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Abstract

We introduce modular calculi for the logics for nonmono-
tonic reasoning defined by Kraus, Lehmann, and Magidor,
featuring a strengthened form of analyticity. Our calculi are
used to determine the computational complexity for the logics
C, CL, CM,P (and M), and fragments thereof. The calculi
are encoded into SMT solvers, yielding an efficient prover
with countermodel generation capabilities. Our work encom-
passes known results and introduces new findings, including
co-NP-completeness and a more effective semantics for C.

1 Introduction
Non-monotonic reasoning plays a pivotal role in artificial
intelligence. (Kraus, Lehmann, and Magidor 1990) intro-
duced an inferential framework for its formalization, which
has since become foundational. The resulting logics, known
as KLM logics, contain a conditional operator (expressing
“... typically implies...”) defined by inference rules, along
with corresponding preference-model semantics. From the
weakest to the strongest system, these are: the logic C of
cumulative reasoning, loop-cumulative logic CL, and pref-
erential logic P. For sake of completeness, the KLM logics
also include the monotonic systems CM and M; CM later
appeared in the context of normative reasoning as the logic
out+3 of “reusable throughput” (Makinson and van der Torre
2001), while M collapses to classical logic.

Although the KLM logics originated as an inferential
approach to non-monotonic reasoning, the development of
proof calculi and provers for them has encountered signifi-
cant challenges, leaving various problems unresolved.

In this paper we introduce uniform and modular sequent
calculi for C, CL, CM, P (and M), leveraging them to
provide uniform complexity results, and efficient reasoning
tools. Our work encompasses known results and novel con-
tributions, with particular emphasis on C. This base logic
can be viewed as P without the rule (Or), expressing dis-
junctive reasoning. P was proposed as the central system
in (Kraus, Lehmann, and Magidor 1990) and has served as
the foundation for various systems of non-monotonic rea-
soning ever since. However, there are scenarios where the
conditional operator is not intended to fulfill (Or). These in-
clude the epistemic interpretation in (Kraus, Lehmann, and
Magidor 1990), in legal reasoning contexts, when formal-
izing a “count as” connection (Gelati et al. 2004; Gover-

natori and Rotolo 2008), in the actual causality framework
of (Bochman 2018), or when efficiency of fragments matter
(see, e.g., Th 17 in the current paper).

The logic C of cumulative inference originates before
KLM framework, with its axioms introduced by (Gab-
bay 1985) as “the minimal conditions a consequence rela-
tion should satisfy to represent a bona fide nonmonotonic
logic” (Kraus, Lehmann, and Magidor 1990). Despite this,
C remains the least understood KLM logic, with many open
questions, including its exact complexity. One reason may
be the challenges posed by the smoothness condition1 in its
semantic characterization. To tackle this, the original KLM
paper proposed a modified semantics, and introduced CL, a
strengthened logic incorporating an additional rule.

Analytic sequent (or tableau) calculi whose derivations
contain only subformulas of the formulas to be proved are
powerful tools to establish meta-logical results about the for-
malized logics (e.g. complexity), and a base for automated
theorem provers. While the original KLM rules offer useful
foundational principles for categorizing variations of condi-
tional entailment, they cannot be directly employed for au-
tomated deduction or to prove complexity results, being a
sort-of natural deduction systems. In particular, their deriva-
tions lack analyticity and involve additional formulas not in
the original query, with no guidance for their construction.
A variety of analytic calculi were introduced for the pri-
mary KLM logic P and its extensions. Some of these calculi
were constructed directly based on the semantical character-
ization (e.g. (Giordano et al. 2009; Giordano et al. 2007;
Britz and Varzinczak 2018), while others rely on embed-
dings of P into normal modal or conditional logics well-
suited for analytic characterization (e.g. (Boutilier 1990;
Britz, Heidema, and Labuschagne 2009)). Most of these ap-
proaches however are not extendable to weaker KLM logics.
To the best of our knowledge the only analytic calculi for
KLM logics weaker than P are the tableau calculi in (Artosi,
Governatori, and Rotolo 2002) for C and CL, tableau calculi
in (Giordano et al. 2009) for C, CL and P, and nested se-
quent calculi (Alenda, Olivetti, and Pozzato 2016) for some
conditional logics including C. These calculi introduce syn-

1Related to the limit assumption in (Lewis 1973), smoothness
ensures that each truth set in the preference model has a minimal
state.
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tactic rules for decomposing formulas that reflect the seman-
tical definition of satisfaction in preference models. They in-
herit the drawback of the semantic characterizations, namely
the difficulty to ensure smoothness (when it cannot be re-
placed by stronger frame properties, as for P or CL (Gior-
dano et al. 2009)), and lead to relatively slow implementa-
tions as automated theorem provers (see the evaluation in
Sec. 5.2).

In this paper we propose an alternative approach. We in-
troduce modular sequent calculi for the logics C, CL, CM,
P (and M) that enjoy a stronger form of analyticity. Their
derivations indeed contain conditionals built from formulas
already contained in the sequent to be proved (i.e., the en-
tailment statement), without decomposing the formulas into
subformulas. Viewing our derivations as directed graphs –
whose nodes represent the formulas contained in the end se-
quent and edges the conditionals between them – the appli-
cations of rules add only edges (and not nodes) to the graphs.

A semantic counterpart of this stronger analyticity condi-
tion is also introduced; it turns out to be a weaker form of
smoothness that only requires verification for the formulas
present in the entailment (and not for all formulas in the lan-
guage). This constitutes an alternative, and more manage-
able semantics for C, which demonstrates improved compu-
tational properties, e.g., polynomial-time model checking.

Our calculi are employed to uniformly establish co-NP-
completeness for the entailment problem across all KLM
logics. Previously, the exact complexity was only known
for P (Lehmann and Magidor 1992) and CL (Giordano
et al. 2009) (as well as M); prior upper bounds for C
were NEXP (Giordano et al. 2009) and PSPACE (Alenda,
Olivetti, and Pozzato 2016), and for out+3 (i.e. CM) it was
PNP (Sun and Robaldo 2017). We also show that for Horn
and literal conditionals the entailment problem for C, CL,
and CM is polynomial. Additionally, for Horn condition-
als, we prove that the entailment in M and CM coincides,
as does the entailment in P and CL (the latter result al-
ready shown via semantic methods in (Kraus, Lehmann, and
Magidor 1990)).

Unlike analytic calculi that rely on formula decomposi-
tions, our calculi are based on saturation. Rule applica-
tions only expand sequents (or, when looking at the graph-
perspective of derivations, edges are added) as much as pos-
sible. This enables a natural encoding into SMT solvers,
resulting in an efficient theorem prover for the KLM logics.

