
Contracted Temporal Equilibrium Logic

Pedro Cabalar1 , Thomas Eiter2 , Davide Soldà2

1University of A Coruña, SPAIN
2Institute of Logic and Computation,

Technische Universität Wien, AUSTRIA
cabalar@udc.es, eiter@kr.tuwien.ac.at, davide.solda@tuwien.ac.at

Abstract
The stable model semantics of logic programs has been char-
acterized by Equilibrium Logic, which is a non-monotonic
formalism that selects models from the (monotonic) interme-
diate logic of Here-and-There. It provides stable models for
arbitrary propositional formulas and has been fruitfully ex-
tended to different modal languages. Among them are theories
in the syntax of Linear-Time Temporal Logic (LTL), giving
rise to Temporal Equilibrium logic (TEL) based on Temporal
Here-and-There (THT). In TEL, models are selected that mini-
mize truth among THT traces of the same length. In this paper,
we consider a selection that in addition may reduce the number
of transitions in a trace, intuitively forming a contraction of it.
We thus introduce contracted THT and contracted TEL on top
of a model selection on a logical basis. The resulting c-stable
models can be viewed as stable models in TEL that can not
be summarized into a smaller trace. We illustrate contraction
on several examples related to logic programming and explore
several properties, like the relation to TEL and LTL, and in
particular the connection to the LTL property of stuttering.

1 Introduction
(Linear-time) Temporal Equilibrium Logic (TEL) (Aguado
et al. 2013) is a well-known extension of Equilibrium Logic
(Pearce 2006), the nonmonotonic logic that characterizes
answer sets of a logic program. Its semantics is defined by
selecting certain models of a theory in Temporal Here-and-
There (THT), a temporal extension of the intermediate logic
of Here-and-There (Heyting 1930). These selected models
have the form of traces that are said to be in equilibrium (also
called stable models or stable traces) when a certain kind
of minimality holds, obtaining in this way a non-monotonic
entailment relation.

A TEL theory may have many stable models, such as the
formula ϕ = �(a∨ b), where each trace T = T0·T1·T2 · · ·
with Ti being either {a} or {b} is a stable model; in partic-
ular T = {a}·{a}·{b}·{b}·{b}·{a}·{a}·{a} · · · and T′ =
{a}·{b}·{a} are stable models. The is intuitively more suc-
cinct and may be preferred over T. A natural question then
is how to select stable models with relevant state transitions.

In the literature, trace selection by length has been con-
sidered; e.g., in (Schuppan and Biere 2005) the authors se-
lect models on the basis of the shortest counterexamples
for model checking purposes. For planning problems, ASP
solvers are usually run up to a certain plan horizon, aiming

at the computation of shortest plans. Other approaches for
selection over traces involve the use of minimization criteria
with weighted atoms, see (Dodaro, Fionda, and Greco 2022)
for LTL over finite traces among others.

However, rather than simply imposing a selection function
on stable models, we are interested in providing, in the spirit
of TEL, a semantics that selects models on a logical basis.
The idea is that not only the truth of atoms is minimized, but
in addition segments of a trace are summarized.

To illustrate this superficially on the formula from above,
by contracting in the trace T the initial segment {a}·{a} into
{a}, and similarly {b}·{b}·{b} and {a}·{a}·{a} · · · into {b}
and {a}, respectively, we obtain T′ which preserves ϕ under
contraction, as b resp. a is true over the segment associated
with each position. The trace T′ is a model of ϕ that can not
be contracted, and is thus selected. To see why taking the
stable models of minimum length does not suffice, consider
the following example.

Example 1 Suppose that, to move to the airport from our of-
fice, we may go by bus or take a taxi. If we go by bus, we must
make two bus stops, bs1 and bs2 before arriving whereas, if
we go by taxi, we always have to stop at a crossroad c. The
number of transitions we may take between two stops is not
predetermined. The following TEL theory is one possible
simplified formalization of this example (recall that �, ♦, ◦
stand for always, eventually, and next time, respectively):

bus ∨ taxi (1)
�(bus → ◦♦bs1) (2)
�(bs1 → ◦♦bs2) (3)

�(bs2 → ◦♦airport) (4)
�(taxi → ◦♦c) (5)

�(c→ ◦♦airport) (6)

The stable models of (1)-(6) follow two different patterns:

