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Abstract

Planning and acting under the presence of exogenous events
brings a number of challenges as events might modify the
environment without the consent of the acting agent. Con-
sequently, the agent’s plan might get disrupted, agent’s goals
might no longer be achievable, or, worse, the agent might
suffer some damage (e.g. damage to the robot). Although
policies, mapping states to appropriate actions to take, can
describe, in theory, how the agent should act, they might be
difficult to explain and understand for humans in the loop.
In this paper, we describe the concept of robust plans that
are sequences of actions that can be successfully executed
regardless of event occurrence. Robust plans are easier to un-
derstand (than policies). We present two methods for verify-
ing whether a sequence of actions is a robust plan, one based
on compilation to classical planning, and the other based on
leveraging delete-relaxation. We also present a method for
generating robust plans that is derived from the “relaxation”
verification method. The methods are evaluated on three do-
mains.

1 Introduction
Planning and acting in real-world scenarios (Ingrand and
Ghallab 2017), such as planetary rovers (Ai-Chang et al.
2004), or autonomous underwater vehicles (AUVs) (Chrpa
et al. 2015), poses a challenge as during plan execution the
environment might change by exogenous events that are not
under the control of the agent. Events might render the
plan invalid, make the agent’s goal no longer achievable, or,
worse, they might cause damage to the agent. Therefore,
during planning the agent has to take into account possible
outcomes of event occurrence.

The concept of planning with the presence of exogenous
events has been studied for some time (Dean and Well-
man 1990; Musliner, Durfee, and Shin 1993; Iocchi, Nardi,
and Rosati 2000) and to address planning tasks with events
usually requires to reason with the whole state space or a
large portion of it. Methods that reason with Markov De-
cision Process (MDP) models can be leveraged to tackle
events (Mausam and Kolobov 2012) and aim to generate a
policy with the most promising action in each state. Poli-
cies, however, might not be easy to interpret and explain to
human operators, for instance, who might oversee the acting
agent. Monte-Carlo Tree Search (MCTS) approaches pro-

vide similar benefits; however, the success rate tends to drop
for problems with dead-ends (Patra et al. 2021).

Fully-observable non-deterministic (FOND) planning
considers actions with non-deterministic effects, i.e., when
an action is applied, the result of its application might have
different outcomes (Cimatti et al. 2003). Exogenous events,
however, might not necessarily be triggered by an action the
agent had just applied. Also, taking into account that multi-
ple events can occur between the agent’s actions, the number
of non-deterministic alternatives that might occur after the
agent applies an action might be exponential (with respect
to the number of events). Alternatively, the specification of
the FOND planning problem can be encoded in Linear Tem-
poral Logic (Pnueli 1977), and a controller can be automati-
cally synthesised via FOND planning (Camacho et al. 2018)
or using other techniques, e.g., (De Giacomo, Parretti, and
Zhu 2023).

The traditional planning-acting-replanning loop (see
e.g. (Yoon, Fern, and Givan 2007)) deals with non-
determinism by relaxing it, i.e., assuming that it will not
have an impact on the plan. If during acting the non-
determinism of the environment (e.g. events) disrupts the
plan, the agent generates (or tries to generate) a new plan.
Such a lazy approach for dealing with non-determinism can
not guarantee safety and could be dangerous for the agent as
it might get damaged during the process (e.g. a ship might
run over an AUV).

Safe planning and acting under the presence of exogenous
events (with non-deterministic occurrence) have been re-
cently studied (Chrpa, Gemrot, and Pilát 2020; Chrpa, Pilát,
and Med 2021). Both works assume that only a set of in-
dependent events1 can occur between any two of the agent’s
actions and that event occurrence adheres to the fairness as-
sumption. These assumptions are strong; the agent’s actions
and events might (in reality) take different amounts of time
and fairness might not always be guaranteed.

In this paper, we describe the concept of robust plans
that are sequences of the agent’s actions whose execution
is guaranteed to succeed under any circumstances caused by
event occurrence. The concept of robust plans is inspired

1Independent events do not interfere with each other and can be
applied in any order yielding the same resulting state (Blum and
Furst 1997)
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by conformant planning that, in a nutshell, deals with the
problem of generating linear plans in partially-observable
or unobservable environments (Cimatti and Roveri 2000;
Bonet 2010). Conformant planning can be addressed, for in-
stance, by extending classical planners (Hoffmann and Braf-
man 2006) or by compiling it to classical planning (Palacios
and Geffner 2009). Limiting the number of alternatives that
a solution (policy or plan) has to consider has a positive im-
pact on explainability as more complex policies (or plans)
might be much more difficult to understand for humans in
the loop. Limited or branching-bound contingency planning
aims at the direction of making solutions simple by limit-
ing the number of alternatives (Meuleau and Smith 2003;
Bonet 2010). Although the requirement to generate robust
plans might be too strong (we alleviate any branching), ro-
bust plans are easier to explain and visualise for planning
non-experts, and, on top of that, full situational awareness
of the environment is not required during the execution (e.g.
an AUV might only need to be aware of its surrounding for
successful execution of its actions). In contrast to Chrpa,
Gemrot, and Pilát (2020), who also discussed the concept of
robust plans, we assume that any finite and valid sequence of
events can occur between the agent’s actions. This assump-
tion is derived from the work on social laws in multi-agent
planning (Karpas, Shleyfman, and Tennenholtz 2017) to ac-
count for possibly different durations of actions and events,
without explicitly specifying them. Perhaps the most closely
related work is our recent one on linear execution strategies
(Chrpa and Karpas 2024). These are different from the ro-
bust plans we consider here, as a linear execution strategy
has the power to wait and decide when to execute the next
action according to the state of the world, while the robust
plans we consider in this paper do not even control when the
next action in the plan will be executed.

Our contribution is twofold. Firstly, we consider verify-
ing whether a sequence of actions (for example, generated
by a classical planner) is a robust plan. In practice, such
action sequences might be, for example, emergency instruc-
tions for which we want to verify that they are robust against
given circumstances (e.g. power outage). We show that the
problem of deciding whether a sequence of actions is a ro-
bust plan is PSPACE-complete and that the problem can be
compiled into a problem of plan non-existence of a classi-
cal planning task. We propose another verification method
that leverages the concept of delete-relaxation, well studied
in planning (Bonet and Geffner 2001; Hoffmann and Nebel
2001), that runs in polynomial time at the cost of sacrificing
completeness (some action sequences might not be recog-
nised as robust plans). Then, we focus on the problem of
robust plan existence and provide an upper bound of its min-
imum length that can be double exponential. We then pro-
pose a method for robust plan generation that (again) lever-
ages the concept of delete-relaxation in the progressive state
space search. To evaluate the introduced methods we have
specified three domains — Plain AUV, Extended AUV, and
ServiceRobot. The results of the experiments are then thor-
oughly discussed.

