
s0s1 . . . for the (unique) run of the DFA A on lab(t), we
have that M ′ generates the play t′ = (s0, t0)(s1, t1) · · · .
Say that t′ is induced by t. For X ⊆ Tω let X ′ ⊆ (T ′)ω

consist of the set of induced plays t′ for t ∈ X . Note that
PrM (X) = PrM ′(X) (intuitively this is because A×M is
like M with states of M simply annotated by states of A).

View M ′ as a directed graph G′ = (T ′, E′), where
(t′1, t

′
2) ∈ E′ iff P ′(t′1, t

′
2) > 0, by ignoring the exact values

of non-zero probabilities. Consider the strongly-connected
components (SCCs) of G′. As usual, there is a natural par-
tial order on the SCCs, i.e., C1 ≥ C2 if there is some path
in the graph from a vertex in C1 to a vertex in C2. A SCC is
bottom if it is a minimal element in this partial order.

Let R be the event in M ′ consisting of the plays gen-
erated by M ′ that start in t′0, reach some bottom SCC
C, and visit every vertex in C. It is well known that
PrM ′(R) = 1. Recall that we assumed that PrM ([L]∀) >
0 and that A is equivalent to L, and conclude that
PrM ′([A]∀|R) = PrM ′([A]∀) > 0. Thus, there is a play
t′ = (s0, t0)(s1, t1), · · · generated byM ′ that reaches a bot-
tom SCC, say C, visits every vertex in C, and has the prop-
erty that it only visits final states of F (i.e., si ∈ F for all i).
Let x′ = t′≤k be a prefix of t′ that reaches C, and conclude
that (since C is a bottom SCC) that every play generated by
M ′ that extends x also only ever visits final states of F . It
follows that cone(t0t1 · · · tk) ⊆ [L]∀, and we are done.

The following will be used for solving the verification
problem for the existential semantics:
Corollary 1. Given a Markov chain M , and a regular lan-
guage L ⊆ (2AP )∗, we have that PrM ([L]∃) = 1 iff for
every history x generated by M there is a history y gener-
ated by M , that is either a prefix or an extension of x, with
lab(y) ∈ L.

4.1 Universal Semantics
Instead of proving the upper bound for item 1 as stated in
Theorem 1, we prove the upper bound for the rephrased ver-
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sion of item 1 given in Remark 1. I.e., we show that the
probabilistic non-emptiness problem under ∃-semantics is
in PSPACE, as follows: given M,φ, build (using Lemma 2)
an AFA A of linear size equivalent to φ, and then apply the
following proposition.
Proposition 2. For an AFA A, deciding whether
PrM ([A]∃) > 0 can be done in polynomial space.

Proof. We will provide a nondeterministic algorithm that
uses polynomial space.4 Since NPSPACE = PSPACE (Sav-
itch 1970), the result follows.

Algorithm. Given an AFA A = (Σ, S, δ0, δ, F ) with Σ =
2AP , and a Markov chain M = (T, t0, P,AP, lab). The
algorithm proceeds in rounds, and has a variable for a state
of M (written qi in round i) and a variable for a set of states
of A (written Si in round i).

1. Initialize q0 to be t0 (the initial state of M ) and nondeter-
ministically select S0 such that S0 |= δ0.

2. At step i ≥ 0:
(a) Nondeterministically select a state qi+1 of M such that

P (qi, qi+1) > 0.
(b) Nondeterministically select Si+1 such that Si+1 |=∧

s∈Si
δ(s, lab(qi)). If Si+1 ⊆ F then accept.

Correctness. This is immediate: the algorithm has an
accepting computation-branch iff M generates some word
x = t0t1 · · · tk with lab(x) ∈ L(A); and by Proposition 1
this holds iff PrM ([A]∃) > 0.

Complexity. The space requirement is polynomial: as
qi+1 and Si+1 only depend on qi and Si, the algorithm only
needs to store at most two qi and two Si at any point (the
current and the next); the binary representation of qi (resp.
Si) is logarithmic (resp. linear) in the input.

