
Ontology-Based Query Answering over Datalog-Expressible Rule Sets is
Undecidable

David Carral1 , Lucas Larroque2 , Michaël Thomazo2

1LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France
2Inria, DI ENS, ENS, CNRS, PSL University, Paris, France
{david.carral, lucas.larroque, michael.thomazo}@inria.fr,

Abstract

Ontology-based query answering is a problem that takes as
input an ontology R (typically expressed by existential rules),
a set F of facts, and a Boolean conjunctive query (CQ) q, and
asks whether R,F |= q. This problem is undecidable in gen-
eral, and a widely investigated approach to tackle it in some
cases is query rewriting: given some “rule query” ⟨R, q⟩, we
compute a Boolean query qR such that, for any fact set F ,
it holds that R,F |= q if and only if F |= qR. Insofar,
previous work has mostly focused on output queries qR ex-
pressed as union of Boolean conjunctive queries (UCQs), and
an effective algorithm that computes such a query qR when-
ever it exists has been proposed in the literature. However,
UCQ-rewritability is not a very general notion and many real-
world interesting rule queries do no admit UCQ-rewritings.
This raises the question whether such a generic algorithm can
be designed for a more expressive target language, such as
datalog. We solve this question by the negative, by study-
ing the difference between datalog-expressibility and datalog-
rewritability. More precisely, we show that query answering
under datalog-expressible rule queries is undecidable.

1 Introduction
Efficiently accessing data is an important step in many real-
world applications. Ontologies have been identified as an
important tool to help a user to express their information
needs, allowing them to use a vocabulary they are famil-
iar with, while enabling a system to perform automated rea-
soning, leading to more complete answers. Ontology-based
query answering (OBQA) is a core problem therein, where a
set of facts is queried while taking into account the domain
knowledge expressed in an ontology. These ontologies may
be expressed in a variety of formalisms, such as Description
Logics or existential rules. The OBQA problem is typically
framed as, given a fact set F , an ontology R, and a Boolean
CQ q, check if F ,R |= q, where |= denotes the classical
first-order logic entailment.

This problem is undecidable when the ontology can range
over any set of existential rules. Thus, a lot of research has
focused on finding decidable and even tractable classes of
rule sets; see (Mugnier and Thomazo 2014) for an introduc-
tion to these. Particularly relevant to us are classes based
on the so-called query rewriting approach. Given an ontol-
ogy R and a Boolean CQ q, one computes a Boolean UCQ
qR such that for any fact set F , it holds that F ,R |= q if

and only if F |= qR. As most data is stored in relational
databases, which have been designed to efficiently process
CQs, most research has focused on rewriting the output
query qR as a UCQ. A natural question is then, given an on-
tology R and a BCQ q, is there a UCQ-rewriting qR for R
and q? In other terms, is that true that the rule query ⟨R, q⟩
is UCQ-expressible? This does not always hold, and it is ac-
tually undecidable to check whether it is the case (Baget et
al. 2011). However, there exists an effective procedure algo-
rithm that computes a UCQ-rewriting when given as input
a UCQ-expressible rule query (König et al. 2015). In other
terms, the UCQ-expressibility of every rule query (the exis-
tence of a UCQ-rewriting) in a class and UCQ-rewritability
of that class (the computability of UCQ-rewritings for all
rule queries in that class) are two notions that coincide,
which possibly explains why they have not been introduced
separately in the literature.

Syntactic conditions such as linearity (Calı̀, Gottlob, and
Kifer 2013) or stickiness (Calı̀, Gottlob, and Pieris 2010)
guarantee the existence of UCQ-rewritings for any BCQ.
Moreover, there is also DL-Lite (Artale et al. 2009), which
is a widely used Description Logic that can be translated
into existential rules. However, the expressivity of these lan-
guages is too limited for many real-world ontologies. A nat-
ural task is to consider a more expressive target query lan-
guage for the rewritings. It is known that considering first-
order queries instead of union of conjunctive queries does
not allow covering more classes of existential rules (Ross-
man 2008). We then focus on another classical language,
namely datalog. Note that all UCQ-expressible rule queries
are also datalog-expressible but the converse is not true.

As discussed in Section 5, there are many known and
interesting classes for which specific datalog-rewriting al-
gorithms have been designed. However, no generic algo-
rithm, such as in the case of UCQ-expressibility, is known
so far. The contribution of this paper is to show that, unfor-
tunately, no such algorithm exists. This is done by proving
that the problem of checking R,F |= q under the assump-
tion that ⟨R, q⟩ is datalog-expressible is undecidable, con-
tradicting the existence of a rewriting algorithm for datalog-
expressible queries. We prove the result by reduction from
the halting problem of Turing machines to OBQA, where the
difficulty lies in ensuring that rule queries produced by the
reduction are datalog-expressible.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

232

2 Preliminaries
We assume that the reader is familiar with first-order logic
and basic concepts from computability theory. We only pro-
vide a brief recap of these topics in this section.

2.1 First-Order Logic
We define Preds, Funs, Cons, and Vars to be mutually dis-
joint and countably infinite sets of predicates, function sym-
bols, constants, and variables, respectively. We associate
every s ∈ Preds ∪ Funs with some arity ari(s) ≥ 0. For
every n ≥ 0, the sets of all n-ary predicates and all n-ary
function symbols are also countably infinite. The set Terms
includes Cons, Vars, and the set of all nullary function sym-
bols; and contains f(t1, . . . , tn) for every n ≥ 1, every n-
ary f ∈ Funs, and every t1, . . . , tn ∈ Terms. We write lists
t1, . . . , tn of terms as t⃗ and often treat these lists as sets.

An atom is a first-order formula of the form P(⃗t) with t⃗ a
list of terms and P a |⃗t|-ary predicate. An atom that features
a predicate P is a P-atom. A fact is a function- and variable-
free atom. For a nullary predicate P, we write P as a shortcut
for the nullary atom P(). For a first-order formula F and a
list x⃗ of variables, we write F [x⃗] to indicate that x⃗ is the set
of all free variables occurring in F .
Definition 1. An (existential) rule R is a function- and
constant-free first-order formula of the form ∀x⃗.(B[x⃗] →
∃z⃗.H[y⃗, z⃗]) where B and H are atom conjunctions, H is
non-empty, and all variables in y⃗ occur in x⃗. We refer to y⃗
as the frontier of R, and to B and ∃z⃗.H as the body and the
head of R, respectively. Such a rule is datalog if it does not
feature existential variables; that is, if z⃗ is the empty list.

We omit universal quantifiers when writing rules. Also,
we replace wedges with commas when writing atom con-
junctions, which we often identify with sets.

A substitution π is a function from variables to terms.
For an atom P(⃗t), let π(P(⃗t)) be the atom that results from
replacing all occurrences of every variable x in P(⃗t) with
π(x) if the latter is defined. For some atom sets A to B,
a homomorphism π from A to B is a substitution such that
π(A) ⊆ B. Often, we abuse notation and consider substi-
tutions (and thus homomorphisms) that map terms to terms.
An isomorphism π from A to B is an injective homomor-
phism A to B such that π(A) = B and (π−(B) = A).