2 Preliminaries
Classical planning deals with the problem of finding a se-
quence of actions that transforms the state of the environ-
ment from a given initial state to a state satisfying a given
goal condition (Ghallab, Nau, and Traverso 2004).

To represent the environment, we use Finite Domain Rep-
resentation (FDR) (Helmert 2009). Let V be a set of vari-
ables where each variable v ∈ V is associated with its do-
main D(v). An assignment of a variable v ∈ V is a pair
(v, val), where its value val ∈ D(v). Hereinafter, an assign-
ment of a variable is also denoted as a fact. A (partial) vari-
able assignment p over V is a set of assignments of individ-
ual variables from V , where vars(p) is a set of all variables
in p and p[v] represents a value of v in p. A state is a com-
plete variable assignment (over V ). We say that a (partial)
variable assignment q holds in a (partial) variable assign-
ment p, denoted as p |= q, if and only if vars(q) ⊆ vars(p)
and for each v ∈ vars(q) it is the case that q[v] = p[v].

An action is a pair a = (pre(a), eff (a)), where pre(a) is
a partial variable assignment representing a’s precondition
and eff (a) is a partial variable assignment representing a’s
effects. We say that an action a is applicable in state s if and
only if s |= pre(a). The result of applying a in s, denoted
as γ(s, a), is a state s′ such that for each variable v ∈ V ,
s′[v] = eff (a)[v] if v ∈ vars(eff (a)) while s′[v] = s[v] oth-
erwise. If a is not applicable in s, γ(s, a) is undefined. The
notion of action application can be extended to sequences of
actions, i.e., γ(s, ⟨a1, . . . , an⟩) = γ(. . . γ(s, a1) . . . , an).

A classical planning task is a tuple P = (V,A, I,G),
where V is a set of variables, A a set of actions, I a com-
plete variable assignment representing the initial state and G
a partial variable assignment representing the goal. A plan
for P is a sequence of actions π = ⟨a1, . . . , an⟩ such that
γ(I, π) |= G.

2.1 Exogenous Events

An exogenous event is a pair e = (pre(e), eff (e)), where
pre(e) and eff (e) have analogous meaning as in the defini-
tion of an action. The notions of applicability and the result
of the application of an event are also analogous to the same
notions concerning actions. We can hence extend the def-
inition of the transition function γ to take into account the
result of the application of an event in a state (if possible).

Semantically, events are not under the control of the
agent, in contrast to actions, and can occur randomly if their
preconditions are met.

Let δE : 2S → 2S be a mapping that returns a set of
reachable states by any valid sequence of events from E
from a given set of states (from S), i.e., δE(S′) = {s′′ | s′′ =
γ(s, ⟨e1 . . . , ek⟩), s′ ∈ S′, k ≥ 0, e1, . . . , ek ∈ E}.

We can extend the notion of classical planning tasks by
taking into account exogenous events. We say that P =
(V,A,E, I,G), where V is a set of variables, A a set of ac-
tions, E a set of exogenous events, I a complete variable
assignment representing the initial state and G a partial vari-
able assignment representing the goal, is a planning task
with exogenous events (or a planning task for short).
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3 Case Studies
In this section, we provide case studies used to explain and
evaluate our approaches.

3.1 AUV Domain - Plain
The AUV domain, initially introduced by Chrpa, Gemrot,
and Pilát (2020), simulates AUV operations in which AUVs
have to perform sampling of given resources while there
might be ships passing by that might endanger AUVs. We
have a 4-grid environment such that AUVs and ships can
move between neighbouring cells while resources are placed
into given cells. Each cell is either free, has the AUV on it,
or has the ship on it (the presence of a resource does not in-
terfere with any cell status). The AUV can move to an adja-
cent cell if the cell is free. The AUV can sample a resource
if it is in the same cell. The task for the AUV is to sample
the resources and return back to the place of origin. Ships,
however, are not controlled by the agent, i.e., ships are con-
trolled by the environment. Ships can move only on some
cells from the grid. We consider two “move” events, move-
ship-to-free and move-ship-to-auv. Both require that the
ship can move to the neighbouring cell and the effect of both
events is that the ship moves to that cell. If the ship moves
to a free cell, then besides the cell becoming not free for a
moment, nothing else happens. However, if the ship moves
to the cell with the AUV, then the AUV is destroyed (and
can no longer perform any action).

3.2 AUV Domain - Extended
We propose a variant of the AUV domain that differs from
the “plain” one by explicitly considering that AUVs can be
(and move) either on the surface or underwater. Grid cells
can have either shallow or deep water. Each AUV can de-
scend if it is in a cell with deep water, and ascend if noth-
ing is on the surface of a given cell (i.e., the cell is free).
Note that a descending AUV will make the cell it is in free
while an ascending AUV makes the cell not free. Moving to
a neighbouring cell, if the AUV is in depth, is possible only
if the cell has deep water. If the AUV is on the surface, mov-
ing is the same as in the “plain” domain. Ships also move
in the same way as in the “plain” domain, however, they can
destroy the AUV only if the AUV is on the surface.

3.3 Service Robot Domain
We propose a Service Robot domain in which we have
robots, each with two hands. The robots work in an envi-
ronment in which rooms are connected by a corridor. Each
robot can move from a room to the corridor or from the
corridor to a (different) room. There are items (or objects)
that need to be delivered from their rooms of origin to the
required rooms without being damaged during the transport.
Each robot can grab an item by an empty hand and leave the
object it holds (by some hand) in a room. Items can be either
solid or fragile. We specify two types of events. One event –
crack – can be triggered if the robot holds a fragile item (in
any hand) and both robot’s hands carry some item (i.e., no
robot’s hand is empty), then the fragile item gets damaged.
The other event – interfere – can be triggered if there are

two or more robots in the corridor and some robot carries a
fragile item, then the fragile item also gets damaged.