We remark that the algorithm can be thought of as do-
ing the following: derive from M a Kripke Structure K =
(T, t0, δ, AP, lab) where δ ⊆ T × T is a transition relation
with (t, t′) ∈ δ iff P (t, t′) > 0. Then, take the product of A
and K, to get a new input-free AFA, and check in PSPACE
the non-emptiness of this AFA.

4.2 Existential Semantics
We can solve the probabilistic verification problem for ex-
istential semantics for M,φ by first applying Lemma 2 to
build an AFA A of linear size for φ, and then apply the fol-
lowing proposition:
Proposition 3. For a Markov chain M , and an AFA A, de-
ciding if PrM ([A]∃) = 1 can be done in exponential space.

Proof. We provide an alternating algorithm that uses expo-
nential space and a single alternation. Since the number of
alternations is fixed, the problem is in EXPSPACE (Chan-
dra, Kozen, and Stockmeyer 1981, Theorem 4.2).

4Our algorithm will be allowed to diverge. Such an algorithm
can be simulated by one that never diverges and still runs in poly-
nomial space by incrementing a counter at every step, and reject-
ing the computation-branch if the counter ever exceeds the original
number of configurations of the possibly-diverging algorithm.

Algorithm. Given an AFAAwith Σ = 2AP and a Markov
chain M = (T, t0, P,AP, lab), start by converting the AFA
to an equivalent NFA N = (Σ, S, δ0, δ, F ) — this can be
done in exponential time by Lemma 1. We view δ0 ⊆ S
as a set of states, and assume w.l.o.g. that N rejects the
empty word. The algorithm proceeds in rounds, and has two
phases: a universal phase followed by an existential phase.
It has a variable for a state of M (written qi in round i) and
a variable for a set of states of N (written Si in round i).

1. In the first phase:
(a) Initialize q0 to be t0 (the initial state ofM ) and set S0 =

δ0 (the set of initial states of N ).
(b) At step i ≥ 0, if Si ∩ F ̸= ∅ then this computation-

branch accepts; otherwise:
i. Universally, do two things: continue with this first

phase and switch to the second phase.
ii. Universally consider all states si+1 of M such that

P (qi, qi+1) > 0.
iii. Let Si+1 ⊆ S be the set obtained by applying

N ’s transition function to Si. That is, let Si+1 =
∪s∈Si

δ(s, lab(qi)).
2. In the second phase, at step i, if Si ∩ F ̸= ∅ then this

computation-branch accepts; otherwise:
(a) Nondeterministically select a state qi+1 of M such that

P (qi, qi+1) > 0.
(b) Let Si+1 be the set obtained by applying N ’s transition

function to Si. I.e., define Si+1 = ∪s∈Si
δ(s, lab(qi)).

Correctness. By Corollary 1, PrM ([A]∃) = 1 iff for ev-
ery history x generated by M there is some history y gen-
erated by M that is either a prefix of x or an extension of x
and such that lab(y) is accepted by A. The first phase of the
algorithm universally selects such a history x, and accepts if
already some prefix is accepted by A, and the second phase,
if reached, existentially selects an extension y and accepts if
y is accepted by A.

Complexity. For the space analysis, note that the algo-
rithm only needs to store at most two qi and two Si at any
point (the current and the next). Moreover, the binary repre-
sentation of qi (resp. Si) is logarithmic (resp. linear) in the
size of N . The complexity follows by recalling that the size
of N is exponential in the input size.

We remark that this proof builds the NFA explicitly and
simulates the equivalent DFA (formed by the standard subset
construction) “on the fly”. The reason it cannot simply sim-
ulate the NFA is that the universal phase cannot also guess
runs of the NFA.

