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Abstract

Answer Set Programming (ASP) is a declarative program-
ming approach that captures many problems in knowledge
representation and reasoning. To certify an ASP solver’s de-
cision, whether the program is consistent or inconsistent, we
need a certificate or proof that can be independently verified.
This paper proposes the dual proof system ASP-QRAT that
certifies consistent and inconsistent ASPs. ASP-QRAT is
based on a translation of ASP to QBF (Quantified Boolean
Formulas) and the QBF proof system QRAT as a checking
format.
We show that ASP-QRAT p-simulates ASP-DRUPE, an ex-
isting refutation system for inconsistent disjunctive ASPs.
We show that ASP-QRAT is conditionally optimal for consis-
tent and inconsistent ASPs, i.e., any super-polynomial lower
bound on the shortest proof size of ASP-QRAT implies a ma-
jor breakthrough in theoretical computer science. The case
for consistent ASPs is remarkable because no analog exists
in the QBF case.

1 Introduction
Answer Set Programming (ASP) is a declarative program-
ming approach originating from non-monotonic reasoning
and logic programming (Brewka, Eiter, and Truszczynski
2011). ASP finds extensive use in fields such as knowl-
edge representation, artificial intelligence, and planning, fa-
cilitating succinct problem modeling (Baral, Provetti, and
Son 2003; Pontelli et al. 2012). Within ASP, problems
are formulated as sets of rules known as logic programs
or answer set programs (ASPs), which are processed ac-
cording to the stable model semantics (Gelfond and Lifs-
chitz 1993) and result in specific sets of atoms called an-
swer sets. Various solvers like clingo (Gebser et al. 2011;
Gebser et al. 2014), WASP (Alviano, Dodaro, and Ricca
2014), and DLV (Alviano et al. 2017) have been developed
for ASP.

As argued by Alviano et al. (2019), ASP supports the
aims of explainable AI (XAI) because it relies on deduc-
tive reasoning, which is inherently transparent, but certi-
fying the inconsistency of an ASP (i.e., it has no answer
sets) needs additional efforts to avoid the ASP solver act-
ing as a black box. If the ASP is normal (i.e., no disjunc-
tions in the rule heads), then one can check in polynomial
time whether a set of atoms is indeed an answer set, but in-

consistency checking is co-NP complete. For general ASP
(with disjunctions), the complexities of both tasks move
up one step in the Polynomial Hierarchy and become co-
NP and ΠP

2 complete, respectively (Eiter and Gottlob 1995;
Cadoli and Lenzerini 1994; Marek and Truszczynski 1991).
For the certification of co-NP tasks, one can utilize the proof
logging techniques developed in the context of SAT solv-
ing (Wetzler, Heule, and Hunt 2014). However, for the cer-
tification of ΠP

2 tasks, one needs additional concepts. To
this aim, Alviano et al. (2019) proposed the proof format
ASP-DRUPE that builds upon the Reverse Unit Propagation
(RUP) format designed for UNSAT proofs.

In this paper, we propose an alternative proof format for
ASP, which utilizes proof systems developed for Quantified
Boolean Formulas (QBFs). The new proof system ASP-
QRAT employs the QBF proof system QRAT (Quantified
Resolution Asymmetric Tautology; Heule, Seidl, and Biere,
2014a) via a translation from ASP to QBF. ASP-QRAT is
conditionally optimal for proofs of both inconsistent and
consistent ASPs, in the sense that a super-polynomial lower
bound to the shortest proof size of ASP-QRAT would im-
ply NP ⊈ P/poly or a super-polynomial lower bound for
Extended Resolution, both implications would constitute a
major breakthrough in theoretical computer science. Sim-
ilar results have already been shown for proof systems in
auto-epistemic logic (Beyersdorff 2013), QBF (Beyersdorff
et al. 2020) and for propositional model counting (Chede,
Chew, and Shukla 2024). The underlying translation from
ASP to QBF does not follow the standard reduction pro-
posed by Eiter and Gottlob (1995). However, it works via
Clark’s Completion (Clark 1978) and the generation of loop
formulas (Lin and Zhao 2004) and fits into modern ASP
solvers’ inner workings. ASP-QRAT is dual because it al-
lows the certification of consistent and inconsistent ASPs.

In this paper, we focus on a QBF translation based on the
proof techniques of ASP-DRUPE and show a p-simulation
of ASP-DRUPE. There are other ASP proof systems, such
as the tableaux systems, that work with normal ASPs (Geb-
ser and Schaub 2006; Järvisalo and Oikarinen 2007). Other
translations to QBF appear in the literature (Amendola et al.
2022; Faber, Mazzotta, and Ricca 2023; Amendola, Ricca,
and Truszczynski 2019), and since ASPs are complete for
the second level of the Polynomial Hierarchy, the reverse
translation from 2QBF to ASP has also been studied (Amen-
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dola, Dodaro, and Ricca 2016).
Other work has expanded on the capabilities of QRAT,

Blinkhorn (2020) created a version of QRAT that works for
DQBF, and Lonsing and Egly (2018) generalized the rules
of QRAT for QBF.

2 Preliminaries
2.1 Proof Complexity
A proof system (Cook and Reckhow 1979) is a polynomial-
time function that maps proofs to theorems of a fixed logic
(i.e., propositional logic). The proof size is determined by
the number of symbols in the proof. We denote the proof
size of proof π as |π|. A proof system is polynomially
bounded if, for every theorem x, there is a proof π such
that f(π) = x and |π| = |x|O(1). We say a proof system f
p-simulates a proof system g if there is a polynomial-time
function γ that maps g-proofs to f -proofs of the same theo-
rem; in other words f(γ(π)) = g(π).

2.2 Propositional Logic
A literal is a propositional variable or its negation. We use l
to denote the negative literal ¬l when l is the positive literal
of a variable. Otherwise, we use l̄ to denote the positive lit-
eral x when l is the negative literal ¬x for some variable x.
A clause is a disjunction of literals, denoted by repeated use
of the ∨ symbol, i.e., x ∨ y ∨ z (or

∨
a∈A a). Whenever

convenient, we use set notation to denote a clause, including
disjuncts as members. A unit clause is a clause that contains
only a single literal. A clause C subsumes clause D if C
is a subset of D. Subsumption is the process of replacing a
subsumed clause with the clause that subsumes it. We can
consider the negation of a clause C (or ¬C) as a conjunc-
tion of unit clauses. A propositional formula is said to be
in conjunctive normal form (CNF) if it is a conjunction of
clauses. We can either denote it by repeated use of the ∧
symbol or use set notation where members are clauses that
are conjuncts.

Assume we are given two propositional formulas ϕ1

and ϕ2. We say they are logically equivalent if they both
have exactly the same set of models. They are satisfiability
equivalent or equisatisfiable if whenever there is a model α1

for ϕ1, there exists a model α2 for ϕ2 and vice versa.
Unit propagation (⊢1) is a technique for simplifying

CNFs. We first detect any unit clauses, i.e., a clause with
a single element l. We now consider all clauses that contain
the literal l̄, and we can safely remove l̄ from the clause with-
out altering the models of the formula. In simplifying the
clauses, we may make more clauses unit, and we repeat the
unit propagation steps until a fix-point or the empty clause is
found. The number of unit propagation steps is bounded by
the number of literals. As well as being a simplification rule,
unit propagation can be considered a method of building up
a partial assignment.