A Boolean conjunctive query (BCQ) is a function-free
first-order formula of the form ∃z⃗.B[z⃗] with B a non-empty
conjunction of atoms. A union of BCQs (UBCQs) is defined
in the obvious manner. Under standard first-order seman-
tics, a fact set F entails a UBCQ

∨n
i=1 ∃z⃗i.Bi if there exists

a homomorphism from Bk to F for some 1 ≤ k ≤ n.
A knowledge base is a pair ⟨R,F⟩ with R a finite rule

set and F a finite fact set. Without loss of generality, we
assume that (†) existentially quantified variables do not re-
occur across different rules in the same rule set. For a BCQ
q, we write ⟨R,F⟩ |= q to indicate that R ∪ F entails q
under standard first-order semantics.

2.2 The Chase Algorithm
We use the chase to define entailment procedurally. More
precisely, we present a chase variant previously considered

by (Urbani et al. 2018) in which datalog rules are applied
with higher priority, and non-datalog rules are applied in
parallel and only if they are not already satisfied. The use
of this specific variant, which produces a single chase se-
quence from an input knowledge base, simplifies some of
the proofs presented later.

Consider a rule ∀x⃗.∀y⃗.B[x⃗] → ∃z⃗.H[y⃗, z⃗]. For every
z ∈ z⃗, let fz be a fresh |y⃗|-ary function symbol unique for
z. Moreover, let Sk(∃z⃗.H) be the atom set that results from
replacing all occurrences of every z ∈ z⃗ in H with the term
fz(y⃗); note that, because of (†), this symbol is also unique
for a rule within a given rule set. In the following, we sim-
ply write z as a shortcut for a (nullary) function symbol of
the form fz . Moreover, we write w(t) or w1(t) as a short-
cut for a unary term such as fw(t), w2(t) as a shortcut for
fw(fw((t))), and so on.

A trigger t is a pair ⟨R, π⟩ where R = ∀x⃗.∀y⃗.B → ∃z⃗.H
is a rule and π is a homomorphism with domain x⃗ ∪ y⃗. Let
support(t) = π(B) and output(t) = π(Sk(∃z⃗.H)). The
trigger t is applicable to an atom set A if support(t) ⊆ A
and A does not include π̂(H) for all extensions π̂ of π. A
trigger is datalog if it features a datalog rule.

For a rule R and an atom set A, let R(A) be the set that
includes output(t) for every trigger t with R that is applica-
ble to A. For a rule set R, let R(A) =

⋃
R∈R R(A) ∪ A.

Moreover, let R∀ and R∃ be the sets of all datalog and
non-datalog rules in R, respectively. The datalog closure
of A and R is the minimal superset A′ of A such that
R∀(A′) = A′; that is, A′ is the (unique) minimal super-
set of A that satisfies all of the rules in R∀ under standard
first-order semantics. Note that an atom set satisfies a rule if
no trigger with the latter is applicable to the former.

Definition 2. For a knowledge base K = ⟨R,F⟩; let
Ch1(K) = F , let Chi(K) be the datalog closure of R
and Chi−1(K) for every even i ≥ 1, and let Chi(K) =

R∃(Chi−1(K)) for every odd i ≥ 2. Also, let Ch(K) =⋃
i≥1 Chi(K) be the chase of K.

The chase is a handy tool to answer conjunctive queries
over a knowledge base.

Proposition 3. A knowledge base K entails a UBCQ q if
and only if Ch(K) entails q.

The above holds because Ch(K) is a universal model for
K = ⟨R,F⟩. That is, there is a homomorphism from the
chase of K to every model of this first-order theory.

2.3 Computability Theory
Definition 4. A transition function for a set Q of states is a
(total) function from (Q \ {qf})×{0, 1, B} to (Q \ {qs})×
{0, 1} × {L,R} where qs and qf are two different states. A
(Turing) machine is a pair ⟨Q, δ⟩ where Q is a set of states
that contains qs and qf , and δ is a transition function for Q.

As per our definition, all machines reuse the same initial
qs and final qf states, as well as the same binary alphabet
{0, 1, B}. Moreover, machines do not write blanks, may not
reenter the starting state after the initial configuration, and
halt if they reach the final state.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

233

Definition 5. A configuration is a tuple ⟨n, t, p, q⟩ where
n ≥ 1 is a natural number, t is a function from {1, . . . , n} to
{0, 1, B} that maps n to B, p is some number in {1, . . . , n},
and q is a state. The starting configuration on some word
w1, . . . , wn ∈ {0, 1}∗ is the tuple ⟨n + 1, t, 1, qs⟩ where t
is the function that maps every i ∈ {1, . . . , n} to wi, (and
n+ 1 to B).

Given some configuration ⟨n, t, p, q⟩, we use t to encode
the contents of the tape at each position; moreover, we use p
and q to encode the position of the head and the current state
of the machine, respectively.

Definition 6. Consider a machine M = ⟨Q, δ⟩, a config-
uration C = ⟨n, t, p, q⟩ with q ∈ Q \ {qf}, and the tuple
δ(t(p), q) = ⟨r, a,D⟩. Then, let NextM (C) be the configu-
ration ⟨n+ 1, t′, p′, r⟩ such that:

• For every 1 ≤ i ≤ n with i ̸= p, let t′(i) = t(i). More-
over, let t′(p) = a and t′(n+ 1) = B.

• If D = L; then p′ = p−1 if p ≥ 2, and p′ = p otherwise.
If D = R, then p′ = p+ 1.

As described above, any given machine defines a function
that maps non-final configurations to configurations. An ex-
haustive iteration through these consecutive configurations
that begins with a starting configuration yields a run.

Definition 7. Consider a machine M and a word w⃗.

• Define RunM (w⃗) as the (possibly infinite) sequence
C0, . . . , Cn, . . . of configurations such that C0 is the start
configuration on w⃗, and Ci+1 = NextM (Ci) for all i such
that Ci does not feature the final state.

• The machine M halts on w⃗ if RunM (w⃗) is finite.

Note that, as per our definition, a machine halts on some
word if and only if it reaches the final configuration. We
do not discuss acceptance or rejection of a word by a ma-
chine; this is unnecessary for our purposes since the halting
problem is already undecidable.

Proposition 8. The problem of checking if a machine halts
on the empty word is undecidable.

3 Query Languages and Expressivity
The focus of this paper is on the query rewriting approach.
To address it, we must first introduce the notions of rule
query and of a L-rewriting for some query language L.

Definition 9. A rule query is a pair ⟨R, q⟩ where R is a rule
set and q is a BCQ. A datalog query is a rule query with a
datalog rule set.

The expressivity of rule queries has been studied from
both a complexity viewpoint and a model-theoretic one
(Rudolph and Thomazo 2015; Bourgaux et al. 2021). A clas-
sical and practically important question is whether a given
rule query can be expressed within a less expressive query
language. This question is formalized with the notion of
L-rewriting of a rule query ⟨R, q⟩, for a query language L
(such as UCQ, datalog, first-order logic,...). We will con-
sider only Boolean queries, hence we regard each query q as
a set of fact sets, and we denote F |= q if F ∈ q.

Definition 10 (L-rewriting). Let L be a query language. An
L-rewriting of a rule query ⟨R, q⟩ over a set of predicates
Pe is a query q′ ∈ L such that for any finite fact set F over
Pe, ⟨R,F⟩ |= q if and only if F |= q′.

