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Abstract

We extend the well-known representation theorem for inter-
laced bilattices to the broader class of weak interlaced bi-
lattices. Based on this new theorem, we develop a fixpoint
theory for non-monotone functions over weak infinitarily in-
terlaced bilattices. Our theory generalizes classical fixpoint
constructions introduced by Fitting, as-well-as recent results
in the area of approximation fixpoint theory. We argue that
the proposed theory has direct practical applications: we de-
velop the semantics of higher-order logic programming with
negation under an arbitrary weak infinitarily interlaced bilat-
tice with negation, generalizing in this way recent work on
the three-valued semantics of this formalism. We consider a
line of research, initiated by Fitting, which investigates the
structure of the consistent parts of bilattices in order to obtain
natural generalizations of Kleene’s three-valued logic. We
demonstrate that the consistent parts of bilattices are closely
connected to weak bilattices, generalizing previous results of
Fitting and Kondo.

1 Introduction
The purpose of this paper is to contribute to the research
area of non-monotone fixpoint theory. More specifically,
we extend some classical results of the fixpoint theory of
functions over bilattices (Fitting 2002; Denecker, Marek, and
Truszczyński 2000) to the broader class of functions over
weak bilattices. For this to be achieved, we develop the first,
to our knowledge, representation theorem for weak bilattices,
which forms the basis of our fixpoint theory. Before stating
in detail the contributions of the paper, we outline the rich
and interesting history of non-monotone fixpoint theory, so
as that we present our results in the proper context.

1.1 Non-Monotone Fixpoint Theory
The use of fixpoint theorems for monotone functions over
partially ordered sets, has played a pivotal role in the founda-
tions of programming languages. For example, the semantics
of functional languages is usually presented (Abramsky and
Jung 1995; Gunter 1993; Tennent 1991) using Kleene’s fix-
point theorem for continuous functions over pointed complete
partial orders, while the semantics of (negationless) logic
programming has been developed (van Emden and Kowal-
ski 1976) using the Knaster-Tarski fixpoint theorem (Tarski
1955) for monotone functions over complete lattices.

The situation becomes less clear-cut when there arise ap-
plications that involve some form of non-monotonicity. For
example, the addition of negation in logic programming,

triggered certain fixpoint constructions (van Gelder, Ross,
and Schlipf 1991; van Gelder 1993) that could not be for-
malized with the standard fixpoint machinery for monotone
functions. Similar concerns have arisen due to the introduc-
tion of non-monotonic logics in artificial intelligence such as,
for example, default logic (Reiter 1980) and autoepistemic
logic (Moore 1985). The fixpoint constructions used in the
above applications, were initially ad-hoc and made apparent
the need for an abstract fixpoint theory for non-monotone
functions over partially ordered sets. The pioneer in the de-
velopment of such a theory was Melvin Fitting, who was
the first to create an abstract framework on lattices and op-
erators on lattices in order to capture the various semantic
approaches that had been proposed for non-monotonic logic
programming (Fitting 2002).

Fitting remarked (Fitting 1986) that non-monotone fix-
point constructions already existed in Kripke’s seminal work
on a theory of truth (Kripke 1975), well-before they emerged
in computer science. More specifically, Fitting observed that
in Kripke’s work there actually exist two distinct orderings,
namely the truth ordering and the information ordering. As
a result, Fitting re-formalized Kripke’s work through math-
ematical structures that embody these two orderings. An
appropriate such structure is that of a bilattice, initially in-
troduced in (Ginsberg 1988). Intuitively, a bilattice B is a
structure 〈B,≤t,≤k〉, where B is a non-empty set equipped
with two partial orders ≤t and ≤k, each giving B the struc-
ture of a lattice. The relation ≤t corresponds to the truth
ordering and ≤k to the information ordering. Kripke’s oper-
ators can be thought of as functions F : B → B. Actually,
these functions turn out to be monotone in the ≤k ordering
and (possibly) non-monotone in the ≤t ordering1. Therefore,
Fitting’s work implicitly introduced the following quite gen-
eral and interesting research question, setting the basis for
the development of non-monotone fixpoint theory:

Let B = 〈B,≤t,≤k〉 be a bilattice and let F : B → B
be a function that is monotone with respect to ≤k and
non-monotone with respect to ≤t. Can we characterize
some class of interesting fixpoints of F that are minimal
with respect to ≤t?

Fitting also considered the same question for operators that
arise in the theory of non-monotonic logic programming. He

1As Fitting remarked, one of the reasons that self-reference in
natural languages is such a problem “is that the presence of negation
in the language makes truth revision operators non-monotone with
respect to the ≤t ordering”.
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used the above ideas to characterize the most well-known
existing semantic approaches for logic programming with
negation, as fixpoints of an operator over a bilattice con-
sisting of four truth values (Fitting 2002). Fitting’s ideas
have generated a line of research regarding the interplay
between bilattices and logic programming (see, for exam-
ple, (Loyer and Straccia 2005; Loyer and Straccia 2006;
Straccia 2006)). Fitting’s work, although groundbreaking,
only answers the above question for specific operators that
arise in the context of Kripke’s theory of truth and in non-
monotonic logic programming.

The above problem was considered in a more abstract con-
text in (Denecker, Marek, and Truszczyński 2000), in which
the authors study the special case of bilattices B = 〈B,≤t
,≤k〉whereB = L×L, andL = 〈L,≤〉 is a complete lattice.
They develop a general theory for characterizing an impor-
tant class of ≤t-minimal fixpoints of certain ≤k-monotone
functions of the form F : B → B. This theory is known as
approximation fixpoint theory (AFT) and it has proven quite
influential both in logic programming (Pelov, Denecker, and
Bruynooghe 2007; Antic, Eiter, and Fink 2013; Heyninck,
Arieli, and Bogaerts 2024) and artificial intelligence (Ven-
nekens, Gilis, and Denecker 2006; Strass and Wallner 2015;
Liu and You 2022). AFT was later modified in (Denecker,
Marek, and Truszczynski 2004) to apply to ≤k-monotone
functions of the form F : W → W , where W is the consis-
tent part of a bilattice of the form L× L (a notion that will
be defined in Section 2). Actually, W in this case is weaker
than a bilattice because it is not necessarily a lattice with
respect to the ≤k ordering; therefore the work in (Denecker,
Marek, and Truszczynski 2004) gave a new interesting twist
to the aforementioned research problem. It was subsequently
extended (Charalambidis, Rondogiannis, and Symeonidou
2018) to functions of the form F : W → W , where W is a
restriction of the product L1 × L2, where L1 = 〈L1,≤〉 and
L2 = 〈L2,≤〉 are complete lattices that have a common or-
dering relation≤ and satisfy some order-theoretic restrictions.
This extension was used in (Charalambidis, Rondogiannis,
and Symeonidou 2018) to provide the first well-founded se-
mantics for higher-order logic programming with negation.