2 Preliminaries on KLM logics
(Kraus, Lehmann, and Magidor 1990), henceforth referred
to as “the KLM paper”, introduced axiomatizations for the
binary relation |∼ (interpreted as “... typically implies ...”)
along with appropriate semantics, leading to the develop-
ment of the KLM logics. Henceforth we will use the no-
tation (A,B) (instead of A |∼ B), for the non-monotonic
conditionals, where A (condition) and B (consequence) are
propositional formulas of classical logic (called components
of the conditional). We will denote classical entailment from
a set of formulas with ‘⇒’ and classical equivalence be-
tween two formulas with ‘⇔’. On the syntactic side, the

(a) Rules of
basic logic C:

(Id): ⊢ (A,A)
(RWk): (A,B) ⊢ (A,B′) when B ⇒ B′

(LEq): (A,B) ⊢ (A′, B) when A ⇔ A′

(CMon): (A,B), (A,C) ⊢ (A ∧B,C)
(CCut): (A,B), (A ∧B,C) ⊢ (A,C)

(b) Additional
KLM rules:

(Loop): (A1, A2), . . . , (An, A1) ⊢ (A1, An)
(Or): (A1, B), (A2, B) ⊢ (A1 ∨A2, B)
(Mon): (A,B) ⊢ (A′, B) when A′ ⇒ A

Figure 1: KLM rules

logics of the KLM family are defined via the basic axioms
in Figure 1. Different KLM logics are given by different
subsets of these rules. The basic logic C of cumulative rea-
soning consists of the rules in Fig. 1(a). The extension of
C with the rule (Loop) is the logic CL. The extension of C
with the rule (Or) for reasoning by cases yields the logic P
of preferential reasoning. Each logic C, CL, P captures dif-
ferent features of non-monotonic reasoning (none of them
admits the monotonicity principle (Mon)). The KLM family
also includes two monotonic logics: the logic CM of cumu-
lative monotonic reasoning, which extends C with (Mon),
and the logic of monotonic reasoning M which extends CM
with (Or) (M collapses to classical logic). Notice that both P
and CM are stronger than CL, as they derive the rule (Loop).

In each KLM logic the entailment of conditionals is de-
fined by iterative applications of these rules (the notion of
derivation is as usual, and always involve a finite number of
conditionals). Semantically, KLM logics are characterized
by a variant of preference model semantics (Shoham 1987).
Definition 1. A preference model is a triple ⟨S, w,≺⟩ s.t.
(i) S is a set of abstract states, (ii) w is a labeling func-
tion that maps each state in S to a (possibly empty) set of
Boolean assignments of the propositional variables, (iii) the
preference relation ≺ is an asymmetric binary relation on S .

A conditional (A,B) is read as “B is true in the minimal
(most normal) state(s) satisfying A”, see below. Note that in
the most general case ≺ is not assumed to be transitive, so
it is not necessarily a partial order. Nevertheless, minimality
can be defined for arbitrary asymmetric relations, with the
usual distinction between minimal and least elements.
Definition 2. Given a set X equipped with an asymmetric
binary relation ≺, m ∈ X is a minimal element of X if
there is no x ∈ X s.t. x ≺ m, l ∈ X is the least element of
X when l ≺ x for all x ∈ X s.t. x ̸= l. We denote the set
of minimal elements and the (empty or one-element) set of
least elements of X by min(X) and least(X) respectively.

A formula A is satisfied in a state s of a preference model
M = ⟨S, w,≺⟩, if it is satisfied by all Boolean assignments
w(s) (in symbols M, s A); we denote by ∥A∥M the truth
set of A, i.e., the subset of states in S that satisfy A. A
conditional (A,B) is satisfied by the model M (in symbols
M |= (A,B)) if M, s B for all s ∈ min(∥A∥M ).

A truth set of a formula may have multiple minimal states;
an extra condition (smoothness) on preference models ex-
cludes the absence of minimal states for a truth set. Rooted
in conditional logic tradition, this condition says that for any
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formula A and state s ∈ ∥A∥M , either s ∈ min(∥A∥M ) or
there is s′ ≺ s with s′ ∈ min(∥A∥M ). Smoothness is the
defining feature of the basic logic C. However, as already
noted in (Kraus, Lehmann, and Magidor 1990), working
with it can be challenging due to the difficulty of checking
this condition for all truth sets.

Additional conditions on preference models characterize
the other KLM logics, streamlining their semantics com-
pared to C. In particular, CL and P assume the preference
relation to be a (strict) partial order, and for the monotonic
KLM logics CM and M the preference relation is empty.
Additionally, for the logics P and M, the labeling has ex-
actly one Boolean assignment for each state (we call this
property functionality of a labeling function).

In the following, when discussing a KLM logic L ∈
{C,CL,CM,P,M}, we will refer to the models satisfying
the respective properties as L-models.

Theorem 1. (Kraus, Lehmann, and Magidor 1990) A set
Γ of conditionals entails a conditional E in a KLM logic
L (in symbols, Γ ⊢L E) iff every L-model that satisfies all
conditionals in Γ satisfies also E .

Remark 1. In the KLM paper the authors notice that their
canonical models for C and CL satisfy a stronger version
of smoothness (which we refer to as l-smoothness) that re-
quires each non-empty truth set to have the least element.
Although the same cannot be observed for the other KLM
logics, it is easy to see that entailment in CM and M can be
characterized by models with exactly one state (and, hence,
l-smooth): since the preference relation is empty, in a coun-
termodel for entailment only the state falsifying the non-
entailed conditional is needed. Moreover, (Lehmann and
Magidor 1992, Lemma 8) shows that finite entailments in P
can be characterized by finite linearly-ordered (and, hence,
l-smooth) preference models. In sum, in the semantical
characterizations of finite entailment, smoothness can be re-
placed by l-smoothness for all KLM logics. As we only deal
with finite entailments, we will use both versions of smooth-
ness.

3 Strongly Analytic Sequent Calculi
We present strongly analytic calculi for the KLM logics. Our
calculi manipulate sequents (denoted by Γ ⊢ E), where Γ
is a finite set of conditionals, and E a conditional. Their
rules enable to derive a sequent (conclusion) from a number
of premises, each of which consists of either a sequent or
a classical entailment ⇒. The rules are presented in Fig. 2
and their intuition is explained in the respective sections ded-
icated to each logic. The superscript s on the rule’s names
serves to distinguish them from the corresponding rule (if
any) in Fig. 1. All rules follow a specific structure: the se-
quent(s) in the premise(s) and in the conclusion differ only
for the presence in the former of one conditional δj on the
left hand side (LHS). The rules (Cns) and (CnMs) addi-
tionally contain a classical entailment S as premise.

Crucially, our rules in Fig. 2 apply only under two restric-
tions: (1) the conditional δj is not already on the LHS of
the rule premise (novelty), and (2) the components in δj are
already present among the components of the conditionals

in the conclusion (analyticity)2. Note that our analyticity
condition is, in a sense, stronger than the subformula prop-
erty, which (only) requires that all formulas in the premises
of a rule are subformulas of formulas in the conclusion. The
graph view of derivations in our calculi, presented later, clar-
ifies this matter.

Our calculi are constructed using a modular approach,
akin to the calculi in the KLM paper. The calculus SCC
for the basic logic C consists of the rules (Ids), (Equivs),
and (Cns). The extension SCCL for CL includes also the
rule (Loops). The calculi SCCM, SCP and SCM for CM,
P, and M are achieved by adding the rules (Trs), (CnMs),
and both, respectively. Note that all rules, except (CnMs),
consist of one sequent-premise only.