Remark 2. A simple algorithm for deciding PrM ([φ]∃) =
1 can be obtained by building a DFA A (with final states
F ) for the LTLf formula φ (Lemma 2), forming the product
M ′ = A × M and F ′ = F × T , and then applying the
linear-time algorithm for determining if PrM ′(✸F ′) = 1
from (Baier and Katoen 2008, pg 777) where ✸F ′ is the
event consisting of plays that visit F ′. However, this simple
algorithm runs in doubly-exponential time in the size of φ.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

32



5 Probabilistic Verification: Lower Bounds
In this section we prove the lower-bounds in Theorem 1.

5.1 Universal Semantics
We start by showing that the probabilistic verification prob-
lem for LTLf under ∀-semantics is PSPACE-hard. By Re-
mark 1, this is equivalent to showing that the probabilis-
tic non-emptiness problem for LTLf under ∃-semantics is
PSPACE-hard. To do this, we reduce from the satisfiability
problem for LTLf, which is known to be PSPACE-complete
for a fixed set of atoms (De Giacomo and Vardi 2013): given
an LTLf formula φ (over a fixed set AP of atomic proposi-
tions), we build, in polynomial time, a Markov chain M and
a formula ψ such that PrM ([ψ]∃) > 0 iff φ is satisfiable.

Define ψ = Xφ, and define a “complete” Markov chain
M = (T, t0, P,AP, lab) where T = 2AP ; t0 ∈ T is ar-
bitrary; for all s, t ∈ T we have that P (s, t) = 1

2|AP | ; and
lab(s) = s. Note that every x ∈ lab(t0)(2AP )∗ is generated
by M .5 Clearly, φ is satisfiable iff some word generated
by M satisfies ψ = Xφ, and by Proposition 1, this is iff
PrM ([ψ]∃) > 0, as required.

5.2 Existential Semantics
We now show that the probabilistic verification problem
for LTLf under ∃-semantics is EXPSPACE-hard. By Re-
mark 1, this is equivalent to showing that the probabilis-
tic non-emptiness problem for LTLf under ∀-semantics is
EXPSPACE-hard.

Recall that EXPSPACE is the class of languages accepted
by deterministic Turing Machines (TM) with space bound
2cn for some constant c > 0. Let T be such a Turing Ma-
chine, say with tape alphabet Γ and state set Q. Let x be
an input word, say of length n. We will construct, in poly-
nomial time in n, a Markov chain M and an LTLf formula
φ, such that the TM T accepts x iff PrM ([φ]∀) > 0. Re-
call that for such a reduction one considers the set AP of
atoms to be fixed, and the size of the TM as a constant,
and only consider the size of the constructed M and φ with
respect to the size of the input word x. The reduction we
give is a variation of an encoding from (Vardi and Stock-
meyer 1985), also found in (Kupferman and Vardi 2000;
Bansal et al. 2023). It is, however, longer and more in-
tricate than the reductions in (Vardi and Stockmeyer 1985;
Kupferman and Vardi 2000; Bansal et al. 2023) — it has to
be carefully crafted to make sure that if T accepts x then
[φ]∀ is satisfied not just on at least one infinite trace, but on
a set with positive probability. As usual, we assume that the
TM halts on every input, in either the halt-reject state or the
halt-accept state. Furthermore, in order to avoid an edge-
case, we assume w.l.o.g. that the TM does not halt when
the head is over the first or the second tape cell (this can be
assured by adding two more states to the TM that allow the
TM to move right twice before halting).

Define a new alphabet Γ′ = Γ∪(Γ×Q)∪{0, 1}∪{#, $}.
We encode a cell (of the TM’s tape) by a word of length

5If our Markov chains were allowed to have initial distributions,
then we would not need to prefix by a fixed atom as we do here.

cn+2 in {0, 1}cn(Γ∪ (Γ×Q)){#, $}: the first cn charac-
ters encode in binary (least significant bit first) the position
of the cell within the tape (called the index of the cell); the
next character encodes the contents of the cell (called the
contents of the cell), including whether or not the TM head
is there, and if so, also the current state; and the final char-
acter is the cell-delimiter # if the index of the cell is less
than 2cn − 1, and is the configuration-delimiter $ otherwise.
A configuration is encoded by a concatenation of 2cn cell
encodings. A run, or a partial run, is encoded by $ followed
by a concatenation of configuration-encodings.