Reverse unit propagation (RUP) is a sound technique for
finding clauses that can be added or removed while preserv-
ing logical equivalence. Consider a unit propagation from
ϕ ∧ C that results in the empty clause ϕ ∧ C ⊢1 ⊥. This
means ϕ ∧ C is unsatisfiable. Suppose ϕ has a model α,

then α cannot also be a model for C; therefore, it must sat-
isfy C. Since all models of ϕ ∧ C satisfy ϕ by definition,
ϕ ∧ C and ϕ are logically equivalent.

Every propositional formula can be feasibly transformed
into a satisfiability equivalent CNF. For more complicated
formulas with non-clausal definitions, we can use definition
clauses to represent subformulas. The definition clauses for
e when e⇔

∧
l∈L l for a set L of literals is given as the long

clause e∨
∨

l∈L ¬l and a short clause for each l ∈ L ,¬e∨ l.
This works similarly for disjunction by taking the definition
clauses for the negation (a conjunction).

Observation 1. Given a set of definition clauses θ for vari-
able e under input variables X , given an assignment to X
expressed as a set of unit clauses α. Either θ ∧ α ⊢1 e, or
θ ∧ α ⊢1 ē.

Resolution is a propositional proof system that refutes un-
satisfiable CNFs (Robinson 1963). Resolution has as its sin-
gle inference rule the resolution rule, which, utilizes existing
clauses C1∨x and C2∨¬x to add a new clause C1∨C2, the
resolvent. A CNF is logically equivalent with or without the
resolvent. Resolution aims to derive the empty clause and
thus show a contradiction. A CNF has a resolution proof
that reaches the empty clause if and only if it is a contradic-
tion. Adding a clause through RUP is a stronger form of the
resolution rule, and we will sometimes refer to a resolution
step as a specific use of RUP.

Extended resolution (Ext Res) is a more powerful version
of resolution. In addition to the resolution rule, extended
resolution allows the addition of definition clauses for ∧ and
∨ definitions with the extension rule, as long as the defined
variable is new and all input variables are previously defined.
Because the variable is new and well-defined, the extension
rule preserves satisfiability.

2.3 Quantified Boolean Formulas
A Quantified Boolean Formula (QBF) is a propositional for-
mula augmented with Boolean quantifiers ∀ and ∃ that bind
propositional variables and range over the values 0, 1. For
a QBF Φ with free variable x, the QBF ∀xΦ is true if and
only if Φ[0/x] and Φ[1/x] are both true (Φ[c/x] denotes that
c replaces x in Φ), ∃xΦ is true if and only if at least one of
Φ[0/x] or Φ[1/x] are true.

A prenex conjunctive normal form (PCNF) contains a
CNF propositional matrix, and a quantifier prefix, that uses
Boolean quantifiers ∀ and ∃ that bind propositional variables
that appear in the matrix. The prefix is ordered linearly; each
variable has a quantifier level starting at the leftmost variable
which has level 1. As we move rightwards, we increase the
level by one whenever the quantifier changes. Variables on
the same level are said to be in the same quantifier block. A
closed PCNF is a PCNF where every variable in the matrix
appears in the prefix.

In this paper, we almost exclusively use PCNFs with
quantifier alternation ∃X∀Y ∃Z. We refer to the variables
in block X as the outer variables and the variables in block
Z as the inner variables. We refer to the variables in Y as
the universal variables.
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We can represent the semantics of a QBF (with a closed
prefix) by a semantic two-player game. Following the or-
der of the prefix players ∃ and ∀ each set a Boolean value
to each variable that appears bound by their quantifier. ∃ is
trying to get the propositional matrix to become true and ∀ is
trying to get the matrix to become false. A QBF is true if and
only if ∃ has a winning strategy. Likewise, a QBF is false
if and only if ∀ has a winning strategy. Skolem functions re-
turn values for each ∃ variable so that the propositional ma-
trix will be satisfied no matter the universal player’s choices.
Skolem functions for variable x need only to have universal
variable inputs of the ∀ variables left of x in the prefix. Her-
brand functions work the same for universal values and false
QBFs. One can observe that replacing a propositional ma-
trix with a logically equivalent matrix preserves Skolem and
Herbrand functions, and therefore preserves the truth value
of the QBF.

We can transform any QBF into an equisatisfiable propo-
sitional formula by ∀-expansion. Suppose we have a par-
tial prefix Π, which we extend leftwards into a full prefix
∃X∀uΠ and a propositional matrix ϕ. ∃X∀uΠϕ is true if
and only if there exists a value of X such that (Πϕ[0/u])
and (Πϕ[1/u]) are both true. However, when writing this
as a QBF, we must be careful about the use of variables
being repeated in separate quantifiers, so we create two
copies of each Π variable z: zū and zu. ϕū[0/u] and
ϕu[0/u] use renamings of ϕ when using these annotated
variables. We get that ∃X∀uΠϕ is satisfiability equivalent
to ∃XΠ0Π1ϕū[0/u] ∧ ϕu[0/u]. We can repeat this until
all universal variables are removed; at this point we have
a singular block of existential variables and a CNF, a sat-
isfiability problem. The issue with ∀-expansion is that we
can generate exponentially many clauses from a linear num-
ber of universal variables. Nonetheless, it forms the ba-
sis of many modern QBF solvers (Rabe and Tentrup 2015;
Janota 2017).

2.4 Answer Set Programming
A disjunctive answer set program (or simply an ASP) P is a
set of rules of the following form

x1 ∨ · · · ∨ xl ← y1, . . . , ym,¬z1, . . . ,¬zn
where x1, . . . , xl, y1, . . . , ym, z1, . . . , zn are atoms l,m, n
are non-negative integers. Let r be a rule. We write
{x1, . . . , xl} = H(r) (the head of r), {y1, . . . , ym} =
B+(r) (the positive body of r) and {z1, . . . , zn} = B−(r)
(the negative body of r). We denote the sets of atoms oc-
curring in a rule r or in a program P by at(r) = H(r) ∪
B+(r) ∪ B−(r) and at(P ) =

⋃
r∈P at(r), respectively. A

rule r is normal if |H(r)| ≤ 1. We say that an ASP is normal
if all its rules are normal.

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩
M ̸= ∅ or B+(r) \M ̸= ∅. M is a model of P if it satis-
fies all rules of P . The Gelfond-Lifschitz (GL) reduct of an
ASP P under a set M of atoms is the program PM obtained
from P by (1) removing all rules r with B−(r) ∩M ̸= ∅
and (2) removing all literals ¬z where z ∈ B−(r) from the
remaining rules r (Gelfond and Lifschitz 1993). M is an
answer set of an ASP P if M is a minimal model of PM .

Given an ASP P , the positive dependency digraph DP

uses atoms as nodes and has an edge (a, b) if there is a rule r
such that a ∈ B+(r) and b ∈ H(r). A loop in P is a loop in
DP . The ASP P is tight if it contains no loops.

Clark’s Completion Clark’s completion (Clark 1978)
transforms an ASP P into a conjunctive normal form ∆P .
If P is consistent then ∆P is satisfiable, and the consistency
of P and the satisfiability of ∆P are equivalent when P is
tight. With disjunctive answer set programs, ∆P remains
polynomial in the size of P .