1. {bus} · ∅∗ · {bs1} · ∅∗ · {bs2} · ∅∗ · {airport} · ∅∗

2. {taxi} · ∅∗ · {c} · ∅∗ · {airport} · ∅∗

where, in both cases, we may replace the last ∅∗ by ∅ω,
dealing with traces of infinite length. The shortest stable
model corresponds to {taxi} ·{c} ·{airport}, where we take
the taxi and it arrives in the fastest possible way, without any
delay in each trip segment. We claim that the stable model

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

221

{bus} · {bs1} · {bs2} · {airport}, although longer, should
be incomparably minimal as well, as it corresponds to the
shortest trace we may get when we decide to take the bus.

For developing contraction, we consider furthermore the
following desiderata as a guidance: (D1) A contracted trace
should be in equilibrium, that is, contraction selects from
the stable traces. (D2) Consecutively repeated states, known
as stuttering, should preferably be eliminated, if possible.
(D3) Prevailing semantics such as LTL and TEL should be
recoverable by including axioms into a theory.

Our main contributions are then as follows.
• We introduce contraction THT (cTHT), in which interpre-
tations are structures 〈T′,T, µ〉 where µ maps segments of
T to T′, in a way such that the contracted (summarized) trace
T′ is sound with respect to inferences that could be made
in the trace T; that is, while inferences might be dropped,
no new formulas are derivable in a summarized segment of
T. For the definition of entailment, we resort to a temporal
version of the intermediate logic known as Bounded Depth 2.
• On top of contracted THT, we then define contracted TEL
(cTEL) by model selection according to a preference relation.
Intuitively, a trace is in equilibrium, if no proper summariza-
tion can be made. The resulting equilibrium models, called
c-stable models, obey D1 because they are also regular stable
models, and D2 for meaningful language fragments. For
instance, for formulas without the next-operator (◦) and with-
out nested implication, we are able to prove that c-stable
models coincide exactly with the regular stable models (D1)
that are stutter-free (D2).
• Both LTL and TEL can be recovered from cTEL by
adding suitable axioms; the well-known property of LTL that
for ◦-free formulas states can be stuttered is then a corollary.
• We show that satisfiability (stable model existence) has in
cTEL the same complexity as in TEL, which is EXPSPACE-
complete (Bozzelli and Pearce 2015), and that for cTEL
fragments, standard reasoning tasks can be modularly trans-
lated into TEL.

We believe that our work provides a basic framework for
defining contraction and summarization of (stable) traces that
can be utilized in various contexts, such as for generating
example traces, condensing given traces, analyzing minimal
plans, and many further applications.

2 Preliminaries
The syntax of THT (and TEL) is the same as for LTL. In
particular, in this paper, we use the following notation. Given
a (countable, possibly infinite) set A of propositional vari-
ables (called alphabet), temporal formulas ϕ are defined by
the grammar:

ϕ ::= a | > | ⊥ | ϕ1 ⊗ ϕ2 | ◦ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

where a ∈ A is an atom and ⊗ is any binary Boolean con-
nective ⊗ ∈ {→,∧,∨}. The last four cases correspond to
the temporal connectives whose names are listed as follows:
◦ for next; U for until; and R for release. A formula ϕ is
said to be ⊗-free if it does not contain any occurrence of
some connective ⊗. We also define several common derived

operators like the Boolean connectives ¬ϕ =def ϕ → ⊥,
ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ), and the following tem-
poral operators: always as �ϕ =def ⊥ R ϕ, eventually as
♦ϕ =def > U ϕ, final as F =def ¬◦>, and weak next as
◦̂ϕ =def ◦ϕ ∨ F. A (temporal) theory is a (possibly infinite)
set of temporal formulas.