Definition 3. A derivation in SCL is a tree with internal
nodes labeled as sequents, and s.t. the label of each node fol-
lows from the labels of its children using the calculus rules.
A proof in SCL is a derivation whose leaves are either in-
stances of a concluding axiom or valid classical entailments.
A sequent is derivable in SCL if there is a proof in SCL with
the root labeled by this sequent.

In the bottom-up proof search for a sequent Γ ⊢ E , the set
of conditionals on the LHS expands. A branch is closed by
the concluding axiom when E appears on the LHS.

Graphs of conditional dependencies offer a convenient
representation of SCL derivations and proofs. In this per-
spective we view the set of formulas from all components of
conditionals in Γ ∪ E (in symbols, F(Γ ∪ {E})) as nodes in
a graph, and conditionals on the LHS as directed edges be-
tween them. Each one-premise rule adds the edge δ1 to the
current graph, while (CnMs) creates m copies of the graph
with one additional edge {δj}mj=1 each.

Definition 4 (Graph view). A derivation in SCL of a se-
quent Γ ⊢ E is the process of saturating a graph G (graphs,
in case of SCP and SCM) with nodes V = F(Γ ∪ {E})
and directed edges E(G) ⊇ Γ. Starting from the graph
with Γ as set the of edges, each application of a rule in
SCL to a graph with edges E replaces this graph with m
graphs {(V,E ∪ {δj})}mj=1. A proof in SCL is a derivation
in which an edge corresponding to E appears in each graph.
If this condition remains unmet despite exhaustive rule ap-
plications, the derivation is said to be failed.

The analyticity condition prevents the expansion3 of
nodes from V = F(Γ ∪ {E}), and the novelty condition
prohibits the addition of duplicate directed edges between
the same pair of nodes. This results in the process reach-
ing saturation – where no further edges can be added to the
graphs by applying the calculus rules – within a polynomial4
number of rule applications (for each copy of a graph).

Notice that saturation w.r.t. a single-premise rule (r)
means that regardless of the choice of Σ among the edges
of the graph, the edge δ1 is already in the graph. Conse-
quently, (r) cannot be applied due to the novelty restriction.

2F(Γ) denotes the set of all components of conditionals in Γ.
3In a graph perspective, rules enjoying the subformula property

would create instead new nodes for the subformulas.
4At most (2 · |Γ|+ 2)2 edges can be added.
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Concluding axiom: Π, E ⊢ E Rule form: {Π,Σ, δj ⊢ E}mj=1 S
Π,Σ ⊢ E

Rule m Σ {δj}mj=1 S
(Ids) m = 1 ∅ {(A,A)} ⊤ (no condition)

(Equivs) m = 1 {(A,A′), (A′, A), (A,B)} {(A′, B)} ⊤ (no condition)
(Loops) m = 1 {(Ai, Ai+1)}n−1

i=1 ∪ {(An, A1)} {(A1, An)} ⊤ (no condition)
(Trs) m = 1 {(A,B), (B,C)} {(A,C)} ⊤ (no condition)
(Cns) m = 1 {(A,Bi)}ni=1 {(A,C)}

∧n
i=1 Bi ⇒ C

(CnMs) m ≥ 1 {(A,Bi)}ni=1 {(A,Cj)}mj=1

∧n
i=1 Bi ⇒

∨m
j=1 Cj

Analyticity restriction: F(δj) ⊆ F(Π ∪ Σ) Novelty restriction: δj /∈ Π ∪ Σ

Figure 2: Strongly analytic calculi for KLM logics

For the rule (CnMs) saturation is achieved if at least one of
the edges {δj}mj=1 is already present in the graph. A graph
with nodes F(Γ ∪ {E}) and starting edges Γ, reaching sat-
uration w.r.t. all rules of SCL only, corresponds to either a
proof of Γ ⊢ E or a failed derivation. The latter provide a
counterexample to the derivability of Γ ⊢ E .

However, to prove the completeness of our calculi and en-
code them into SMT solvers in Sec. 5.1, we will generalize
the notion of counterexample to separating graphs. A sep-
arating graph for Γ ⊢ E contains all conditionals from Γ as
edges, but no edge E , while still being saturated w.r.t. the
rules of SCL.

Definition 5. G = (V (G), E(G)) is a separating graph for
Γ ⊢ E w.r.t. SCL if it satisfies the following four conditions:
(1) V (G) = F(Γ ∪ {E}), (2) Γ ⊆ E(G), (3) E ̸∈ E(G),
and (4) for every rule (instance) of SCL, if Σ ⊆ E(G) then
at least one of the edges {δj}mj=1 belongs to E(G).

Although the edges in a separating graph for Γ ⊢ E are
not required to be derivable from Γ, all edges not present in
the graph are not derivable from Γ due to saturation; hence
a separating graph can indeed serve as a counterexample to
derivability.

Lemma 2. A separating graph for Γ ⊢ E w.r.t. SCL exists
iff Γ ⊢ E is not derivable in SCL.

Proof. (⇐) If Γ ⊢ E is not derivable in SCL then there is
a failed derivation that ends up in a graph that satisfies the
conditions of Def. 5.

(⇒) We cannot simultaneously have a separating graph
G and a proof in SCL for Γ ⊢ E . Suppose to have both, then
there exists a proof (a proof branch, in case of P and M)
whose conditionals on the LHS of every sequent belong to
E(G): for the root this is true by condition (2) of Def. 5 and
for every rule application there is a premise for which this is
true by condition (4). Then this also holds for the sequent-
leaf of this branch, which has E on the LHS, contradicting
condition (3) of Def. 5.

Example 1. Fig. 3 (left) depicts the sequent proof of
(A,B), (A,C) ⊢ (A ∧ B,C) in the calculus SCC; Γi de-
notes all the conditionals on the LHS apart from the one
added at the previous (i-th) step and from those used at the
next ((i+1)-th) step. Fig. 3 (right) depicts its graph view.
The solid arrows represent the initial edges of the graph.
The dashed arrows are added by applying the rules, and are

labeled with the rule’s name. Those corresponding to rule
applications in the proof (left) are also labeled with the step
number. (A∧B,C) is derived at step 5. Not needed to reach
a proof, the edges labeled with ∗ are present in the minimal
saturated graph.

Consider now the sequent (A,B), (A,C) ⊢ (C,A ∧ B),
not provable in SCC. The same graph in Fig. 3 (right) corre-
sponds to the failed derivation and it is separating. We can
get other separating graphs by introducing extra edges (for
example, the edge (B,C) can be added without violating
saturation w.r.t. the rules of SCC).

Henceforth we use both sequent and graph perspectives
of our calculi and derivations, depending on which is more
convenient at the moment. In the the upcoming soundness
and completeness proofs, we will mainly employ the sequent
view for the former and the graph view for the latter. Spe-
cific logic subsections will provide relevant details.
Roadmap of Soundness: For C, CL and CM the proofs
proceed by emulating the calculus rules using the rules in
the KLM paper for the corresponding logic. The rules of
SCC, SCCL, and SCCM are indeed “sequent-ized” versions
of (or derivable from) the original KLM rules (see Fig. 1).
The same does not hold for (CnMs), present in P and M,
for which soundness is instead proved semantically.
Roadmap of Completeness: For each KLM logic L, we
show that there is no proof of Γ ⊢ E in SCL only when
the given entailment does not hold. As failed derivations
end up in a separating graph G (Lem. 2), we use G to
define an L-countermodel ML(G) for Γ ⊢ E . ML(G) is
constructed to satisfy exactly the conditionals between for-
mulas in V (G) that appear as edges in G.