Unless specified otherwise, we set Pe = Preds, and dis-
cuss the other cases in the related work section. This means
we consider rewritings that preserve BCQ entailment with
respect to the the initial rule query over any fact set.
Definition 11 (L-Expressibility). Given some query lan-
guage L, a rule query ⟨R, q⟩ is L-expressible if it admits
an L-rewriting.

Related to L-expressibility, but possibly a stronger re-
quirement, is the notion of of L-rewritability: an L-rewriting
must not only exist, but we should be able to compute it.
Definition 12 (L-Rewritability). Let L be a query language.
A set Q of rule queries is L-rewritable if there exists a pro-
cedure, which given q, computes an L-rewriting q′ of q if
q ∈ Q, and whose behavior is not specified (and may even
not terminate) if q ̸∈ Q.

Note that the absence of condition on the behavior of
the algorithm in the case where q ̸∈ L allows us to con-
sider query languages whose membership is not decidable
– this is in particular the case of UBCQ-expressible rule
sets (Baget et al. 2011). In that case, L-expressibility and
L-rewritability are identical notions: this is a direct conse-
quence of the algorithm presented in (König et al. 2015) (see
Algorithm 1 and Theorem 7).
Theorem 13. The class of all UBCQ-expressible rule
queries is UBCQ-rewritable.

From this theorem, we can derive a useful corollary:
Corollary 14. There is a procedure to check if a knowledge
base ⟨R,F⟩ entails a BCQ q that is sound, complete, and
terminates if ⟨R, q⟩ is UBCQ-expressible.

Proof. First, we compute a UBCQ-rewriting q′ of ⟨R, q⟩ us-
ing the procedure described by (König et al. 2015), which
is guaranteed to terminate if ⟨R, q⟩ is UBCQ-expressible.
Then, we can simply check if F |= q′; the result of this
check indicates if ⟨R,F⟩ |= q.

The very same reasoning procedure described in the proof
of Corollary 14 can be applied off-the-shelf for any class
of rule queries that is UBCQ-expressible such as linear
(Calı̀, Gottlob, and Kifer 2013), sticky (Calı̀, Gottlob, and
Pieris 2010), non-local rule sets (Ostropolski-Nalewaja et
al. 2022), DL-Lite (Artale et al. 2009), or any other class
of UCQ-expressible rule queries yet to be defined.

In this paper, we investigate whether analogous generic
procedures can be developped for more expressive query
languages. As it is known that BFO-rewritability and
UBCQ-rewritability coincide (Rossman 2008) for rule
queries, we set L to datalog and turn our attention to the
relationships between datalog-expressibility and datalog-
rewritability. As datalog is a major query language, its ex-
pressivity has been studied (Feder and Vardi 2003; Dawar
and Kreutzer 2008; Rudolph and Thomazo 2016), and
it has served as a target query language for numerous

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

234

classes of rule queries (see related work). So far, however,
the relationship between datalog-expressibility and datalog-
rewritability remains unclear. We prove that:

Theorem 15. The class of all datalog-expressible rule
queries is not datalog-rewritable.

Proof. If the above result does not hold, then we can define a
procedure that solves BCQ entailment for datalog-rewritable
inputs analogous to the one discussed in Corollary 14. This
clashes with Theorem 16 to be proven in the next section,
and hence, this theorem follows by contradiction.

4 Entailment for Datalog-Expressible
Queries is Undecidable

Our only goal in this section is to show that:

Theorem 16. There is no procedure to check if a knowledge
base ⟨R,F⟩ entails a BCQ q that is sound, complete, and
terminates if ⟨R, q⟩ is datalog-expressible.

Here is our high-level strategy to prove this result:

In Definition 18, we introduce a reduction that takes a ma-
chine M as input and produces the rule set RM .

We show that a machine M halts on the empty word ε
if and only if ⟨RM , ∅⟩ |= Halt where Halt is a nullary
predicate occurring in RM ; see Lemma 22. The knowl-
edge base ⟨RM , ∅⟩ will be denoted by KM .

We show that, if a machine M does not halt on ε,
then the rule query ⟨R∀

M , Halt⟩ is a datalog-rewriting of
⟨RM , Halt⟩;1 see Lemma 24.

Once we establish all the above claims, we can readily prove
the main result in this section:

Proof of Theorem 16. First, we prove that the rule query
⟨RM , Halt⟩ is datalog-expressible for any given machine
M . If M halts on ε, then ⟨RM , ∅⟩ |= Halt by . There-
fore, ⟨RM ,F⟩ |= Halt for every fact set F since first-
order logic entailment is monotonic, and the rule query ⟨{→
Halt}, Halt⟩ is a valid datalog-rewriting of ⟨RM , Halt⟩
in this case. Otherwise, we conclude that ⟨RM , Halt⟩ is
datalog-expressible by .

Now suppose for a contradiction that there is a procedure
such as the one discussed in Theorem 16. Given a machine
M , we can first compute RM and then use such a procedure
to effectively decide if ⟨RM , ∅⟩ |= Halt since ⟨RM , Halt⟩
is datalog-expressible. Moreover, we can use the result of
this check to verify if M halts on ε by . Note the clash
with Proposition 8.

We address Points , , and separately in each of fol-
lowin subsections.

1Remember that R∀
M is the set of all datalog rules in RM . We

introduced this notation in Section 2.2.

→ ∃s.qs(s, s) (Rqs)

qs(x, x) → RS(x) (RRS
qs

)

N(ℓi, ℓi+1) → N+(ℓi, ℓi+1) (RN+

init)

N(ℓi, ℓi+1), N
+(ℓi+1, ℓj) → N+(ℓi, ℓj) (RN+

tr)

qs(ℓ1, ℓ1), N
+(ℓ1, ℓi) → RS(ℓi) (RRS)

RS(x) → B(x, x) (RB
RS)

qf(p, c) → Halt (RHalt
final)

Eq(x, y) → Eq(y, x) (REq
sym)

Eq(x, y), Eq(y, z) → Eq(x, z) (REq
tr)

Chaos → Halt (RHalt
Chaos)

N+(ℓi, ℓi) → Chaos (RCh
loop)

N+(ℓ−i, ℓ1), qs(ℓ1, ℓ1) → Chaos (RCh
N+·qs

)

qf(p, ci), N
+(ci, cj) → Chaos (RCh

qf ·N+
)

N(ℓi, ℓi+1), N(ℓi, ℓ
′
i+1) → Eq(ℓi+1, ℓ

′
i+1) (REq

<2N)

N(ℓi, ℓi+1), N(ℓ
′
i, ℓi+1) → Eq(ℓi, ℓ

′
i) (REq

<2N−)

qs(ℓ1, ℓ
′
1), qs(ℓ

′′
1 , ℓ

′′′
1) → Eq(ℓ1, ℓ

′′′
1) (REq

<2qs
)

Figure 1: Some of the Rules in RM

4.1 Point : The Reduction

Before presenting our reduction in Definition 18, we define
the signature of the output rule set:

Definition 17. For a machine M = ⟨Q, δ⟩; let Preds(M)
be the set of predicates that contains the nullary predicates
Halt and Chaos; the unary predicate RS; the binary predi-
cates N, N+, 0, 1, B, and Eq; and a fresh binary predicate q
unique for every q ∈ Q.2

Before reading ahead, remember that rules are function-
and constant-free by Definition 1. Hence, all terms occur-
ring in these formulas are variables.