4 Robust Plans
The notion of robust plan has been defined by Chrpa, Gem-
rot, and Pilát (2020) as a sequence of actions that always
achieves the goal regardless of event occurrence. In contrast
to the assumption of Chrpa, Gemrot, and Pilát (2020), which
allows only sets of independent events between agent’s ac-
tions, we assume that an action of the agent can be fol-
lowed by any applicable sequence of events (including the
empty sequence). This assumption follows the reasoning of
Karpas, Shleyfman, and Tennenholtz (2017) that without the
explicit notion of time in the model, different actions and
events might have different execution duration in reality.

Hence, we provide a stronger definition of robust plans,
i.e., a plan is robust if no sequence of events can invali-
date the precondition of the following action or invalidate
the goal if all the actions were applied.
Definition 1. Let P = (V,A,E, I,G) be a planning task.
Let π = ⟨a1, . . . , an⟩ (a1, . . . , an ∈ A) be a sequence of
actions. We define sets of states S0, S1, . . . , Sn as follows.
• S0 = δE({I})
• Si = δE({γ(s, ai) | s ∈ Si−1}) (1 ≤ i ≤ n)
We say that π is a robust plan for P if and only if ∀s ∈
Si−1 : s |= pre(ai) (1 ≤ i ≤ n) and ∀s ∈ Sn : s |= G.

We show that each robust plan for a given planning task
is a plan for the underlying classical planning task (without
events). That also means that the non-existence of a plan
for a classical planning task yields the non-existence of a
robust plan for any planning task (with exogenous events)
that shares the same set of actions, initial state, and goal.
We formalize the claims in the following lemma.
Lemma 1. Let Pc = (V,A, I,G) be a classical planning
task. For every planning task P = (V,A,E, I,G), where E
is a set of events over V it is the case that (i) a robust plan
for P is a plan for Pc and (ii) if Pc is unsolvable (does not
have a plan), then P does not have a robust plan.

Proof. We can see that each state is reachable by events
from itself, i.e., s ∈ δE({s}), in P . Hence S ⊆ δE(S). If
π = ⟨a1, . . . , an⟩ is a robust plan for P , then we can derive
from Definition 1 and the above claim that I ∈ δE({I}),
γ(I, a1) ∈ δE({γ(I, a1)}), . . . , γ(I, π) ∈ δE({γ(I, π)})
yielding that π is a plan for Pc. Note that claim (ii) is a
transposition of the implication of claim (i).

To give an example, in the “plain” AUV domain plans
in which none of the AUVs crosses any ship corridor are
robust. In the “extended” AUV domain, AUVs can cross
ship corridors only if they are deep in the water in order
not to compromise plan robustness. In the Service Robot
domain, a plan is robust if a robot never carries two items at
the same time if at least one of the items is fragile, as well
as if two or more robots never meet on the corridor if any of
the robots carries a fragile item.

Paraphrasing the meaning of the conditions in Defini-
tion 1, we can observe that events can invalidate the precon-
dition of an action by modifying at least one of its variables.
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We define sets of affected variables that events might mod-
ify within an action sequence.

Definition 2. Let P = (V,A,E, I,G) be a planning task
and π = ⟨a1, . . . , an⟩ be a sequence of actions. Let
S0, . . . , Sn be sets of states as defined in Definition 1. We
define V 0, . . . , V n as sets of affected variables such that
V i = {v | sx, sy ∈ Si, sx[v] ̸= sy[v]} for 0 ≤ i ≤ n.

We can hence show that for a sequence of action to be a
robust plan, in each step, none of the variables of the pre-
condition of the next action can be affected.

Lemma 2. Let P = (V,A,E, I,G) be a planning task, π =
⟨a1, . . . , an⟩ be a sequence of actions, and V 0, . . . , V n be
the sets of affected variables. Then, π is a robust plan if
and only if V i−1 ∩ vars(pre(ai)) = ∅ (1 ≤ i ≤ n) and
V n ∩ vars(G) = ∅.

Proof. The claim directly implies from Definitions 1 and 2
as it is the case that there exists v ∈ (V i−1 ∩ vars(pre(ai))
if and only if there exists s ∈ Si−1 such that s[v] ̸= pre(ai)
yielding s ̸|= pre(ai).

5 Verification of Robust Plans
The above examples provide an intuition that a plan has to
adhere to additional constraints in order to be robust. In a
general sense, it might not always be straightforward to in-
tuitively identify such constraints.

To verify that a sequence of actions is a robust plan,
we have to check whether the conditions of Definition 1
hold. Let P = (V,A,E, I,G) be a planning task and
π = ⟨a1, . . . , an⟩ be a sequence of actions from A. We
define a dummy action an+1 that has the goal in its precon-
dition, i.e., pre(an+1) = G, and that its effects are empty,
i.e., eff (an+1) = ∅ (meaning that eff (an+1) is an empty
variable assignment). Note that introducing the dummy ac-
tion an+1 unifies the conditions for action preconditions and
the goal in Definition 1.

To invalidate the conditions of plan robustness, we
have to show that for some i with 1 ≤ i ≤ n +
1 there exists a state s ∈ δE(S

i−1) such that s ̸|=
pre(ai) (as well as V i−1 ∩ pre(ai) ̸= ∅). In other
words, there have to be sequences of events (from E)
in between the actions from π invalidating the precondi-
tion of the next action (or the goal). Formally speak-
ing, let π⊥ = ⟨e01 , . . . , e0k , a1, e11 , . . . , e1k , a2, . . . , ai−1,
e(i−1)1

, . . . , e(i−1)k
⟩ such that γ(I, π⊥) is defined and

γ(I, π⊥) ̸|= pre(ai). On the other hand, if no such π⊥ exists
(for any action or the goal), then we can conclude that π is a
robust plan for P .

The above idea indicates that we can formulate the prob-
lem of whether π is (not) a robust plan for P as a classical
planning task whose plans are the π⊥ sequences invalidating
preconditions of some of the actions (including the dummy
action an+1 representing the goal).

Definition 3. P = (V,A,E, I,G) be a planning task and
π = ⟨a1, . . . , an⟩ be a sequence of actions from A and
an+1 = (G, ∅) be a “dummy goal” action.

Let goal and appliedj with 0 ≤ j ≤ n + 1 be variables
(without loss of generality not being present in V ), each with
a domain {⊤,⊥}.