Definition 6. A preference model M is aligned with a graph
G if for all A,B ∈ V (G), M |= (A,B) iff (A,B) ∈ E(G).

Lemma 3. If M is aligned with a separating graph G for
Γ ⊢ E then M is a countermodel for Γ ⊢ E .

Proof. Being G a separating graph Γ ⊆ E(G) and E /∈
E(G), so, due to alignment, M satisfies all conditionals in
Γ, but not E .

Our countermodel construction is inspired by the canoni-
cal model construction in the KLM paper, albeit with a dis-
tinct “analytic” approach. We indeed focus exclusively on
conditionals between formulas from V (G), rather than all
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Γ5, (A ∧B,C) ⊢ (A ∧B,C)
5, (Equivs)

Γ4, (A,C), (A,A ∧B), (A ∧B,A) ⊢ (A ∧B,C) A ∧B ⇒ A
4, (Cns)

Γ3, (A ∧B,A ∧B) ⊢ (A ∧B,C)
3, (Ids)

Γ2, (A,A ∧B) ⊢ (A ∧B,C) A,B ⇒ A ∧B
2, (Cns)

Γ1, (A,B), (A,A) ⊢ (A ∧B,C)
1, (Ids)

(A,C), (A,B) ⊢ (A ∧B,C)

A B

A∧BC

2, (Cns)

4, (Cns)

(Equivs) ∗

5, (Equivs)

1, (Ids) (Ids) ∗

(Ids) ∗ 3, (Ids)

Figure 3: Derivation of (A,B), (A,C) ⊢ (A ∧B,C) in SCC. Left: Sequent view. Right: Graph view.

possible conditionals. In particular, the states of our coun-
termodels will be equivalence classes on V (G) (vs on all for-
mulas as in the KLM paper) w.r.t. conditional equivalence
in G defined as: A ↔ B when {(A,B), (B,A)} ⊆ E(G)
(vs A ∼ B when A |∼ B and B |∼ A). Notice that ↔
is an equivalence relation for a graph G saturated w.r.t. the
rules (Ids) (for reflexivity) and (Equivs) (for transitivity),
present in all our calculi.

Henceforth, [A]↔ will denote the equivalence class of the
formula A and V (G)/↔ will denote the set of all equivalence
classes.

The labeling function and the preference relation for
countermodels will be tailored to each logic L, following a
methodology similar to the canonical model constructions in
the KLM paper. This will ensure compliance with the condi-
tions imposed on L-models, relying on saturation w.r.t. the
rules of the calculus SCL in each case.

The labeling of a state will be constructed to satisfy ex-
actly the consequences of all its formulas in G, as stated in
the requirement below. NG(A) will denote {B | (A,B) ∈
E(G)}, i.e. the set of consequences (or neighbors) in G for
all (A,B) ∈ E(G). We will extend this notation to sets
of formulas: NG(α) =

⋃
A∈α NG(A), and its complement

NG(α) = V (G) \NG(α).

Requirement 1 (Labeling requirement). We seek for a la-
beling function w on V (G)/↔ such that for any α ∈ V (G)/↔

and B ∈ V (G), w(α) B iff B ∈ NG(α).

For the monotonic logics CM and M, the fulfilment of
Req. 1 will be enough to prove alignment with G for the
degenerate case of an empty preference relation (as required
in these logics). For the non-monotonic logics C, CL, and P
we chose a preference relation ≺ in such a way that for every
formula A state [A]↔ is the least state (and therefore, due to
the asymmetry of ≺, the only minimal state) satisfying A.

Requirement 2 (Preference requirement). We seek for
a model M = ⟨V (G)/↔, w,≺⟩ such that [A]↔ ∈
least(∥A∥M ) for any A ∈ V (G).

Satisfying Req. 1 and 2 implies alignment with G.
By Lem. 3, alignment of ML(G) suffices for it to serve

as a countermodel for Γ ⊢ E . To achieve completeness,
it remains to verify that ML(G) is an L-model. Ensur-
ing smoothness for our countermodels requires special at-
tention. For the KLM logics that mandate the preference
relation to be a strict partial order (i.e., all but C), smooth-
ness naturally follows from the finiteness of the constructed
model (in a finite partially ordered set, every decreasing

chain has the least element). The situation for C is more in-
tricate. Req. 2 guarantees the existence of the least element
in ∥A∥M for all A ∈ V (G). This condition is a weaker ver-
sion of l-smoothness (Remark 1) confined to formulas from
F(Γ ∪ {E}). We refer to this new condition as analytic l-
smoothness. As we will see, any analytically l-smooth coun-
termodel, which we will term as analytic countermodel, can
be transformed into an l-smooth countermodel by adding
new states. Thus, analytic l-smoothness can be used as an
alternative semantic characterization of (finite) entailment in
C.
Remark 2. Analytic l-smoothness can be verified in polyno-
mial time, and our construction MC(G) shows the existence
of polynomial-size analytic countermodels. In contrast, it
is unclear whether smoothness (or l-smoothness) from the
KLM paper always permits a polynomial-size countermodel,
and whether these properties (which apply to all formulas in
the language) can be verified in polynomial-time.

3.1 The base logic C
The calculus SCC for C consists of the rules (Ids),
(Equivs), and (Cns) from Fig. 2. (Ids) is a “sequent-ized”
version of one of the original rules for C, (Cns) allows the
rule (RWk) to be applied to multiple conditionals having the
same conditions, while (Equivs) mirrors the (Equivalence)
rule in the KLM paper and allows swapping conditionally
equivalent conditions. Their soundness follows from the
lemma below, stating that for each rule Σ derives the gen-
erated conditional δ1 via the original KLM rules for C.
Lemma 4 (Emulation). For every rule of SCC, (the classical
validity of the rule proviso S implies) Σ ⊢C δ1.

Proof. For (Ids), δ1 = (A,A) is derived by (Id). The claim
for (Equivalence) is in the KLM paper. For (Cns) we use
the (And) rule (A,B1), (A,B1) ⊢ (A,B1 ∧B2), shown to
be derivable in C in the KLM paper. The conditional δ1 =
(A,C) generated by (Cns) arises by n applications of (And)
followed by (RWk), as δ = (B1 ∧ · · · ∧Bn ⇒ C).

Theorem 5 (Soundness of SCC). If Γ ⊢ E is derivable in
SCC then Γ ⊢C E .

For completeness, as described in the roadmap, we build
a countermodel MC(G) satisfying Req. 1 and Req. 2 for a
separating graph G for Γ ⊢ E w.r.t. SCC.