Clark’s completion breaks disjunctive rule r into a series
of implications with a ∈ H(r) being implied by a new vari-
able called an induced body b. b is an extension variable
equivalent to a conjunction of literals, from the body of the
rule, and the negation of the rest of the head.

b⇔
∧

c∈H(r)\{a}

c̄ ∧
∧

c∈B+(r)

c ∧
∧

c∈B−(r)

c̄

The definition clauses for each b are called body defini-
tion clauses. For each head atom in a rule there is a sin-
gleton set IB(r, a) that contains the induced body. Every
rule has as many induced bodies as atoms in its head. For
every atom a, we collect all its induced bodies in the set
IB(P, a) =

⋃a∈H(r)
r∈P IB(r, a). We use the set Bod(P ) to

collect all induced bodies for P . The set ∆Bdef
P contains all

body definition clauses for every member of Bod(P ).
Let b be the single member of IB(r, a). As mentioned ear-

lier, their use in rule r is seen as an implication, we will call
a completion support clause. This is given as a binary clause
¬b∨a. We say that a is true only if at least one induced body
for some rule regarding a is true: ¬a∨

∨
b∈IB(P,a) b, and call

this the completion rule clause.
The Clark’s completion ∆P contains all definition clauses

from ∆Bdef
P , all completion support clauses and all comple-

tion rule clauses. Once again, it should be stated that com-
pletion rule clauses do not fully capture the minimization
needed for P . If an induced body b in IB(P, a) is found in
a loop from a being true, it could still be satisfiable to as-
sume both b and a to be true. This is why, for programs that
contain loops, we require reasoning based on loop formulas.

Basic Loop Clauses In order to fully minimize, we need
that atom a is false when it appears on a loop ω and no exter-
nal criterion sets it true. We will detail how this is enforced
with clauses.

Given a loop ω and an induced body b, we say b is inde-
pendent of ω if no positive conjunct in the definition of b is
in ω. We define EB(P, ω), the set of external bodies of a
loop, these are induced bodies that imply some member of
the loop without being part of it. EB(P, ω) := { b | b ∈
IB(P, a), b independent of ω, a ∈ ω }.

As part of minimization insists that if a, a member of
loop w is true, at least one external body of the loop is
true. We call this a basic loop clause λ(a, ω) := ¬a ∨∨

b∈EB(P,ω) b.
The set of all basic loop clauses of disjunctive ASP P is

defined as ΛP , but since the number of loops is potentially
exponential, ΛP can explode exponentially.
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∆P ∧ΛP is satisfiable if and only if P is a consistent ASP.

ASP-DRUPE ASP-DRUPE (Alviano et al. 2019) is a for-
mat for checking the inconsistency of ASPs implicitly using
the translation to ∆P ∧ ΛP . In the original paper, ASP-
DRUPE is defined using no-goods, these are exactly the
negations of clauses. Here we define ASP-DRUPE using
clauses directly, but this does not affect the proof complex-
ity of the system. One more significant alteration here is
that ASP-DRUPE is a more flexible format that allows for
disjunctive ASPs with weight rules, we have not included
weight rules in our definition of disjunctive ASPs. Here, for
simplicity, we focus on the part of ASP-DRUPE that deals
with disjunctive rules only.

ASP-DRUPE starts with an empty set ∇, and ends with
∇ containing the empty clause.
Completion-Axiom : Add any clause from ∆P .
Loop-Axiom : Add any clause from ΛP .
Deletion: Remove any clause from∇.
RUP: Add any clause C to ∇ if ∇∧ C̄ ⊢1 ⊥.
Ext: For a new variable e add all the definition clauses to∇.

Despite ASP-DRUPE using the powerful technology of
extended resolution, it may be possible that an exponential
number of loop clauses are needed to even get a seman-
tic contradiction. In the next section we explain how using
QBFs can shrink the number of necessary loop clauses.

On the other hand ASP-DRUPE is not automatically
lower bounded whenever ΛP is exponential. It can opt to
only lazily introduce basic loop clauses and it might be that
a propositional contradiction is possible with a small subset
of the loop clauses.

3 ASP to QBF
In this section, we succinctly represent the ASP consistency
problem as a QBF.

Observation 2. Falsifying a candidate answer set for pro-
gram P is in NP, where the polynomial-time checkable wit-
ness is a loop.

Given an answer set, we want to know whether it (along
with all computed induced body variables) falsifies a clause
from ∆P ∧ ΛP . We can check in polynomial time whether
∆P is falsified. Otherwise, we know where to look in ΛP

if we are given the right loop. Then we only need to check
|at(P )| many basic loop clauses.

Another way of looking at this is that checking an answer
set is in coNP i.e., we can express checking an answer if
we universally quantify over all possible loops. Using this
idea we can compress the CNF used in ASP-DRUPE, by
succinctly hiding the loops with quantification

Π := ∃⟨atom vars⟩ ∃⟨body vars⟩ ∀⟨loop slots⟩ ∃⟨tse defs⟩.

Here, ⟨atom vars⟩ are the variables that appear as atoms in
the ASP (P ). The Clark’s completion and basic loop for-
mulas contain variables from ⟨atom vars⟩ and ⟨body vars⟩.
We will also use the two new levels ∀⟨loop slots⟩ (see Sec-
tion 3.1) and ∃⟨tse defs⟩ (see Section 3.2), that will suc-
cinctly represent the necessary information the loop clauses

provided. Note that the third level, that solely contains defi-
nition variables, is only necessary because we use a CNF.

In ASP-DRUPE, we have a set of clauses for every atom a
and all its loops ω in a set ΛP . Each basic loop clause ¬a ∨∨

b∈EB(P,ω) b states that a is minimized to false if none of
the external bodies of the loop ω that contains it are true.

Here instead we replace this with one clause for each vari-
able a, which we will call the compact loop clause:

¬a ∨ ¬ua ∨ ¬valid loop ∨
∨

b∈Bod(P )

extern(b)

This says that if a is truly a member of the loop (specified
by the ∀ variables) and if none of the external bodies of that
loop are true then a is minimized to false.

ua is the universal variable selecting atom a to be included
in the loop. extern(b) and valid loop have to occur in the in-
nermost ∃ level as Tseitin variables, because they are defined
using the choice of loop slots. Before we define them fully,
let us examine their use in this clause.

The expression valid loop must be false if the loop is not
valid. The validity of the loop depends on whether all the
loop slots follow from the previous loop slot and whether
the end wraps around again to the beginning.

Notice that the clause now contains an extern(b) literal for
every induced body. This means that we want to be able to
ignore the literal extern(b) when the loop is chosen so that b
is not an external body. In other words, extern(b) should be
false if b is not an external body; it should also be false if b
as an induced body variable is false.

We contain all compact loop clauses from program P in
the set ΩP . Along with the definition clauses used for the
Tseitin variables contained in set ΘP we get our QBF trans-
lation of the ASP program P :

ΨP = Π(∆P ∧ ΩP ∧ΘP ).

3.1 Loop Slot Variables
For ASP P we have two kinds of universal variables in the
QBF ΨP .

ua: this specifies that variable a is contained in the loop.
ub
a: this specifies that the next variable in the loop after a

is b.

These universal variables appear in the clauses of ΘP to
define the Tseitin variables that appear in ΩP .