Although THT and LTL share the same syntax, they have
different semantics, the former being a weaker logic than
the latter. The semantics of THT relies on the concept of
pairs of traces. In LTL, a trace T of length λ ≥ 1 (possibly
infinite, λ = ω) is a sequence T = (Ti)[0..λ) of sets Ti ⊆ A.
A THT-trace M is a pair M = 〈H,T〉 where H and T
are LTL traces of the same length, H = H0 ·H1 · . . . and
T = T0 ·T1 · . . . , and we additionally require Hi ⊆ Ti ⊆ A.
We sometimes use the notation |M| =def λ to stand for the
length of the trace. We say that T is infinite if |T| = ω and
finite if |T| ∈ N. Given a ∈ N and b ∈ N ∪ {ω}, we let[
a..b
)

stand for the set {i ∈ N | a ≤ i < b} and, analogously,(
a..b
]

when b 6= ω stands for {i ∈ N | a < i ≤ b}.
Definition 1 (THT-satisfaction) Let M be a cTHT-trace
M = 〈H,T〉 over alphabet A and let λ = |H| = |T|. Then
M satisfies a temporal formula ϕ at step k ∈

[
0..λ

)
, written

M, k |= ϕ, if the following recursive conditions hold:

1. M, k |= > and M, k 6|= ⊥;
2. M, k |= p if p ∈ Hk for any atom p ∈ A;
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ;
4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ;
5. M, k |= ϕ → ψ iff 〈H′,T〉, k 6|= ϕ, or 〈H′,T〉, k |= ψ

for all H′ ∈ {H,T};
6. M, k |= ◦ϕ iff k+1 < λ and M, k+1 |= ϕ;
7. M, k |= ϕUψ iff for some j ∈

[
k..λ

)
, we have M, j |= ψ

and M, i |= ϕ for all i ∈
[
k..j
)
;

8. M, k |= ϕ R ψ iff for all j ∈
[
k..λ

)
, we have M, j |= ψ

or M, i |= ϕ for some i ∈
[
k..j
)
. �

If H = T in Definition 1, then we obtain that 〈T,T〉, 0 |=
ϕ iff T is an LTL model of ϕ.

Definition 2 (TEL) A total cTHT-trace 〈T,T〉 is a tem-
poral equilibrium model (or stable model) of a theory Γ if
T, 0 |= Γ and there is no H 6= T such that 〈H,T〉 |= Γ.

3 Contracted THT
To compare two different traces, we start introducing the
concept of a contractor function µ, a mapping that transforms
indices i ∈

[
0..λ

)
from an interval of length λ into new

positions µ(i) inside an interval of length λ′ ≤ λ.

Definition 3 (Contractor) Let λ, λ′ ∈ N∪{ω} be two trace
lengths. A contractor function µ from λ to λ′ is any surjective
function of type µ :

[
0..λ

)
→
[
0..λ′

)
that satisfies µ(0) = 0

and is monotonic, i.e., µ(i+ 1) ≤ µ(i) + 1 for all i ∈
[
0..λ

)
and i+ 1 < λ. �

Note first that, by monotonicity, µ(i + 1) ≥ µ(i) and so,
µ(i+ 1) can only be either µ(i) or µ(i) + 1. Second, as µ is
surjective, all elements in

[
0..λ′

)
have a preimage in

[
0..λ

)
,

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

222

0 //

��

1

��

// 2 //

��

3 //

��

4 //

ww

5 //

��

6 //

��

. . .

ww
0 // 1 // 2

Figure 1: Example of contractor function µ1.

T0 //
OO
⊆

T1==

⊆

// T2 //
OO

⊆

T3 //
==⊆

T4 //66

⊆

T5 //
OO

⊆

T6 //
==⊆

. . .66

⊆
H0

// H1
// H2

Figure 2: Subset relations imposed by T ↓µ1 H.

so λ′ ≤ λ, that is, µ generally produces an image interval of
a smaller (or equal) length λ′ than the original one λ (hence
the name “contractor”). Moreover, for each point i ∈

[
0..λ′

)
we can define its (non-empty) preimage set as usual:

µ−(i) =def {j ∈
[
0..λ

)
| µ(j) = i}.

The identity function id(i) =def i is the only case of con-
tractor in which the preimage id−(i) is a singleton – in other
words, id− constitutes an inverse function. An example of
a contractor µ1 for λ = ω and λ′ = 3 is shown in Figure 1,
where µ1(i) = 2 for all i ≥ 5.

We can also see a contractor function µ as a way to orga-
nize the points in

[
0..λ

)
into a sequence of λ′ consecutive

intervals so that µ−(i) denotes the i-th interval (starting in
0). For instance, for µ1 in Figure 1 we have the intervals
µ1
−(0) =

[
0..2
)
, µ1
−(1) =

[
2..5
)

and µ1
−(2) =

[
5..ω

)
.

