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Abstract
Recently, Equilibrium Description Logics (EDLs) have been
suggested as a promising new approach to Description Log-
ics (DLs) with non-monotonic default negation. However,
a deeper understanding of EDLs in terms of computational
complexity and relations to other formalisms is still missing.
Motivated by this, in this paper we investigate the computa-
tional complexity of reasoning in EDLs both in the case of
expressive DLs like ALCIO and lightweight DLs in the EL
and DL-Lite families. We establish a translation on EDLs
into DLs with circumscription, introducing an extension of
circumscribed DLs where a further set of axioms is attached
to circumscribed KBs to filter out unintended minimal mod-
els. Such translation not only applies in the case of classi-
cal circumscription but can be extended to the recently intro-
duced pointwise circumscribed DLs. We introduce pointwise
EDLs where the single global minimality check on models
is replaced by local minimality checks at the single domain
elements in the style of pointwise circumscription. We pro-
vide preliminary results on the computational complexity of
reasoning in pointwise EDLs. In particular, via the transla-
tion into pointwise circumscription, we inherit the decidabil-
ity results of pointwise circumscribed DLs. Furthermore, we
show that for a large class of acyclic ontologies EDLs and
pointwise EDLs accept the same set of stable models. To this
aim, we identify a class of ontologies where circumscription
and pointwise circumscription accept the same set of minimal
models, providing new decidability results for circumscribed
DLs even in the presence of minimized and fixed roles.

1 Introduction
Description Logics (DLs) are a family of formalisms tai-
lored for representing and reasoning about knowledge per-
taining to a domain of interest. DLs are fragments of first-
order logic and thus inherit from it many features, includ-
ing its monotonicity. Extending DLs with non-monotonic
features is challenging. In recent years, several non-
monotonic extensions have been proposed in an attempt to
increase the expressiveness of the formalisms while mitigat-
ing the computational costs (Baader and Hollunder 1995;
Donini, Nardi, and Rosati 2002; Giordano et al. 2013;
Britz et al. 2021), among which a prominent research line
has been marked by circumscribed DLs (Bonatti, Lutz, and
Wolter 2009; Bonatti et al. 2015; Bonatti 2021; Di Stefano,
Ortiz, and Šimkus 2023; Lutz, Manière, and Nolte 2023;
Bonatti et al. 2023).

Equilibrium Description Logics (EDLs) have been re-
cently introduced in (Di Stefano and Šimkus 2024) as a
promising approach to bring non-monotonic capabilities to
DLs, among which is default negation. EDLs are based on
Quantified Equilibrium Logic (QEL) (Pearce 2006; Pearce
and Valverde 2008). QEL provides logical foundations to
the stable model semantics of logic programs, allowing to
extend it to arbitrary theories in first-order logic. QEL is
based on Here-and-There logic with an additional minimal-
ity requirement, in the spirit of circumscription.

Although both EDLs and circumscribed DLs involve min-
imal model reasoning, the two formalisms are different. In
particular, EDLs overcome some of the limitations of cir-
cumscription and capture in a more natural way the intuition
of justification for the membership of a tuple in an exten-
sion of a predicate. Consider the following DL knowledge
base stating that pizza margherita (marg) has two vegetar-
ian ingredients, mozzarella (mozz) and tomatoes (tom), and
a meal is vegetarian if all ingredients are vegetarian:

Pizza(marg) Veg(mozz) Veg(tom)

hasIngredient(marg,mozz) hasIngredient(marg, tom)

∀hasIngredient.Veg v Veg Meal

If we want to apply a form of closed-world assumption
on the ingredients of pizza margherita, we expect to infer
that pizza margherita is a vegetarian meal. However, the
classical semantics does not rule out the existence of fur-
ther unknown ingredients for pizza margherita. We may
attempt to use circumscription, requiring that all predi-
cates are minimized. However, as for the classical seman-
tics, circumscription does not derive that margherita is a
vegetarian meal. Indeed, a model where margherita has
further non-vegetarian ingredients is accepted as minimal.
EDLs handle this scenario properly as occurrences of fur-
ther ingredients in pizza margherita are not justified and
can be ruled out. EDLs have been proposed in (Di Ste-
fano and Šimkus 2024) in the context of DL terminologies,
i.e. collections of terminological definitions. EDLs over-
come some of the limitations of previous approaches, such
as the syntactic monotonicity requirement in (Baader 1990;
De Giacomo and Lenzerini 1997), and reasoning is not more
expensive than reasoning under the classical semantics.

Reasoning with the semantics of EDLs is challenging due
to the underlying minimality requirement on models, and
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a deep understanding of the computational complexity is
still missing. In general, reasoning under forms of mini-
mization, e.g., circumscription, is difficult. In circumscribed
ALC, if roles are fixed concept satisfiability is undecid-
able (Bonatti, Lutz, and Wolter 2009). Undecidability is
typically caused by the interaction between varying predi-
cates and minimized and fixed ones. However, also under
the stronger assumption that all predicates are minimized,
concept satisfiability becomes undecidable in ALCIO (Di
Stefano and Šimkus 2024). Finding ways to mitigate com-
plexity under forms of minimization is a relevant prob-
lem and many attempts to find decidable fragments have
been proposed, among which we have pointwise circum-
scription (Di Stefano, Ortiz, and Šimkus 2023), circum-
scribed DLs in the DL-Lite family (Bonatti et al. 2023;
Lutz, Manière, and Nolte 2023), and DL terminologies (Di
Stefano and Šimkus 2024).

Motivated by this, in this paper we investigate the compu-
tational complexity of reasoning in EDLs, both in the case
of expressive DLs like ALCIO and lightweight DLs in the
EL and DL-Lite families. We extend our investigation by
introducing a new formalism of pointwise EDLs, which in-
herit the computational benefits of pointwise circumscrip-
tion. The main contributions are summarized as follows.
◦ We provide a formal translation of EDLs into circum-

scribed DLs. We show that an EDL knowledge base can be
transformed into a circumscribed knowledge base such that
there is a correspondence between the stable models of the
first and a restricted set of models of the second one. Specif-
ically, this restricted set of models is obtained by filtering
out those models satisfying a further set of inclusions. To
formalize such additional restrictions, we propose an hybrid
form of circumscription where a circumscribed knowledge
base is paired with a non-circumscribed one. This second
knowledge base acts as a filter over the set of minimal mod-
els, allowing further refinement of the selection process of
minimal models. We call this formalism constrained cir-
cumscription. We show that constrained circumscription
adds expressiveness to circumscription, in some cases with-
out an additional computational cost.
◦ We study the computational complexity of the stan-