3.2 Tseitin Variables and their Definitions
The universal variables are important to the QBF ΨP but
have to be used as definitions when we make the compact
loop clauses. Since we use definition clauses, quantification
of new variables has to be existential and it has to happen
after the loop slot variables. This is standard in QBF (Jus-
sila et al. 2007; Beyersdorff, Chew, and Janota 2016), but to
see this, think of the existential player being forced to satisfy
the definition clauses, he can only do this after the other vari-
ables are chosen, else the universal player can easily falsify
the definition clauses.
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• v next(a, b): if atom b is next after atom a it must also be
specified in the loop. The definition is: v next(a, b) ⇔
ūb
a ∨ ub.

• v prev(a, b): if atom a is previous from atom b it must also
be specified in the loop. The definition is: v prev(a, b)⇔
ūb
a ∨ ua.

• slot(i, a): atom a comes next, after the i − 1th slot. For
i = 1 we fix some ordering < on the atom variables, the
definition is: slot(1, a) ⇔ ua ∧

∧b<a
b∈at(P ) ūb. For i ≥

2, slot(i, a) ⇔
∨

b∈at(P ) u
a
b ∧ slot(i − 1, b). We create

auxillary variables aux slot(i, a, b) ⇔ ua
b ∧ slot(i − 1, b),

to succinctly represent slot variables as disjunctions.
• conn(a): atom a comes in as loop variable in or after the

first slot. The definition is conn(a)⇔
∨i≤n

i≥1 slot(i, a).

• in at most(a, b, c): the loop has at most one edge arriving
to atom a. When (b, a), (c, a) ∈ DP and b ̸= c the defini-
tion is in at most(a, b, c)⇔ ūa

b ∨ ūa
c .

• out at most(a, b, c): the loop has at most one edge leaving
from atom a. When (a, b), (a, c) ∈ DP and b ̸= c the
definition is out at most(a, b, c)⇔ ūb

a ∨ ūc
a.

• in at least(a): the loop has at least one edge arriving
to a, if a is specified as in the set. The definition is
in at least(a)⇔ ūa ∨

∨
(b,a)∈DP

ua
b .

• out at least(a): the loop has at least one edge leaving
from a, if a is specified as in the set. The definition is
out at least(a)⇔ ūa ∨

∨
(a,b)∈DP

ub
a.

• no extra(a): no extra disconnected loop contains an a.
The definition is no extra(a)⇔ ūa ∨ conn(a).

• valid loop: all checks are fine. We give this def-
inition as valid loop ⇔

∧
a∈at(P) no extra(a) ∧

in at least(a) ∧ out at least(a) ∧
∧(a,b)∈DP

b∈at(P ) v next(a, b) ∧
v prev(a, b) ∧

∧(c,b)∈DP

c∈at(P )\{a} in at most(b, a, c) ∧∧(a,d)∈DP

d∈at(P )\{d} out at most(a, b, d).

• loop adj(b): as a necessary condition of being an external
body, that states that induced body b is the body for some
loop member. loop adj(b)⇔

∨b∈IB(a)
a∈at(P ) ua.

• is extern(b): as a consequence of the loop choice, b is an
external body. This means no positive atom in its defi-
nition can be in the loop (independence). is extern(b) ⇔
loop adj(b) ∧

∧a∈H(r),IB(r,a)∋b
c∈B+(r),r∈P, ūc.

• extern(b): b is both external and true, this is the only in-
ner Tseitin variable to depend on an outer variable and
not just the loop choice universal variables. extern(b) ⇔
is extern(b) ∧ b.

Lemma 1. The associated QBF ΨP is polynomial in the
size of P .

Proof. There are polynomially many new body variables in
Bod(P ), each of which has a linear size definition.

For the completion support clauses, each standard vari-
able a shares a clause with its induced body variables which

is bounded above by |Bod(P )|. Likewise, for each atom a,
there is a completion rule clause for every induced body in
IB(a). There are polynomially many definition clauses in
the inner Tseitin variables. The sizes of loop clauses are
bounded above by |Bod(P )| and there is one for each stan-
dard variables.

Lemma 2. An ASP P is consistent if and only if the associ-
ated QBF ΨP is true.

Proof. In the forward direction, we show ΨP is true by ex-
hibiting its Skolem functions.

We know P is consistent if and only if the propositional
formula ∆P ∧ ΛP is satisfiable (Gebser et al. 2012). If P
is consistent, we take the Skolem function for the outer vari-
ables as the constant values that satisfy ∆P ∧ΛP . For the in-
ner variables, these are Tseitin variables, we use the Skolem
function that follows the definition of the Tseitin variables.
This Skolem function will satisfy all definition clauses. We
have to show that all compact loop clauses will be satisfied
by this Skolem function. Suppose there is a loop slot assign-
ment γ such that under these Skolem functions a loop clause
of variable a will be falsified. a must be true in our answer
set for this to possibly cause a contradiction, γ must relate
to a valid loop w that contains a and the external bodies of
w must all be false. But then the assignment must falsify the
clause λ(a,w) ∈ ΛP , contradicting our assumption.

In the other direction, we show the QBF is false by ex-
hibiting its Herbrand functions. We know that if P is incon-
sistent then the propositional formula ∆P ∧ΛP is unsatisfi-
able. So we take an assignment α to ∆P ∧ ΛP (which will
be an outer assignment in QBF) and show how to choose the
universal value β(α) that guarantees that at least one clause
in our QBF’s matrix will be falsified. If α already falsifies
∆P then β(α) can be set arbitrarily. Otherwise α falsifies a
loop clause λ(a,w) ∈ ΛP , in this case we pick the assign-
ment β(α) to construct loop w. α must set a to true as well
as all external bodies of w to false. The existential player
has to play all Tseitin variables in the inner block according
to their definitions; otherwise, a clause in the definition is
falsified. This will force the loop clause of a to simplify to
λ(a,w), which is falsified by α.

4 The ASP-QRAT Proof System
For clause C we use O(C) to define the outer clause, the
subclause of C containing only and all existential outer lit-
erals.

Definition 1. Consider a PCNF Πϕ, where Π is of the form
∃∀∃. A resolution path from clause C is a list of inner literals
p1 . . . pk and a list of clauses C1 . . . Ck in ϕ such that p1 ∈
C and for every 1 ≤ i < k, p̄i ∈ Ci, pi+1 ∈ Ci \ {p̄i}.

The resolution paths tell us which clauses can be con-
nected at the inner levels via a resolution proof. Basically,
once all outer and universal variables are assigned we have a
propositional formula whose unsatisfiability is connected to
the existence of a resolution proof (via the refutational com-
pleteness of propositional resolution). The lack of resolution
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path guarantees that two clauses are never in the same unsat-
isfiable core for the inner levels, no matter the assignment to
the outer and universal variables.

We will now describe the ASP-QRAT format. We main-
tain a propositional matrix Φ and a ∃∀∃ prefix, which we
can add to.