Let a∗i with 1 ≤ j ≤ n+ 1 be actions such that

pre(a∗i ) = pre(ai) ∪ {(appliedi−1,⊤), (appliedi,⊥)}
eff(a∗i ) = eff(ai) ∪ {(appliedi,⊤)}

Then, we define sets of actions Agoali (1 ≤ i ≤ n+ 1) as

Agoali =
⋃

v∈vars(pre(a)),val ̸=pre(a)[v]

a
(v,val)
goali

pre(a(v,val)goali
) ={(appliedi−1,⊤), (appliedi,⊥), (goal,⊥),

(v, val)},

eff(a(v,val)goali
) ={(goal,⊤)}

Now, we create a classical planning task Pπ =
(V π, Aπ, Iπ, Gπ), called invalidating task for π and P , as
follows.

V π =V ∪
n+1⋃
j=0

{appliedj} ∪ {goal}

Aπ =E ∪ {a∗1, . . . , a∗n+1} ∪
n+1⋃
j=1

Agoalj

Iπ =I ∪ {(goal,⊥), (applied0,⊤),
(applied1,⊥), . . . , (appliedn+1,⊥)}

Gπ ={(goal,⊤)}

We would like to note that the “applied” variables are used
to keep the right ordering of applying actions from π and to
keep track of which action was applied last. Actions from
Agoali can be triggered if the action ai−1 has been applied
and some of the precondition of ai is not met. If that hap-
pens, we have found the π⊥ plan whose existence invalidates
the robustness of π.
Theorem 1. Let P = (V,A,E, I,G) be a planning task
and π = ⟨a1, . . . , an⟩ be a sequence of actions from A. The
invalidating task for π and P , Pπ (see Definition 3), is un-
solvable if and only if π is a robust plan for P .

Proof. As we elaborate below, a plan for Pπ is
a sequence of actions (from Aπ) in the form of
ππ = ⟨e01 , . . . , e0k , a∗1, e11 , . . . , e1k , a∗2, . . . , a∗i−1,
e(i−1)1

, . . . , e(i−1)k,a
l
goali

⟩, where 1 ≤ i ≤ n,

algoali ∈ Agoali , and ex ∈ E

(with x ∈ {01, . . . , 0k, 11 . . . , 1k . . . , (i − 1)1, . . . , (i −
1)k}).

Actions from E are applicable if their preconditions
are met and modify the environment according to its ef-
fects in the same way as events defined in P . Actions
a∗1, . . . , a

∗
n modify the environment in the same way as ac-

tions a1, . . . , an defined in P and on top of that they set to⊤
the corresponding variables appliedi. Actions a∗1, . . . , a

∗
i−1

are applicable if their counterparts defined in P are applica-
ble and if appliedi−1 = ⊤ and appliedi = ⊥ (meaning that
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Figure 1: An AUV domain example. The dashed arrow indicates
the AUV’s plan to collect the resource (the $ symbol). The blue
arrow indicates the possible ship movement.

a∗i−1 has been applied while a∗i has not yet been applied).
The “goal” action algoali is applicable if a∗i−1 has been ap-
plied, some variable v (other than appliedi−1 and appliedi)
from vars(pre(a∗i )) is set to a different value than required
by a∗i and goal = ⊥ (note that it also proves that v ∈ V i−1).
Applying algoali changes goal to ⊤ which is the goal of Pπ .

Hence, we can observe that γ(IΠ, ππ) ̸|= pre(a∗i ).
By removing the “goal” action algoali from ππ and
replacing actions a∗1, . . . , a

∗
i−1 by their correspond-

ing counterparts a1, . . . , ai−1, we obtain a sequence
π⊥ = ⟨e01 , . . . , e0k , a1, e11 , . . . , e1k , a2, . . . , ai−1,
e(i−1)1

, . . . , e(i−1)k
⟩. Similarly, we can observe that

γ(I, π⊥) ̸|= pre(ai) (in P). By definition of δE , where
e.g. γ(I, ⟨e01 , . . . , e0k⟩) ∈ δE({I}), and the recursive
definition of Si−1 (in Definition 1), we can observe that
γ(I, π⊥) ∈ δE(S

i−1). That implies that if Pπ is solvable,
then π is not a robust plan for P .

If none of the “goal” actions defined in Pπ can become
applicable (and thus Pπ is unsolvable), there do not exist
sequences of events (interleaving the actions in π) that in-
validate the precondition of any action from π (in a given
step) as well as the goal of P . Hence, in such a case π is a
robust plan for P .

Example 1. Let ⟨move(a,l-1-1,l-1-2),move(a,l-1-2,l-1-
3),move(a,l-1-3,l-1-4),collect(a,r,l-1-4)⟩ be a sequence of
actions in the AUV domain representing that the AUV moves
from location l-1-1 to location l-1-4 (via l-1-2 and l-1-
3) and collects resource r there (see Figure 1 for illustra-
tion). There is a ship s, initially at location l-2-3, that can
move to location l-1-3 (e.g., by move-ship-free(s,l-2-3,l-
1-3) event). Intuitively, the above action sequence is not a
robust plan as the ship can block the AUV at location l-3-
1. A solution for the invalidating task can be, in this case,
a sequence ⟨move∗(a,l-1-1,l-1-2), move-ship-free(s,l-2-
3,l-1-3), a(free(l-3-1),⊥)

goal2
⟩.

Theorem 2. LetP = (V,A,E, I,G) be a planning task and
π = ⟨a1, . . . , an⟩ be a sequence of actions from A. Deciding
whether π is a robust plan for P is PSPACE-complete

Proof. It is known that deciding plan existence in classical
planning is PSPACE-complete (Bylander 1994) and since
co-PSPACE=PSPACE, the problem of deciding whether an

Algorithm 1 Verifying whether a sequence of actions is a
robust plan
Require: Planning task P = (V,A,E, I,G), a sequence of

actions π = ⟨a1, . . . , an⟩
Ensure: Check whether π is a robust plan for P .

1: an+1 ← (G, ∅)
2: f ← I
3: for i = 1 to n+ 1 do
4: f ←ExpandRelaxed(E, f )
5: if f ̸|= pre(ai) or ∃v ∈ vars(pre(ai)) :
|{val | (v, val) ∈ f}| ≥ 2 then

6: return fail ▷ Events might invalidate the
precondition of ai

7: end if
8: f ← f \ {(v, val) | v ∈ vars(eff (ai))} ∪ eff (ai)
9: end for

10: return success

11: function EXPANDRELAXED((E, f))
12: Esel ← ∅
13: repeat
14: Elast ← Esel

15: Esel ← {e | e ∈ E, f |= pre(e)}
16: f ← f ∪

⋃
e∈Esel

eff (e)
17: until Esel = Elast

18: return f
19: end function

action sequence is a robust plan is in PSPACE according to
Theorem 1 (as we need to decide non-existence of a plan for
the corresponding invalidating task).