dard reasoning tasks of concept satisfiability, subsumption,
and instance checking in different EDLs. With a reduction
from the domino problem, we show that concept satisfiabil-
ity w.r.t. general KBs inALC is undecidable under the stable
model semantics, extending the undecidability results of (Di
Stefano and Šimkus 2024). Undecidability carries over to
subsumption in ELIO, both under the stable model seman-
tics and circumscription. Assuming roles to be fixed, we
characterize the complexity in different fragments of DL-
LiteBool. Remarkably, under the assumption that roles are
fixed, concept satisfiability is Σ2

p-complete in DL-LiteBool

under the stable model semantics. While concept satisfia-
bility becomes NP-complete in DL-Litenot, an extension of
DL-LiteHorn with negation on the left-hand side of concept
inclusions.
◦ We introduce pointwise EDLs where the underlining

global minimization of EDLs is replaced by local minimiza-

tions at individual domain elements in the style of point-
wise circumscription. We prove that pointwise EDLs can
be translated into pointwise circumscribed DLs with con-
straints, by extending the analogous result for circumscrip-
tion. Via such translation, we show that concept satisfiability
w.r.t KBs in ALCIO with modal depth bounded by 1 is de-
cidable in NEXPTIME. In contrast, we show that reasoning
w.r.t general KBs in ALCI is undecidable.
◦ We identify a family of ontologies where EDLs and

pointwise EDLs accept the same set of models. To this aim,
we define the dependency graph of a KB induced by a set
of minimized predicates. We prove that if such an induced
graph is acyclic, then pointwise circumscription and circum-
scription agree on the set of accepted models. By recalling
the translation of EDLs into constrained circumscription, we
extend the result to EDLs and pointwise EDLs.

2 Preliminaries
Let NC , NR and NI be countably infinite, mutually dis-
joint, sets of concept names, role names and individual
names, respectively, denoted with A,B,C, . . . , r, s, t . . .
and a, b, c . . . . Given a role name r, r− denotes the in-
verse of r; we further set (r−)− = r. We let N+

R de-
note the set of role names and their inverses, i.e.N+

R =
NR ∪ {r−|r ∈ NR}. Complex concepts in ALCIO are de-
fined by the grammarC := > |⊥ |A | {o} | ¬C |CuC |Ct
C | ∃r.C | ∀r.C, where A ∈ NC , r ∈ N+

R and o ∈ NI . A
concept C is in ALCI if it does not contain any occurrence
of a nominal {o}. A concept C is inALC if there are no oc-
currences of role inverses. A concept C is in ELIO if there
are no occurrence of negation, ⊥, t and ∀. In ELI only
nominal-free concepts from ELIO are allowed. We denote
with ELI¬ the extension of ELI allowing negation in front
of concept names.

A concept inclusion is an expression of the form C v D
where C andD are complex concepts. A role inclusion is an
expression of the form r v s, with r, s ∈ NR

+. A TBox T
in ALCHIO is a finite collection of concept inclusions in
ALCIO and role inclusions. A basic concept in DL-Lite is
an expression defined by the grammar B := ⊥ |> |A | ∃r,
where A ∈ NC and R ∈ N+

R . A TBox in DL-LiteHcore
is a finite collection of role inclusions and concept inclu-
sions of the form C v D or C v ¬D, where C and D
are basic concepts. A TBox in DL-LiteHHorn is a finite col-
lection of role inclusions and concept inclusions of the form
C1 u · · · u Cn v B, where C1, . . . , Cn, B are basic con-
cepts. A TBox is in DL-LiteHBool if we furthermore allow
for inclusions C v D where C and D are arbitrary boolean
combinations of basic concepts.

A concept assertion is an expression of the form A(a),
with A ∈ NC and a ∈ NI . A role assertion is an expression
of the form r(a, b), with r ∈ NR and a, b ∈ NI . An ABox
A is a finite collection of concept and role assertions. A
knowledge base (KB) in a DL L is a pairK = (A, T ) where
A is an ABox and T is a TBox in L. Given a KB K, we
denote with NC (K), NR(K), and NI (K) the set of concept
names, role names, and individuals occurring in K.

An interpretation is a structure I = (∆I , ·I) where ∆I

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

307



is a non-empty domain and ·I is an interpretation function
associating to each A ∈ NC a subset AI ⊆ ∆I , to each
r ∈ NR, a subset rI ⊆ ∆I × ∆I , and to each a ∈ NI a
domain element aI ∈ ∆I . For the interpretation of complex
concepts, we refer to (Baader et al. 2017). The notion of a
model of an ABox, a TBox, and a KB are also standard. We
denote with M(K) the set of models of a KB K. Given a
concept C and a KB K, C is satisfiable w.r.t. K if there
exists I ∈ M(K) such that CI 6= ∅. Given two concepts
C and D and a KB K, C is subsumed by D w.r.t. K if
CI ⊆ DI for all I ∈ M(K). Given an individual a and a
concept C, a is an instance of C w.r.t. K if aI ∈ CI , for all
I ∈M(K).

3 Circumscribed DLs
We use (Bonatti, Lutz, and Wolter 2009) and (Di Stefano,
Ortiz, and Šimkus 2023) as main references respectively for
circumscribed and pointwise circumscribed DLs. Given a
KB, when we apply circumscription, beforehand we declare
a circumscription pattern P defining which predicates are
minimized, varying or fixed. Circumscription then simply
selects the models fulfilling the requirement of the circum-
scription pattern, i.e. those models where the extension of
the minimized predicates cannot be further reduced without
violating some axioms. Thus, at the core of circumscription,
there is the idea of comparing structures and discriminating
which one we have to prefer.
Definition 1. Given a set F ⊆ NC ∪ NR and two interpre-
tations I and J , we write I ∼F J if

(i) ∆I = ∆J ,
(ii) aI = aJ , for all individuals a ∈ NI ,

(iii) qI = qJ , for all q ∈ F .
The above definition simply groups interpretations shar-

ing the same domain, interpreting individuals in the same
way, and agreeing on the set of predicates in F . Note that F
can be empty. In this case, we simply write I ∼ J .

We now formalize the preference relation naturally in-
duced by a circumscription pattern. Formally, a circumscrip-
tion pattern is a triple P = (M,V, F ), where M,V and F
are mutually disjoint sets of predicates, called minimized,
varying and fixed predicates. Circumscription patterns can
be enriched with a priority relation over minimized predi-
cates (Bonatti, Lutz, and Wolter 2009) which we do not as-
sume in the following.
Definition 2. Given a circumscription pattern P =
(M,V, F ) and two interpretations I,J such that I ∼F J ,
we write:
• I �P J if pI ⊆ pJ , for all p ∈M ;
• I ≺PJ , if I �P J and pI ⊂ pJ for some p∈M .
If the circumscription pattern P = (M,V, F ) is such that
V = ∅, we denote the relations�P and≺P with the symbols
⊆F and ⊂F , respectively.