The Markov chain M we construct is the “complete” one
which generates every word over Γ′ that starts with $. For-
mally, M = (Γ′, $, P,Γ′, lab) where for all s, t ∈ Γ′ we
have that P (s, t) = 1

|Γ′| , and lab(s) = s.
The formula φwe build will be such that if the TM rejects

x then no trace will satisfy [φ]∀, and thus PrM ([φ]∀) = 0;
and if it accepts x then every infinite trace that extends τ ′v
— where τ ′ is the encoding of the (finite) accepting run of
the TM on x, and v is the encoding of the final configuration
of this run — will satisfy [φ]∀ and thus, cone(τ ′v) ⊆ [φ]∀,
and thus PrM ([φ]∀) > 0.

We now describe φ, mainly in words — translating this
description into an LTLf formula is straightforward and stan-
dard, e.g., (Kupferman and Vardi 2000; Bansal et al. 2023).
The formula φwill be of the form φ1∧(φ2 W halt-state)∧φ3

where φ1 says “the first symbol is $, and if there are at least
n(cn+2) more symbols, then the first $ is followed by an en-
coding of n cells, with their indices, with x written on them
without a TM state, except for the first cell that also has the
TM’s initial state” conjuncted with “if there are at least two
$’s in the word then all the cells after the first n cells until a $
encode empty TM cells, i.e., some unknown index followed
by the empty-cell symbol followed by a delimiter”; φ3 says
“if a halt-state appears then the first halt-state is halt-accept”.
Now, φ2 is a conjunction of the following:

1. “If the current symbol is a delimiter, and there are at least
cn + 2 more symbols, then the next cn + 2 symbols are
of the from {0, 1}cn(Γ ∪ (Γ×Q)){#, $}, and if the next
cn symbols encode the index 0 or the index 1, then that
cell does not contain a halting state (this verifies that the
encoding satisfies our assumption that the TM does not
halt with the head over one of the first two tape cells).”

2. “If the current symbol is a delimiter, and there is another
delimiter in the future, then the current cell ends with $ if
its index is 2cn − 1, and with # otherwise.”

3. “If the current symbol is a delimiter, and if there are two
delimiters in the future, then the index of the current cell
plus 1 modulo 2cn is the index of the next cell”;

4. “If the current symbol is a delimiter, and 3(cn + 2) sym-
bols before the end of the word there is a delimiter, and
there is only one $ between these two delimiters, and the
index of the third cell from the end of the word is equal
to the index of the current cell, then the first triple of cell
contents constrains the last triple of cell contents accord-
ing to the TM’s transition relation”.

We remark that one can expresses that there are at least j
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more symbols before the end of the word (as needed for
example by the first part of φ2) by the formula Xj true,
where Xj is a shorthand for j repetitions of the X opera-
tor. One can check equality (as in the last part of φ2) of an
index starting at the current position, with an index start-
ing m positions before the word’s end, by the formula:∧

i∈[0,cn−1]

(Xi 1) ↔ F(1 ∧ Xm−i last).

Here last = ¬X true is a formula that is true exactly at
the end of a word.

We now sketch the correctness of this construction. Let
τ ′ be the encoding of the run of the TM on x.

Suppose the TM rejects x. Let τ be any infinite trace. If
τ does not start with τ ′ then, for some prefix of τ , either φ1

fails (because τ doesn’t correctly encode the basic structure
of the initial configuration) or φ2 W halt-state fails (because
τ doesn’t encode the run of the TM on x). In particular,
our assumption that the TM does not halt with the head over
the first or the second cell of the tape (which is verified by
the first conjunct of φ2) assures that φ2 will have a chance
(using prefixes of τ of suitable length) to detect a violation
in any of the cells of the configurations up to (and including)
the first cell with a halting state (after which the right-hand
side of the W holds, effectively disabling the checks in φ2).
If τ does start with τ ′ then, since the TM rejects, φ3 fails on
the prefix τ ′ of τ . Thus, [φ]∀ = ∅.