Definition 18. For a machine M = ⟨Q, δ⟩, let RM be the
rule set over the predicates in Preds(M) that includes REm

M ,
REq

M , and RCh
M , which are defined below. In these defi-

nitions, we write ⟨x, y⟩+RS for some variables x and y as a
shortcut for the conjunction RS(x), N+(x, y), RS(y).

The rule set REm
M contains the first seven rules in Figure 1

plus all of the following:

• For every q ∈ Q \ {qf}, we add:

q(p, c), RS(c) → ∃n.N(c, n) (RN
q)

2Predicate names RS, N, and Eq are shortcuts for “reachable
from start state”, “next”, and “equality”, respectively.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

235

• For every ⟨q, a⟩ 7→ ⟨r, b, L⟩ ∈ δ, we add:

q(pi, cj), a(pi, cj), N(pi−1, pi), N(cj , cj+1),

⟨pi, cj+1⟩+RS → r(pi−1, cj+1), b(pi, cj+1) (Rr,b,L
q,a)

q(p1, cj), a(p1, cj), qs(p1, p1), N(cj , cj+1),

⟨p1, cj+1⟩+RS → r(p1, cj+1), b(p1, cj+1) (Rr,b,S
q,a)

• For every ⟨q, a⟩ 7→ ⟨r, b, R⟩ ∈ δ, we add:

q(pi, cj), a(pi, cj), N(pi, pi+1), N(cj , cj+1),

⟨pi+1, cj+1⟩+RS → r(pi+1, cj+1), b(pi, cj+1) (Rr,b,R
q,a)

q(ℓi, ℓi), a(ℓi, ℓi), N(ℓi, ℓi+1), RS(ℓi+1)

→ r(ℓi+1, ℓi+1), b(ℓi, ℓi+1) (Sr,b,R
q,a)

• For every q ∈ Q \ {qf} and a ∈ {0, 1, B}, we add:

a(pi, cj), q(pk, cj), N(cj , cj+1), N
+(pi, pk),

⟨pk, cj+1⟩+RS, ⟨pi, cj+1⟩+RS → a(pi, cj+1) (Ra·L
copy)

q(pi, cj), a(pk, cj), N(cj , cj+1), N
+(pi, pk),

⟨pk, cj+1⟩+RS, ⟨pi, cj+1⟩+RS → a(pk, cj+1) (Ra·R
copy)

The rule set REq
M contains the two rules in the middle

of Figure 1 plus the following for every P ∈ Preds(M) \
{Eq, Chaos, Halt} and 1 ≤ i ≤ ar(P):

P(x1, . . . , xn) → Eq(xi, xi) (REq
P,i)

P(x1, . . . , xn), Eq(xi, yi)

→ P(x1, . . . , xi−1, yi, xi+1, . . . , xn) (RP,i
cg)

The rule set RCh
M contains the last seven rules in Figure 1,

and includes all of the following rule sets:

{q(p, c), q(p′, c) → Eq(p, p′) | q ∈ Q} (REq
q)

{q(p, c), r(p′, c) → Chaos | q ̸= r in Q} (RCh
q ̸=r)

{s(p, c), N+(c, p) → Chaos | s ∈ {0, 1, B} ∪Q} (RCh
s·N+)

{a(p, c), b(p, c) → Chaos | a ̸= b in {0, 1, B}} (RCh
a ̸=b)

To ease the understanding, we first provide a high-level
explanation for each of the rule sets defined in Definition 3;
more detailed explanations specific to each rule will follow
in Sections 4.2 and 4.3.

For a machine M , the rule set REm
M ensures that the re-

sult of the chase on ⟨RM , ∅⟩ encodes the information in the
run of M on the empty word ε. Put differently, this rule
set ensures that the chase on ⟨RM , ∅⟩ becomes a procedure
that closely emulates the computation of M on this specific
input. This rule set is prominently used in the following sec-
tion to show Lemma 22.

The rule set REq
M ensures that Eq, which is just a regular

binary predicate, behaves as an axiomatization of first-order
equality; that is, of the special predicate ≈. In particular,
note the rules of type RP,i

cg , which ensure that Eq defines con-
gruent relation in the result of the chase. The other rules in
this rule set ensure that it defines an equivalence relation.

The rule set RCh
M allows us to derive Halt in many cases

only using datalog rules. For example, using these rules

we can readily show that Halt is in the result of the chase
on a knowledge base ⟨R∀

M ,F⟩ if F is a fact set that in-
cludes an N-cycle; that is, a non-empty set of facts of the
form {N(d1, d2), . . . , N(dn−1, dn), N(dn, d1)}. Thus, we can
show that ⟨RM ,F⟩ |= Halt if and only if ⟨R∀

M ,F⟩ |=
Halt for such a fact set F . In turn, this greatly simplifies
the proof of Lemma 24.

4.2 Point : Machine Emulation
Our only goal in this subsection is to show that RM correctly
simulates M on the empty word (Lemma 22). Let us clarify
this intuition with the following example.

Example 19. Consider a state q and a machine M = ⟨Q, δ⟩
such that Q = {qs, qf , q}, δ(qs, B) = ⟨q, 1, R⟩, and
δ(q,B) = ⟨qf , 0, L⟩. We depict RunM (ε) and the chase of
⟨RM , ∅⟩ in Figure 2; note how the latter structure encodes
the information in the former.

For instance, the alphabet symbol 1 occurs in the second
position of the tape in the third configuration of RunM (ε);
this information is encoded in Ch(KM) with the atom
1(n(s), n2(s)).3 The alphabet symbol 1 is encoded using the
corresponding binary predicate 1; the fact that this symbol
occurs in the second position of the tape in the third config-
uration is encoded using the second n(s) and third n2(s) el-
ements of the N-chain, respectively. In other words, the first
and second arguments of an 1-atom encode the information
about the position and configuration of some occurrence of
the alphabet symbol 1, respectively. Note that this intuition
is reflected in the naming of the variables appearing in rules,
where p stands for position and c stands for configuration.

Information pertaining to the position of the head as well
as the state of the machine is analogously encoded using
binary atoms over q, qs, and qf. For instance, the atom
qf(s, n

2(s)) ∈ Ch(KM) is used to encode that, in the third
configuration, the machine enters the final state qf and its
head is in the first position of the tape. Finally, note that the
nullary fact Halt is in Ch(KM) since this set contains an
atom over the predicate qf.

After the previous example, we can now elucidate the pur-
pose of the rules in the rule set REm

M for a given machine M .
Roughly speaking, we can divide this rule set into five mu-
tually disjoint partitions:

• First, we have the first six rules in Figure 1 as well
as the rules of type RN

q , which instantiate the N-chain
in Ch(KM). Moreover, these rules also materialize the
atoms encoding the starting configuration on the empty
word as well as every new blank symbol at the end of ev-
ery subsequent configuration.

• Second, we have all rules of type Rr,b,L
q,a , Rr,b,S

q,a , Rr,b,R
q,a ,

or Sr,b,R
q,a . These rules instantiate the only rewritten alpha-

bet symbol in every non-starting configuration, and up-
date the state of the machine and move the head to the left
(Rr,b,L

q,a and Rr,b,S
q,a) or right (Rr,b,R

q,a and Sr,b,R
q,a).