A circumscription pattern P = (M,V, F ) for a KBK is a
partition of the predicates occurring inK. A KBK equipped
with a circumscription pattern P is called circumscribed and
we denote it with CircP(K). Given a circumscribed KB, we

aim to restrict its set of classical models to those where the
extension of minimized predicates is the smallest possible.

Definition 3. (Minimal model) An interpretation I is a min-
imal model of a KB K equipped with a circumscription pat-
tern P , in symbols I |= CircP(K), if I |= K and there is
no interpretation J s.t. J |= K and J ≺P I. We use
MM (K,P) to denote the set of models of CircP(K).

Given a KB K and a model I, applying circumscription
w.r.t. a circumscription pattern P allows for the reconfig-
uration of the predicates across the entire model. The ex-
tension of a minimized predicate p can be globally mini-
mized, i.e. possibly infinitely many tuples can be removed
from pI . Moreover, varying predicates are not subjected to
any restriction. For instance, in order to obtain a smaller
model, a single tuple can be removed from a minimized
predicate p, while reconfiguring across the model, possi-
bly infinitely many times, all the varying predicates. In (Di
Stefano, Ortiz, and Šimkus 2023) an approximation of cir-
cumscription based on pointwise circumscription (Lifschitz
1986) has been introduced. Differently from (global) cir-
cumscription, in pointwise circumscription (Lifschitz 1986)
predicates can be minimized only locally at a given tuple of
domain elements. In pointwise circumscribed DLs, the min-
imization can only affect a domain element and the roles it
participates in, leaving the rest of the structure unmodified.
In this setting, given a circumscribed KB K, the minimality
of a model I of K can be checked by repeatedly applying
a local minimality check at all domain elements. First, we
define a relation ∼• between interpretations that may differ
in terms of concept and role names involving one domain
element.

Definition 4. Given two interpretations I and J we write
I ∼• J if there exists e ∈ ∆I s.t.:

• for all A ∈ NC , AI \ {e} = AJ \ {e}, and
• for all r ∈ NR, rI ∩ (∆ × ∆) = rJ ∩ (∆ × ∆), with

∆ = ∆I \ {e}.
We now use the relation in Definition 4 to give a pointwise

flavor to the preference relation between interpretations of
Definition 2.

Definition 5. Assume a circumscription pattern P =
(M,V, F ) and two interpretations I,J such that I ∼F J .
We write

• I �•P J , if I ∼• J and I �P J ;

• I ≺•P J , if I �•P J and pI ⊂ pJ for some p∈M
Given a circumscription pattern P = (M,V, F ) such that
V = ∅, we denote �•P and ≺•P with ⊆•F and ⊂•F , respec-
tively.

Definition 6. An interpretation I is a pointwise minimal
model of a KBK equipped with a circumscription patternP ,
in symbols I |=• CircP(K), if I |= K and there is no inter-
pretation J s.t. J |= K and J ≺•P I. We use PMM (K,P)
to denote the set of pointwise minimal models of CircP(K).

The standard definitions of concept satisfiability, concept
subsumption, and instance checking are adapted to (resp.
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pointwise) minimal models in the obvious way and the cor-
responding decision problems are interreducible in polyno-
mial time (Bonatti, Lutz, and Wolter 2009; Di Stefano, Ortiz,
and Šimkus 2023).

Given a KB K and a circumscription pattern P , we have
that MM (K,P) ⊆ PMM (K,P), while the converse inclu-
sion does not always hold. In Section 6.2, we shall identify
a class of ontologies where pointwise minimal models are
also minimal models.

4 Constrained Circumscription
In order to characterize the connection between EDL KBs
and circumscribed KBs, we extend circumscription with
constraints. The notion of constraints has been introduced
in (Di Stefano, Ortiz, and Šimkus 2023) for pointwise cir-
cumscribed KBs as a tool for normalizing complex con-
cepts without affecting minimization. A constraint there is a
pair (C,D) that, roughly speaking, discards every minimal
model that has some object e where C holds but D does not
hold. Coupled with a circumscribed (or pointwise circum-
scribed) KB, constraints allow for further refinement of the
set of minimal models, as the requirement expressed by con-
straints acts outside circumscription. As one can observe,
syntactically a constraint is just a pair of concepts, and thus
can be represented as a GCI. In this work, we extend the
notion of constraints to KBs, i.e. allowing assertions too.

Definition 7. Assume a circumscribed KB CircP(K). We
use CircP(K) ∧ C to denote an extension of CircP(K) with
a KB C. Given an interpretation I, we say that I is a
(pointwise) minimal model of CircP(K) ∧ C, in symbols
I |=(•) CircP(K) ∧ C, if I |=(•) CircP(K) and I |= C.
We call the KB C a constraint set.

Compared to (Di Stefano, Ortiz, and Šimkus 2023) where
constraints were restricted to mimicking concept inclusions,
we not only allow assertions in the constraints but also role
inclusions. Furthermore, we remark that the two KBs K and
C can share the signature.

Expressing Closed Predicates. To further emphasize the
difference between circumscription and circumscription
with constraints, we show next how circumscribed DLs
with constraints are able to express DLs with closed pred-
icates (Franconi, Ibáñez-Garcı́a, and İnanç Seylan 2011;
Lutz, Seylan, and Wolter 2013). In DLs with closed pred-
icates, the extension of some predicates – so-called closed
– is restricted only to named individuals whose participation
in the closed predicates is ‘justified’ by ABox assertions. An
interpretation is a model of a KB K = (A, T ) w.r.t. a set Σ
of closed predicates, in symbols I |= (A, T ,Σ), if I |= K
and for each A, r ∈ Σ:

• d ∈ AI implies d = aI for some individual a such that
A(a) ∈ A, and

• (d, e) ∈ rI implies d = aI and e = bI with a, b such that
r(a, b) ∈ A.

Intuitively, the extension of a closed predicate p is ‘cir-
cumscribed’ to instances of p given by ABox assertions.

Although the underlying principle is close to predicate
minimization, DLs with closed predicates and (pointwise)
circumscribed DLs are two different non-monotonic for-
malisms and we see no obvious formal translation.

On the other hand, constrained circumscription can easily
capture DLs with closed predicates.

Given a KB K = (A, T ) with a set of closed predicates
Σ, let Σ′ = {p′ | p ∈ Σ}, i.e. we consider a copy of the
signature in Σ. Let A′ = {p′(~c) | p(~c) ∈ A and p ∈ Σ}.
We obtain this way a new KB K′ = (A ∪ A′, T ). We now
define a circumscription pattern P for K′ by stating that all
predicates in Σ′ are minimized. Since T does not contain
any occurrence of symbols in Σ′, in a minimal model I ′ we
will have that each p′ ∈ Σ′ contains only named individuals
or pairs of named individuals, whose participation in (p′)I

is justified by an assertion in A′. To the circumscribed KB
CircP(K′), we add the set of constraints C = {p v p′ | p ∈
Σ}. In every model I of CircP(K′)∧C, every element of pI
is an element of (p′)I . In this way, we force p to be closed.
Proposition 1. Concept satisfiability w.r.t KBs with closed
predicates can be polynomially reduced to concept satisfia-
bility w.r.t. (pointwise) circumscribed KBs with constraints.