1.2 Contributions
The main contribution of the paper is that we solve the afore-
mentioned problem for functions of the form F : W → W ,
where W = 〈W,≤t,≤k〉 is an arbitrary weak interlaced
bilattice (WIBL). WIBLs are a non-trivial extension of bilat-
tices, and their importance in KR was first observed in (Font
and Moussavi 1993) who showed that they can facilitate
reasoning in time-intervals. Fitting (1991) used WIBLs to
generate novel extensions of Kleene’s strong three-valued
logic that allow various levels of inconsistency and incom-
pleteness. Therefore, WIBLs have important applications
beyond traditional bilattices.

Our results generalize all the existing fixpoint construc-
tions mentioned in the previous subsection. The more de-
tailed contributions of the paper, are as follows:

• We extend the well-known representation theorem for in-
terlaced bilattices (Avron 1996) to the class of weak inter-

laced bilattices. Since weak interlaced bilattices generalize
interlaced bilattices, this result has an interest in its own
right.

• We use the new representation theorem to develop a novel
fixpoint theory for non-monotone functions, over weak
infinitarily interlaced bilattices. Our theory generalizes
classical fixpoint constructions for non-monotone func-
tions introduced by Fitting (2002), and recent results
of approximation fixpoint theory (Denecker, Marek, and
Truszczyński 2000; Denecker, Marek, and Truszczynski
2004; Charalambidis, Rondogiannis, and Symeonidou
2018).

• We argue that the proposed theory has direct applications:
we develop the semantics of higher-order logic program-
ming with negation under an arbitrary weak infinitarily
interlaced bilattice with negation, generalizing in this way
recent work (Charalambidis, Rondogiannis, and Syme-
onidou 2018) on the three-valued semantics of this formal-
ism. Our results also extend Fitting’s work (2002, Section
9), who demonstrated that we can define the semantics
of first-order logic programming with negation under any
infinitarily distributive bilattice with negation.

• We consider a line of research, initiated by Fitting (1991),
which investigates the structure of the consistent parts
of bilattices in order to obtain natural generalizations of
Kleene’s three-valued logic. We demonstrate that the con-
sistent parts of bilattices are closely connected to weak
bilattices, generalizing previous results of Fitting (1991,
Section 6) and Kondo (2002).

The rest of the paper is organized as follows. Section 2
contains background on bilattices. Section 3 develops the
new representation theorem and Section 4 uses it in order to
develop the fixpoint theory over weak infinitarily interlaced
bilattices. Section 5 develops a generalized semantics for
higher-order logic programming with negation. Section 6
generalizes existing results on the structure of the consistent
parts of bilattices, and Section 7 gives pointers to future work.

2 Interlaced Bilattices
A partially ordered set (or poset) L = 〈L,≤〉 is a join-
semilattice (respectively, meet-semilattice) if for all x, y ∈ L
there exists a least upper bound (respectively, greatest lower
bound) in L. L is called a lattice if it is both a join-semilattice
and a meet-semilattice. A lattice is bounded if it has a least
element and a greatest element, denoted by 0L and 1L respec-
tively. A lattice 〈L,≤〉 is called complete if for all S ⊆ L,
there exists a least upper bound and a greatest lower bound in
L, denoted by

∨
L S and

∧
L S respectively. Therefore, every

complete lattice is bounded. A join-semilattice is called com-
plete if for all non-empty S ⊆ L, there exists a least upper
bound in L. A complete meet-semilattice is defined similarly.

Given a partially ordered set 〈P,≤〉, every linearly ordered
subset S of P will be called a chain. A partially ordered set
is chain-complete if it has a least element 0P and every chain
S ⊆ P has a least upper bound.
Definition 1. Let P = 〈P,≤〉 and P ′ = 〈P ′,≤′〉 be par-
tially ordered sets and let a function f : P → P ′. Then f is
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called monotone (or order-preserving) if for any x, y ∈ P
such that x ≤ y, f(x) ≤′ f(y).

Two partial orders P = 〈P,≤〉 and P ′ = 〈P ′,≤′〉 are
called isomorphic if there exists an order-preserving bijection
(called an isomorphism) θ : P → P ′. For brevity reasons we

will often write P
θ∼= P ′, or simply P ∼= P ′.

Definition 2. An interlaced bilattice (IBL) is a structure B =
〈B,≤t,≤k〉 such that:

1. 〈B,≤t〉 is a bounded lattice (we denote by ∧t and ∨t the
meet and join operations, and by t and f the greatest and
least elements, respectively).

2. 〈B,≤k〉 is a bounded lattice (we denote by ∧k and ∨k the
meet and join operations, and by> and⊥ the greatest and
least elements, respectively).

3. Each of the four operations ∨t,∧t,∨k,∧k is order-
preserving with respect to both ≤t and ≤k.

If 〈B,≤t〉 and 〈B,≤k〉 are complete lattices and the infini-
tary operations

∨
t,
∧
t,
∨
k, and

∧
k are order-preserving

with respect to both ≤t and ≤k, then B is called an infinitar-
ily interlaced bilattice (or simply, infinitary IBL).
Remark 1. To demonstrate the notion of order-preservation
of an operation with respect to an ordering, consider, for
example, the operation ∨t and the ordering ≤k. If for some
a1, a2, b1, b2 we have a1 ≤k b1 and a2 ≤k b2, then a1 ∨t
a2 ≤k b1 ∨t b2 must hold. For the infinitary case, given two
indexed sets {ai}i∈I and {bi}i∈I with a common indexing
set I , if ai ≤k bi for every i ∈ I , then

∨
t{ai}i∈I ≤k∨

t{bi}i∈I (Fitting 2020, Definition 9.4).
Definition 3. Let L1 = 〈L1,≤L1

〉, L2 = 〈L2,≤L2
〉 be

bounded lattices. Their bilattice product L1 ⊗ L2, is the
tuple 〈L1 × L2,≤t,≤k〉 where for any x1, y1 ∈ L1 and
x2, y2 ∈ L2:
• (x1, x2) ≤t (y1, y2) iff x1 ≤L1

y1 and x2 ≤L2
y2,

• (x1, x2) ≤k (y1, y2) iff x1 ≤L1 y1 and y2 ≤L2 x2.
For any bounded lattices L1 and L2, L1 ⊗ L2 is equal

to L1 � Lop
2 (Fitting 2020, Definition 5.1) where Lop

2 is the
opposite of L2, ie., Pop = 〈P,≥〉 is the opposite partial
order of P = 〈P,≤〉. Therefore, based on Theorem 5.2 from
(Fitting 2020), we have the following proposition:
Proposition 1. Let L1 and L2 be bounded lattices. Then,
L1 ⊗L2 is an IBL. In particular, for any (x1, x2), (y1, y2) ∈
L1 × L2:

1. (x1, x2) ∧t (y1, y2) = (x1 ∧L1 y1, x2 ∧L2 y2),
2. (x1, x2) ∨t (y1, y2) = (x1 ∨L1 y1, x2 ∨L2 y2),
3. (x1, x2) ∧k (y1, y2) = (x1 ∧L1

y1, x2 ∨L2
y2),

4. (x1, x2) ∨k (y1, y2) = (x1 ∨L1
y1, x2 ∧L2

y2).
Also, the pairs (0L1 , 0L2), (1L1 , 1L2), (0L1 , 1L2) and
(1L1 , 0L2) are, respectively, the ≤t-least, ≤t-greatest,
≤k-least and ≤k-greatest elements of L1 × L2.