For the other direction, assume that the TM accepts x.
Let τ be a trace that starts with τ ′v, where v is the suffix
of τ ′ that encodes the last configuration. It is easy to see
that φ1 and φ3 hold on every prefix of τ . Observe that all
the conjuncts of φ2 “look” from their start point into the fu-
ture at most somewhere into the next configuration, but not
beyond (i.e., their truth value does not depend on anything
beyond the next configuration). Therefore, by including v
after τ ′, we are assured that φ2 holds on every substring of
τ starting anywhere within τ ′. Since the last configuration
of τ ′ contains a cell with a halt state, we get that every pre-
fix of τ satisfies φ2 W halt-state. We can thus conclude that
cone(τ ′v) ⊆ [φ]∀.

6 Probabilistic Synthesis: Upper Bounds
In this section we prove the upper bounds in Theorem 2. Our
synthesis algorithms work as follows:

1. Construct a DFA A equivalent to the given LTLf formula
φ. This can be achieved — in doubly exponential time in
the size of φ— by using Lemma 2 to obtain an equivalent
AFA, and then by Lemma 1 to get an equivalent DFA.

2. Construct the product MDP A × D obtained from D by
keeping a copy of the current state of A “on the side”.

3. Using simple graph algorithms, for the ∃-semantics (resp.
∀-semantics) search for a strategy over A × D such that
PrA×D,σ(✸F

′) = 1 (resp. PrA×D,σ(□F ′) = 1); where
✸F ′ denotes the goal of reaching a final state of A, and
□F ′ denotes the goal of never leaving A’s final states.

Definition 4. FixAP . Given a DFAA = (2AP , S, δ0, δ, F ),
and an MDP D = (St , s0,Act ,∆, AP, lab), define the
product MDP A×D = (St ′, s′0,Act ,∆

′, AP, ) by

• St ′ = S × St ,
• s′0 = (δ(δ0, lab(s0)), s0),
• ∆′((q1, s1), a, (q2, s2)) is equal to ∆(s1, a, s2) if
δ(q1, lab(s2)) = q2, and is equal to 0 otherwise.

The product MDP runs both A and D at the same time:
from a state (q1, s1) and an action a, the second component
proceeds probabilistically to a state s2 exactly as D would,
and the first component deterministically updates its state
using the transition of A from q1 on the letter lab(s2). Note
that the labeling function of A ×D is left blank (i.e., ) be-
cause it is not used later on.

A history h = s0 · · · si generated by D induces a cor-
responding history h′ = (q0, s0)(q1, s1) · · · (qi, si) gener-
ated by A × D, where q0 = δ(δ0, lab(s0)) and qj+1 =
δ(qj , lab(sj)) for every 0 ≤ j < i. Conversely, a history
h′ generated by A ×D induces — simply by projecting its
states on their second component — a history h generated
byD. Consequently, every strategy σ′ overA×D induces a
strategy σ over D, and vice-versa, by taking σ(h) = σ′(h′).

Let F ′ = F × St ; given a strategy σ′ over A × D,
denote by ✸F ′ (resp. □F ′) the set of σ′-plays t0t1 · · ·
generated by A × D for which ti ∈ X for some i (resp.
for all i). Observe that if σ is the strategy induced by σ′,
then PrD,σ([A]∃) = PrA×D,σ′(✸F ′) and PrD,σ([A]∀) =
PrA×D,σ′(□F ′). Recall that the DFA A is equivalent to
φ and thus, to solve the synthesis problem for ∃-semantics
(resp. ∀-semantics) it remains to show how to decide if
there is a strategy σ′ such that PrA×D,σ′(✸F ′) = 1 (resp.
PrA×D,σ′(□F ′) = 1). Deciding these two problems can
be done, in time polynomial in the size of A×D, by simple
graph-theoretic algorithms6: in (Baier and Katoen 2008), the
algorithm for ✸ is stated as Algorithm 45 (see also Lemma
10.108), and the algorithm for □ is easier and not stated ex-
plicitly (but sketched after the proof of Lemma 10.111 for
the computation of Prmax(t |= □¬B) = 1).