The result above almost directly implies that nominals can
be simulated using constraints. Indeed this is already possi-
ble via closed predicates: each nominal o can be simulated
by replacing every occurrence of o with a closed predicate
N and adding an assertion N(o).

From Proposition 1, we inherit some of the lower bounds
for standard reasoning tasks in DLs with closed predicates
(Ngo, Ortiz, and Šimkus 2016).
Corollary 1. In DL-LiteHcore, deciding the consistency of a
circumscribed KB K with constraints is NP-hard.

In the case of circumscribed DL-Litecore without con-
straints, concept satisfiability is NLOGSPACE-complete
(Bonatti et al. 2023).

Adding constraints to circumscription does not always in-
crease the computational costs of circumscription. Follow-
ing (Bonatti, Lutz, and Wolter 2009), we can prove that the
standard filtration technique (see (Baader et al. 2017)) can be
used to show that circumscribedALCHIO with constraints
has the ‘small’ (exponential size) model property under the
assumption that roles are varying. The latter result yields the
following.
Theorem 1. Concept satisfiability in circumscribed
ALCHIO with constraints is NEXPTIMENP-complete if
all roles are varying.

Filtration has been used in (Bonatti et al. 2015) for show-
ing that circumscribed DL-LiteHBool has the small model
property under the condition that no varying role is sub-
sumed by a fixed role. A KB in DL-LiteHBool that satisfies
this condition is called role-layered. The model construc-
tion is the same applied for circumscribed ALCHIO with
varying roles, however, the restricted syntax of DL-LiteBool

allows for handling the presence of fixed roles too. The up-
per bound of Theorem 1 applies also if role-layered circum-
scribed KBs in DL-LiteHBool are paired with constraints in
ALCHIO.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

309



Corollary 2. Concept satisfiability in role-layered circum-
scribed DL-LiteHBool with constraints in ALCHIO is in
NEXPTIMENP.

5 Equilibrium Description Logics
We recall Equilibrium Description Logics (EDLs), i.e. DLs
under the stable model semantics of Quantified Equilibrium
Logic. Equilibrium Logic (EL) (Pearce 1996) is a power-
ful formalism that allows, e.g., extending the stable model
semantics of Answer Set Programming (ASP) to full propo-
sitional logic. EL is built upon the logic of Here-and-There
(HT) with an additional minimality requirement and its first-
order counterpart, Quantified Equilibrium Logic (QEL), has
been introduced in (Pearce and Valverde 2008).

An interpretation in the HT logic is a pair of structures
(I,J ) sharing the same domain and interpreting individuals
in the same way, where I is called the ‘here’ interpretation
and J is called the ‘there’ interpretation. Roughly speaking,
the two worlds are related by the inclusion relation, i.e. the
‘here’ is included in the ‘there’. We formalize this require-
ment by recalling the relations ⊆F and ⊂F of Definition 2
where the set of fixed predicates F ⊆ NC ∪ NR specifies
those predicates over which the ‘here’ and the ‘there’ inter-
pretations must agree.

Definition 8. A Here-and-There (HT) interpretation is a pair
(I,J ) of interpretations with I ⊆F J , with F ⊆ NC ∪NR.
The interpretation function ·(I,J ) is defined in Figure 1.

In general, under the HT semantics predicates do not obey
the law of the excluded middle. Already in the case of
propositional HT logic, the formula x ∨ ¬x is not a tau-
tology (Pearce 2006). Given an HT interpretation (I,J ) as
in Definition 8, we can refer to the predicates in F as clas-
sical: indeed since the interpretations I and J agree on the
extension of predicates in F , the law of the excluded mid-
dle applies for each p ∈ F . HT interpretations satisfy the
so-called persistence property: if a formula is true in an HT
interpretation, then it is also true in the ‘there’ interpretation.
We prove the persistence property in the setting of HT DLs.

Proposition 2 (Persistence). Given any HT interpretation
(I,J ), C(I,J ) ⊆ CJ for all concepts C.

As already pointed out in (Di Stefano and Šimkus 2024),
the universally quantified concept of the form ∀r.C can
be translated in FOL as ∀y(r(x, y) → C(y)). Thus the
interpretation must align with the interpretation of impli-
cation in quantified HT. In HT logic – whether quanti-
fied or not – the implication is intuitionistic (Pearce 2006;
Pearce and Valverde 2008) and it is true in an HT interpre-
tation when the following are satisfied: (1) if the antecedent
is true in the HT interpretation, then the consequence is true
in the HT interpretation, and (2) the ‘there’ interpretation is
a classical model of it. We now give the notion of HT model
for KBs in DLs.

Definition 9. Assume a KB K = (T ,A) and an HT inter-
pretation (I,J ). We write:

(i) (I,J ) |=C v D, if C(I,J )⊆D(I,J ) and CJ ⊆ DJ ;

(ii) (I,J ) |= K if I |= A and (I,J ) |= C v D for all
C v D ∈ T .

We can now define stable models of a DL KB.
Definition 10 (Stable models). Given F ⊆ NC ∪ NR, an
interpretation J is a stable model of a KB K under fixed
predicates F , if

(i) the HT interpretation (J ,J ) is a model of K, and
(ii) there is no I s.t. (I,J ) is a model of K and I ⊂F J .

We denote with SM F (K) the set of all stable models for K
with fixed predicates F . If F = ∅, we drop the subscript F
and write SM (K).

Similarly to the approach of this paper, in the stable model
semantics of (Ferraris, Lee, and Lifschitz 2011), predicates
are partitioned into intensional predicates, subject to mini-
mization, and extensional predicates, which are kept fixed.
The former are subjected to minimization, while the latter
are classical and thus obey the law of the excluded middle.
This law in classical first-order logic can be easily expressed
with the disjunct p(~t) ∨ ¬p(~t), for each extensional pred-
icate p. However, in the setting of the DLs considered in
this work, we can express fixed concept names but not fixed
roles. This is not a limit, as we already parametrized the
relation ⊆F expressing the predicates that are fixed.

In the semantics given in Definition 10, the negation ¬
behaves as negation as failure or default negation in logic
programs: the truth of a negated concept ¬C at a certain
domain element in a stable model intuitively means that the
concept C could not be proved at such domain element. The
fact that negation is not anymore classical implies that KBs
that are equivalent under the classical semantics might not
be equivalent under the stable model semantics.
Example 1. Consider the following situation. The Fair
Company, where Steve works as admin, records the access
to all files accessible with a password. The user Ann ac-
cesses the file f1 with a password. Every time a user ac-
cesses with a password some file, they are required to be
password holders.