PSPACE-hardness of the problem can be shown by poly-
nomially reducing the problem of plan (non)existence for a
classical planning task Pc = (V c, Ac, Ic, Gc) to it. Let goal
be a variable with domain {⊥,⊤} (W.l.o.g. goal ̸∈ V c).
Let eg be an event such that pre(eg) = G and eff (eg) =
{(goal,⊤)}. Then, we define a planning task P ′ as P ′ =
(V c ∪ {goal}, ∅, Ac ∪ {eg}, Ic ∪ {(goal,⊥)}, {(goal,⊥)})
(that is constructed from Pc in a constant time). We can
observe that there does not exist a plan for Pc if and only
if an empty action sequence is a robust plan for P ′. Only
the event eg can invalidate (goal,⊥), which is the goal of
P ′, and it can occur only if there exists a plan for Pc, which
satisfies the precondition of eg .

Hence deciding whether π is a robust plan for P is
PSPACE-complete.

5.1 Relaxed Verification
Verifying whether a sequence of actions is a robust plan by
means of compiling the problem into an invalidating task,
which is a classical planning task, is generally intractable
as classical planning is PSPACE-complete (Bylander 1994).
On top of that, we have to prove that the invalidating task is
unsolvable which is believed to be harder (albeit not compu-
tational complexity wise) than finding a plan, as unsolvabil-
ity requires proving that every possible sequence of actions
is not a valid plan. Furthermore, only one competition fo-
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cused on unsolvability of planning tasks2 in contrast to nine
editions of the International Planning Competitions3, which
is partly the reason that most planners are geared towards
solving planning problems rather than towards proving un-
solvability.

To mitigate the computational demands of robust plan
verification, we leverage the concept of delete-relaxation,
which is well established in (classical) planning (Bonet and
Geffner 1999; Hoffmann and Nebel 2001). In particular,
delete-relaxation assumes that actions (or events) do not
delete variable assignments even though the effects of ac-
tions (or events) would have changed the values of these
variables.

In the context of robust plan verification, rather than com-
puting exact sequences of events that might compromise the
conditions of plan robustness, we track events that might
occur in a given step (between the actions) and what im-
pact these events might have on variable assignments. In-
spired by Chrpa, Gemrot, and Pilát (2020), we leverage
delete-relaxation to make an optimistic assumption about
what events might occur in a given step and a pessimistic as-
sumption about how much these events might interfere with
actions (and the goal) by any means. If the events do not
interfere with actions (and the goal), the plan is robust.

Algorithm 1 summarises the process of robust plan veri-
fication by delete-relaxing effects of events. In an interme-
diate step (the for loop on Lines 3–9), we expand the set
of facts f (initially set to I) by facts possibly achieved by
events (starting from f ). The process is summarised in the
ExpandRelaxed routine that constructs a relaxed planning
graph (from events) until the fixed point (no new events are
applicable in a given step). The expanded set of facts f is
used to check whether a current action ai can be applied re-
gardless of events (Line 5). That means that f must entail
pre(ai) to ensure the applicability of ai and for each vari-
able contained in pre(ai), f must not contain more than one
value. We can observe that if f contains facts representing
multiple values of a single variable, the variable is affected
(i.e., some event could have deleted the “right” value). If
the check fails, we conclude that we were unable to verify
the robustness of the action sequence. Otherwise, we “ap-
ply” ai on f by removing all facts representing the values
of variables present in eff (ai) and adding facts in eff (ai)
(Line 8). If we successfully check all the actions (includ-
ing the dummy action an+1 representing goal achievement),
then we can conclude that the action sequence is a robust
plan.

Theorem 3. Algorithm 1 is sound, i.e., if for a given plan-
ning task P and an action sequence π it returns “success”,
then π is a robust plan for P .

Proof. The ExpandRelaxed routine constructs a Relaxed
Planning Graph (RPG) from events (for E), starting with the
set of facts f , until the fixed point (i.e., no more new events
are applicable in a given iteration). As known from the lit-
erature (e.g. (Blum and Furst 1997; Hoffmann and Nebel

2https://unsolve-ipc.eng.unimelb.edu.au/
3http://ipc.icaps-conference.org

2001)), the resulting set of facts contains all the facts that
can be potentially achieved by events without deleting any
fact in the process.

Starting with f = I , the RPG expansion at Line 4 ex-
pands the set of facts, in a given step of the iteration, by
all delete-reachable facts by events. The expanded set of
facts f is used to check the applicability of ai (in the i-th
step) as if f ̸|= pre(ai), then ai is not applicable in the i-
th step (and such a sequence might not be robust). If ∃v ∈
vars(pre(ai)) : |{val | (v, val) ∈ f}| ≥ 2, then v might be
affected as there exists values val and val′ (val ̸= val′) such
that (v, val) ∈ f and (v, val′) ∈ f . Wlog. let us assume that
pre(ai)[v] = val. However, in order to satisfy (v, val′) ∈ f
there is an event e ∈ E such that eff (e)[v] = val′ that
might have occurred before ai. Without delete-relaxation
e deletes any other value of v than val′, when it occurs
(including (v, val)). That might compromise robustness as
pre(ai) might be invalidated. On the other hand, for v such
that |{val | (v, val) ∈ f}| = 1, we can guarantee that v is
not affected as no event could change its value. Since it is re-
quired that v ∈ vars(pre(ai)) : |{val | (v, val) ∈ f}| = 1
and that f |= pre(ai), then we can observe that no event
can invalidate pre(ai). That said V i−1 ∩ pre(ai) = ∅ and
f ⊆

⋃
s∈δE(Si−1) s.

After ai is applied (in the i-th step), we know that the
values of the variables in eff (ai) will have only the values
specified in eff (ai) (so the other values of these variables
are removed from f ). That said, f ⊆

⋃
s∈Si s.

It can be seen that each step in Algorithm 1 takes linear
time with respect to the size of the representation of P , and
the algorithm does at most n + 1 steps (in the case of suc-
cessful verification).

Note that delete-relaxing invalidating tasks (see Defini-
tion 3) might not yield the same results as Algorithm 1 since
the algorithm does not (delete-)relax the effects of actions.
Example 2. Let us have the same settings as in Example 1.
The set of facts f after expanding (by the ExpandRelaxed
routine) will contain facts representing that the variables
free(l-2-3), free(l-1-3) are both true and false. The veri-
fication will fail on action move(a,l-1-2,l-1-3) as the set f
contains two values of the variable free(l-1-3) that is re-
quired in the action’s precondition to be true.