We also have the infinitary version of the previous propo-
sition. For the next proposition and the rest of the paper
we will denote the first and second selection functions by
[·]1 and [·]2: given any pair (x, y), it is [(x, y)]1 = x and
[(x, y)]2 = y. Moreover, for any set of pairs S, we will write
[S]1 for {x | (x, y) ∈ S} and [S]2 for {y | (x, y) ∈ S}.

⊥

>

f t

⊥

f t

≤t

≤k

≤t

≤k

Figure 1: The IBL FOUR and the WIBL T HREE

Proposition 2. Let L1 and L2 be complete lattices. Then,
L1 ⊗ L2 is an infinitary IBL. In particular, for any S ⊆
L1 × L2:

1.
∧
t S = (

∧
L1

[S]1,
∧
L2

[S]2),
2.

∨
t S = (

∨
L1

[S]1,
∨
L2

[S]2),
3.

∧
k S = (

∧
L1

[S]1,
∨
L2

[S]2),
4.

∨
k S = (

∨
L1

[S]1,
∧
L2

[S]2).
The following is a central result in the theory of bilat-

tices, which is known as the Representation Theorem for
IBLs (Avron 1996, Theorem 4.3).
Theorem 1. Let B be an (infinitary) IBL. Then, there exist
(complete) bounded lattices L1 and L2, unique up to isomor-
phism, such that B is isomorphic to L1 ⊗ L2.

In the following we introduce weak interlaced bilat-
tices (Font and Moussavi 1993), a generalization of interlaced
bilattices.
Definition 4. A weak interlaced bilattice (WIBL) is a struc-
tureW = 〈W,≤t,≤k〉 such that:

1. 〈W,≤t〉 is a bounded lattice (we denote by ∧t and ∨t the
meet and join operations, and, t, f the greatest and least
elements, respectively).

2. 〈W,≤k〉 is a meet-semilattice equipped with a least ele-
ment (we denote by ∧k the meet operation, and⊥ the least
element. Also, we denote by ∨k the join operation, which
may not always be defined).

3. Each of the operations ∨t,∧t,∧k is order-preserving with
respect to both ≤t and ≤k.

4. The operation ∨k is order-preserving if the corresponding
join elements exist.

If 〈W,≤t〉 is a complete lattice and 〈W,≤k〉 is a complete
meet-semilattice, and the infinitary operations

∨
t,
∧
t,
∨
k,

and
∧
k are order-preserving with respect to both ≤t and ≤k,

thenW is called a weak infinitarily interlaced bilattice (or
simply, infinitary WIBL).

It is apparent that any (infinitary) IBL is an (infinitary)
WIBL. Examples of WIBLs are the well-known FOUR and
T HREE depicted in Figure 1. Note that FOUR is also an
(infinitary) IBL.

Two WIBLsW = 〈W,≤t,≤k〉 andW ′ = 〈W ′,≤′t,≤′k〉
are called isomorphic if there exists a bijection (called an
isomorphism) θ : W → W ′ that preserves both orderings.

For brevity reasons we will often writeW
θ∼=W ′, or simply

W ∼=W ′.
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Definition 5. Let W = 〈W,≤t,≤k〉 be a WIBL. W has a
negation if there exists a mapping ¬ : W →W such that

1. if x ≤t y then ¬y ≤t ¬x,
2. if x ≤k y then ¬x ≤k ¬y,
3. ¬¬x = x.

Definition 6. Let W = 〈W,≤t,≤k〉 be a WIBL. W has a
conflation if there exists a mapping − : W →W such that

1. if x ≤t y then −x ≤t −y,
2. if x ≤k y then −y ≤k −x,
3. −− x = x.

The mapping − : W →W will be called a weak conflation
if it satisfies conditions (1) and (2) but not necessarily (3).

Definition 7. LetW = 〈W,≤t,≤k〉 be a WIBL with weak
conflation and let x ∈W . We will say that x is consistent if
x ≤k −x. The set of all consistent elements ofW is denoted
by cons(W).

Remark 2. It is easy to see that given a bounded lattice
L = 〈L,≤〉, the IBL L ⊗ L has a conflation defined as
−(x, y) = (y, x). Moreover, an element (x, y) ∈ L × L
is consistent if and only if x ≤ y. In the rest of the paper,
when writing cons(L ⊗ L) we will mean the consistent part
of L ⊗ L under this conflation.

3 Representation Theorem for WIBLs
Before presenting the Representation Theorem for WIBLs,
we give an intuitive motivation for its construction. The
classical Representation Theorem (Theorem 1) implies that
every IBL B is isomorphic to L1 ⊗ L2 for bounded lat-
tices L1 = 〈L1,≤1〉,L2 = 〈L2,≤2〉. The partial orders
≤t and ≤k of L1 ⊗ L2 are defined over the entire Carte-
sian product L1 × L2. On the other hand, when we con-
sider a WIBL, we can intuitively view it as “an IBL that is
(possibly) missing some elements” and we must somehow
capture this “(possible) non-existence of elements”. Our
Representation Theorem states that every WIBL W is iso-
morphic to the restricted product of two bounded lattices
L1 = 〈L1,≤1〉,L2 = 〈L2,≤2〉, in the sense that the rela-
tions ≤t and ≤k of this product are defined on a relation ≤
that is a subset of L1 × L2. Therefore, this relation must be-
come a vital part of our Representation Theorem (in the case
of IBLs, this relation remains “hidden” because it coincides
with the Cartesian product L1 × L2).

We now introduce the concepts of interlattice structure
and restricted bilattice product, which capture the above
intuition.

Definition 8. Given a partially ordered set 〈P,≤〉 and
L1, L2 ⊆ P , an infinitary (resp., finitary) interlattice struc-
ture is a tuple T = 〈P,L1, L2,≤〉 such that:

1. 〈L1,≤〉 and 〈L2,≤〉 are complete (resp., bounded) lat-
tices.

2. For any b ∈ L2 and any (resp., any finite) S ⊆ L1 such
that x ≤ b for every x ∈ S,

∨
L1
S ≤ b.

3. For any a ∈ L1 and any (resp., any finite) S ⊆ L2 such
that a ≤ x for every x ∈ S, a ≤

∧
L2
S.