Finally, since the size of A×D is polynomial in the sizes
of A and D, and recalling that A is of size doubly exponen-
tial in the LTLf formula φ, we get that the overall complexity
of our algorithm for both semantics is 2EXPTIME.

7 Probabilistic Synthesis: Lower Bounds
In this section we establish the lower-bounds in Theorem 2.
We first quote a result from the literature (we also offer a
new proof below, which does not reduce from 2EXPTIME-
Turing machines, as in the cited paper):

Proposition 4. (Aminof, Giacomo, and Rubin 2020) The
probabilistic synthesis problem for LTLf under existential
semantics is 2EXPTIME-hard.

Next, we will establish the 2EXPTIME-hardness of LTLf
under universal semantics. In order to do so, we will reduce

6Alternatively, consider ✸F ′ and □F ′ as PCTL formulas and
use the results in section 10.6.2 of (Baier and Katoen 2008).
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from the sure-winning synthesis problem for LTLf under uni-
versal semantics. The latter is 2EXPTIME-hard via a simple
reduction from the LTLf reactive synthesis problem, a known
2EXPTIME-hard problem (De Giacomo and Vardi 2015).
We first recall that problem. Fix two finite disjoint setsX,Y
of atomic propositions, and let AP = X ∪ Y . An element
of 2X (resp. 2Y ) is called an environment move (resp. agent
move). An agent strategy is a function σ : (2X)+ → 2Y and
an environment strategy is a function δ : (2Y )∗ → 2X . For
an infinite trace τ = (x0∪y0), (x1∪y1), · · · , we say that σ is
consistent with τ if yi = σ(x0 · · ·xi) for all i ≥ 0, and that
δ is consistent with τ if x0 = δ(ε) and xi = δ(y0 · · · yi−1)
for all i > 0. A pair of strategies, one of each kind, induce
the unique infinite trace τ consistent with both. Intuitively,
at each step, the environment moves and then the agent re-
sponds. The agent is trying to ensure that every finite prefix
of the induced infinite trace satisfies φ, i.e., that τ satisfies
[φ]∀, and the environment is trying to ensure the opposite.
An agent strategy σ is said to enforce [φ]∀ if for all environ-
ment strategies δ, the induced trace τ satisfies [φ]∀.

Theorem 3. (De Giacomo and Vardi 2015) The following
problem is 2EXPTIME-hard: given an LTLf formula φ, de-
cide if there is an agent strategy that enforces [φ]∀.

We now define the sure-winning synthesis problem for
LTLf under universal semantics. (We will not need the cor-
responding problem under existential semantics.) A game
arena D = (St , s0,Act ,∆, AP, lab) is like an MDP except
that the transition function is of the form ∆ : St × Act →
2St \ {∅}, i.e., with no probabilities. An LTLf game G is a
pair (D, [φ]∀) where D is a game arena and φ is an LTLf
formula over AP . The sure-winning synthesis problem for
LTLf games under universal semantics is the following prob-
lem: given an LTLf game G = (D, [φ]∀), to decide whether
there exists a strategy σ : Hist → Act such that for ev-
ery σ-play t we have that lab(t) ∈ [φ]∀. Such a strategy is
said to sure-win the game G. We now prove the hardness of
sure-winning (we recall that, as is typical, we consider the
number of atoms inAP to be a constant when measuring the
complexity of reactive synthesis):

Proposition 5. The sure-winning synthesis problem for
LTLf under universal semantics is 2EXPTIME-hard.

Proof. We reduce from the problem in Theorem 3. Given
an LTLf formula ψ over AP , construct an LTLf game G =
(D, [φ]∀) with φ .