5.2 Limitations of the Relaxed Approach
Delete-relaxation, as it does not consider “deletion” of facts
affected by change of the value of a variable, can over-
estimate what events might become applicable, what (sets
of) facts are reachable, and, in consequence, what vari-
ables might become affected. This source of incomplete-
ness might result in false negatives, i.e., not recognising a
sequence of actions as a robust plan, as illustrated by the
following example.
Example 3. We extend the AUV domain by introducing fuel
for ships. For each ship, we define a variable fuel(s) deter-
mining its fuel level - high,low,empty. Then we can modify
the move-ship event by introducing two variants, move-
ship-high requiring fuel(s)=high, and move-ship-low re-
quiring fuel(s)=low. After applying the former variant, the
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fuel level decreases to fuel(s)=low, for the latter variant,
the fuel level becomes fuel(s)=empty. That said, a ship
s having initially fuel(s)=high can do at most two moves.
In such a case, the AUV can safely cross the ship corridor
at locations that not are reachable by ship in two or fewer
moves since the free variables for those locations will not
be affected. Delete-relaxation, however, does not “delete”
fuel(s)=high (as well as fuel(s)=low) yielding an incorrect
assumption that the ship can reach all the locations on its
corridor (and affect all the respective free variables), hence
it might fail to “certify” some correct robust plans.

6 Generation of Robust Plans
Given a sequence of actions (generated by a classical plan-
ning engine, for instance) the verification approach can cer-
tify that the sequence is a robust plan. However, if the veri-
fication fails we might need to generate another sequence of
actions and try to verify it.

Robust plan existence is a decidable problem. To see that,
first note that it is enough to limit the length of a robust plan
to 2

∏
v∈V D(v), i.e., the size of the power set of states, as we

show in the following lemma.

Lemma 3. Let P = (V,A,E, I,G) be a planning task. If
P has a robust plan, then there exists a robust plan π such
that |π| ≤ |2

∏
v∈V D(v)|.

Proof. Let π′ = ⟨a1, . . . , ai−1, ai, . . . , aj , . . . , an⟩ and
S0, . . . , Sn be sets of states defined as in Definition 1.
We can observe that if Si−i ⊆ Sj−1, then π′′ =
⟨a1, . . . , ai−1, aj , . . . an⟩ is also a robust plan. The claim
follows from the fact that if ∀s′ ∈ Sj−1 : s′ |= pre(aj) (oth-
erwise π cannot be a robust plan), then ∀s ∈ Si−1 : s |=
pre(aj), and δE(S

i−1) ⊆ δE(S
j−1).

Hence, we need only to look for action sequences such
that for their sets of states S0, . . . , Sn (determined as in Def-
inition 1), we require that Si ̸⊆ Sj for all 0 ≤ i < j ≤ n.
This implies that n ≤ |2

∏
v∈V D(v)|, i.e., the length of an ac-

tion sequence for determining the existence of a robust plan
is at most the power set of the set of all states (over V ).

With the upper bound for the robust plan length, we can
prove decidability of the problem of robust plan existence as
well as an upper bound for the complexity (2-EXPSPACE).

Theorem 4. The problem of robust plan existence is decid-
able and in 2-EXPSPACE.

Proof. According to Lemma 3, we can non-
deterministically select a sequence of actions that is at
most |2

∏
v∈V D(v)| long. The sequence can be verified by

constructing a corresponding invalidating task and proving
its unsolvability (see Theorem 1) that is PSPACE-complete
with respect to the length of the plan (see Theorem 2). The
length of the action sequence can be double exponential
with respect to the size of the representation. Hence the
problem of robust plan existence is in 2-EXPSPACE (which
means that it is also decidable).

To give an intuition how to generate a robust plan, we
non-deterministically select an action that complies with the
applicability condition (as in Definition 1) and the resulting
sets of states emerging from the application of a and occur-
rence of subsequent events are not a superset of some set
of states already visited (as it would be unnecessary to ex-
plore as indicated in the proof of Lemma 3). We keep (non-
deterministically) selecting actions until we satisfy the goal
condition (as in Definition 1), then we have a robust plan, or
until we are unable to select the next action.

6.1 “Unguarded” Variables in Action Effects
We can observe that only actions with “unguarded” variables
in effects (i.e., variables that are in the effects but not in the
precondition) can eliminate effects of the events (occurring
before such an action is applied) on these variables. This
observation is formally summarised in the following lemma.

Lemma 4. Let P = (V,A,E, I,G) be a planning task, π =
⟨a1, . . . , an⟩ be a robust plan for P , and V 0, . . . , V n be the
sets of affected variables (as in Definition 2). The following
claims hold for all (1 ≤ i ≤ n):

(a) If vars(eff(ai)) ⊆ vars(pre(ai)), then V i−1 ⊆ V i

(b) (V i−1 \ V i) ⊆ (vars(eff(ai)) \ vars(pre(ai)))

Proof. Let S0, . . . , Sn be the sets of states as in Defini-
tion 1. For every i such that 1 ≤ i ≤ n we do the fol-
lowing reasoning. We compute a set of states S′ such that
S′ = {γ(s, ai) | s ∈ Si−1} (because π is a robust plan ai
is applicable in all states in Si−1). From Lemma 2, it holds
that V i−1 ∩ vars(pre(ai)) = ∅ (otherwise π cannot be a
robust plan).

We can hence observe that (i) if v ∈ V i−1, then v ̸∈
vars(pre(ai)), (ii) if v ∈ vars(eff (ai)), then ∀s ∈ S′ :
s[v] = eff (ai)[v], and (iii) for each variable v′ ∈ V i−1 \
vars(eff (ai)) and for each state s ∈ Si−1, there exists a
state s′ ∈ S′ such that s[v′] = s′[v′].

Regarding claim (a), we can derive that if v ∈ V i−1,
then v ̸∈ vars(eff (ai)) because of (i) and vars(eff (ai)) ⊆
vars(pre(ai)). That together with (iii) gives us that for each
v′ ∈ V i−1 and for each state s ∈ Si−1, there exists a
state s′ ∈ S′ such that s[v′] = s′[v′]. Since S′ ⊆ Si (as
we have to consider cases of no event occurrence), we get
V i−1 ⊆ V i that proves claim (a).