We will refer to the properties (2) and (3) of Definition 8 as
the interlattice lub and interlattice glb properties, respectively.
By applying these properties for S = ∅, we have that for any
b ∈ L2 and a ∈ L1, 0L1

≤ b and a ≤ 1L2
. In other words,

0L1
and 1L2

are the least and greatest elements in L1 ∪ L2,
respectively.

Notice that interlattice structures also generalize the notion
of lattices: for any (complete) bounded lattice L = 〈L,≤〉,
the structure 〈L,L,L,≤〉 is an (infinitary) interlattice struc-
ture. As a result, in the rest of the paper, given a (complete)
bounded lattice L, we will assume that it is also an (infinitary)
interlattice structure.

We now define a form of restricted product of an interlat-
tice structure.

Definition 9. Let T = 〈P,L1, L2,≤〉 be an interlattice
structure. Its ≤-restricted bilattice product RBP(T ) is de-
fined as a structure 〈L1×≤ L2,≤t,≤k〉, where L1×≤ L2 =
{(x1, x2) | x1 ∈ L1, x2 ∈ L2, x1 ≤ x2} and for any
(x1, x2), (y1, y2) ∈ L1 ×≤ L2:

• (x1, x2) ≤t (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2,
• (x1, x2) ≤k (y1, y2) if and only if x1 ≤ y1 and y2 ≤ x2.

We will now show that RBP(T ) is a WIBL. Our theorem
relies on the following lemma on the properties of T .

Lemma 3. Let T = 〈P,L1, L2,≤〉 be an infinitary (resp.,
finitary) interlattice structure. Then for any (resp., any finite)
S ⊆ (L1 ×≤ L2):

1.
∨
L1

[S]1 ≤
∨
L2

[S]2 and
∨
t S = (

∨
L1

[S]1,
∨
L2

[S]2).
2.

∧
L1

[S]1 ≤
∧
L2

[S]2 and
∧
t S = (

∧
L1

[S]1,
∧
L2

[S]2).
3. If S is not empty, then

∧
L1

[S]1 ≤
∨
L2

[S]2 and
∧
k S =

(
∧
L1

[S]1,
∨
L2

[S]2).
4. If

∨
L1

[S]1 ≤
∧
L2

[S]2, then
∨
k S =

(
∨
L1

[S]1,
∧
L2

[S]2).

Theorem 2. Let T be an (infinitary) interlattice structure.
Then, RBP(T ) is an (infinitary) WIBL.

We can now state the Representation Theorem, which
shows that the above way of constructing weak interlaced
bilattices is completely general, in the sense that any WIBL
can be constructed as the restricted bilattice product of an
interlattice structure.

Theorem 3 (Representation Theorem for WIBLs). LetW
be an (infinitary) WIBL. Then, there exists a, unique up
to isomorphism, (infinitary) interlattice structure T =
〈P,L1, L2,≤〉 such that L1∪L2 = P , (≤)∩ (L2×L1) = ∅,
andW ∼= RBP(T ).

Note that the properties L1 ∪ L2 = P and (≤) ∩ (L2 ×
L1) = ∅ are stated just to ensure the uniqueness up to iso-
morphism.

We are now going to illustrate the key ideas behind the rep-
resentation theorem by providing a sketch of the construction.
Given a WIBLW = 〈W,≤t,≤k〉, we define L1 = {(1, x) |
x ∈ W,⊥ ≤t x} and L2 = {(2, y) | y ∈ W, y ≤t ⊥}; the
labels 1 and 2 are used to ensure the disjointness of L1 and
L2. We also introduce the following ordering within L1∪L2:

• (1, x) ≤ (1, y) if and only if x ≤t y.
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(1,⊥)

(2,⊥)

(2, f)

(1, t)

L1 L2

(
(1,⊥), (2,⊥)

)

(
(1,⊥), (2, f)

)(
(1, t), (2,⊥)

)

≤t

≤k

Figure 2: An interlattice structure T and the corresponding
RBP(T ) that is isomorphic to WIBL T HREE . Arrows in T
correspond to the relation ≤ and the nodes of RBP(T ) are the
solid arrows between L1 and L2.

• (2, x) ≤ (2, y) if and only if x ≤t y.
• (1, x) ≤ (2, y) if and only if there is a w ∈ W such that
w ∨t ⊥ = x and w ∧t ⊥ = y.

Based on the above construction, it is then proved that T =
〈L1∪L2, L1, L2,≤〉 is an interlattice structure and RBP(T )
is isomorphic toW .

For example, for the weak bilattice T HREE , depicted in
Figure 1, it is L1 = {(1,⊥), (1, t)}, L2 = {(2,⊥), (2, f)}
and the ordering as depicted in Figure 2.
Remark 3. When Theorem 3 is used for some infinitary IBL
B = 〈B,≤t,≤k〉, we would have a ≤ b for every a ∈ L1

and b ∈ L2. In this case, the restricted bilattice product is
the same as the bilattice product. Thus, B is isomorphic to
〈L1,≤〉⊗ 〈L2,≤〉. Therefore, we get Theorem 1 as a special
case.

4 A Fixpoint Theory for WIBLs
In this section we develop a fixpoint theory for functions
of the form F : W → W , where W = 〈W,≤t,≤k〉 is an
arbitrary infinitary WIBL. We assume that F is≤k-monotone
but not necessarily≤t-monotone. Our goal is to find a special
class of fixpoints of F that are ≤t-minimal. In particular, we
target at those fixpoints that in the bibliography (Fitting 2002;
Denecker, Marek, and Truszczyński 2000) are usually termed
stable fixpoints, and the ≤k-minimum among them is called
the well-founded fixpoint. Such fixpoints have a long and
interesting history that has its roots in the non-monotonic
extensions of logic programming (van Gelder, Ross, and
Schlipf 1991; van Gelder 1993).

The research in this area was initially centered around func-
tions F : B → B, where B = 〈B,≤t,≤k〉 is an infinitary
IBL (Fitting 2002; Denecker, Marek, and Truszczyński 2000).
Actually, the work in (Denecker, Marek, and Truszczyński
2000) considers the special case of infinitary IBLs of the
form L ⊗ L, where L is a complete lattice; it turns out
that such bilattices have a special intuitive appeal. In (De-
necker, Marek, and Truszczynski 2004), the development
of consistent approximation fixpoint theory was initiated,
which aimed at finding the fixpoints of functions of the form
F : cons(L ⊗ L) → cons(L ⊗ L), where L is a complete
lattice. Using the notation of the present paper (Remark 2),
the theory of (Denecker, Marek, and Truszczynski 2004) ac-
tually aims at finding the fixpoints of functions of the form

F : L×≤ L→ L×≤ L where L×≤ L is the underlying set
of RBP(L). Similarly, the work in (Charalambidis, Rondo-
giannis, and Symeonidou 2018) considers the fixpoints of
functions of the form F : L1 ×≤ L2 → L1 ×≤ L2 for some
special form of interlattice structure T = 〈P,L1, L2,≤〉.