= X̃ X̃ψ (recall that X̃ is the weak-next
operator), and D = (St , s0,Act ,∆, AP, lab) as follows:

• s0 = ι, here ι is a new symbol;
• St

.
= {ι} ∪ ({ι} × 2Y × 2X) ∪ (2X × 2Y × 2X);

• Act
.
= 2Y ;

• ∆(ι, y′)
.
= {(ι, y′, x′) | x′ ∈ 2X} and for x ∈ 2X or x =

ι, define ∆((x, y, x′), y′)
.
= {(x′, y′, x′′) | x′′ ∈ 2X};

• lab(ι) .= ∅, lab(ι, y, x) = ∅, lab(x, y, z) .= x ∪ y;

Intuitively, every state (x, y, x′) of the domain that does
not mention ι stores in the first two coordinates x, y, the
atomic propositions that currently hold (for the benefit of the
labeling function), and stores in the third coordinate x′ the

X portion of AP that will be combined with the next action
(i.e., the next Y portion ofAP ) to become the atomic propo-
sitions that hold in the next state. This seeming complexity
is purely of a technical nature, and is due to the fact that
in game there is an initial state and the player in the game
(that wants to satisfy [φ]∀) moves first (by picking actions),
while in LTLf reactive synthesis there is no initial state and
the agent (that wants to satisfy [ψ]∀) moves second.

As we now show, there is a correspondence between agent
strategies σ : (2X)+ → 2Y and strategies σ′ : Hist →
Act , such that σ enforces [ψ]∀ iff σ′ sure-wins the game
G = (D, [φ]∀). In one direction, an agent strategy σ in-
duces the strategy σ′ that first uses a dummy action y, af-
ter which it copies σ. Thus, a trace π = (x0 ∪ y0)(x1 ∪
y1)(x2 ∪ y2) · · · consistent with σ induces a σ′-play π′ =
ι, (ι, y, x0), (x0, y0, x1)(x1, y1, x2) · · · . Clearly if π satis-
fies [ψ]∀ then π′ satisfies [φ]∀ (the weak-next ensures that
the prefixes of length 1 and 2 satisfy φ). Moreover, every
σ′-play is induced by some trace consistent with σ. Thus if
σ enforces [ψ]∀ then σ′ wins the game G. The other direc-
tion is similar, i.e., a strategy σ′ induces the agent strategy σ
that ignores the first action, and afterwards copies σ′.

We now reduce the problem in Proposition 5 to the syn-
thesis problem for LTLf under each semantics.

Proposition 6. The probabilistic synthesis problem for LTLf
under universal semantics is 2EXPTIME-hard.

Proof. We reduce from the sure-winning synthesis problem
for LTLf under universal semantics (Proposition 5). Let
G = (D, [φ]∀) be an LTLf game. Say D has transition
function ∆. Build an MDP D′ which is the same as D ex-
cept that the transition function ∆′ has support ∆, e.g., if
∆(s, a) = {s1, · · · , sn} in D then let ∆′(s, a)(si) = 1

n in
D′. We will show that a strategy σ : Hist → Act sure-wins
the game G iff PrD′,σ([φ]∀) = 1. The left-to-right direc-
tion is immediate. For the other direction, suppose that σ
does not sure-win the game. Then, there is some σ-play π
that does not satisfy [φ]∀, i.e., there is some finite prefix ρ
of π such that lab(ρ) |= ¬φ. It follows that every play in
D that extends ρ does not satisfy [φ]∀. Thus every play in
cone(ρ) satisfies [φ∀], and thus PrD′,σ([φ]∀) > 0, and thus
PrD′,σ([φ]∀) < 1.