3Remember that n2(s) is a shortcut for the unary term
fn(fn(fs)). We introduced this notation in Section 2.2.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

236

Bqs

0 Bq

0 1 B . . .qf
RS : s RS : n(s) RS : n2(s)

N, N+, 0 N, N+, 1

qs, B, Eq
q, B, Eq

B, Eq

N+, qf, 0
Halt

Figure 2: The Sequence RunM (ε) and the Chase of ⟨RM , ∅⟩ where M is the machine from Example 19

• Fourth, the rules of type Ra·L
copy and Ra·R

copy take care of copy-
ing the alphabet symbols that are to the left and to the
right of the head to every subsequent configuration, re-
spectively. Note the use of the predicate N+ to detect if a
position for a given configuration is to the left or the right.

• Finally, Rule RHalt
final , which produces Halt if the machine

reaches the final configuration in the run.
All other rules in RM are mostly inactive during the com-

putation of the chase on ⟨RM , ∅⟩. Namely, these rules solely
derive facts of the form Eq(t, t) and thus have no impact on
deriving Halt when we only consider the knowledge base
⟨RM , ∅⟩ with the empty set.

We are ready to formalize the intuition presented in Ex-
ample 19. Namely, for a machine M , we first define some
atom sets that encode the information in every configuration
in RunM (ε), and then show that the union of all of these sets
is the result of the chase on ⟨RM , ∅⟩.
Definition 20. Consider a machine M , some 1 ≤
k ≤ |RunM (ε)|, and the k-th configuration ⟨k, t, p, q⟩
of RunM (ε). Let CM(k) be the atom set that includes
CM(k − 1) if k > 1, contains Halt if q = qf , and includes

{N(ni(s), ni+1(s)) | 0 ≤ i < k − 1} ∪
{N+(ni(s), nj(s)) | 0 ≤ i < j < k} ∪
{RS(ni(s)), Eq(ni(s), ni(s)) | 0 ≤ i < k} ∪
{Pred(t(i+ 1))(ni(s), nk−1(s)) | 0 ≤ i < k}

where Pred(0) = 0, Pred(1) = 1, and Pred(B) = B. More-
over, let CM be the atom set that includes CM(i) for every
1 ≤ i ≤ |RunM (ε)|.

Lemma 21. For a machine M , we have Ch(KM) = CM.

Sketch. First, we verify that Ch2j+2(RM) = CM(j) for
every 1 ≤ j ≤ |RunM (ε)| by induction on j. Further-
more, we show that, if M halts on the empty word ε, then
Ch(KM) = Ch2|RunM (ε)|+2(⟨RM , ∅⟩).

For a machine M , the previous lemma establishes the for-
mal correspondence between the information in RunM (ε)
and the result of the chase of ⟨RM , ∅⟩. Applying this result,
we can readily show the main result of this subsection.
Lemma 22. A machine M halts on the empty word if and
only if the knowledge base ⟨RM , ∅⟩ entails Halt.

Proof. If ⟨RM , ∅⟩ entails Halt for some machine M , then
the nullary atom Halt is in the result of the chase on
⟨RM , ∅⟩ by Proposition 3. Therefore, Halt is in CM(k) for
some 1 ≤ k ≤ |RunM (ε)| by Lemma 21. By Definition 20,
this is the case only if the k-th configuration in RunM (ε)
features the final state qf .

If a machine M halts on ε, then the nullary atom Halt is
in CM(|RunM (ε)|) by Definition 20. Hence, Halt is in the
result of the chase on ⟨RM , ∅⟩ by Lemma 21.

If our only goal was to show Lemma 22, we could reuse
classical machine simulations relying on a grid structure,
as done for instance in (Baget et al. 2011). However, to
prove datalog-expressibility of ⟨RM , Halt⟩, it is convenient
to have a simpler structure of Skolem terms: RM has only
two existential rules, Rqs of empty frontier and RN

q of fron-
tier one. This facilitates the detection (through datalog rules)
of fact sets that either do not encode a valid run of a machine.

4.3 Point : Datalog-Expressibility
For the remainder of the subsection, we fix a machine M =
⟨Q, δ⟩ and a fact set F . Moreover, we define another fact
set that results from collapsing every set of constants in
Ch(R∀

M ,F) mutually interconnected by Eq.

Definition 23. Since rules REq
P,i, REq

sym, and REq
tr are in

R∀
M , the Eq predicate defines an equivalence relation in

Ch(R∀
M ,F). For a constant c occurring in this atom

set, let [c] be a fresh constant unique for the equivalence
class of c induced by Eq. Let FEq

M = {P([c1], . . . , [cn]) |
P(c1, . . . , cn) ∈ Ch(R∀

M ,F)}.

The fact set FEq
M is isomorphic to the chase of ⟨R∀

M ,F⟩
if we had used first-order equality in RM instead of an ax-
iomatization of this special predicate. If Chaos /∈ FEq

M , then
this fact set has a clean structure that is quite useful in our
proofs. After this short preamble, let us consider the main
result of this subsection:

Lemma 24. If M does not halt on ε, then ⟨R∀
M , Halt⟩ is a

datalog-rewriting of ⟨RM , Halt⟩

Proof. Since RM includes R∀
M and first-order entailment

is monotonic, we conclude that ⟨R∀
M ,F⟩ |= Halt implies

⟨RM ,F⟩ |= Halt. If the premise of the lemma holds, then

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

237

we conclude that ⟨R∀
M ,F⟩ ̸|= Halt implies ⟨RM ,F⟩ ̸|=

Halt from Lemmas 25 and 33.

Because of the rules in REq
M , the predicate Eq behaves

as an axiomatization of equality in the chase of ⟨R∀
M ,F⟩.

Hence, when we collapse constants interconnected via Eq to
create FEq

M , we preserve entailment of nullary facts and do
not violate existing datalog rules.

Lemma 25. We have that ⟨RM ,FEq
M ⟩ ̸|= Halt if and only

⟨RM ,F⟩ ̸|= Halt. Moreover, FEq
M satisfies all rules in R∀

M

(and therefore, Ch(R∀
M ,FEq

M) = FEq
M).

Intuitively, the above lemma implies that we can disregard
F and focus on FEq

M for the remainder of the section. Now,
let us explore the structure of the latter, which is not evi-
dent in the former. Namely, we show that, if Chaos /∈ FEq

M ,
then the set of all constants in FEq

M can be partitioned into a
disjoint union of N-chains.

Definition 26. An N-chain C is a non-empty (finite) list
c1, . . . , cn of constants such that ci ̸= cj for every 1 ≤ i <

j ≤ n; N(ci, ci+1) ∈ FEq
M for every 1 ≤ i ≤ n − 1; and,

if there is a fact of the form N(d, e) ∈ FEq
M such that either

d or e occur in C, then d = ci and e = ci+1 for some
1 ≤ i ≤ n − 1. A starting chain is an N-chain c1, . . . , cn
such that qs(c1, c1) ∈ FEq

M .

Lemma 27. If Chaos /∈ FEq
M ; then the set of all constants

occurring in FEq
M is a disjoint union of chains, there is at

most one qs-atom in FEq
M (and hence is at most one starting

chain), and there is one starting chain if and only if FEq
M

contains some qs-atom.

Sketch. The first, second, and third implications hold
because R∀

M includes {RN+

init, R
N+

tr , RCh
loop, R

Eq
<2N, REq

<2N−},

{REq
<2qs

}, and {RN+

init, R
Ch
N+·qs

, R
Eq
<2qs

}, respectively. Note

that FEq
M satisfies all rules in R∀

M by Lemma 25, and c = d

if Eq(c, d) ∈ FEq
M for some constants c and d.