The definition of the labeling function will rely on the sat-
uration of G w.r.t. (Cns). Hence NG(A) contains all the
formulas from V (G) that are classically entailed by NG(A).
So, if B ∈ NG(A) then NG(A) ̸⇒ B. We can lift it to
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the level of equivalence classes, since NG([A]↔) = NG(A)
due to the saturation w.r.t. (Equivs): NG(α) ̸⇒ B for
any α ∈ V (G)/↔ and B ∈ NG(α). Hence there exist
Boolean assignments satisfying all formulas in NG(α) and
falsifying B. We denote by ρ(α,B) one (arbitrarily chosen)
such assignment. We can then define a labeling function
WG(α) = {ρ(α,B) | B ∈ NG(α)}, satisfying Req. 1 and
mapping each state into linearly many Boolean assignments.

We also reuse the definition of preference relation from
the canonical model for C in the KLM paper, adapting it to
our analytic setting.

Definition 7. For α, β ∈ V (G)/↔, β ≺G α when α ̸= β
and there exists B ∈ β such that B ∈ NG(α).

Notice that ≺G is asymmetric for G saturated w.r.t.
(Equivs). Indeed α ≺G β and β ≺G α would imply
A ↔ B for some A ∈ α and B ∈ β, contradicting α ̸= β.

Countermodel definition: MC(G) = ⟨V (G)/↔,WG,≺G⟩

Lemma 6. If G is a separating graph for Γ ⊢ E w.r.t. SCC
then MC(G) is a countermodel for Γ ⊢ E .

Proof. WG satisfies Req. 1 by definition. MC(G) satisfies
Req. 2 since for every B ∈ V (G) and for every α ∈ V (G)/↔

such that α ̸= [B]↔ if α ∈ ∥B∥MC(G) then B ∈ NG(α)
due to Req. 1, so [B]↔ ≺G α by definition, so [B]↔ ∈
least(∥B∥MC(G)). Req. 1 and Req. 2 together imply align-
ment with G, which proves the claim by Lem. 3.

MC(G) satisfies analytic l-smoothness, because of Req. 2
but may not qualify as a C-model, as it is not necessar-
ily smooth. Indeed we cannot say anything about smooth-
ness on the formulas outside V (G). We show that ana-
lytic l-smoothness can serve as an alternative characteriza-
tion for C, by transforming any analytic countermodel into
an l-smooth countermodel.

Lemma 7. For a finite Γ, Γ ⊢C E iff there is no analytic
countermodels for Γ ⊢ E .

Proof. Since l-smoothness implies analytic l-smoothness,
it suffices to show that any analytic countermodel can be
turned into an l-smooth countermodel. Without loss of gen-
erality, we restrict V ar to the variables occurring in Γ ⊢ E
(any l-smooth countermodel can be extended to any larger
set of variables by assigning the additional variables to false
in all labelings).

Consider the following model transformation M 7→ M∗

“repairing” l-smoothness for one formula X . If M does
not satisfy l-smoothness for X (i.e. ∥X∥M ̸= ∅ and
least(∥X∥M ) = ∅), we add to M one state s∗ with labeling
w(s∗) = {ρ | ρ |= X} and make s∗ ≺ s for all s ∈ ∥X∥M
and s ≺ s∗ for all s ∈ S \ ∥X∥M , without changing the
labeling or the preference relation for other states. We then
have s∗ ∈ least(∥X∥M∗

) by definition. The asymmetry of
≺ is preserved. We show that the transformation also pre-
serves l-smoothness for any A ̸= X . If ∥A∥M = ∅ then
X ̸⇒ A (since ∥X∥M ̸= ∅), so w(s∗) ̸ A, so ∥A∥M∗

= ∅.
If ∥A∥M ̸= ∅ and sA ∈ least(∥A∥M ), sA remains the least
after the model transformation: it can only be violated if

both (1) w(s∗) A and (2) s∗ ≺ sA in M∗, but (1) im-
plies X ⇒ A and (2) implies sA ∈ ∥X∥M , which would
imply sA ∈ least(∥X∥M ) contradicting the absence of l-
smoothness on X in M .

Hence any analytic countermodel M for Γ ⊢ E can be
converted into an l-smooth countermodel in a finite num-
ber of steps: select a maximal set of pairwise classically
non-equivalent formulas (finite, given that so is V ar) and
“repair” l-smoothness for each one using the transformation
above. The resulting model achieves l-smoothness for all
formulas while remaining a countermodel for Γ ⊢ E (since
the transformation preserves the least states).

Theorem 8 (Completeness of SCC). If Γ ⊢C E then Γ ⊢ E
is derivable in SCC.

Proof. By contraposition: if Γ ⊢ E is not derivable in SCC,
by Lem. 2 there is a separating graph G for it. Hence we can
construct a countermodel MC(G) for Γ ⊢ E that is analytic.
By Lem. 7 follows that Γ ̸⊢C E .

3.2 Logics CL and CM
The calculi SCCL and SCCM for the CL and CM extend
SCC with the rule (Loops) and the transitivity rule (Trs),
respectively. Note that (Loops) is derivable from (Trs).

Theorem 9 (Soundness of SCCL and SCCM). If Γ ⊢ E is
derivable in SCCL (resp. SCCM) then Γ ⊢CL E (Γ ⊢CM E).

Proof. Similar to the proof of Th. 5. Observe that Lemma 4
holds also for CL and CM, since the additional rules
(Loops) and (Trs) are sequent-ized versions of the origi-
nal KLM rule (Loop) (of CL), and of (Transitivity), shown
to be derivable in CM in the KLM paper, respectively.

For the countermodels MCL(G) and MCM(G) we re-
define the preference relation in the countermodel MC(G)
to fulfill the semantic requirements for these logics – tran-
sitivity for CL and the empty relation for CM – using the
saturation w.r.t. the additional rules (Loops) and (Trs).

Following the KLM paper, transitivity for CL is ensured
by taking the (positive) transitive closure of ≺G (denoted as
≺+

G) as the preference relation.

Countermodel definition: MCL(G) = ⟨V (G)/↔,WG,≺+
G⟩

Note that saturation w.r.t. (Loops) is needed to ensure that
the transitive closure is asymmetric (and, therefore, it can be
taken as a preference relation).

Lemma 10. If G is saturated w.r.t. (Loops) and (Equivs),
≺+

G is asymmetric.

Proof. Suppose α ≺+
G β and β ≺+

G α. By the definition
of ≺G and saturation w.r.t. (Equivs) there exists a directed
cycle in G going through some A ∈ α and some B ∈ β.
Due to the saturation w.r.t. (Loops), for each edge of the
cycle its inverse edge also belongs to E(G), then due to sat-
uration w.r.t. (Equivs) we have A ↔ B, so α = β, which
contradicts the initial assumption.
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Since MCL(G) has the same labeling as MC(G) and
Req. 2 is preserved by taking a positive transitive closure
(it preserves the least elements) we have completeness.
Theorem 11 (Completeness of SCCL). If Γ ⊢CL E then
Γ ⊢ E is derivable in SCCL.

Proof. If Γ ⊢ E is not derivable, a separating graph G ex-
ists by Lem. 2. MCL(G) satisfies Req. 1 and 2, so it is
aligned with G and hence is a countermodel for Γ ⊢CM E by
Lem. 3. ≺+

G, being asymmetric and transitive (a strict partial
order), ensures smoothness due to the finiteness of MCL(G),
so MCL(G) is a CL-countermodel for Γ ⊢ E .