Alternate Proof of Proposition 4: We reduce from the sure-
winning synthesis problem for LTLf under universal se-
mantics (Proposition 5). Let G = (D, [φ]∀) be an LTLf
game, say D = (St , s0,Act ,∆, AP, lab). Build an MDP
D′ = (St ′, s′0,Act

′,∆′, AP ′, lab′), and an LTLf formula φ′

over atomic propositions AP ′ = AP ∪ {sink ,mirror}, as
follows. Let St ′ .= {sink}∪ (St ×{0, 1}), Act ′ .= Act , and
s′0

.
= (s0, 0). Let ∆′(s, a) be the uniform distribution over

the states S(s, a), defined as follows: S(s, a) .
= {sink} if

s ∈ {sink} ∪ (St × {1}), and S(s, a) .= ∆(s, a)× {0, 1} if
s ∈ St×{0}. Let lab′(sink) .= {sink}, lab′(s, 0) .= lab(s),
and lab′(s, 1) = lab(s) ∪ {mirror} for every s ∈ St . Let
φ′ .= φ ∧ (Fmirror) ∧ (G¬sink).

We do not provide a formal proof here, but give an intu-
ition for the correctness of the construction. The support of
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∆′ induces a graph with state set St × {0}, and transitions
between them make a copy of the domain D. In addition,
every transition from (s, 0) to (s′, 0) has a mirror transition
to (s′, 1), and once in (s′, 1) the only option is to go to the
sink state. The new goal φ′ expresses that φ holds, and a
mirror state is eventually seen, and the sink is never seen
(recall that φ′ will be interpreted on finite prefixes of plays).
A strategy σ inD may be lifted to a strategy σ′ inD′ that ig-
nores the second component (if a sink is reached, from that
point on it does an arbitrary action). Let π be a σ′-play that
reaches a mirror state — this happens with probability 1.
Let ρ be the prefix of π that ends in a mirror state. Note that
lab(ρ) satisfies φ iff it satisfies φ′. Thus, σ sure-wins the
game (D, [φ]∀) iff PrD′,σ′([φ′]∃) = 1. The other direction
is similar.

8 Discussion
Perhaps not unexpectedly, the synthesis problem for
LTLf specifications (under both semantics) is 2EXPTIME-
complete— the same complexity as ordinary LTL synthesis
(Vardi 1995). Intuitively, this is because synthesis typically
requires determinizing the specification, and determinizing
an LTLf formula incurs, in the worst case, a doubly exponen-
tial sized blowup (as it is does for ordinary LTL (Kupferman
and Vardi 2001)).

The verification problem for LTLf specifications is
PSPACE-complete with the universal-prefix semantics, and
EXPSPACE-complete for the existential-prefix semantics.
While this asymmetry may be surprising at first sight, look-
ing at the non-probabilistic case may provide some intu-
ition. The verification problem for the existential-semantics
involves an alternation of quantifiers: “is it the case that for
every trace there exists a finite prefix satisfying the formula”;
whereas for the universal-semantics no such an alternation
is involved: “is it the case that for every trace every finite
prefix satisfies the formula”. We remark that although such
an alternation is present also in the synthesis problem, the
complexities are dominated by the cost of determinization.
actually builds the NFA, which (in the worst case) is expo-
nentially larger than the given LTLf formula, and then sim-
ulates the equivalent DFA.

Future Work An extension of this work is to study quan-
titative probabilistic questions, i.e., to compute the probabil-
ity of satisfaction in the case of Markov chains, and compute
the largest probability in the case of MDPs, as has been done
for LTL with infinite-trace semantics, cf. (Baier et al. 2018).

The planning and BPM literature often assume compact
representations of Markov chains, e.g., factored probabilis-
tic domains (Sanner 2010), Petri nets (Leemans, Maggi, and
Montali 2022). An important avenue would be to find op-
timal algorithms for the verification and synthesis problems
for such compact representations of systems.

Recall from the introduction that there are (at least) two
other natural approaches for interpreting LTLf formulas on
probabilistic systems (and Markov chains in particular). It
would be interesting to establish optimal algorithms for
these. Doing this for approach (ii) would be a counterpart
to the terminating semantics of (Bansal et al. 2023).
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