Our present work genuinely generalizes the existing works
in several respects. It is, to our knowledge, the only work that
considers the general case of functions over the whole class
of infinitary WIBLs. Notice that the domains of the approxi-
mating functions that are studied in (Denecker, Marek, and
Truszczynski 2004) and (Charalambidis, Rondogiannis, and
Symeonidou 2018), actually are infinitary WIBLs of special
forms (see also our forthcoming discussion in Section 6).

Certain definitions and results stated in this section are
generalizations of corresponding definitions and results
in (Charalambidis, Rondogiannis, and Symeonidou 2018;
Denecker, Marek, and Truszczynski 2004). These general-
izations are necessary because the proposed fixpoint theory
applies to arbitrary WIBLs. Moreover, Proposition 9, Theo-
rem 6, Corollary 12, Proposition 14, and Proposition 13, are
novel and reflect the fact that our fixpoint theory concerns
functions defined over general WIBLs. In particular, we draw
attention to the significance of Theorem 6 and Corollary 12,
which ensure that our fixpoint construction is well-defined.
At the heart of our development, we use our representation
theorem (Theorem 3) to represent a given infinitary WIBLW
as RBP(T ) for some infinitary interlattice structure T . The-
orem 6 and Corollary 12 ensure that if we choose any other
isomorphic representation RBP(T ′) of W for a different
interlattice structure T ′, our fixpoint theory will produce the
same fixpoints as the fixpoints produced under the interlattice
structure T .

We now proceed to the technical presentation of the pro-
posed fixpoint theory. Let W = 〈W,≤t,≤k〉 be an infini-
tary WIBL and let F : W → W be a ≤k-monotone func-
tion. By Theorem 3, there exists a, unique up to isomor-
phism, interlattice structure T = 〈P,L1, L2,≤〉 such that

L1 ∪L2 = P , (≤)∩ (L2 ×L1) = ∅, andW
θ∼= RBP(T ) =

〈L1 ×≤ L2,≤t,≤k〉. The first step in the development of
our fixpoint theory, is to “transform” F : W →W to a func-
tion f : (L1 ×≤ L2)→ (L1 ×≤ L2). More specifically, we
define f = θ ◦ F ◦ θ−1. It can easily be verified, using the
fact that θ is an isomorphism, that f is indeed a function in
(L1 ×≤ L2)→ (L1 ×≤ L2). Moreover, it is trivial to verify
that f is also ≤k-monotone. In other words, f is intended
to “behave in the same way as F ” in the domain L1 ×≤ L2

which is isomorphic to our initial domain W .
Using the interlattice properties of the infinitary interlattice

structure T , it follows that for all x ∈ L1 and y ∈ L2,
0L1
≤ y and x ≤ 1L2

. In particular, L1 ×≤ L2 is non-empty
since (0L1

, 1L2
) ∈ L1 ×≤ L2. Given a ∈ L1 and b ∈ L2,

we write [a, b]L1
= {x ∈ L1 | a ≤ x ≤ b}. Symmetrically,

[a, b]L2
= {x ∈ L2 | a ≤ x ≤ b}.

Proposition 4. For all a ∈ L1 and b ∈ L2, 〈[0L1
, b]L1

,≤〉
and 〈[a, 1L2

]L2
,≤〉 are complete lattices.

In the rest of this section, we allow the given function f to
appear free in most definitions and results.
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The notion of f -reliability gives an initial restriction on
the pairs that will participate in the chains that will lead to
the well-founded fixpoint of f . This notion is an extension
of the corresponding notion introduced in (Denecker, Marek,
and Truszczynski 2004).
Definition 10. The pair (a, b) ∈ L1 ×≤ L2 will be called
f -reliable if (a, b) ≤k f(a, b).
Proposition 5. Let (a, b) ∈ L1 ×≤ L2 and assume that
(a, b) is f -reliable. Then, for every x ∈ [0L1 , b]L1 , it holds
0L1 ≤ [f(x, b)]1 ≤ b. Moreover, for every x ∈ [a, 1L2 ]L2 , it
holds a ≤ [f(a, x)]2 ≤ 1L2 .

The above proposition implies that for every f -reliable
pair (a, b), the restriction of [f(·, b)]1 to [0L1 , b]L1 and the
restriction of [f(a, ·)]2 to [a, 1L2 ]L2 are ≤-monotone func-
tions [0L1 , b]L1 → [0L1 , b]L1 and [a, 1L2 ]L2 → [a, 1L2 ]L2

on these intervals. Since by Proposition 4 we know that
〈[0L1

, b]L1
,≤〉 and 〈[a, 1L2

]L2
,≤〉 are complete lattices, the

functions [f(·, b)]1 and [f(a, ·)]2 have least fixpoints in
these lattices. We define b↓ = lfp([f(·, b)]1) and a↑ =
lfp([f(a, ·)]2). In the following, we will call the function
mapping the f -reliable pair (a, b) to (b↓, a↑), the stable re-
vision operator of f . We will denote this mapping by Cf ,
namely:

Cf (x, y) = (y↓, x↑) = (lfp([f(·, y)]1), lfp([f(x, ·)]2))

We would like Cf to return elements of L1 ×≤ L2 when
applied to reliable pairs of L1 ×≤ L2. This is ensured by the
following proposition:
Proposition 6. For every f -reliable pair (a, b), b↓ ≤ b, a ≤
a↑ ≤ b, and (b↓, a↑) ∈ L1 ×≤ L2.

In order to obtain the ≤k-least fixpoint of Cf , we will
create a chain of pairs from L1 ×≤ L2 ordered with respect
to ≤k. In order to ensure that at each step of the iteration
the chain indeed increases with respect to ≤k, we need the
notion of f -prudent pairs initially introduced in (Denecker,
Marek, and Truszczynski 2004).
Definition 11. An f -reliable pair (a, b) is f -prudent if
a ≤ b↓.

The following proposition establishes the fact that by it-
erating Cf over an f -prudent pair, we obtain an f -prudent
pair.
Proposition 7. Let (a, b) ∈ L1 ×≤ L2 be f -prudent. Then,
(a, b) ≤k (b↓, a↑) and (b↓, a↑) is f -prudent.

The following proposition ensures that Cf is≤k-monotone
over the set of prudent elements.
Proposition 8. Let f : (L1 ×≤ L2) → (L1 ×≤ L2) be a
≤k-monotone function and let (a, b), (c, d) ∈ L1 ×≤ L2. If
(a, b) is f -reliable, (c, d) is f -prudent and if (a, b) ≤k (c, d),
then (b↓, a↑) ≤k (d↓, c↑).

We are now almost ready to create the increasing≤k-chain
that will lead us to the ≤k-least fixpoint of Cf . We must have
some guarantee that such a chain has a limit. In previous
work, this was ensured by (Denecker, Marek, and Truszczyn-
ski 2004, Proposition 2.3) and (Charalambidis, Rondogiannis,
and Symeonidou 2018, Proposition 12), respectively; both

of these propositions worked for restricted cases of infinitary
WIBLs. Since we are dealing with arbitrary infinitary WIBLs,
we need a more general result.