4.1 Initialization and Processing Rules
To prove consistency or inconsistency for ASP P we ini-
tialize ASP-QRAT with the QBF ΨP . Then we have the
following rules.
ATA: We can add clause C if Φ ∧ ¬C ⊢1 ⊥.
ATE: We can remove clause C if Φ \ {C} ∧ ¬C ⊢1 ⊥.
ORATA: We can add clause C if there is an outer literal
l ∈ C such that for every clause D that contains l̄: Φ ∧
O(D) \ {¬l} ∧ C̄ ⊢1 ⊥.
ORATE: We can remove clause C if there is a outer literal
l ∈ C such that for every clause D that contains l̄: Φ\{C}∧
O(D) \ {¬l} ∧ C̄ ⊢1 ⊥.
IRATA: We can add clause C if there is an inner lit-
eral l ∈ C such that for every clause D that contains l̄:
Φ ∧D \ {¬l} ∧ C̄ ⊢1 ⊥.
IRATE: We can remove clause C if there is an inner literal
l ∈ C such that for every clause D that contains l̄: Φ\{C}∧
D \ {¬l} ∧ C̄ ⊢1 ⊥.
Local-Purity: This rule allows us to remove a loop-slot ∀
literal u from a clause if it is “locally” pure. For our purposes
here for the ASP use, the local purity rule is as follows: if no
resolution path from C reaches a clause containing ū we can
safely remove u from C. Reachability via resolution paths
is polynomial-time checkable (Slivovsky and Szeider 2014;
Slivovsky and Szeider 2016).

We provide an example of the Local Purity rule in Exam-
ple 1. For readers unfamiliar which RAT rules, in Section 5,
Example 3 doubles as an example of ORATA.

Example 1. Consider the CNF (x∨u∨y)∧(x̄∨ ū∨y)∧(ȳ)
where x is an outer variable, u a universal variable and y an
inner variable. The only resolution paths from each of u and
ū clauses in the inner variables y lead to (ȳ) and cannot
proceed. Hence there are no resolution paths in the inner
variables that connect clauses (x ∨ u ∨ y) and (x̄ ∨ ū ∨ y),
which makes u locally pure in (x ∨ u ∨ y) and ū locally
pure in (x̄ ∨ ū ∨ y). Safely removing these literals gives us
(x∨y)∧(x̄∨y)∧(ȳ). The empty clause can now be derived
with ATA.

A proof that uses only these rules is what we call a search
mode ASP-QRAT proof, because it can used when there is
a lack of prior knowledge about the consistency of the ASP.
However when simply checking a proof we can know in ad-
vance whether the proof returns consistent or inconsistent,
when it ends with a empty CNF, or an empty clause, respec-
tively. Additional rules can be used. For refutation mode,
we can arbitrarily delete clauses, (in other words we can ig-
nore ATE, ORATE, IRATE). Refutation mode ASP-QRAT
proofs end with a CNF containing the empty clause. For
satisfaction mode we can arbitrarily add clauses, (in other
words we can ignore ATA, ORATA, IRATA, we can ignore

Local-Purity as well because of subsumption). Satisfaction
mode proofs end in an empty CNF.
Example 2. Consider the program P with the following
rules:

q ← p p← q q ← ¬p p← q

The QBF ΨP =

∃p, q, b1, b2, b3, b4∀up, uq, u
q
p, u

p
q∃⟨tse defs⟩∆P ∧ΩP ∧ΘP

∆P = (b1 = p)∧ (b2 = q)∧ (b3 = p̄)∧ (b4 = q̄)∧ (p̄∨ b2∨
b4)∧ (q̄ ∨ b1 ∨ b3)∧ (b̄1 ∨ q)∧ (b̄2 ∨ p)∧ (b̄3 ∨ q)∧ (b̄4 ∨ p)
ΩP = (¬p ∨ ¬up ∨ valid loop ∨

∨4
i=1 extern(bi)) ∧ (¬q ∨

¬uq ∨ valid loop ∨
∨4

i=1 extern(bi)).
We will not go into the full detail of ΘP , instead we know

through ASP-QRAT we can derive the following through
propositional (ATA) reasoning.

• (ūp∨ ūq ∨ ūq
p∨ ūp

q ∨ valid loop). That the p, q loop is valid
• (extern(b1) ∨ ūp) ∧ (extern(b2) ∨ ūq). That b1, b2 cannot

be external unless their constituent atoms are not part of
the loop.

• (extern(b3) ∨ ¬p) ∧ (extern(b4) ∨ ¬q). That b3, b4 are
external only when their constituent literals are true.

With resolution (using ATA) we can derive (¬p ∨ ¬q ∨ ūp ∨
ūq ∨ ūq

p ∨ ūp
q) by resolving with one of the compact loop

clauses. Using Local Purity this reduces to ¬p ∨ ¬q which
resolves to a contradiction with clauses from ∆P .

4.2 Soundness and Completeness of ASP-QRAT
Theorem 1 (Soundness). Let P be an ASP, consider π an
ASP-QRAT proof that initializes from P . If π is in refuta-
tion or search mode and returns a line containing the empty
clause, then P is an unsatisfiable ASP. Likewise, if π is in
satisfaction or search mode and returns a line containing no
clauses, then P is a satisfiable ASP.

Each rule is covered by a QRAT rule, so it suffices to use
the original soundness proof of QRAT. We show how each
rule of ASP-QRAT is sound for the benefit of the reader.

Proof. Consider the prefix Π fixed, in the sense that all lines
should have the largest prefix, which will always be the pre-
fix of the final line. This will give meaning to the idea of
preserving or modifying Skolem functions. We first use
Lemma 2 to match the ASP P ’s satisfiability to ΨP . The
rules of ASP-QRAT preserve satisfiability.

Using ATA or ATE adds or removes a clause based on
logical equivalence of the propositional matrix. Therefore,
the same Skolem functions work.

Suppose ORATA adds a clause C ∨ l to a satisfiable QBF
Πϕ. There is a satisfying outer assignment α to the outer
variables of ϕ. We can modify α to get α′ which we will
show to satisfy Πϕ ∧ (C ∨ l). Consider all clauses D such
that l̄ ∈ D. If all O(D) \ {l} are satisfied by α and α(l) = 0
we take α′(l) = 1, and α′(a) = α(a) on all other values
a /∈ {l, l̄}. The remaining Skolem functions for the inner
variables remain unchanged, all clauses will be satisfied by
α′ and the Skolem functions because only clauses that con-
tain l̄ can be affected by a positive change to l. On the other
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hand, if some subclause O(D) \ {l̄} is falsified by α, C ∨ l
is automatically satisfied by the ORATA side condition, so
α′ = α suffices, in this case.

Suppose IRATA adds clause C∨l to a true QBF Πϕ. Let α
be the outer assignment chosen by the constant Skolem func-
tions, let β be the assignment to the universal variables, and
let γ be the inner assignment chosen by the Skolem func-
tions in response so that (α, β, γ) satisfies ϕ. We can mod-
ify γ to satisfy ϕ∧(C∨l). If γ satisfies C∨l then no modifi-
cation is needed. Otherwise, let γ′ be identical to γ on all in-
ner variables except l (so γ(l) = 0 and γ′(l) = 1). Consider
all clauses D such that¬l ∈ D, since ϕ∧D \ {¬l}∧¬(C∨l)
is unsatisfiable but (α, β, γ) satisfies both ϕ and ¬(C ∨ l),
we have that (α, β, γ) falsifies every conjunction of the form
D \ {¬l}. In other words, (α, β, γ) satisfies ϕ even if we
remove all occurrences of ¬l, therefore (α, β, γ′) also satis-
fies ϕ and, since γ′(l) = 1, it satisfies ϕ∧(C∨ l). So if there
are Skolem functions for Πϕ, there are Skolem functions for
Πϕ ∧ (C ∨ l).