User(Ann) acc psw(Ann, f1) Admin(Steve)

Useru¬Psw Holder v ¬∃acc psw

Furthermore, for security reasons, assume that the company
records all the people who have received a password, shared
by other password holders. These people receiving a pass-
word become password holders. Admins are the primary
source for passwords.

∃share psw u ¬Psw Holder v ⊥
∃share psw−. v Psw Holder

Admin v Psw Holder

Assuming all roles to be fixed, under the stable model se-
mantics, being a password holder amounts to having re-
ceived the password from someone else, thus we would de-
rive that someone shared the password with Ann. Under the
stable model semantics, we derive that any password holder
can be traced back to the admin, Steve, i.e., every password
has been safely shared.
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a(I,J ) = aI A(I,J ) = AI r(I,J ) = rI >(I,J ) = ∆I ⊥(I,J ) = ∅
(r−)(I,J ) = {(e, e′) | (e′, e) ∈ rI} (¬C)(I,J ) = ∆I \ CJ

(C1 u C2)(I,J ) =C
(I,J )
1 ∩ C(I,J )

2 (C1 t C2)(I,J ) = C
(I,J )
1 ∪ C(I,J )

2

(∃R.C)(I,J ) = {e ∈ ∆I | ∃e′ : (e, e′) ∈ R(I,J ) ∧ e′ ∈ C(I,J )}

(∀R.C)(I,J ) =
{
e ∈ ∆I | ∀e′ :

(e, e′) ∈ R(I,J ) implies e′ ∈ C(I,J ) and
(e, e′) ∈ RJ implies e′ ∈ CJ

}
Figure 1: HT semantics for DLs, with a ∈ NI , A ∈ NC and r ∈ NR.

The reasoning tasks of concept satisfiability, subsumption
and instance checking can be adapted in the usual way to
stable models. In ALC and its extensions and DL-LiteBool,
these reasoning tasks are pairwise interreducible in polyno-
mial time (Di Stefano and Šimkus 2024). In the EL family,
this is not always possible due to the syntactic restrictions of
the fragments.

5.1 Translation into Circumscribed DLs
Given a KB K and a set F of fixed predicates, we aim to
build a KB K̄ with a circumscription pattern P and a set of
constraints C such that there is a correspondence between
stable models of K and model of CircP(K̄) ∧ C up to the
original signature. We describe the intuition behind the
translation of EDLs into Circumscription that we adapted
from (Pearce, Tompits, and Woltran 2009).

The first step of our construction is to simulate HT in-
terpretations. We consider a copy Σ′ of the signature Σ of
K, which we use to split the ‘here’ and the ‘there’ interpre-
tations. Intuitively, the interpretation of primed predicates
corresponds to the interpretations of predicates in the ‘there’
interpretation. We construct the KB K̄ taking the union of
two KBs K′ and K?. The KB K′ is obtained from K by re-
placing each symbol with its primed counterpart. We use K′
to require that the ‘there’ is a classical model of K. Given
a concept C, let C ′ be the concept obtained by replacing
uniformly all predicates occurring in C with their primed
counterpart. The KB K? is obtained by replacing each con-
cept C occurring negatively in K with C ′. This second KB
is used to simulate the interpretation of negated concepts in
the HT semantics (see Figure 1).

To capture the stable model semantics in the setting of
circumscription, we require that all predicates in the original
signature ofK are minimized while all primed predicates are
fixed. To synchronize the ‘here’ and the ‘there’, ensuring
that the interpretations of primed and non-primed symbols
coincide, we introduce constraints of the form p v p′ and
p′ v p, for each predicate symbol p. These constraints filter
out minimal models that are not stable.

A natural question is: do we really need to rely on con-
strained circumscription? Circumscription and Equilibrium
Logic are two orthogonal formalisms, as already argued in
(Ferraris, Lee, and Lifschitz 2011).

Example 2. Consider the TBox T = {¬A v A} with
F = ∅. It is easy to show that T has no stable model.

Indeed, given I such that ∆I = {x} and I |= T , then
AI = {x}. The interpretation J such that ∆J = ∆I and
AJ = ∅ is such that (J , I) |= T . If we apply (pointwise)
circumscription, the most natural option to ‘mimic’ the sta-
ble model semantics is to minimize A. One can observe that
the previous model I of T is minimal.

Example 3. Consider the TBox T = {B v A t ¬A} and
assume F = {B}. We can show that A is satisfiable in a
stable model of T . The interpretation I such that ∆I =
{x}, BI = AI = {x} is a stable model T with AI 6= ∅.
If one considers now (pointwise) circumscription, as before
a natural direction is to respect the ‘nature’ of predicates,
i.e. keep B fixed and minimize A. However, assuming that
A is minimized, it is straightforward to see that there is no
minimal model J of T such that AJ 6= ∅.
The transformation. Given a KBK = (A, T ), let Σ denote
the set of all concept names and role names occurring in K.
We consider a copy of the signature Σ and we denote it with
Σ′ = {A′|A ∈ A} ∪ {r′|r ∈ Σ}. Given a complex concept
C we denote with C ′ the concept over Σ′ obtained globally
replacing each predicate symbol in C with its primed ver-
sion. Following (Pearce, Tompits, and Woltran 2009), we
define an operator τ recursively as follows:

• τ(A) = A, τ(r) = r, τ(>) = >, τ(⊥) = ⊥, τ({a}) =
{a},

• τ(¬C) = ¬C ′, τ(∃R.C) = ∃R.τ(C) and τ(∀R.C) =
∀R.τ(C) u ∀R′.C ′

• τ(C ◦D) = τ(C) ◦ τ(D), with ◦ ∈ {u,t}.
Given the TBox T , we denote with T ∗ the resulting TBox,
with predicates occurring in Σ ∪ Σ′, obtained applying τ
to all GCIs in T , i.e. T ? = {τ(C) v τ(D)|C v D ∈
T }. Observe that the assertions in the ABox can be seen as
inclusions in the standard way. It is easy to observe that they
are not affected by the τ transformation. We K? = (A, T ?).
We denote with K′ the KB obtained from K by replacing
each symbol p ∈ Σ with its primed counterpart p′ ∈ Σ′.

Given a set Σ of concept names and role names and inter-
pretation J , we denote with J ′ the interpretation such that
∆J = ∆J

′
, (p′)J

′
= pJ for all P ∈ Σ. Given an HT inter-

pretation (I,J ), we denote with I ∪ J ′ the interpretation
such that ∆I∪J

′
= ∆I = ∆J , P I∪J

′
= P I for all P ∈ Σ

and (P ′)
I∪J ′

= PJ for all P ′ ∈ Σ′.
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As mentioned at the beginning of this section, we aim to
simulate the HT semantics. Roughly speaking, given an HT
interpretation, we copy the ‘there’ interpretation using the
primed symbols, while unprimed symbols are interpreted as
in the ‘here’.