Proposition 9. LetW = 〈W,≤k,≤t〉 be an infinitary WIBL.
Then 〈W,≤k〉 is a chain-complete partial order.

The following result ensures that f -prudence is preserved
at the limit of a chain of f -prudent pairs.

Proposition 10. Let f : (L1 ×≤ L2) → (L1 ×≤ L2) be a
≤k-monotone function and let {(aκ, bκ)}κ<λ, where λ is an
ordinal, be a chain of f -prudent pairs from L1 ×≤ L2. Then,∨
k{(aκ, bκ)}κ<λ, is f -prudent.

All the previous results imply the following theorem.

Theorem 4. Let f : (L1 ×≤ L2) → (L1 ×≤ L2) be a ≤k-
monotone function. The set of f -prudent elements of L1 ×≤
L2 is a chain-complete poset under ≤k with least element
(0L1 , 1L2). The stable revision operator is a well-defined,
increasing and monotone operator in this poset, and therefore
it has a least fixpoint which is f -prudent and can be obtained
as the limit of the following sequence:

(a0, b0) = (0L1
, 1L2

)
(aλ+1, bλ+1) = Cf (aλ, bλ)
(aλ, bλ) =

∨
k{(aκ, bκ) : κ < λ},

for limit ordinal λ

Every fixpoint of Cf is also a fixpoint of f as the following
proposition suggests. These fixpoints will be called the stable
fixpoints of f .

Proposition 11. If (x, y) is a fixpoint of Cf then it is a fix-
point of f .

In particular, the fixpoint of Cf specified by the iterative
procedure of Theorem 4 will be called the well-founded
fixpoint of f . Actually, every stable fixpoint of f is a
≤t-minimal pre-fixpoint of f as the following theorem sug-
gests and therefore it is a≤t-minimal fixpoint by the previous
proposition.

Theorem 5. Every fixpoint of the stable revision operator
Cf is a ≤t-minimal pre-fixpoint of f .

The first step that we followed in the development of our
fixpoint theory, was to transform F : W →W to a function
f : (L1 ×≤ L2) → (L1 ×≤ L2), where L1, L2 are the lat-
tices implied by the interlattice structure T = 〈P,L1, L2,≤〉
provided by the representation theorem. However, it is not
immediately obvious what would happen if we transformed
F : W →W to a function f ′ : (L′1 ×≤ L′2)→ (L′1 ×≤ L′2),
for some interlattice structure T ′ = 〈P ′, L′1, L′2,≤′〉, where
RBP(T ′) is isomorphic to RBP(T ). The following theo-
rem and corollary suggest that there is a bijection between
the fixpoints of Cf and Cf ′ and corresponding fixpoints are
mapped to the same element of W .

Theorem 6. Let T = 〈P,L1, L2,≤〉 and T ′ =
〈P ′, L′1, L′2,≤′〉 be infinitary interlattice structures such that

RBP(T )
η∼= RBP(T ′) and let f : L1 ×≤ L2 → L1 ×≤ L2,

f ′ : L′1 ×≤ L′2 → L′1 ×≤ L′2 be ≤k-monotone operators. If
η ◦ f = f ′ ◦ η then η ◦ Cf = Cf ′ ◦ η.
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Corollary 12. LetW = 〈W,≤t,≤k〉 be an infinitary WIBL
and F : W →W be a ≤k-monotone function. Let T and T ′

be infinitary interlattice structures such thatW
θ∼= RBP(T )

andW
θ′∼= RBP(T ′) and let η = θ′ ◦ θ−1 an isomorphism

between RBP(T ) and RBP(T ′). Let f = θ ◦ F ◦ θ−1 and
f ′ = θ′ ◦F ◦ θ′−1. Then, (x, y) is a fixpoint of Cf if and only
if η(x, y) is a fixpoint of Cf ′ .

The above corollary suggests that if we start with a given
F : W →W , the stable and well-founded fixpoints are inde-
pendent of the choice of f . Therefore, we can talk unambigu-
ously about the stable fixpoints of F and the well-founded
fixpoint of F , respectively.

We now examine how the theory developed in this sec-
tion generalizes the fixpoint theories developed in (De-
necker, Marek, and Truszczyński 2000; Denecker, Marek,
and Truszczynski 2004; Charalambidis, Rondogiannis, and
Symeonidou 2018). First, notice that the construction of
(Charalambidis, Rondogiannis, and Symeonidou 2018) gen-
eralizes the construction of (Denecker, Marek, and Truszczyn-
ski 2004). Therefore, it suffices to compare our approach
with (Denecker, Marek, and Truszczyński 2000) and (Char-
alambidis, Rondogiannis, and Symeonidou 2018).

Proposition 13. Let F be a consistent approximating op-
erator in the sense of (Charalambidis, Rondogiannis, and
Symeonidou 2018, Definition 22). Then, (x, y) is a fixpoint
of ĈF under the theory developed in (Charalambidis, Rondo-
giannis, and Symeonidou 2018, Appendix C), if and only if
(x, y) is a fixpoint of CF under the proposed approach.

Finally, the following proposition demonstrates that the
proposed approach also generalizes the fixpoint technique
of (Denecker, Marek, and Truszczyński 2000).

Proposition 14. Let L = 〈L,≤〉 be a complete lattice and
let F : (L × L) → (L × L) be an approximating operator
in the sense of (Denecker, Marek, and Truszczyński 2000,
Definition 13). Then, (x, y) is a fixpoint of ĈF under the
approximation fixpoint theory developed in (Denecker, Marek,
and Truszczyński 2000), if and only if (x, y) is a fixpoint of
CF under the proposed approach.

5 WIBLs and Higher-order Logic
Programming

In this section we demonstrate that we can use the theory
developed in this paper to give a general semantics to higher-
order logic programming with negation. More specifically,
we develop the semantics of higher-order logic programming
with negation under an arbitrary infinitary WIBL with nega-
tion, generalizing in this way recent work (Charalambidis,
Rondogiannis, and Symeonidou 2018) on the three-valued
semantics of this formalism. Our results also extend Fitting’s
work (Fitting 2002, Section 9), who demonstrated that we
can define the semantics of first-order logic programming
with negation under any infinitarily distributive bilattice with
negation.

Before we discuss about higher-order logic programming,
we define some standard ways for constructing WIBLs. The

results that follow will be used in the recursive construction
of the domain of types and the semantics of higher-order
logic programming.

Our first result, Proposition 15, suggests that the Cartesian
product of WIBLs is also a WIBL. The latter result, Corol-
lary 16, states that given a non-empty set I and a WIBLW ,
the function space I →W is also a WIBL.