Furthermore, we can show that, if there is a starting chain,
then the fact set associated to this structure is isomorphic to
a finite prefix of the chain in Ch(KM).

Definition 28. Let πS be the (injective) substitution that
maps s to the first element of (the starting chain) S, n(s)
to the second, n2(s) to the third, and so on. For a list t⃗ of
terms, let Facts(⃗t) be the set of all facts in FEq

M that can be
defined using some non-nullary predicate and some terms
occurring in t⃗.

Remember that, since we slightly abuse notation, substi-
tutions may be defined for non-variable terms.

Lemma 29. If Chaos /∈ FEq
M and there is a starting chain

S, then the substitution πS is an isomorphism from CM(|S|)
to Facts(S).4

4Remember that CM(|S|) was introduced in Definition 20.

Sketch. We can use an argument analogous to the one in the
proof of Lemma 21 to show that πS is a homomorphism
from CM(|S|) to Facts(S). Then, for the other direction,
we use Rules RCh

loop, RCh
N+·qs

, RCh
qf ·N+

, REq
<2N, REq

<2N− , REq
<2qs

,

RCh
q ̸=r, REq

q , RCh
a ̸=b and RCh

s·N+ to show that Facts(S) only con-
tains atoms in πS(CM(|S|)). For instance, if an atom of the
form N+(c, d) is in Facts(S) but not in πS(CM(|S|)), then
either c = d, or c comes after d in the starting chain.

• If c = d, then RCh
loop implies that Chaos ∈ Facts(S),

which contradicts the premise of the lemma.
• If c comes after d in the starting chain, then there is a

list c1, . . . , cn of constants such that c1 = d, cn = c,
and N(ci, ci+1) ∈ Facts(S) for every 1 ≤ i < n.
Then, N+(d, d) ∈ Facts(S) because of Rule RN+

tr , and
Chaos ∈ Facts(S) because of Rule RCh

loop, which contra-
dicts the premise of the lemma.

Thus, there are no N+-atom in Facts(S) \ πS(CM(|S|)). A
careful analysis of all the other predicates then concludes the
proof.

Now that we understand the structure and content of FEq
M ,

we can declaratively describe how to extend this fact set to
obtain the chase of ⟨RM ,FEq

M ⟩.
Definition 30. An N-chain C = c1, . . . , cm is incom-
plete if the set FEq

M contains RS(cm) and some fact of the
form q(d, cm) such that q ̸= qf . Given such an N-chain,
let Compl(C) be the atom set that contains N(cm, n(cm)),
Eq(n(cm), n(cm)), and N+(ci, n(cm)) for every 1 ≤ i ≤ m.
Let Compl(FEq

M) be the atom set that includes Compl(C) for
every incomplete chain C.

Lemma 31. If Chaos /∈ FEq
M , then

Ch(RM ,FEq
M) = FEq

M ∪ Compl(FEq
M) ∪ πS(Ch(KM)).

Roughly speaking, if Chaos /∈ FEq
M , we can define the

chase of ⟨RM ,FEq
M ⟩ by taking FEq

M , completing every in-
complete chain, and appending the (possibly infinite) chain
in Ch(KM) to the starting chain in FEq

M . To understand why
this suffices, see the following example.

Example 32. Consider a machine that has three states, qs,
q and qf , that always goes right, and that goes to state q
whenever it reads a blank, and goes to qf whenever it reads
a 0 or a 1. Obviously, this machine does not halt on the
empty word, but does on every other word. The fact set on
the left of Figure 3 contains two N-chains: the starting chain
at the top, and another at the bottom. After one existential
step and one datalog step, note that the atom qf(n(d), n(d))
has not been derived: this is due to the fact that RS(n(d)) is
not derivable, as n(d) is not reachable through an N-chain
from c0, the unique element for which qs(c0, c0) holds. This
blocks the application of Rule Sr,b,R

q,a .
If ones try to circumvent that problem as on the right of

Figure 3, with two N-chains connected by a q atom, the atom

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

238

RS : c0 RS : c1 n(c1)

qs, B q, B q, B

RS : d n(d)

q, 1

RS : c0 RS : c1
RS : n(c1)

qs, B q, B q, B

RS : d n(d)

q, 1

Figure 3: Fact sets from Example 32 after one existential step and one closure under datalog rules. Dots represent constants occurring in the
fact set, and crosses represent Skolem terms. Solid atoms are in the original fact set, dashed ones created by rule applications. Unlabelled
arrows represent the N predicate. Predicates N+ and Eq are not represented.

N+(n(d), n(c2)) cannot be mapped, hence Rule Rr,b,R
q,a can-

not be applied. In turn, this prevents the instantiation of the
atom qf(n(c2), n(c2)).

These two examples illustrate the use of predicates RS and
N+, allowing to block the development of simulations that do
not correspond to the empty word.

Leveraging the contingent definition of the chase of
⟨RM ,FEq

M ⟩ given in Lemma 31, we can better understand
when Halt is not entailed by this knowledge base:

Lemma 33. If Halt /∈ FEq
M and M does not halt on ε, then

⟨RM ,FEq
M ⟩ does not entail Halt.

Proof. By Proposition 3, we have that ⟨RM ,FEq
M ⟩ does

not entail Halt if Halt is not in the chase of ⟨RM ,FEq
M ⟩.

By Lemma 31, this is the case if Halt is not in FEq
M , in

Compl(FEq
M), or in πS(Ch(KM)). Indeed, Halt is not in the

first set by the premise of the lemma, it is not in the second
by Definition 30, and it is not in the third by the premise
of the lemma and Lemma 22. Note that the premise of the
lemma implies that ⟨RM ,FEq

M ⟩ does not entail Chaos since
the Rule RHalt

Chaos is in RM .

5 Related Work
Let us first point out that there are several variations around
the notion of datalog-rewriting. A first dimension is that,
rather than rewriting a specific rule query ⟨R, q⟩, one can
wish to rewrite R into a datalog rule set R′, and use R′ to
compute answers for a class of queries. Another variation is
focused on the fact sets on which the rewriting should out-
put the same answer as the original rule query. In this paper,
we consider the strong version where answers should be the
same on every fact set over Pred. Quite often, defined dat-
alog rewritings only preserve answers over fact sets on the
original signature – this allows to introduce fresh predicates
which are known not to belong to fact sets on which the dat-
alog program is to be evaluated. There are cases for which
there exists datalog-rewritings of rule queries for this relaxed
definition but not for our restricted one; this is a consequence
of Theorem 3 in (Krötzsch 2011). Our undecidability result
implies undecidability of this more relaxed notion.

The use of datalog as a target language for rewritings has
been studied over the last 15 years. The goal was to reduce
reasoning task over expressive ontologies towards query an-
swering over datalog, for which optimization techniques
have been developed in the database community. This is
even more pregnant today, as a variety of efficient data-
log reasoners have been implemented (Nenov et al. 2015;
Urbani et al. 2018). Such an approach has been proposed
for providing disjunctive5 datalog rewritings for SHIQ for
fact entailment over the original signature (Hustadt, Motik,
and Sattler 2007), later generalized to SHIQbS (Rudolph,
Krötzsch, and Hitzler 2012). More recently, such reduc-
tions for Horn description logics have been implemented
and evaluated (Carral, Dragoste, and Krötzsch 2018; Car-
ral, González, and Koopmann 2019). Such datalog rewrit-
ings have also been studied for existential rules, for guarded
(Benedikt et al. 2022), nearly guarded (Gottlob, Rudolph,
and Simkus 2014), warded (Berger et al. 2022) and shy
(Leone et al. 2019) rule sets.