Lemma 1. Assume a KB K and two interpretations I and
J . Let Σ be the set of predicates occurring inK and F ⊆ Σ
be a set of fixed predicates. Then (I,J ) is a HT model of K
with fixed predicates in F if and only if I ∪J ′ is a model of
K∗ ∪ K′ ∪ {p v p′ ∈ Σ} ∪ {p′ v p|p ∈ F}.

We now use circumscription to capture stable models. It
is worth mentioning that since EDLs do not support varying
predicates, we restrict to circumscription patterns without
varying predicates. With the following theorem, we formal-
ize the intuitive explanation given at the beginning of this
section.

Theorem 2. Assume a KB K = (A, T ) and an interpreta-
tion I. Let Σ be the set of predicates occurring in K and
F ⊆ Σ. We have that I ∈ SM F (K) if and only if I ∪ I ′ is
a model of CircPF

(K∗ ∪ K′) ∧ C, with C = {p v p′, p′ v
p|p ∈ Σ} and PF = (M, ∅, F ∪ Σ′) with M = Σ \ F .

Since K′ contains only fixed predicates, we can equiva-
lently use CircPF

(K?) ∧ (C ∪ K′).

5.2 Complexity Results: Expressive DLs
In (Di Stefano and Šimkus 2024), the stable model seman-
tics has been used in the context of DL terminologies. A ter-
minology is a collection of concept definitions of the form
A := C, where A is a concept name defined by C. Given
a terminology T , the signature is partitioned into the inten-
sional predicates defined by a concept definition using the
extensional predicates, always containing all the role names
occurring in the terminology. The stable model semantics of
Definition 10 is used in the setting of terminologies by see-
ing each A := C as an inclusion of the form C v A and as-
suming as fixed all the extensional predicates. Remarkably,
the stable model semantics overcomes the syntactic limita-
tions of previous approaches (Baader 1990; De Giacomo and
Lenzerini 1997) without increasing the complexity of stan-
dard reasoning tasks for terminologies inALCI . Di Stefano
and Šimkus proved that for ALCI terminologies under the
stable model semantics, the problems of satisfiability and
concept satisfiability are EXPTIME-complete.

In contrast to the case of terminologies where the syntax
is restricted and roles are always assumed to be fixed, for
general KBs in ALC with role minimization, we prove the
following undecidability result.

Theorem 3. Concept satisfiability w.r.t. general KBs in
ALC under the stable model semantics is undecidable if
roles are allowed to be minimized.

Proof. The theorem above is proven using a reduction from
the domino tiling problem to concept satisfiability w.r.t. a
KB in ALC under the stable model semantics. Let P =
(T,H, V ) be an instance of the domino problem, where T
is a set of tiles, H,V ⊆ T × T are the horizontal and
vertical matching conditions. A solution for P is a map

τ : N × N → T such that (τ(i, j), τ(i + 1, j)) ∈ H , and
(τ(i, j), τ(i, j + 1)) ∈ V . Consider the KB KP in Figure
2 and assume the set of fixed predicates F = {r}. It is not
difficult to check that P has a solution if and only if there
exists I ∈ SM F (KP ) such that GI 6= ∅. We briefly discuss
the intuition of the axiom in Figure 2. With (1), (5)-(6) we
simulate the spy-point technique. The nominal a acts as a
spy point, with (5) we force all domain elements to be con-
nected to an S element that with (6) is forced to coincide
with a. With (7)-(8) we then force that a is connected to
every domain element via t. Indeed, from (7), every domain
element is a B. However, using axiom (8) and the assump-
tion that r is fixed, in order to justify all the occurrences of
B we have that a must be connected to every domain ele-
ment via the role r. With the axioms (9)-(10), we apply the
saturation technique already used for ALCI in (Di Stefano
and Šimkus 2024), without recurring to inverse roles. With
(8), an X instance is placed in the model, using (9)-(10), if a
proper cell of the grid is found, with X labeling the bottom-
left node, then the model is saturated with X .

5.3 Complexity Results: EL family
We now focus on DLs in the EL family. Logics in this family
often disallow the use of ¬ and ⊥, unless stated otherwise.
The resulting formalisms are often unable to derive contra-
dictions, making the reasoning tasks of concept subsumption
the most interesting one to consider. With a reduction from
the halting problem of a deterministic Turing machine, we
prove that subsumption w.r.t. circumscribed ELIO KBs is
undecidable if all predicates are minimized.
Theorem 4. Subsumption in circumscribed ELIO with all
predicates minimized is undecidable.

Remark 1. KBs in ELIO⊥ are ¬-free and ∀-free; thus,
evaluating a concept in an HT interpretation is equivalent
to evaluating it only in the ‘here’. For this reason, given KB
K and a set F of fixed predicates, SM F (K) = MM (K,P),
where P = (M, ∅, F ) with M = (NC (K) ∪ NR(K)) \ F
(see (Di Stefano and Šimkus 2024)).

Under the stable model semantics nominals can be simu-
lated using default negation. Let ELI¬ be the extension of
ELI allowing for negation of concept names.

From Theorem 4, the following result holds.
Corollary 3. Subsumption in ELIO and ELI¬ under the
stable model semantics with all predicates minimized is un-
decidable.

The result above does not extend to concept satisfiabil-
ity in ELIO. However, in ELI¬, the result of Corollary 3
applies to concept satisfiability and instance checking, too.

5.4 Complexity Results: DL-Lite Family
The DL-Lite family is characterized by DLs where the ex-
pressiveness of the language is limited in favor of achieving
good complexity bounds, resulting in many tractable frag-
ments as DL-Litecore and DL-LiteHorn. Under circumscrip-
tion, the complexity of different reasoning tasks in DLs in
the DL-Lite family has been studied in (Bonatti et al. 2023;
Lutz, Manière, and Nolte 2023).
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Spy(a) (1)

> v ∃h.> u ∃v.> u (
⊔
t∈T

At) (2)

At v ∀h.
⊔

(t,t′)∈H

At′ u ∀v.
⊔

(t,t′)∈V

At′ ∀t ∈ T (3)

At uAt′ v ⊥ ∀t, t′ ∈ T and t 6= t′ (4)

> v ∃t.S (5)
(S u ¬Spy) v ⊥ (6)

¬B v ⊥ (7)
Spy v ∀r.B u ∃r.X (8)
X v ∀h.∀v.A (9)

X u ∃v.∃h.A v ∀t.(G u ∀r.X) (10)

Figure 2: Encoding of the domino problem in ALC.

Proposition 3. Under the stable model semantics, concept
satisfiability in DL-Litecore is NLOGSPACE-complete.