Regarding claim (b), we can observe that (i) does not
make V i−1 and vars(eff (ai)) necessarily disjoint, in par-
ticular, V i−1 ∩ (vars(eff (ai)) \ vars(pre(ai))) might not
be empty. Because of (ii), we can derive that for each
v ∈ V i−1 ∩ (vars(eff (ai)) \ vars(pre(ai))) it is the case
that for each s ∈ S′ it holds that s[v] = eff (ai)[v]. Since
S′ ⊆ Si, we have no guarantee that V i contains variables
from vars(eff (ai)) \ vars(pre(ai)), proving claim (b).

The claims of the above lemma include an inability to
eliminate the effects of events on variables that are not “un-
guarded” in the effects of some action. Thus, once a variable
becomes affected, no action having it in the precondition can
be applied at any point afterwards as well as the goal con-
taining such a variable can no longer be achieved.
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Algorithm 2 Delete-relaxed generation of a robust plan
Require: Planning task P = (V,A,E, I,G)
Ensure: π being a robust plan for P .

1: f ← I; π ← ⟨⟩; τ ← ⟨⟩
2: ν ←

⋃
a∈A(vars(eff (a)) \ vars(pre(a)))

3: while f ̸|= G or ∃v ∈ vars(G) : |{val | (v, val) ∈
f}| ≥ 2 do

4: f ←ExpandRelaxed(E, f )
5: if ∃f ′ ∈ τ : f ′ ⊆ f or ∃v ∈ (vars(G) \ ν) :
|{val | (v, val) ∈ f}| ≥ 2 then

6: return fail
7: end if
8: non-deterministically select a ∈ A s.t. f |= pre(a)

and ∀v ∈ vars(pre(a)) : |{val | (v, val) ∈ f}| = 1
9: if no such a can be selected then

10: return fail
11: end if
12: π.append(a)
13: τ .append(f )
14: f ← f \ {(v, val) | v ∈ vars(eff (a))} ∪ eff (ai)
15: end while
16: return π

Corollary 1. Let P = (V,A,E, I,G) be a planning task
and ν =

⋃
a∈A(vars(eff(a)) \ vars(pre(a))) be the set of

“unguarded” variables. Then for every robust plan π =
⟨a1, . . . , an⟩ with its sets of affected variables V 0, . . . , V n,
it holds that vars(pre(ai))∩(

⋃i−1
j=0 V

j)\ν) = ∅ (1 ≤ i ≤ n)
and vars(G) ∩ (

⋃n
j=0 V

j \ ν) = ∅.

Proof. It immediately follows from the claims of Lemma 4
and Lemma 2.

Lemma 4 and its Corollary 1 give us an intuition that “un-
guarded” variables in action effects can make the problem of
finding a robust plan (or proving its non-existence) harder.
The absence of “unguarded” variables in action effects, on
the other hand, maintains the monotonic growth of the sets
of affected variables during the search for a robust plan that,
in consequence, restrict the number of actions that can be
possibly applied afterwards.

6.2 Relaxed Robust Plan Generation
As indicated before, robust plans can be constructed non-
deterministically according to Definition 1, which is com-
putationally demanding. Alternatively, we might leverage
the verification such that we check whether a (partial) ac-
tion sequence in each step might be a part of the robust plan
(by checking unsolvability of the corresponding invalidat-
ing task). Such an approach is still impractical due to large
computational demands. Leveraging the concept of delete-
relaxation, similar to what we did for the verification ap-
proach, mitigates computational demands at the cost of los-
ing completeness.

Algorithm 2, in a nutshell, incorporates the delete-relaxed
verification from Algorithm 1 into the generic forward-
search plan generation method. In principle, Algorithm 2

1 2 3 4 5 6
AUV Plain

Time (C) 0.18 0.18 0.23 0.23 0.29 0.29
Succ (C) ✓ ✓ ✗ ✓ ✓ ✓
Time (R) 0.19 0.14 0.17 0.17 0.19 0.19
Succ (R) ✓ ✓ ✗ ✓ ✓ ✓
Length 8 8 18 18 30 28

AUV Extended
Time (C) 0.18 0.20 0.23 0.24 0.27 0.28
Succ (C) ✗ ✗ ✓ ✗ ✗ ✗
Time (R) 0.14 0.15 0.17 0.17 0.19 0.19
Succ (R) ✗ ✗ ✓ ✗ ✗ ✗
Length 10 15 16 20 28 30

ServiceRobot
Time (C) 0.17 0.17 0.18 0.17 0.18 0.18
Succ (C) ✓ ✗ ✗ ✓ ✗ ✗
Time (R) 0.13 0.13 0.13 0.13 0.14 0.14
Succ (R) ✓ ✗ ✗ ✓ ✗ ✗
Length 8 10 16 10 12 12

Table 1: Results for robust plan verification. Runtimes are in
seconds.“Succ” means whether the verification succeeded, and
“Length” represents the number of actions in a generated plan. (C)
and (R) means verifying by compilation to invalidating task, or by
Algorithm 1, respectively.

admits expanding only states that have not yet been visited
before (are in τ ), do not prohibit goal achievement (accord-
ing to Corollary 1) and selecting only those actions that can
pass the delete-relaxed verification (in a given step).

Theorem 5. Algorithm 2 is sound, i.e., if for a given plan-
ning task P it returns a sequence of actions π, then π is a
robust plan for P .

Proof. Algorithm 2 admits selecting as the next action
(Line 8) only actions satisfying the “verification” condition
(Line 5 of Algorithm 1). Similarly, the goal check condi-
tion is derived from Algorithm 1. According to Theorem 3,
an action sequence generated by Algorithm 2 is a robust plan
forP . Although pruning conditions in Line 5 of Algorithm 2
trivially cannot affect its soundness (as they cannot cause
generating an incorrect action sequence), the conditions do
not “overprune”. The latter condition follows Corollary 1
(as once the variable that is not part of any “unguarded” ac-
tion effect becomes affected it stays affected). The former
condition follows the observation that f ′ admits (at least)
the same valid action sequences as f (since f ′ ⊆ f ).

We implemented Algorithm 2 as Breadth-First Search
(in principle, Algorithm 2 can accommodate any type of
forward-search technique).

7 Experimental Results
The experimental evaluation evaluates the introduced robust
plan verification methods as well as the introduced robust
plan generation method. For that purpose, we generated 6
problem instances for each domain, introduced in Section 3,
such that for each instance there exists a robust plan.
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Figure 2: Comparison of runtimes for the compilation verification
(x-axis) and for the relaxed verification (y-axis), excluding plan
generation times. Data points refer to runtimes per problem in-
stance. Note that some data points overlap as runtimes for both
methods were identical in a few cases.