Now we look at the local purity rule. Suppose Πϕ∧ (C ∨u)
is a satisfiable QBF, where u is a universal variable. It has
a satisfying outer assignment α and inner Skolem functions.
Now suppose given that outer assignment, and a universal
assignment β that (ϕ∧C)|α,β is an unsatisfiable CNF. Then
there is a resolution refutation π of (ϕ ∧ C)|α,β . However
since (ϕ∧ (C ∨ u))|α,β is satisfiable, π must contain C|α,β .
We can remove any clause not connected by a common de-
scendant to C|α,β , which will remove any clause that is not
on a resolution path from C using the inner variables. If ev-
ery clause D containing ū is not on a resolution path from C
then (ϕ\{D | ū ∈ D }∧C)|α,β is false. But consider β′ as a
modified β with u set to 0. (ϕ\{D | ū ∈ D }∧(C∨u))|α,β′

must be false. This contradicts (ϕ ∧ C)|α having valid
Skolem functions. If Πϕ ∧ C has valid Skolem functions,
then we can use the same Skolem functions for Πϕ∧(C∨u).

In refutation mode, if we remove a clause, the Skolem
function does not need to be be modified. Likewise in sat-
isfaction mode, if we add a clause there must have been a
valid Skolem function, if the new QBF has one.

Once we reach the empty clause, if we use the search or
refutation rules then there cannot have been valid Skolem
functions for the original QBF, otherwise we would have a
set of Skolem functions that satisfies the empty clause. Like-
wise, once we reach the empty CNF there will be a trivial
Skolem function for each variable and if we used the search
or satisfaction rules we can work backwards to find the orig-
inal Skolem functions.

Theorem 2. Given a satisfaction proof of an ASP P , we can
extract in polynomial time an answer set of P .

Proof. QRAT is known to have Skolem function extrac-
tion for satisfaction proofs of QBF (Heule, Seidl, and Biere
2014b). Since every ASP-QRAT rule is covered by a QRAT
rule, we will get Skolem functions for the QBF ΨP . The
Skolem functions for the atom variables are constant func-
tions which tell us an answer set.

Theorem 3 (Completeness). Let P be an ASP, if P is con-
sistent then there is an ASP-QRAT proof in search mode that
initializes from P and ends in a line containing no clauses. If
P is inconsistent then there is an ASP-QRAT proof in search
mode that initializes from P and ends in a line containing
the empty clause.

Proof. First note that the consistency of P is equivalent to
the truth of the initialized QBF in ASP-QRAT. We proceed
with the following steps to find a proof: Pick an inner vari-
able x. Perform DP-Resolution, i.e., resolve all clauses
with x with all clauses with x̄ and add the resolvents with
ATA unless they are tautological. Every clause containing x̄
can now be removed with IRATE, then x only appears pos-
itively so every clause containing x can be removed with
IRATE. This completely eliminates x. Repeat this for every
inner variable.

Since no clause now contains an inner variable every ∀
literal is locally pure, we remove all universal literals.

We proceed with DP on the outer variables. If at any point
we resolve to the empty clause we stop and the QBF is false.
Otherwise we will remove all clauses containing the outer
variables and this will end with the empty CNF.

The completeness for satisfaction mode and refutational
mode ASP-QRAT follows from the completeness of search
mode ASP-QRAT.

4.3 An Important Difference to QRAT
The main difference with QRAT is that here we fix the quan-
tifiers levels to 3. In general QRAT is able to fit new vari-
ables between the universal variables. It is unclear if this
makes our new system weaker, but it will not affect our re-
sults. Another noticeable difference is that we do not pro-
vide a QRATU rule. This rule is not necessary as we show
completeness without it. These differences mean that QRAT
checkers will be more lenient than the proof system we have
presented here, however since the QBF conversion is correct
(Lemma 2), QRAT checkers will still be sound.

5 P-simulation of ASP-DRUPE
In this section, we show that ASP-QRAT p-simulates ASP-
DRUPE for disjunctive ASPs. This means that any solver
that outputs an ASP-DRUPE proof can convert that proof
further to an ASP-QRAT proof and only receive a polyno-
mial increase in size.

The following lemma is a basic use of ASP-QRAT’s rules.

Lemma 3. The following sets of definition clauses D for
variable e can be added or removed in ASP-QRAT, as long
as e does not appear in formula ϕ.

• If e is an outer variable and defined only on outer vari-
ables, we can use ORATA to add all clauses of D to ϕ, or
ORATE to remove all clauses of D from ϕ ∧D.

• If e is an inner variable, we can use IRATA to add all
clauses of D to ϕ, or IRATE to remove all clauses of D
from ϕ ∧D.
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Proof. The resolvent of any two definition clauses for e is
always a tautology. If e is defined only in the outer variables
the tautology happens over two outer literals.

Example 3. Consider CNF ϕ, where we want to add defini-
tion clauses for a new outer variable n that does not appear
in ϕ. We can add clause C = (n̄ ∨ x̄ ∨ ȳ) via ORATA,
where x and y are outer variables, the side condition is vac-
uously satisfied (no clause of ϕ contains n, so no condition
to check). Adding clauses C1 = (n ∨ x) and C2 = (n ∨ y)
after that is also possible via ORATA. We only have to check
C1 against C: ϕ∧¬(C\{n̄})∧¬C1 = ϕ∧x∧y∧x̄∧n̄ ⊢1 ⊥.
And similarly for C2.

The next lemma proves the main part of the simulation
argument.

Lemma 4. Given a subset of basic loop clauses used in an
ASP-DRUPE proof, we can derive these basic loop clauses
in a polynomial-size ASP-QRAT derivation (polynomial in
the size of the ASP-DRUPE proof).

Proof. We follow the idea from (Kiesl and Seidl 2019).
Given a basic loop clause λ(a, ω), we represent the loop ω
with a corresponding assignment α to the loop slot variables.

We will take the clause ¬a ∨ ¬ua ∨ ¬valid loop ∨∨
b∈Bod(P ) extern(b) along with the definition clauses that

help define the inner literals, valid loop, extern(b) given here
and their definition clauses and so on. We will create a mod-
ified copy of each of these clauses specific to α.

For every inner variable v, we want to replace it with the
new variable vα. To do this we introduce IRATA clauses
(ᾱ ∨ v̄ ∨ vα) and (ᾱ ∨ v ∨ v̄α). ᾱ is a clause because α can
be seen as a conjunction of literals.

To do the replacement, we take ¬a ∨¬ua ∨¬valid loop∨∨
b∈Bod(P ) extern(b) and, for each inner literal l that it con-

tains, we resolve it with (ᾱ ∨ l̄ ∨ lα). l itself is a definition
variable so in its definition clauses we do the same to all
inner literals. Now, lα has a conditional definition under α.

We repeat this for every loop clause. It is essential that
we do this first for every loop clause for w now, while
(ᾱ ∨ v̄ ∨ vα) and (ᾱ ∨ v ∨ v̄α) are available before we
start deleting clauses. After all inner variables are replaced,
we remove all clauses with universal tautologies. We now
delete all clauses that mix inner literals annotated with α
with other inner literals. This severs the resolution paths
from the clauses that contain subclause ᾱ and full replace-
ments of the inner variables, to any clauses with the opposite
universal literals, because all inner variables annotated with
α are only connected resolution path-wise with other liter-
als annotated with α, and all these clauses contain ᾱ, with
no tautologies. In other words among these paths the literals
of ᾱ are pure.

We can then remove all literals of ᾱ from each of these
“annotated” clauses by local purity. And this process can
be repeated for each loop w. This is essentially how QRAT
p-simulates ∀Exp (Kiesl and Seidl 2019).