For CM, we take an empty preference relation.
Countermodel definition: MCM(G) = ⟨V (G)/↔,WG,∅⟩
Req. 1, satisfied by WG, and saturation w.r.t. (Trs) are

enough to prove alignment with G (and, therefore, com-
pleteness) directly.
Theorem 12 (Completeness of SCCM). If Γ ⊢CM E then
Γ ⊢ E is derivable in SCCM.

Proof. If Γ ⊢ E is not derivable, by Lem. 2 there is a
separating graph G. Since MCM(G) has an empty prefer-
ence relation, it is a CM-model and all states within each
truth set are minimal. By Lem. 3 it suffices to show that
MCM(G) is aligned with G. If (A′, B′) ̸∈ E(G) then
MCM(G), [A′]↔ A′ and MCM(G), [A′]↔ ̸ B′ (both
due to Req. 1 satisfied by WG), so MCM(G) ̸|= (A′, B′).
Now let us show that (A,B) ∈ E(G) implies MCM(G) |=
(A,B). For any α ∈ min(∥A∥MCM(G)) we have α ∈
NG(A) due to Req. 1 satisfied by WG, i.e. there is C ∈ α
such that (C,A) ∈ E(G). Due to saturation of G w.r.t.
(Trs) the edges of G are transitive, so (C,B) ∈ E(G),
which implies MCM(G), α B again by Req. 1.

3.3 Logics P and M
The calculi SCCL and SCCM for P and M5 are obtained by
extending SCCL and SCCM, with the (CnMs) rule

{Π, (A,B1), . . . (A,Bn), (A,Cj) ⊢ E}m
∧n

Bi ⇒
∨m

Cj

Π, (A,B1), . . . (A,Bn) ⊢ E
(Note that (Cns) is an instance of (CnMs) for m = 1). The
motivation for (CnMs) stems from a semantic perspective.
Indeed P and M differ from the cumulative logics CL and
CM by the restriction that each state is labeled with exactly
one Boolean assignment. Hence, to extend our approach to
P and M we need to replace the set WG(α) of assignments
falsifying each formula from NG(α) individually with a sin-
gle assignment falsifying all of them simultaneously. This is
achieved by transforming the rule (Cns) to a multi-premise
version (CnMs). Saturation w.r.t. this rule ensures the ex-
istence of one assignment satisfying Req. 1: take the in-
stance of (CnMs) with Σ = NG(α) and {δi}mi=1 = NG(α),
then the side condition S is NG(α) ⇒

∨
C∈NG(α) C and it

should be false due to saturation w.r.t. (CnMs). Therefore
5We include M (= classical logic) in our investigation for sake

of completeness, and to highlight the uniformity of our approach.

there exists a Boolean assignment satisfying all formulas in
NG(α) and falsifying all formulas in NG(α) (thus satisfy-
ing Req. 1). We will denote such assignment W1

G(α).
We now replace WG with W1

G in the definition of counter-
model for CL (resp. CM) and get a countermodel in which
each state is labeled by exactly one Boolean assignment.
Countermodel definitions:
• For P: MP(G) = ⟨V (G)/↔,W1

G,≺+
G⟩.

• For M: MM(G) = ⟨V (G)/↔,W1
G,∅⟩.

Since we changed only labeling, by preserving Req. 1
and simultaneously ensuring functionality, the completeness
proofs in Th. 11 and Th. 12 easily extend to P and M.
Theorem 13 (Completeness). If Γ ⊢P E (resp. Γ ⊢M E)
then Γ ⊢ E is derivable in SCP (resp. SCM).

The soundness of the rule (CnMs) for P and M is proved
semantically using the characterization of finite entailments
in terms of l-smoothness (see Remark 1).
Theorem 14 (Soundness of SCP and SCM). If Γ ⊢ E is
derivable in SCL then Γ ⊢L E , for L ∈ {P,M}.

Proof. By induction on the length of the proof. If the last
applied rule is a concluding axiom, the claim is trivial; for
the rules other than (CnMs) it follows from the demon-
strated soundness w.r.t. the weaker KLM logics. The proof
for (CnMs) is by contradiction. If Γ ̸⊢L E then there is
a L-countermodel M for Γ ⊢ E satisfying l-smoothness.
For the rule (CnMs), we assume {(A,Bi)}ni=1 ⊆ Γ, and∧n

i=1 Bi ⇒
∨m

j=1 Cj . In M there is exactly one state in
least(∥A∥M ) labeled with one world, which satisfies Bi

for every i, so it should satisfy also
∨m

j=1 Cj , and there-
fore Ck for some k. Then M satisfies (A,Ck) and thus is a
L-countermodel for a premise Γ, (A,Ck) ⊢ E , which con-
tradicts (one of) the inductive hypotheses.

4 Applications: Complexity Results
We utilize the introduced calculi to establish uniform com-
plexity results for the entailment problem in KLM logics, as
well as for two useful restrictions on the form of condition-
als: Horn and literal conditionals. In Horn (resp. literal)
conditional (A,B), A is a conjunction of propositional vari-
ables (resp. literals, i.e. possibly negated variables) and B is
a single propositional variable (resp. literal). These restric-
tions play a significant role in domains like logic program-
ming (Dantsin et al. 2001) and causality (Bochman 2021).

As seen before, entailment checking in a KLM logic L
can be reduced to the search for a separating graph G w.r.t.
SCL (Lem. 2). Note that the saturation of G w.r.t. every
rule can be checked in polynomial time modulo checks of
classical entailment conditions S.
Lemma 15. Checking the saturation of graph w.r.t. SCL
can be reduced in polynomial time to a polynomial number
of checks of classical non-entailment.

Proof. Saturation w.r.t. (Ids), (Equivs) and (Trs) can
be checked directly by examining all (triplets of) nodes in
V (G). Saturation w.r.t. (Loops) means that there is no cycle
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in G going through several equivalence classes of V (G)/↔,
which can be easily checked in polynomial time. For (Cns)
and (CnMs) we check violations of the side condition S
for subset-maximal choices of Σ and {δj}mj=1, since re-
moving conditionals from Σ or {δj}mj=1 cannot make S
valid. Hence for (Cns) we check NG(A) ̸⇒ B for all
A ∈ V (G) and B ∈ NG(A), and for (CnMs) we check
NG(A) ̸⇒

∨
B∈NG(A) B for all A ∈ V (G).

Thus, we get co-NP-completeness with a separating graph
playing the role of a witness for non-entailment.

Theorem 16. The entailment problem in each L ∈
{C,CL,CM,P,M} is co-NP-complete.

Proof. Γ ̸⊢L E can be checked in non-deterministic polyno-
mial time by guessing a separating graph G for Γ ⊢ E and
checking its saturation w.r.t. SCL as in Lem. 15 and guess-
ing falsifying assignments for the resulting classical entail-
ments. Co-NP-hardness is given by the following reduction:
A is classically valid iff ⊢L (⊤, A).