Proof sketch. The upper bound follows from Remark 1
by recalling that concept satisfiability in circumscribed
DL-Litecore with all predicates minimized or fixed is in
NLOGSPACE (Bonatti et al. 2023). The lower bound follows
from concept satisfiability in DL-Litecore under the classical
semantics.

Minimal model reasoning increases the complexity in
DL-LiteHorn if fixed predicates are allowed. This is not sur-
prising as the latter framework can express logic programs
with choice rules. The NP-hardness of concept satisfia-
bility w.r.t. KBs in circumscribed DL-LiteHorn with fixed
and minimized predicates has been proved in (Bonatti et al.
2023). The reduction is adapted from (Cadoli and Lenzerini
1994) and fixed predicates are used to ‘guess’ the truth value
of propositional variables. We show that the NP-hardness
can be proved even without using fixed predicates.
Proposition 4. If all predicates are minimized, concept sat-
isfiability in circumscribed DL-LiteHorn is NP-hard.

From Remark 1, the result above holds under the stable
model semantics too. In general, role minimization is a pri-
mary source of difficulty when it comes to characterizing the
complexity of reasoning, as many of the known techniques
fail, e.g. filtration. We prove that under the stable model
semantics and the assumption that all roles are fixed, DL-
LiteBool has the small model property.
Lemma 2. Given a KB in DL-liteBool and a concept C, if
there exists I ∈ SMF (K) such that CI 6= ∅, then there
exists J ∈ SMF (K) such that |J | is polynomial in the size
of K and CJ 6= ∅.

Let us consider a fragment of DL-LiteBool where we al-
low for inclusions of the form

C1 u · · · u Cn u ¬D1 u · · · u ¬Dm v B
where C1, · · ·Cn, D1, · · ·Dm and B are DL-Lite basic con-
cepts. We call this fragment DL-Litenot. Under the classi-
cal semantics, DL-Litenot does not differ from the full DL-
LiteBool. Intuitively, under the stable model semantics, DL-
Litenot is to DL-LiteBool what normal logic programs are
to disjunctive logic programs (Lloyd 1987). We show the
following result.
Proposition 5. Assume a DL-Litenot KB K. Given a finite
interpretation I, checking that I is in SMF (K) can be done
in polynomial time.

From Lemma 2 and Proposition 5, we have the following.

Theorem 5. Under the stable model semantics, with the as-
sumption that all roles are fixed, we have:

• Concept satisfiability in DL-Litenot and DL-LiteBool is
NP-complete and Σp

2-complete, respectively;
• Concept subsumption in DL-Litenot and DL-LiteBool is

coNP-complete and Πp
2-complete, respectively. The same

applies to instance checking.

Under the assumption that all roles are fixed, from The-
orem 5 we conclude that concept satisfiability in DL-
LiteHorn is NP-complete, where the hardness follows from
(Bonatti et al. 2023).

6 Pointwise Equilibrium DLs
In Definition 4 we introduce a relation comparing interpre-
tations that differ only at a single domain element, in terms
of concept names and role names involving it. We lift this
pointwise comparison defining pointwise stable models as
follows. Recall the definition of ⊆•F and ⊂•F .

Definition 11. A pointwise HT interpretation is an HT inter-
pretation (I,J ) such that I ⊆•F J and the interpretation
function is defined as in Figure 1.

Definition 12 (Pointwise Stable Models). Given F ⊆ NC ∪
NR, an interpretation J is a pointwise stable model of a KB
K under fixed predicates F , if

(i) the HT interpretation (J ,J ) is a model of K, and
(ii) there is no I s.t. (I,J ) is a model of K and I ⊂•F J .

We denote with PSM F (K) the set of all stable models forK
with fixed predicates F . If F = ∅, we drop the subscript F
and write PSM (K).

Pointwise stable models have been already considered for
full first-order logic in (Ferraris, Lee, and Lifschitz 2011).
However, there are some key differences with the above def-
inition. In (Ferraris, Lee, and Lifschitz 2011) the stable
model semantics is achieved by means of an operator as-
sociating each first-order formula Φ to a second-order for-
mula SM [Φ] whose models are stable. In the case of point-
wise circumscription, the operator associates the formula
PSM [Φ] which can be expressed at the first-order level. The
performed pointwise minimization in PSM [Φ] allows only
for the minimization of a single predicate. In our setting,
multiple predicates with different arities can be minimized,
as long as they ‘concern’ a unique domain element.
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6.1 Complexity Results
The result of Theorem 2 can be extended to the case of
pointwise EDLs and pointwise circumscribed DLs with con-
straints. To do so, we first adapt Lemma 1 as follows.

Lemma 3. Assume a KB K and two interpretations I and
J . Let Σ be the set of predicates occurring inK and F ⊆ Σ
be a set of fixed predicates. Then (I,J ) is a HT model of
K such that I ⊆•F J if and only if I ∪ J ′ is a model of
K∗ ∪ K′ ∪ {p v p′ ∈ Σ} ∪ {p′ v p|p ∈ F} and I ∼• J .

Theorem 6. Assume a KB K = (A, T ) and an interpreta-
tion I. Let Σ be the set of predicates occurring in K and
F ⊆ Σ, I ∈ PSM F (K) if and only if I ∪ I ′ is a model of
Circ•PF

(K∗ ∪ K′) ∧ C, with C = {p v p′, p′ v p|p ∈ Σ}
and PF = (M, ∅, F ∪ Σ′) with M = Σ \ F .

Let ALCIOd≤1 be the fragment of ALCIO where the
syntax is restricted to KBs of modal depth 1 (Di Stefano,
Ortiz, and Šimkus 2023). The mosaic technique (Gogacz et
al. 2020b; Gogacz et al. 2020a) used in (Di Stefano, Ortiz,
and Šimkus 2023) can be easily extended to pointwise cir-
cumscription with constraints as defined in this work. In the
mosaic technique, given a KB, the existence of a minimal
model is reduced to checking the existence of a finite family
of minimal fragments of models, called abstract types, lo-
cally satisfying the KB. These types can be used as building
blocks for a minimal model, according to some ‘plugging’
instructions encoded in a system of inequalities. From The-
orem 6, we obtain the following.

Theorem 7. Concept satisfiability inALCIOd≤1 under the
pointwise stable semantics is in NEXPTIME.

In (Di Stefano, Ortiz, and Šimkus 2023), concept satis-
fiability is proved to be undecidable w.r.t general KBs in
ALCIO under pointwise circumscription. The undecidabil-
ity carries over general KBs ALCI under the pointwise sta-
ble model semantics.

Theorem 8. Concept satisfiability w.r.t general KBs in
ALCI under the pointwise stable model semantics is un-
decidable.