In our case we are not finished. We need to sim-
plify clause ¬a ∨ ¬valid loopα ∨

∨
b∈Bod(P ) extern(b)α to

¬a ∨
∨

b∈EB(P,w) b. So we need a proof of valid loopα,

¬extern(b)α for every induced body b that is not an exter-
nal body of w and a proof of ¬extern(b)α ∨ b for every
body b that is an external body. The Tseitin variables of
extern(b) depend on both inner and universal variables, in
fact extern(b) = is extern(b) ∧ b, where is extern(b) depends
only on universal variables.

If we look at the α-annotated Tseitin variables that are
defined only on universal variables, since ᾱ is reduced via
local purity we get them as unit clauses, or via unit prop-
agation in the case of nested definitions (Observation 1).
valid loopα is derived via unit propagation in this way. Like-
wise is extern(b)α or its negation are derived from unit prop-
agation depending on whether b is external to w.

Theorem 4. ASP-QRAT in refutation mode p-simulates
ASP-DRUPE.

Proof. We go through the five rules of ASP-DRUPE. For
Completion-Axiom, we already have all ∆ clauses at the start
of the ASP-QRAT proof. For Loop-Axiom, we can generate
all introduced basic loop clauses using Lemma 4. For RUP,
we can simulate it using ATA. For Ext, we use IRATA to add
extension clauses using Lemma 3. Finally, for Deletion, in
refutation mode we can remove clauses for free.

We conjecture that ASP-QRAT (in refutation mode) is ex-
ponentially stronger than ASP-DRUPE. For 3 level QBFs
QRAT is strictly stronger than ∀Exp+Ext Res. The QBF ex-
amples are the Clique-CoClique formulas, which make use
of the law of non-contradiction over a formula describing
a graph. Much like our translation ΨP , Clique-CoClique’s
inner variables are all definitions. ∀Exp+Ext Res requires
an exponential number of clauses from the ∀-expansion of
Clique-CoClique to prove a contradiction, hence the lower
bound (Chew 2018). There are short proofs of these for-
mulas in eFrege +∀red (Beyersdorff et al. 2018) which is
p-simulated by QRAT(Heule, Seidl, and Biere 2014a).

It is unclear how to directly use a semantic QBF lower
bound like this in our ASP setting. Instead of exponentially
many expanded clauses we would want exponentially many
basic loop clauses. One could perhaps find a way to reverse
engineer a similar lower bound into an ASP.

6 Proof Complexity of ASP-QRAT
In this section, we show the conditional optimality of ASP-
QRAT. By conditional optimality, we mean that showing a
super-polynomial lower bound to the shortest proof size of
ASP-QRAT gives an answer to an open problem.

The most important open problem is whether the propo-
sitional proof system extended resolution has a super poly-
nomial lower bound. The way we use this is to link short
extended resolution proofs to short ASP-QRAT proofs.

Note that IRATA works as a rule on propositional for-
mulas, which is called RATA in the DRAT propositional
refutational system (Wetzler, Heule, and Hunt 2014). It is
known that extended resolution and DRAT are equivalent
(Kiesl, Rebola-Pardo, and Heule 2018), but we use a precise
Lemma to link refutation to derivation.
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Lemma 5. Given an propositional formula ϕ ∧ C̄ with an
extended resolution refutation π, there is a series of ATA and
RATA and deletion steps that derive ϕ∧C from ϕ in a proof
of size polynomial in π.

Proof. Replacing resolution steps with ATA steps and exten-
sion steps with RATA steps, we follow the derivation of the
empty clause from ϕ∧¬C. However we weaken all interme-
diate clauses (using ATA) to additionally include all literals
of C. This will create tautologous clauses including clauses
from ¬C, we can remove these without affecting the deriva-
tion. Suppose D1 ∨ x̄ resolves with D2 ∨ x. If C ∨D2 ∨ x
is tautologous then either C ∨ D1 ∨ D2 is tautologous or
x̄ ∈ C ∨D2. In both cases C ∨D1 ∨D2 can be added via
ATA from C ∨D1 ∨ x̄ alone.

When using ASP-QRAT we can use this lemma, but we
again use IRATA instead of RATA.

Theorem 5. If there exists a family of consistent ASPs which
form a super-polynomial-size lower bound for ASP-QRAT
in satisfaction mode, then extended resolution has a super-
polynomial-size lower bound.

Proof. We describe how to construct an ASP-QRAT satis-
faction proof from an answer set α and a series of Ext Res
proofs. First we will detail which extended resolution proofs
are used. Let α be an answer set in the form of a con-
junction of unit clauses (including negative literals for non-
inclusion). ∆Bdef

P is the part of the completion that contains
only definition variables for the induced bodies. Consider
the set of definition clauses ΘP of the inner variables and
let Ca := ¬ua ∨¬valid loop∨

∨
b∈Bod(P ) extern(b) for every

atom a. Each Ca subsumes a compact loop clause.
∆Bdef

P ∧α∧ΘP ∧¬Ca is a contradiction when α(a) = 1,
otherwise a would be minimized by some loop found by the
universal variables, contradicting the fact that α is an answer
set. So by completeness there will be an extended resolution
refutation of ∆Bdef

P ∧ α ∧ ΘP ∧ ¬Ca. If we further assume
that extended resolution does not have a super-polynomial
lower bound, these proofs will be polynomially bounded.

Now we explain how to generate satisfaction ASP-QRAT
proofs from α and the short extended resolution proofs.

1. First we add singleton clauses, using the arbitrary clause
addition that specify the answer set α as we did above.

2. Next we follow each extended resolution proof as a series
of IRATA and ATA additions to derive each Ca for a pos-
itive in α using Lemma 5. Remember that these additions
only need ∆Bdef

P , α and ΘP .
3. Once we subsume the loop clause for a we delete it with

ATE. For a negative in α, subsumption is immediate.
4. We reverse the clause additions for 2. using IRATE and

ATE. The deleted loop clause was never part of the for-
ward derivation so in reverse it is not needed.

5. After these reversals we remove all clauses relating to the
inner variables, since they are only definitions (and thus
removable by IRATE). Only singleton clauses specifying
the answer set and the Clark’s completion clauses remain.

6. By following unit propagation we get singleton clauses
for each of the induced bodies and we add them. Every
clause in the Clark’s completion is satisfied by the assign-
ment from singleton clauses by assumption, this means
every one is subsumed and can be removed with ATE.

7. Finally we are left with a consistent assignment of single-
ton clauses. We can remove each by ORATE.

Theorem 5 is not implied by previous results on QRAT’s
proof complexity. Here we take advantage of the fact that
the third level contains purely definition variables and so we
only have two active quantifier levels. The first level is ∃ and
is given by the answer set and the second is ∀ and where we
use the propositional proofs. For refutation mode we also
get conditional optimality.
Theorem 6. If there exists a family of inconsistent ASPs
which form a super-polynomial-size lower bound for ASP-
QRAT in refutation mode, then extended resolution has a
super-polynomial-size lower bound or NP ⊈ P/poly.

We re-use the argument used to show the proof system
eFrege+∀red has conditional optimality (Beyersdorff et al.
2020). One minor difference here is our self-imposed re-
striction to creating extension variables in-between univer-
sal variables. However we have at our disposal a local pu-
rity rule stronger than the reduction rule (Beyersdorff et al.
2020).