1 2 3 4 5 6
AUV Plain

Time 0.05 0.05 17.11 16.20 862.82 844.56
Length 8 8 20 18 30 26

AUV Extended
Time 0.04 0.09 0.62 0.69 15.90 13.90
Length 14 17 14 22 30 34

ServiceRobot
Time 0.03 0.04 0.11 0.08 1.50 57.98
Length 8 12 20 8 14 14

Table 2: Results for robust plan generation. Runtimes are in sec-
onds. “Length” represents the number of actions in a robust plan.

In the plain AUV domain, we designed 6 problem in-
stances, each instance considers two AUVs starting (and fin-
ishing) in the bottom-left and bottom-right corner respec-
tively. The grid size ranges from 3x3 to 6x6, the number
of resources from 2 to 6, and the number of ships from 1
to 2. Each ship has a single column as its corridor (distinct
from other ships’ corridors). The 6 problem instances we
defined for the extended AUV domain differ (number-wise)
in considering only one AUV (starting and finishing in the
bottom-left corner), the number of ships ranged from 1 to
3, and the deep water is in grid rows (ranging from 1 to 3
rows of deep water, not necessarily adjacent). In the Service
Robot domain, we designed 6 problem instances, each in-
stance considers 2 rooms, the number of robots ranges from
1 to 2 (each robot has 2 hands), and the number of items
from 2 to 4, where some of the items might be “fragile”.

For generating plans as an input to our robust plan ver-
ification methods, we used LAMA (Richter and Westphal
2010) (these plans were generated considering only actions
and ignoring events). LAMA was also used for solving in-
validating tasks (only if LAMA proved that no solution ex-
ists, we consider the verification as successful). The time
limit for each problem was 900 seconds and the memory
limit was 4GB. The experiments were run on AMD Ryzen 5

5500u 2.1GHz, 16GB RAM, Ubuntu 22.04.4

7.1 Results
Table 1 summarises the results of robust plan verification.
The runtimes consist of both plan generation (by LAMA)
and plan verification. As can be seen, all runtimes are below
0.3 seconds, and most of the runtimes for the compilation
verification (the (C) rows) are about 30%−50% higher than
for the relaxed verification (the (R) rows). Excluding plan
generation times (as they are the same for both verification
methods) emphasizes the difference between the verification
times of both methods as depicted in Figure 2. As can be
seen, the relaxation verification is generally faster than the
compilation verification (roughly 2 − 3 times). In all cases,
in which the compiled invalidating task was unsolvable, the
unsolvability was proved by unreachability of the goal (so
the runtime difference was not that large). This aspect con-
tributed to the alignment of verification successes (and fail-
ures) of both compilation and relaxed verification methods.
In cases, where the invalidating task was solvable, the (in-
validating) plan was shorter than the verified plan.

The verification success rate of generated plans (by
LAMA) was high in the plain AUV domain because the
instances were designed with ship corridors in the middle
columns of the grid, so each AUV can collect resources on
“its side” of the grid. Plans usually followed that pattern,
except in the third instance, when one of the AUVs col-
lected all resources, meaning that it had to cross ship cor-
ridors. On the other hand, most plans generated in the ex-
tended AUV domain failed the verification as the AUV was
not forced to move deep in the water to prevent interference
with ships. The AUV in the plan for the third instance did
not have to cross ship corridors and hence such a plan was
successfully verified as robust. In the ServiceRobot domain,
LAMA-generated plans are verified as robust in two cases.
In instance 1, there is no fragile item, and hence every plan
is robust. In instance 4, each item is initially in a different
room and the plan delivers the items one after another. In
the other instances, the plans fail the verification because at
some point some robot carries two items, where at least one
is fragile (and might break).

Table 2 summarises the results of robust plan generation.
Since we used uninformed Breadth-First Search, the runtime
heavily depends on the resulting length of found robust plans
as well as on the branching factor. The Branching factor is
larger in the plain AUV domain (as the instances consider
two AUVs) and in the ServiceRobot domain that introduces
symmetries as the robot might use either hand to carry an
item. Also, the ServiceRobot domain is designed such that
undesirable effects of events only affect goal achievability
and do not affect the applicability of actions, and hence early
dead-end detection helps to prune undesirable parts of the
search space. It can be seen that generated robust plans
are longer (albeit by a small margin) than LAMA-generated
plans whose verification failed.

4Our source code and benchmark data are provided at:
https://github.com/lchrpa/Robust-Plans-KR24
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8 Conclusion
In this paper, we have investigated robust plans that are se-
quences of actions that can always be successfully applied
despite the presence of exogenous events that might modify
the environment without the consent of the agent. In par-
ticular, we considered that any finite and valid sequence of
events might occur between the actions of the agent. We
have introduced two methods for verifying that a sequence
of actions is a robust plan for a given planning task. The
first method, which is complete, compiles the verification
problem into the problem of plan non-existence of an inval-
idating task (which is a classical planning task). The second
method leverages the concept of delete relaxation for pes-
simistically assuming the impact of events on the applica-
bility of the agent’s actions. We have proved that the “re-
laxed” method is sound, albeit incomplete, and have shown
that it runs in polynomial time. Then, we have introduced
the method for generating robust plans that adopts the con-
cepts introduced in the “relaxed” method for admitting only
action sequences that might form robust plans. Our evalua-
tion on three domains has shown that generating a plan (by
a classical planner) and validating it is not very time con-
suming, however, it might not often be a successful strategy.
Generating robust plans provides a remedy for a low suc-
cess rate of “generate and test” approach albeit at the cost of
higher computational demands.

In the future, we plan to develop heuristics to guide the
search for robust plans (we plan to leverage the findings
of Lemma 4). We also plan to investigate dependencies
between actions and events that would help to determine
whether a (partial) sequence of actions is admissible as a
part of a robust plan. To prevent inadmissible sequences of
actions (for being a part of a robust plan) we plan to in-
vestigate a conflict-directed approach (de Haro et al. 2022).
We also plan to revisit the complexity of robust plan exis-
tence, since we believe the result in Theorem 4 can be tight-
ened – we do not believe this is an inherently more difficult
problem than LTL synthesis. To do so, we will take inspira-
tion from the complexity results in partially-observable and
non-deterministic planning (Rintanen 2004) and conformant
planning (Bonet 2010) as those classes of planning are re-
lated to our concept.
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