6.2 Pointwise vs Global Minimization
We can identify a large class of ontologies where pointwise
circumscription coincides with global circumscription. We
impose an acyclicity condition on the dependency graph of
an ontology under which pointwise minimal models coin-
cide with minimal models. Our approach is close to the one
used in (Ferraris, Lee, and Lifschitz 2011) for arbitrary first-
order theories and a weaker form of pointwise minimization.

We first collect the predicates that occur positively and
negatively is a concept expression. For a conceptC in NNF ,
we define the sets Occ+(C) and Occ−(C) based on the
structure of C as follows:

• Occ+(A) = {A}, Occ+(¬A) = ∅, with A ∈ NC

• Occ−(A) = ∅, Occ−(¬A) = {A}, with A ∈ NC

• Occ±(C ◦D) =Occ±(C)∪Occ±(D), with ◦ ∈ {t,u}
• Occ+(∃r.C) = {r} ∪Occ+(C)

• Occ−(∃r.C) = Occ−(C)

• Occ+(∀r.C) = Occ+(C)

• Occ−(∀r.C) = {r} ∪Occ−(C)

• Occ+({o}) = {{o}} and Occ−({o}) = ∅.
Given a concept C, we denote with ∼C the concept
NNF (¬C). The dependency graph DG(T ) of an ALCIO
TBox T in NNF is a directed graph whose nodes are the
nominals, concept and role names that appear in T , and
such that there is an edge from P1 to P2 if there is an in-
clusion C v D ∈ T such that P1 ∈ Occ−(∼C t D) and
P2 ∈ Occ+(∼C tD). Given a TBox T and a circumscrip-
tion pattern P = (M, ∅, F ), we denote with DG(T )M the
subgraph of DG(T ) induced by the set of minimized predi-
cates M , i.e DG(T )M = (M,EM ) and (p, q) ∈ EM if the
edge (p, q) belongs to DG(T ) and p, q ∈M .
Theorem 9. Assume T is an ALCIO TBox and let
P = (M, ∅, F ). If DG(T )M has no directed cycle then
PMM (T ,P) = MM (T ,P).

We can extend the result to stable models and pointwise
stable models too, using the following. Recall the trans-
formation τ defined in Section 5.1. Given a TBox T , let
T ? = {τ(C) v τ(D) | C v D ∈ T }. From the Theorems
9, 2 and 6, we have the following result.
Theorem 10. Assume a TBox T in ALCIO, let P =
(M, ∅, F ) be a circumscription pattern for T . If DG(T ?)M
is acyclic, then SM F (T ) = PSM F (T ).

With Theorem 10 and Theorem 7, we can identify a large
class of ontologies in ALCIOd≤1 for which standard rea-
soning tasks are decidable under the stable model seman-
tics, even with minimized roles. We can strengthen the result
above for DLs in the DL-Lite family.
Theorem 11. Let K be a KB in DL-LiteBool and F be
a set of fixed predicates such that NR(K) ⊆ F , then
PSM F (K) = SM F (K).

We briefly explain the intuition behind Theorem 11 in re-
lation to Theorem 10, which uses a condition on the depen-
dency graph induced by the minimized predicates. Under
the hypothesis of Theorem 11, the dependency graphs in-
duced by the minimized predicate may only contain cycles
involving concept names. Since DLs in the DL-Lite family
do not allow for qualified existentials, such cyclic dependen-
cies between minimized predicates are detected by forms of
pointwise minimization. From Theorem 11, we inherit the
complexity results of Theorem 5 under the pointwise stable
model semantics.

7 Conclusions
In this paper we studied some of the computational and
semantic properties of EDLs—DLs equipped with a sta-
ble model semantics based on Quantified Equilibrium Logic
(QEL)—both under the requirement of global minimality
and pointwise minimality. EDLs and pointwise EDLs are
self-contained formalisms which are in contrast with hy-
brid formalisms combining ontologies with rules (Eiter et
al. 2008; Motik and Rosati 2010; Levy and Rousset 1998)
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Fragments Minim. roles All roles fixed
Stable Model Semantics

ALC Undecidable (Th. 3) ?
ELI¬ Undecidable (Cor. 3) ?

DL-Litecore NLOGSPACE-c (Prop. 3)
DL-LiteHorn NP-hard1 NP-c2

DL-Litenot NP-hard3 NP-c (Th. 5)
DL-LiteBool Σp

2-hard3 Σp
2-c (Th. 5)

Pointwise Stable Model Semantics
ALCIOd≤1 NEXPTIME (Th. 7)
ALCI Undecidable (Th. 8) ?

Table 1: Complexity results for concept satisfiability w.r.t. generals
KBs. The ‘c’ stands for ‘complete’. 1From Prop. 4 and Remark
1. 2The upper bound follows from Th. 5. The lower bound follows
from (Bonatti et al. 2023) and Remark 1. 3The hardness follows by
observing that, without using roles, DL-Litenot and DL-LiteBool

capture normal and disjunctive logic programs, respectively.

and do not rely on the translation into a more expressive for-
malism (Ferraris, Lee, and Lifschitz 2011; Donini, Nardi,
and Rosati 2002).

We provided a collection of complexity results for a wide
variety of DLs, ranging from lightweight to expressive DLs,
summarized in Table 1. Remarkably, for DLs in the DL-
Lite family, the (un)decidability of concept satisfiability un-
der the assumption that roles are minimized is generally un-
known. In particular, under the assumption that roles are
minimized, we expect an increase in complexity for both
DL-Litenot and DL-LiteBool and leave the problem open
for future research. Observe that under the pointwise stable
model semantics the same logics trivially inherit the upper
bound for ALCIOd≤1. For more expressive DLs, role min-
imization generally causes undecidability. Subsumption is
proved to be undecidable in ELIO under the stable model
semantics, allowing roles to be minimized. Without the use
of the negation, the proof does not lift to concept satisfiabil-
ity in ELIO. Therefore, the problem is left open for future
work. In general, the (un)decidability of concept satisfiabil-
ity in DLs in the EL family without negation is unknown.
Lastly, the (un)decidability of the standard reasoning tasks
w.r.t. general KBs in ALCI under the (pointwise) stable
model semantics with all roles fixed is still open.

One of the tools we applied was a translation from EDLs
into DLs with constrained circumscription, which is a for-
malism interesting in its own right. Via such translation,
we show that pointwise EDLs inherit the decidability results
of pointwise circumscription. Furthermore, we identified a
class of ontologies where circumscription and pointwise cir-
cumscription coincide and extended this result to EDLs and
pointwise EDLs. In this way, we provided new decidability
results for circumscribed DLs and EDLs.

An implementation of EDLs is left as future work. A first
step towards this is to identify more fine-grained syntactic
restrictions so that we can eventually use existing DL rea-
soners, likely coupled with standard ASP solvers. Reason-
ing tasks stemming from ASP, e.g. strong equivalence, could
be considered for EDLs and are also left for future work.
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