Proof. Assume that NP ⊆ P/poly and that all families of
propositional contradictions have polynomially bounded ex-
tended resolution proofs. Let P be an inconsistent ASP and
consider the QBF ΨP . Let U = {u1, u2, . . . } be the set
of universal variables of ΨP . Since ΨP is false, then each
ui ∈ U has Herbrand function hi. As previously stated in
regard to Observation 2, finding a falsifying loop is an NP
problem, and since NP ⊆ P/poly there are small circuits
that calculate hi. Each circuit is encoded in CNF using def-
inition clauses for each of its gates and, as a result, we ob-
tain an extension variable σi for the output gate of the cir-
cuit that calculates hi. We create extension variables di, for
1 ≤ i ≤ |U |. d1 ⇔ u1 ⊕ σ1. di+1 ⇔ di ∨ (ui+1 ⊕ σi+1).
Firstly, note that when considering these in ASP-QRAT,
these will have to be inner variables. Secondly, note that
these are extension variables that are not just repeated con-
junctions or repeated disjunctions. We can define d1 using
the four clauses (d1∨u1∨σ̄1), (d1∨ū1∨σ1), (d̄1∨ū1∨σ̄1),
(d̄1 ∨ u1 ∨ σ1). We can define di+1 using the five clauses
(d̄i ∨ di+1), (di+1 ∨ ui+1 ∨ σ̄i+1), (di+1 ∨ ūi+1 ∨ σi+1),
(d̄i+1 ∨ di ∨ ūi+1 ∨ σ̄i+1) and (d̄i+1 ∨ di ∨ ui+1 ∨ σi+1).
These clauses, can be added with IRATA, nonetheless.

Let Σ be the set of definition clauses for the extension
variables σu, let D be the set of definition clause for all d
variables and let ϕ be the propositional matrix of ΨP . ϕ ∧
Σ∧D ∧ (d̄|U |) is a propositional contradiction and thus has
a short extended resolution proof.

In our ASP-QRAT proof we can use ORATA to add all Σ
clauses to ϕ, next we use IRATA to add all D clauses. Next,
using Lemma 5 we can add clause (d|U |) to ϕ ∧ Σ ∧ D in
a short process of ATA and IRATA. Now we can delete all
clauses of ϕ. We also delete the “positive” definition clauses
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for each di. For i = 1 these are (d1∨ ū1∨σ1) and (d1∨u1∨
σ̄1) and for i > 1 these are (d̄i∨di+1), (di+1∨ui+1∨σ̄i+1),
(di+1∨ ūi+1∨σi+1). These should be deleted with only the
“negative” definition clauses remaining. This means d̄i only
appears in clauses with dj for j < i.

We will use the derived clause (di+1) to derive (di) and
eventually reach the empty clause after i = 1. We start with
i+ 1 = |U |. We resolve (di+1) with the negative definition
clauses (d̄i+1∨di∨ūi+1∨σ̄i+1), (d̄i+1∨di∨ui+1∨σi+1) to
get (di∨ūi+1∨σ̄i+1) and (di∨ui+1∨σi+1). We now delete
the three antecedents used here. Both (di ∨ ūi+1 ∨ σ̄i+1)
and (di ∨ ui+1 ∨ σi+1) have local purity for the literal ūi+1

and ui+1, respectively. Indeed, the only resolution paths are
through the positive di literals, but these can only continue
through more positive dj literals for j < i and never can
reverse direction. After we reduce the universal literals we
get (di ∨ σ̄i+1) and (di ∨ σi+1), which we resolve together
to get (di). Again we can delete the antecedents.

Once we reach (d1) we resolve with the negative defini-
tions to get (u1 ∨ σ̄1) and (ū1 ∨σ1). These are again locally
pure, so we reduce the universal literals then resolve (σ1)
and (σ̄1) to get the empty clause. Thus we have a polynomi-
ally bounded ASP-QRAT refutation of P .

7 Conclusion
With some help from QBF proof complexity, we proposed a
dual, sound, complete, and conditionally optimal proof sys-
tem for ASP. It will be interesting to see how our proof sys-
tem performs when implemented in an ASP solver. Another
interesting avenue for future research is to extend our system
to certify ASPs with quantifiers (Amendola et al. 2022).
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steiger, C. M. 2007. A first step towards a unified proof
checker for QBF. In SAT 2007, 201–214.
Kiesl, B., and Seidl, M. 2019. QRAT polynomially sim-
ulates ∀Exp+Res. In SAT 2019, volume 11628 of Lecture
Notes in Computer Science, 193–202. Springer.
Kiesl, B.; Rebola-Pardo, A.; and Heule, M. J. 2018. Ex-
tended resolution simulates DRAT. In Automated Rea-
soning: 9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, 516–531.
Springer.
Lin, F., and Zhao, Y. 2004. Assat: computing answer sets
of a logic program by sat solvers. Artificial Intelligence
157(1):115–137. Nonmonotonic Reasoning.
Lonsing, F., and Egly, U. 2018. QRAT+: Generalizing
QRAT by a more powerful QBF redundancy property. In
Galmiche, D.; Schulz, S.; and Sebastiani, R., eds., Auto-
mated Reasoning, 161–177. Cham: Springer International
Publishing.
Marek, V. W., and Truszczynski, M. 1991. Computing inter-
section of autoepistemic expansions. In Nerode, A.; Marek,

V. W.; and Subrahmanian, V. S., eds., Logic Programming
and Non-monotonic Reasoning, Proceedings of the First In-
ternational Workshop, Washington, D.C., USA, July 1991,
37–50. The MIT Press.
Pontelli, E.; Son, T. C.; Baral, C.; and Gelfond, G. 2012.
Answer set programming and planning with knowledge and
world-altering actions in multiple agent domains. In Erdem,
E.; Lee, J.; Lierler, Y.; and Pearce, D., eds., Correct Rea-
soning - Essays on Logic-Based AI in Honour of Vladimir
Lifschitz, volume 7265 of Lecture Notes in Computer Sci-
ence, 509–526. Springer.
Rabe, M. N., and Tentrup, L. 2015. CAQE: A certifying
QBF solver. In FMCAD 2015, 136–143. FMCAD Inc.
Robinson, J. A. 1963. Theorem-proving on the computer.
Journal of the ACM 10(2):163–174.
Slivovsky, F., and Szeider, S. 2014. Variable dependencies
and q-resolution. In Sinz, C., and Egly, U., eds., Theory and
Applications of Satisfiability Testing – SAT 2014, 269–284.
Cham: Springer International Publishing.
Slivovsky, F., and Szeider, S. 2016. Quantifier reordering
for QBF. J. Autom. Reason. 56(4):459–477.
Wetzler, N.; Heule, M.; and Hunt, W. A. 2014. DRAT-trim:
Efficient checking and trimming using expressive clausal
proofs. In SAT 2014, volume 8561 of Lecture Notes in Com-
puter Science, 422–429. Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

263


	Introduction
	Preliminaries
	Proof Complexity
	Propositional Logic
	Quantified Boolean Formulas
	Answer Set Programming

	ASP to QBF
	Loop Slot Variables
	Tseitin Variables and their Definitions

	The ASP-QRAT Proof System
	Initialization and Processing Rules
	Soundness and Completeness of ASP-QRAT
	An Important Difference to QRAT

	P-simulation of ASP-DRUPE
	Proof Complexity of ASP-QRAT
	Conclusion