If we constrain the shape of conditionals s.t. classical en-
tailments in S can be verified in polynomial time, we have:

Theorem 17. The entailment problem for Horn and literal
conditionals in L ∈ {C,CL,CM} is in PTIME.

Proof. Entailment between conjunctions of literals is verifi-
able in polynomial time. Hence so is the check of possible
rule applications using Lem. 15. For L ∈ {C,CL,CM},
SCL derivations consist of a single branch, so either a proof
or a separating graph is found in polynomial time.

As shown in Th. 19, this result extends to P (and M) for
Horn conditionals, although it does not apply to literal con-
ditionals. Indeed

Theorem 18. The entailment problem in L ∈ {P,M} for
literal conditionals is co-NP-hard.

Proof. By a reduction of CNF-SAT to non-entailment in L:
A CNF-formula F =

∧m
i=1

∨ni

j=1 lij is classically satisfiable
iff Γ(F ) ̸⊢L (⊤,⊥) where Γ(F ) = {(

∧ni

j=1 ¬lij ,⊥)}mi=1

(with double negations simplified). The satisfying assign-
ment for F corresponds to the labeling of ⊤-minimal state
in the countermodel for KLM-entailment, which has to sat-
isfy at least one lij for every i.

Hence for KLM logics, the inclusion of (Or) results in
increased complexity for entailment of literal conditionals.

The KLM paper semantically shows that P and CL derive
identical conditionals under Horn restrictions. This and the
analogous result for M and CM, is proved using our calculi.

Theorem 19. If Γ ∪ {E} is finite and contains only Horn
conditionals, then Γ ⊢CL E (resp. Γ ⊢CM E) iff Γ ⊢P E
(resp. Γ ⊢M E).

Proof. If {Bi}ni=1, and {Cj}mj=1 are conjunctions of vari-
ables,

∧n
i=1 Bi ⇒

∨m
j=1 Cj is true iff some Ck contains

only variables occurring on the antecedent, which implies∧n
i=1 Bi ⇒ Ck. So for literal conditionals we can replace

each application of (CnMs) with an application of (Cns)
(removing all sequent premises but one).

5 SMT-based solver
SMT (Satisfiability Modulo Theory) solvers like Z3 (de
Moura and Bjørner 2008) or cvc5 (Barbosa et al. 2022)
are important extensions of SAT solvers which have built-
in support for certain theories, for example integers or se-
quences. While their primary domain lies within classical
logic and first-order theories, they have recently found appli-
cation in automated deduction for logics different from clas-
sical logic, e.g. (Areces, Fontaine, and Merz 2015; Eisen-
hofer et al. 2023; Fiorentini, Goré, and Graham-Lengrand
2019). An SMT solver is usually implemented as a propo-
sitional logic (SAT) solvers with the ability to incorporate
additional Boolean constraints on demand via some variant
of the DPLL(T ) algorithm (Biere et al. 2021) by so-called
“theory propagations”. We use J1, . . . Jm ⊩ F to denote
that the formula

∧
1≤i≤m Ji → F is added to the SAT solver

whenever all literals J1, . . . , Jm are assigned true. As propa-
gations add constraints on-demand, we do not need to know
which constraints will be relevant for the solver. They are
included only when required during reasoning. This can im-
prove memory usage and reasoning speed, which is why we
opted for an SMT encoding.

5.1 Implementing SCL: KLMPROPAGATOR

The rules of our calculi lend themselves to a natural encod-
ing into SMT solvers, resulting in the KLMPROPAGATOR
prover. We address the entailment problem in a KLM logic
L by encoding the existence of a separating graph G for
Γ ⊢ E . By Lem. 2, such a graph exists iff the sequent Γ ⊢ E
is not derivable in SCL. Thus, if the solver fails to construct
a separating graph G, we conclude that the sequent is prov-
able. Otherwise, we construct the countermodel ML(G).

For KLMPROPAGATOR, the problem boils down to dis-
proving classical entailment problems and choosing the
edges actually present in a separating graph G. Classi-
cal reasoning on the formulas labeling the nodes will occur
solely in the form of disproving entailments and in order to
deal with (Cns) and (CnMs).

To encode a separating graph G (with nodes V (G) =
F(Γ ∪ {E})), we represent its edges using propositional
atoms {eA,B | A,B ∈ V (G)} (referred to as edge atoms).
Assigning true to eA,B in the encoding indicates the exis-
tence of the edge between nodes A and B in the graph. Let
Γ = {(A1, B1), . . . , (An−1, Bn−1)} and E = (An, Bn).
We check if

∧
1≤i<n eAi,Bi

∧¬eAn,Bn
is inconsistent. This

encodes the second and third condition of Def. 5 (the first
condition is implicitly encoded within the edge atoms eA,B).
InstA,B(C) denotes a copy of the propositional formula

C, where each atom in C is replaced by a fresh copy. For
instance, InstA,C(A ∧B) = AA,C ∧BA,C .

Based on our calculi, the solver monitors the Boolean as-
signments made to the edge atoms eA,B and implements
propagations based on the rules in Fig. 2. These enforce the
last condition (saturation) for a graph to be separating. The
encoding of the rules for C as propagations is as follows (for
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all nodes A,B,C,A1, . . . , An ∈ V (G)):

(Ids): ⊩ eA,A (Equivs): eA,A′ , eA′,A, eA,B ⊩ eA′,B

(Cns): ¬eA,C ⊩ ¬InstA,C(C) and
¬eA,C , eA,B ⊩ InstA,C(B)

For the other KLM logics, we additionally have:

(Loops): eA1,A2
, eA2,A3

, . . . , eAn,A1
⊩ eA1,An

(Trs): eA,B , eB,C ⊩ eA,C

(CnMs): ¬eA,C ,¬eA,B ⊩ ¬InstA,C(B)

These rules, in combination with the initial constraint, ex-
press the existence of a separating graph.

In practice, the identities (Ids) can be eagerly asserted by
unit-clauses to the solver and (Equivs), (Loops), and (Trs)
can be easily added on-demand by keeping track of the ex-
isting (transitive) children of each node. These four rules
mirror exactly the ones in Fig. 2. For example, (Ids) forces
the graph to be reflexive and (Trs) to be transitive.