Beyond these fragment specific reductions, the limits
of datalog-rewritability have been explored. In (Marnette
2012), it is shown that whenever rule queries have bounded
depth (meaning that if they are entailed, they are entailed
by a portion of the chase that uses only Skolem terms of
bounded depth), they are datalog-rewritable. This result ap-
plies for all syntactic fragment for which the chase is known
to terminate (Grau et al. 2013), but datalog rewritability is
not guaranteed (and not always possible) for rule sets having
terminating restricted chase (Krötzsch, Marx, and Rudolph
2019) – this is proven by a data complexity argument.

Another question of interest is the size of the obtained
rewritings. In (Ahmetaj, Ortiz, and Simkus 2018), the au-
thors provide polynomial (disjunctive) datalog rewritings for
(disjunctive) guarded rules queries. Non-recursive datalog
has also been studied: while it does not increase the ex-
pressivity with respect to UCQs, the re-use of predicates al-
lows to significanlty reduce the size of rewritings, reaching
polynomiality in some cases (Gottlob and Schwentick 2012;
Gottlob et al. 2014).

All of these contributions are summarised in Table 1.
5For disjunctive existential rules and datalog, the reader is in-

vited to consult (Deutsch and Tannen 2003)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

239

Source Language Target Language Arbitrary Query Sig. Implemented Reference

SHIQ disj. dat. × ✓ (Hustadt, Motik, and Sattler 2007)
SHIQbS disj. dat. × × (Rudolph, Krötzsch, and Hitzler 2012)

Horn-ALCHOIQ datalog × ✓ (Carral, Dragoste, and Krötzsch 2018)
Horn-SRIQ datalog × ✓ (Carral, González, and Koopmann 2019)

Bounded Detph rules datalog × × (Marnette 2012)
Frontier guarded rules datalog ✓ × (Bárány, Benedikt, and ten Cate 2013)
Nearly Guarded Rules datalog ✓ × (Gottlob, Rudolph, and Simkus 2014)

Guarded disj. rules disj. datalog × × (Ahmetaj, Ortiz, and Simkus 2018)
Guarded rules datalog ✓ ✓ (Benedikt et al. 2022)
Warded rules datalog ✓ ✓ (Berger et al. 2022)

Linear non rec. dat. × × (Gottlob and Schwentick 2012)
Sticky(-join) non rec. dat. × × (Gottlob and Schwentick 2012)

Table 1: Summary of datalog rewriting approaches applicable for fact entailment

6 Future Work
To conclude, we discuss two distinct lines for future re-
search, which naturally follow from our work.

Answer Expressible Rule Sets We intend to study an
even more restrictive class of rewritable rule sets: a rule
set R is answer datalog-expressible if, for every CQ q[x⃗],
the rule query ⟨R, q[x⃗]⟩ admits some datalog-rewriting that
preserves all answers. That is, a datalog query ⟨R′, q′[x⃗]⟩
such that, for every fact set F and every list a⃗ of constants
occurring in F , we have that ⟨R,F⟩ |= q[x⃗/a⃗] if and only if
⟨R′,F⟩ |= q[x⃗/a⃗]. With this definition in place, we wonder
about the following problem:

Open Problem 34. Consider a knowledge base K =
⟨R,F⟩, a CQ q, and a list a⃗ of constants occurring in F .
Is there a procedure to check if a⃗ is an answer of q with re-
spect to ⟨R,F⟩ that is sound, complete, and terminating if
R is answer datalog-expressible?

The above question is quite relevant for our field of re-
search, where we often study the theoretical properties of
classes of rule sets and not of rule queries.

At the moment, we believe that the answer to this open
problem is negative, which would yield a result strictly
stronger than Theorem 16. However, a different proof strat-
egy is required to show this since there are rule sets in the
range of the reduction described in Definition 18 that are not
answer datalog-rewritable.

Alternative Rewriting Languages In this paper, our pri-
mary focus is on datalog; in the future, we plan to study
alternative query languages for rewritings. For instance, one
could consider unions of Boolean conjunctive regular path
queries (UBCRPQs) (Florescu, Levy, and Suciu 1998) and
then consider the following problem:

Open Problem 35. Is the class of all UBCRPQ-expressible
queries is UBCRPQ-rewritable? Is there a procedure to
check if a knowledge base ⟨R,F⟩ entails a BCQ q that is
sound, complete, and terminates if the rule query ⟨R, q⟩ is
UCRPQ-expressible?

We can instantiate different versions of this open prob-
lem by considering different output rewriting languages. For
instance, we could consider as unions of (non-conjunctive)
regular path queries, monadic datalog, query languages
based on context-free grammars (Medeiros, Musicante, and
da Costa 2022), or any of the query languages considered by
(Bourhis, Krötzsch, and Rudolph 2015).

As a closing remark, note that the answers to the first and
second questions in Open Problem 35 might be negative and
positive, respectively. That is, it is possible that we can
solve entailment for UCRPQ-expressible rule queries even
if we cannot effectively compute rewritings for these. This
is an exciting possibility that may lead us to the discovery
of a novel kind of reasoning procedure for this expressive
class of rule queries. Or perhaps future research will just re-
sult in another undecidability result, which would be strictly
stronger than Theorem 16. Either way, we look forward to
researching (and hopefully settling!) these questions.

References
Ahmetaj, S.; Ortiz, M.; and Simkus, M. 2018. Rewrit-
ing guarded existential rules into small datalog programs. In
Kimelfeld, B., and Amsterdamer, Y., eds., 21st International
Conference on Database Theory, ICDT 2018, March 26-
29, 2018, Vienna, Austria, volume 98 of LIPIcs, 4:1–4:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The dl-lite family and relations. J.
Artif. Intell. Res. 36:1–69.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artif. Intell. 175(9-10):1620–1654.
Bárány, V.; Benedikt, M.; and ten Cate, B. 2013. Rewrit-
ing guarded negation queries. In Chatterjee, K., and
Sgall, J., eds., Mathematical Foundations of Computer Sci-
ence 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings,
volume 8087 of Lecture Notes in Computer Science, 98–
110. Springer.
Benedikt, M.; Buron, M.; Germano, S.; Kappelmann, K.;