Proposition 15. Let I be a non-empty set and {Wi}i∈I be
a set of (infinitary) WIBLs indexed by I andWi = 〈Wi,≤t,i
,≤k,i〉. Then, W = Πi∈IWi = 〈Πi∈IWi,≤t,≤k〉 where
≤t and ≤k are defined pointwisely, is also an (infinitary)
WIBL. Moreover, if everyWi has negation then Πi∈IWi also
has negation defined pointwisely.

Corollary 16. Let I be a non-empty set and W be an (in-
finitary) WIBL. The function space I →W is an (infinitary)
WIBL. Moreover, ifW has negation, I →W also has nega-
tion.

Let W and W ′ be WIBLs. We denote by [W → W ′]
the set consisting of all ≤k-monotone functions from the
underlying set ofW to the underlying set ofW ′, equipped
with the pointwise orderings.

Proposition 17. LetW andW ′ be (infinitary) WIBLs. Then,
[W →W ′] is also an (infinitary) WIBL. Moreover, ifW ′ has
negation, [W →W ′] also has negation.

We now proceed to the semantics of higher-order logic
programming with negation. Our starting point is (Char-
alambidis, Rondogiannis, and Symeonidou 2018), where
the higher-order logic HOL was defined and a fragment
of clauses of HOL was considered as a higher-order logic
programming language. In the rest of this section we demon-
strate how the semantics of (Charalambidis, Rondogiannis,
and Symeonidou 2018) can be extended in the wider context
of infinitary WIBLs. We assume that the reader has some
familiarity with the material in (Charalambidis, Rondogian-
nis, and Symeonidou 2018): although we outline some of the
basic notions from the aforementioned paper, our exposition
is restricted due to space limitations.

We start by defining the types ofHOL.

Definition 12. The types ofHOL are defined as:

π := o | ρ→ π

ρ := ι | π

where o is the base Boolean type, ι is the base individual type,
π is a predicate type, and ρ is an argument type.

The semantics of types as defined in (Charalambidis, Ron-
dogiannis, and Symeonidou 2018) interprets the base type
o as the set {false, true,⊥} and ι as a non-empty set D of
individuals. Our framework allows us to define the semantics
of types ofHOL with respect to an arbitrary infinitary WIBL
with negation.

Definition 13. Let D be a non-empty set and let W be a
WIBL with negation. For every type π, the set of meanings of
type π with respect toW and D, is denoted by JπKW,D and
defined as follows:

• JoKW,D =W
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• Jι→ πKW,D = D → JπKW,D
• Jπ1 → π2KW,D = [Jπ1KW,D → Jπ2KW,D]

Notice that since T HREE is actually an infinitary WIBL
with negation, we can take W = T HREE and an non-
empty D in the above definition. As an example, the domain
Jo → oKT HREE,D is exactly the ≤k-monotone functions
from T HREE to T HREE . Therefore, the definition of the
semantics of types of (Charalambidis, Rondogiannis, and
Symeonidou 2018) is a special case of Definition 13.

The following proposition, which generalizes Proposition 1
of (Charalambidis, Rondogiannis, and Symeonidou 2018),
suggests that the meaning of every predicate type is an infini-
tary WIBL with negation.

Proposition 18. Let D be a non-empty set andW an infini-
tary WIBL with negation. Then, for every type π, JπKW,D is
an infinitary WIBL with negation.

We will denote by ≤t,π , ≤k,π the orderings of JπKW,D.

Definition 14. The set of expressions ofHOL is defined as
follows:

• Every variable (respectively, constant) of type ρ is an ex-
pression of type ρ; the constants false and true are
expressions of type o.

• If E1 is an expression of type ρ→ π and E2 is an expres-
sion of type ρ, then (E1 E2) is an expression of type π. If
R is an argument variable of type ρ and E is an expression
of type π, then (λR.E) is an expression of type ρ→ π. If
E is an expression of type o and R is a variable of type ρ
then (∃ρRE) is an expression of type o.

• If E1,E2 are expressions of type π, then (E1

∧
π E2) and

(E1

∨
π E2) are expressions of type π. If E is an expression

of type π, then (¬πE) is an expression of type π. If E1,E2

are expressions of type ι, then (E1 ≈ E2) is an expression
of type o.

The notions of free and bound variables of an expression
are defined as usual. An expression is called closed if it does
not contain any free variables.

The notions of an interpretation and a state ofHOL, can
be defined in an analogous way as in (Charalambidis, Ron-
dogiannis, and Symeonidou 2018, Definitions 6 and 7). The
semantics of expressions ofHOL is straightforward (Char-
alambidis, Rondogiannis, and Symeonidou 2018, see Defi-
nition 8). The semantics of the logical constant symbols ¬π ,
∨π, and ∧π can be defined directly using the corresponding
operations in the WIBL with negation: ¬π is interpreted by
the negation operation of the WIBL,∨π by the operation∨t,π ,
and ∧π by the operation ∧t,π that correspond to the WIBL of
the elements of type π (see Corollary 16 and Proposition 17).

Based on the above remarks, the following lemma gen-
eralizes Lemma 1 of (Charalambidis, Rondogiannis, and
Symeonidou 2018) and its proof is analogous. It implies that
the meanings of expressions of HOL, are elements of the
corresponding WIBL.

Lemma 19. LetD be a non-empty set andW be an infinitary
WIBL with negation. Let E be an expression ofHOL of type
π. Moreover, let s be a state and let I be an interpretation.
Then, JEKs(I) ∈ JπKW,D.

The authors of (Charalambidis, Rondogiannis, and Syme-
onidou 2018) consider a fragment ofHOL and study it as a
higher-order logic programming language. AHOL program
is a finite set of clauses of the form p ←π E, where p is a
predicate constant of type π and E is a closed expression
also of type π. The semantics of such programs is defined
using Herbrand interpretations, (Charalambidis, Rondogian-
nis, and Symeonidou 2018, see Definition 16). The notion of
Herbrand interpretation easily extends in our setting: since
our semantics is defined relatively to a WIBL with negation,
sayW , a Herbrand interpretation I of a program P assigns to
each predicate constant p of type π, an element of JπKW,UP

,
where UP is the Herbrand universe of program P. Let us
denote byHP,W the set of Herbrand interpretations of a pro-
gram P relatively toW . The notion of a Herbrand model of
a program is defined as follows.
Definition 15. Let P be a program andW an infinitary WIBL
with negation. Then, a Herbrand interpretation I ∈ HP,W
will be called a Herbrand model of P if for all clauses p←π E
of P, it holds JEK(I) ≤t,π I(p).

We then have the following generalization of Proposition 6
of (Charalambidis, Rondogiannis, and Symeonidou 2018).
Proposition 20. Let P be a program and W an infinitary
WIBL with negation. Then,HP,W is an infinitary WIBL with
negation.