(Cns) requires that in any separating graph G where
NG(A) ⇒ C also (A,C) ∈ E(G). Equivalently, (A,C) /∈
E(G) requires NG(A) ̸⇒ C, which can be justified by a
propositional model for MA,C := InstA,C(B1) ∧ . . . ∧
InstA,C(Bn) ∧ ¬InstA,C(C). We use copies (Inst) of
nodes, as each justification for the non-existence of an
edge between A and C is independent of the others and
thus requires independent atoms. In particular, we can add
(¬eA,C ∧ eA,B1 ∧ . . . ∧ eA,Bn) → MA,C for each potential
combination of edges to enforce the solver to satisfy (Cns).
Example 2 (Ex. 1 in SMT). Consider step (2) in the proof
of Fig. 3. Assume the solver has assigned eA,A, eA,B , and
eA,C true and decides to assign eA,A∧B false. It runs into a
conflict with (¬eA,A∧B∧eA,A∧eA,B∧eA,C) → (AA,A∧B∧
BA,A∧B ∧ CA,A∧B ∧ ¬(AA,A∧B ∧BA,A∧B)), an instance
of (Cns). This way, the solver is prevented from violating
(Cns) by either setting eA,A, eA,B , or eA,C to false or by
assigning eA,A∧B true.
Optimized Propagation: For the encoding of (Cns) we can
incrementally add the needed parts. Assume that the solver
has set eA,A true due to (Ids) and then assigns eA,A∧B false.
It can immediately propagate ¬eA,A∧B ⊩ ¬(AA,A∧B ∧
BA,A∧B) and ¬eA,A∧B , eA,A ⊩ AA,A∧B . If the prover
later sets eA,B and we thus propagate ¬eA,A∧B , eA,B ⊩
BA,A∧B , it detects the conflict. Being eA,A and eA,B true,
the prover concludes that eA,A∧B has to be set to true as
well. In contrast to the lengthy clause above, the solver is
aware of which edge set to true is responsible for which part
of the set of formulas that led to the conflict.

The propagation of the rule (CnMs) requires NG(A) ⇒
NG(A). By contraposition, this means that there is a propo-
sitional model that satisfies all NG(A) but none of NG(A).
In terms of our propagation rule for (CnMs), this means that
we additionally require that all non-neighbors are falsified.
Remark 3 (Countermodel reconstruction). The encoding of
(Cns) and (CnMs) ensures that the classical model over
atoms in InstA,B found by KLMPROPAGATOR give us
a labeling on V (G)/↔ satisfying Req. 1. Specifically, by
(the encoding of) (Cns) each [A]↔ ∈ V (G)/↔ can be la-
beled by a set consisting of a single model for each for-

5 conditional premises
Logic KLMPropagator KLMlean 2.0 NESCOND IOCondProver

C 100 (82 + 18) 3 (0 + 3) 22 (7 + 15) -
CL 100 (82 + 18) 23 (5 + 18) - -
P 100 (75 + 25) 41 (16 + 25) - -

CM 100 (76 + 24) - - 98 (74 + 24)
20 conditional premises

Logic KLMPropagator KLMlean 2.0 NESCOND IOCondProver
C 100 (47 + 53) 4 (0 + 4) 18 (0 + 18) -

CL 98 (45 + 53) 28 (0 + 28) - -
P 100 (13 + 87) 50 (0 + 50) - -

CM 100 (23 + 77) - - 33 (10 + 23)

Figure 4: Experimental results: number of instances (out of 100)
solved within 10s (SAT + UNSAT)

mula in {¬InstA,B(B) ∧
∧

F |eA,F=⊤ InstA,B(F ) | B ∈
V (G), eA,B = ⊥}, while for (CnMs) a single model for∧

F |eA,F=⊥ ¬InstA,B(F )∧
∧

F |eA,F=⊤ InstA,B(F ) for an
arbitrary B, is enough to satisfy Req. 1 (providing a func-
tional labeling). Together with a preference relation, which
can be reconstructed from a separating graph as shown in
the countermodel constructions in Sec. 3, this enables to
turn the model found by our prover into a preference coun-
termodel for the given entailment.

KLMPROPAGATOR6 implements the described approach
in the Z3 SMT solver using the user-propagator framework
from (Bjørner, Eisenhofer, and Kovács 2023) in C++. The
current implementation works as described before and can
issue countermodels in the form of separation graphs, in case
the given input is not provable. Each non-existing edge eA,B

is labeled by a respective propositional witness that could be
used to construct a labeling as described in Remark 3. With
no constraints on the nodes’ formulas, our solver seamlessly
supports quantifiers and theory atoms.

5.2 Experimental results
We compared KLMPROPAGATOR against existing tools for
verifying entailment of conditionals in KLM logics, namely
KLMLEAN 2.0 (Giordano, Gliozzi, and Pozzato 2007) (for
C, CL and P), NESCOND (Olivetti and Pozzato 2014) (for
C), and IOCONDPROVER (Lellmann 2021) (for CM). In
contrast with our solver, that employs SAT-based reasoning,
they implement (sequent or tableau) calculi and use Prolog
to graze the search space for potential proofs/countermodels.

Following methodologies used in the evaluation of these
existing tools, we relied on randomly generated queries (due
to the absence of recognized benchmarks for the KLM log-
ics). We conducted two batches of experiments depicted in
Fig. 4, each consisting of 100 queries, using 5 and 20 con-
ditional premises, respectively, constructed using 5 differ-
ent propositional variables. This approach minimizes any
advantage gained from relying on an efficient SAT solver
for classical entailment checks. The experiments revealed
a substantial performance gap across all logics. With the
exception of a few difficult instances, our tool successfully
solved all problems within 10 seconds, often much faster.
In contrast, KLMLEAN 2.0 and NESCOND encountered

6 https://github.com/CEisenhofer/KLMPropagator
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significant challenges, even with small, satisfiable instances.
Larger instances rapidly became infeasible for all solvers ex-
cept ours, regardless of satisfiability, unless they turned out
to be easy special cases.

6 Conclusions and Future work
We have introduced modular sequent calculi for the KLM
logics C, CL, CM, P (and M). The calculi have been em-
ployed to obtain uniform complexity results for the logics
and fragments thereof, a more effective semantics for C –
featuring polynomial-time model checking – and an efficient
SMT-based prover with countermodel generation capabili-
ties. Our approach is modular and does not rely on well-
behaved semantics, so it can be potentially modified both
for some well-known extension of the logic P (such as ratio-
nal entailment (Lehmann and Magidor 1992) or disjunctive
rational entailment (Booth and Varzinczak 2021)) and for
weaker logics rejecting some of KLM postulates. Further-
more, our approach can provide a solid foundation for the
proof-theoretic study of practical closure operations based
on KLM logics, such as rational closure (Lehmann and
Magidor 1992), lexicographical closure (Lehmann 1999),
multipreference closure (Giordano and Gliozzi 2021) and
their many modifications used in description logic (Casini
and Straccia 2010; Giordano et al. 2018; Bonatti 2019;
Britz et al. 2021).

The KLM logics correspond to the flat fragments (i.e.,
without nested conditionals) of known conditional logics;
e.g., P is related to Preferencial Conditional Logic (Burgess
1981), C to some extension of the basic normal conditional
logic CK (Alenda, Olivetti, and Pozzato 2016), and CM to
Lewis’ counterfactual logic V (Lewis 1973). We plan to
explore the extensions of our calculi that deal with nested
edges as handled by KLMPROPAGATOR. The resulting cal-
culi are expected to correspond to certain conditional logics,
and our goal is to determine which ones.

From an automated deduction perspective, our prover
built upon SMT solvers, can readily incorporate reasoning
modulo theories, and deal with complex queries including
Boolean combinations of conditionals or nested condition-
als. However, it currently lacks logic-specific optimizations,
such as preemptively checking and asserting simple entail-
ments between nodes or deriving additional lemmas from
axioms to expedite searches. Furthermore, it does not yet
generate KLM proofs for derivable sequents, which poses
a challenge in itself. We intend to address these issues in
future iterations.
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