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

240

and Motik, B. 2022. Rewriting the infinite chase. Proc.
VLDB Endow. 15(11):3045–3057.
Berger, G.; Gottlob, G.; Pieris, A.; and Sallinger, E. 2022.
The space-efficient core of vadalog. ACM Trans. Database
Syst. 47(1):1:1–1:46.
Bourgaux, C.; Carral, D.; Krötzsch, M.; Rudolph, S.; and
Thomazo, M. 2021. Capturing homomorphism-closed de-
cidable queries with existential rules. In Bienvenu, M.;
Lakemeyer, G.; and Erdem, E., eds., Proceedings of the 18th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, KR 2021, Online event, Novem-
ber 3-12, 2021, 141–150.
Bourhis, P.; Krötzsch, M.; and Rudolph, S. 2015. Rea-
sonable highly expressive query languages - IJCAI-15 dis-
tinguished paper (honorary mention). In Yang, Q., and
Wooldridge, M. J., eds., Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 2826–
2832. AAAI Press.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the in-
finite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res. 48:115–174.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010. Query answer-
ing under non-guarded rules in datalog+/-. In Hitzler, P.,
and Lukasiewicz, T., eds., Web Reasoning and Rule Sys-
tems - Fourth International Conference, RR 2010, Bres-
sanone/Brixen, Italy, September 22-24, 2010. Proceedings,
volume 6333 of Lecture Notes in Computer Science, 1–17.
Springer.
Carral, D.; Dragoste, I.; and Krötzsch, M. 2018. The
combined approach to query answering in horn-alchoiq. In
Thielscher, M.; Toni, F.; and Wolter, F., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Sixteenth International Conference, KR 2018, Tempe,
Arizona, 30 October - 2 November 2018, 339–348. AAAI
Press.
Carral, D.; González, L.; and Koopmann, P. 2019. From
horn-sriq to datalog: A data-independent transformation
that preserves assertion entailment. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
2736–2743. AAAI Press.
Dawar, A., and Kreutzer, S. 2008. On datalog vs. LFP.
In Aceto, L.; Damgård, I.; Goldberg, L. A.; Halldórsson,
M. M.; Ingólfsdóttir, A.; and Walukiewicz, I., eds., Au-
tomata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptog-
raphy Foundations, volume 5126 of Lecture Notes in Com-
puter Science, 160–171. Springer.
Deutsch, A., and Tannen, V. 2003. Reformulation of XML
queries and constraints. In Calvanese, D.; Lenzerini, M.;
and Motwani, R., eds., Database Theory - ICDT 2003, 9th

International Conference, Siena, Italy, January 8-10, 2003,
Proceedings, volume 2572 of Lecture Notes in Computer
Science, 225–241. Springer.
Feder, T., and Vardi, M. Y. 2003. Homomorphism closed vs.
existential positive. In Proceedings of the 18th IEEE Sympo-
sium on Logic in Computer Science (LICS 2003), 311–320.
Florescu, D.; Levy, A. Y.; and Suciu, D. 1998. Query con-
tainment for conjunctive queries with regular expressions.
In Mendelzon, A. O., and Paredaens, J., eds., Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 1-3, 1998,
Seattle, Washington, USA, 139–148. ACM Press.
Gottlob, G., and Schwentick, T. 2012. Rewriting ontolog-
ical queries into small nonrecursive datalog programs. In
Brewka, G.; Eiter, T.; and McIlraith, S. A., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Thirteenth International Conference, KR 2012, Rome,
Italy, June 10-14, 2012. AAAI Press.
Gottlob, G.; Kikot, S.; Kontchakov, R.; Podolskii, V. V.;
Schwentick, T.; and Zakharyaschev, M. 2014. The price of
query rewriting in ontology-based data access. Artif. Intell.
213:42–59.
Gottlob, G.; Rudolph, S.; and Simkus, M. 2014. Expressive-
ness of guarded existential rule languages. In Hull, R., and
Grohe, M., eds., Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014,
27–38. ACM.
Grau, B. C.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka,
D.; Motik, B.; and Wang, Z. 2013. Acyclicity notions for
existential rules and their application to query answering in
ontologies. J. Artif. Intell. Res. 47:741–808.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reason. 39(3):351–384.
König, M.; Leclère, M.; Mugnier, M.; and Thomazo, M.
2015. Sound, complete and minimal ucq-rewriting for exis-
tential rules. Semantic Web 6(5):451–475.
Krötzsch, M.; Marx, M.; and Rudolph, S. 2019. The
power of the terminating chase (invited talk). In Barceló,
P., and Calautti, M., eds., 22nd International Conference on
Database Theory, ICDT 2019, March 26-28, 2019, Lisbon,
Portugal, volume 127 of LIPIcs, 3:1–3:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.
Krötzsch, M. 2011. Efficient rule-based inferencing for
OWL EL. In Walsh, T., ed., IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial In-
telligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
2668–2673. IJCAI/AAAI.
Leone, N.; Manna, M.; Terracina, G.; and Veltri, P. 2019.
Fast query answering over existential rules. ACM Trans.
Comput. Log. 20(2):12:1–12:48.
Marnette, B. 2012. Resolution and Datalog rewriting
under value invention and equality constraints. CoRR
abs/1212.0254.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

241

Medeiros, C. M.; Musicante, M. A.; and da Costa, U. S.
2022. Querying graph databases using context-free gram-
mars. J. Comput. Lang. 68:101089.
Mugnier, M., and Thomazo, M. 2014. An introduction to
ontology-based query answering with existential rules. In
Koubarakis, M.; Stamou, G. B.; Stoilos, G.; Horrocks, I.;
Kolaitis, P. G.; Lausen, G.; and Weikum, G., eds., Reasoning
Web. Reasoning on the Web in the Big Data Era - 10th Inter-
national Summer School 2014, Athens, Greece, September
8-13, 2014. Proceedings, volume 8714 of Lecture Notes in
Computer Science, 245–278. Springer.
Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. Rdfox: A highly-scalable RDF store.
In Arenas, M.; Corcho, Ó.; Simperl, E.; Strohmaier, M.;
d’Aquin, M.; Srinivas, K.; Groth, P.; Dumontier, M.; Heflin,
J.; Thirunarayan, K.; and Staab, S., eds., The Semantic Web
- ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part II, volume 9367 of Lecture Notes in Computer Science,
3–20. Springer.
Ostropolski-Nalewaja, P.; Marcinkowski, J.; Carral, D.; and
Rudolph, S. 2022. A journey to the frontiers of query
rewritability. In Libkin, L., and Barceló, P., eds., PODS
’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, 359–367. ACM.
Rossman, B. 2008. Homomorphism preservation theorems.
J. ACM 55(3):15:1–15:53.
Rudolph, S., and Thomazo, M. 2015. Characterization of
the expressivity of existential rule queries. In Yang, Q., and
Wooldridge, M. J., eds., Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 3193–
3199. AAAI Press.
Rudolph, S., and Thomazo, M. 2016. Expressivity of dat-
alog variants - completing the picture. In Kambhampati,
S., ed., Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, 1230–1236. IJCAI/AAAI Press.
Rudolph, S.; Krötzsch, M.; and Hitzler, P. 2012. Type-
elimination-based reasoning for the description logic shiqbs
using decision diagrams and disjunctive datalog. Log. Meth-
ods Comput. Sci. 8(1).
Urbani, J.; Krötzsch, M.; Jacobs, C. J. H.; Dragoste, I.; and
Carral, D. 2018. Efficient model construction for horn logic
with vlog - system description. In Galmiche, D.; Schulz, S.;
and Sebastiani, R., eds., Automated Reasoning - 9th Inter-
national Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, volume 10900 of Lecture Notes
in Computer Science, 680–688. Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

242

	Introduction
	Preliminaries
	First-Order Logic
	The Chase Algorithm
	Computability Theory

	Query Languages and Expressivity
	Entailment for Datalog-Expressible Queries is Undecidable
	Point 1: The Reduction
	Point 2: Machine Emulation
	Point 3: Datalog-Expressibility

	Related Work
	Future Work