We can now apply the fixpoint theory of Section 4. The
function on which the theory will be applied, is the immediate
consequence operator of a given program.
Definition 16. Let P be a program andW an infinitary WIBL
with negation. The immediate consequence operator of P
with respect to W is the function ΨP,W : HP,W → HP,W
that is defined for every p of type π of P as: ΨP,W(I)(p) =∨
t,π{JEK(I) | (p←π E) ∈ P}.
The following proposition, which is well-known for clas-

sical logic programs (Lloyd 1987, Proposition 6.4), now
extends to our more general framework.
Proposition 21. Let P be a program andW be an infinitary
WIBL with negation. A Herbrand interpretation I ∈ HP,W
is a Herbrand model of P iff ΨP,W(I) ≤t I.

The immediate consequence operator is≤k-monotone over
the set of Herbrand interpretations.
Proposition 22. Let P be a program and W an infinitary
WIBL with negation. Then, ΨP,W : HP,W → HP,W is ≤k-
monotone.

By Theorem 5, ΨP,W has a well-founded fixpoint, which
is a ≤t-minimal fixpoint of ΨP,W . By Proposition 21, this is
also a Herbrand model of program P, which we can take as
its intended model.

The above discussion generalizes the material in (Char-
alambidis, Rondogiannis, and Symeonidou 2018): the main
results of the aforementioned paper can be obtained if we
considerW to be the infinitary WIBL T HREE . Moreover,
in the special case where the infinitary WIBLW coincides
with the IBL FOUR, our approach provides a four-valued
semantics for higher-order logic programming with negation,
which is of interest in its own right.
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6 WIBLs as Consistent Parts of IBLs
In this section we extend a line of research that was initi-
ated in (Fitting 1991, Section 6). Given a bilattice B =
〈B,≤t,≤k〉 with (weak) conflation, we write CONS(B) =
〈cons(B),≤t,≤k〉, where ≤t and ≤k are the restrictions of
the corresponding relations of B. Fitting considered the ques-
tion of characterizing the structure of CONS(B). The mo-
tivation behind Fitting’s investigation was to obtain natural
generalizations of Kleene’s multiple-valued logics (Kleene
1952). In particular, Fitting wondered which such generaliza-
tions could result as the consistent parts of bilattices. This is
an important question because it can lead to new and possibly
unexpected extensions of Kleene’s logics.

To achieve that goal, Fitting introduced in (Fitting 1991)
an interval construction over a lattice L = 〈L,≤〉, which
he defined as K(L) = {[a, b] | a, b ∈ L, a ≤ b} where
[a, b] = {x | a ≤ x ≤ b}. In (Kondo 2002, Section 4), an
isomorphic formulation of Fitting’s interval construction is
given, based on a restricted subset of the Cartesian product
L×L. In our terminology, Kondo’s formulation corresponds
to the following:

Definition 17. Let L be a complete lattice. The interval
construction of L is the structure RBP(L).

Fitting established the following two theorems in (Fitting
1991, Theorem 6.1, Theorem 6.2):

Theorem 7. Let L be a complete lattice with an order re-
versing involution. There exists an IBL B with negation and
conflation such that RBP(L) ∼= CONS(B).

Theorem 8. Let B be a distributive bilattice with a negation
and conflation that commute. Then there exists a complete
and distributive lattice L such that RBP(L) ∼= CONS(B).

The above results suggest that there exists a strong connec-
tion between the consistent parts of bilattices with conflation
and weak bilattices of the form RBP(L). This connection
was additionally strengthened by Kondo, with the following
two results (Kondo 2002, Theorem 3, Theorem 4) (adapted
in our terminology):

Theorem 9. Let L be a bounded lattice. Then, there exists
an IBL B with conflation such that RBP(L) ∼= CONS(B).

Theorem 10. Let B be an IBL with conflation. Then, there
exists a lattice L such that RBP(L) ∼= CONS(B).

Remark 4. Notice that in all the above theorems, CONS(B)
is a WIBL of the form RBP(L). As proven by Kondo (2002,
page 37), there exist WIBLs that are not of the form RBP(L).

In the following, we extend the above results to the case
where CONS(B) is a weak bilattice of the form RBP(T ),
for some interlattice structure T . Since, by Theorem 3, ev-
ery WIBL can be written in the form RBP(T ), our results
address the whole class of WIBLs. It turns out that in order
for CONS(B) to have this more general form, B must have
weak conflation (instead of standard conflation).

Lemma 23. Let B = 〈B,≤t,≤k〉 be an (infinitary) IBL with
weak conflation such that cons(B) is closed under (infinitary)∨
t and

∧
t. Then, CONS(B) is an (infinitary) WIBL.

Theorem 11. Let T be an infinitary interlattice structure.
There exists an infinitary IBL B with weak conflation such
that cons(B) is closed under infinitary

∨
t and

∧
t and

RBP(T ) ∼= CONS(B).

Our second result is the converse of Theorem 11.

Theorem 12. Let B be an (infinitary) IBL with weak confla-
tion such that cons(B) is closed under (infinitary)

∨
t and∧

t. Then, there exists an (infinitary) interlattice structure T
such that RBP(T ) ∼= CONS(B).

Notice that if B is an (infinitary) IBL with standard confla-
tion, then cons(B) is closed under (infinitary)

∨
t and

∧
t (see

for example (Fitting 2006)). Therefore, the above proposition
is valid without the closure assumption in the case of IBLs
with standard conflation (and therefore Theorem 12 applies
to a broader class of IBLs compared to Theorem 10).

Our results strengthen the connections between weak bi-
lattices and the consistent parts of bilattices, and contribute
to Fitting’s program whose initial motivation (Fitting 1991)
was the discovery of novel extensions of Kleene’s logics.

7 Future Work
The results of the present paper provide a general tool that
can be used in several non-monotonic applications. Since
our framework generalizes the results of (Denecker, Marek,
and Truszczyński 2000; Denecker, Marek, and Truszczynski
2004; Charalambidis, Rondogiannis, and Symeonidou 2018),
it can potentially be used in contexts where the existing re-
sults fall short. For example, as shown in Section 5, a new
semantics can be defined for higher-order logic programming
with negation based on different infinitary WIBLs. One such
example is the case of four-valued semantics for higher-order
logic programming with negation, which deserves special
attention as it generalizes the classical four-valued semantics
of first-order logic programming with negation (Fitting 2002;
Denecker, Marek, and Truszczyński 2000).

An alternative fixpoint theory for non-monotone func-
tions, was developed in (Ésik and Rondogiannis 2015;
Charalambidis, Chatziagapis, and Rondogiannis 2020): func-
tions defined over lexicographic lattice structures are con-
sidered, and if they satisfy some natural properties, they
are shown to possess a least fixpoint. This theory has been
used to provide an infinite-valued semantics for higher-order
logic programming with negation (Charalambidis, Ésik, and
Rondogiannis 2014). It would be interesting to investigate
whether there exist connections between WIBLs and lexico-
graphic lattice structures as-well-as between the two corre-
sponding non-monotone fixpoint theories.
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