As we can see, we may have cases in which the contractor
just leaves the same length λ′ = λ, that is, there is no length
contraction at all. If λ ∈ N this only happens with the identity
function id: any other contractor will necessarily reduce the
length λ′ < λ. However, when λ = ω we have (infinitely
many) other contractors µ different from id that do not reduce
the interval length, leaving λ′ = ω as well. As an example,
we may take the function µ2(i) =def i÷ 2 for all i ∈ N.

Definition 4 (Trace Contraction) Let H and T be two
traces of lengths λh = |H| and λt = |T| respectively. We say
that a contractor µ from λt to λh contracts T to H, written
T ↓µ H, when Ti ⊇ Hµ(i) for all i ∈

[
0..λt

)
. �

Definition 5 (Summarization �) We say that trace H sum-
marizes trace T, written H � T, when there exists some
contractor µ such that T ↓µ H. �

Figure 2 shows the inclusion relations (in dashed lines)
imposed by T ↓µ1 H using the contractor µ1 in Figure 1
for two traces T of length λt = ω and H of length λh =
3. Informally speaking, when we jump from Hi to Hi+1
we allow trace T to make any finite number of additional
transitions, but all those new states must be supersets of Hi.
In other words, all those new Tj are allowed to include more
information than Hi, but never to remove any atom that is
true at Hi. When H is shorter than T, as in the example, the
last state in H, in the example H2, must be a subset of all the
remaining states in T, even if the latter is infinite.

To introduce the relation with THT, we notice that:

{p} //

��

{p, q} //

��

{q}

zz
{p} // {q}

{p} //

��

{p, q} //

zz

{q}

��
{p} // {q}

Figure 3: Two possible contractors to prove that H ≺ T for traces
H = {p} · {q} and T = {p} · {p, q} · {q}.

Proposition 1 The condition from Defn. 4 for T ↓id H
amounts to:

• λh = λt and, for all i ∈
[
0..λh

)
, Hi ⊆ Ti. �

In fact, the condition we obtained above with µ = id
amounts to the ordering relation among traces used in stan-
dard TEL (Aguado et al. 2021). Moreover, we will also use
the previous notation H ≤ T to mean T ↓id H. Note that
H ≤ T implies H � T but the opposite is not true, for
instance, � allows now comparing traces of different lengths.

Proposition 2 � is a preorder relation among traces.

In other words, � is reflexive and transitive but, in general,
anti-symmetry may not hold (at least, for pairs of infinite
traces). As a counterexample, consider the traces T = ∅ ·
∅ · {a}ω and T′ = ∅ · {a}ω. We can observe that T′ ↓id T
whereas we can also contract T ↓µ T′ using the function
µ(0) = 0 and µ(i) = i − 1 for all i > 0. This means we
have both T � T′ and T′ � T but T 6= T′. However, in
the finite case, anti-symmetry holds, and we thus have:

Proposition 3 � is an order relation among finite traces.

In the sequel, we write H ≺ T if H � T and H 6= T. It
must be observed that, given two traces H ≺ T, we may have
more than one contractor function µ for which T ↓µ H. As a
simple example, take T = {p}·{p, q}·{q} and H = {p}·{q}.
To prove that these two traces satisfy H ≺ T we can use
contractor µ with µ(1) = µ(2) = 1 or contractor µ′ with
µ′(1) = 0 and µ′(2) = 2 as shown in Figure 3.

Definition 6 (cTHT-trace) A cTHT-trace for alphabet A
is a triple 〈H,T, µ〉 satisfying T ↓µ H.

A cTHT-trace 〈H,T, µ〉 is called integral when µ = id
(there is no contraction) and contracted otherwise. An inte-
gral trace where we further have H=T is said to be total.

Given a cTHT-trace 〈H,T, µ〉, we call each k ∈
[
0..|H|

)
a trace step. Moreover, step k is said to be integral when
µ(k) = {i} is a singleton and when this happens, by abuse
of notation, we may sometimes use µ−(k) as a function
denoting the element i. We say that step k is contracted when
it is not integral, i.e., |µ−(k)| > 1. To put an example, for the
contractor on the left of Figure 3, step 0 is integral because
µ−(0) = 0 while step 1 is contracted as µ−(1) = {1, 2}. The
opposite happens for the contractor on the right: in that case
0 is contracted µ−(0) = {0, 1} and 1 is integral µ−(1) = 2.

We define next a particular kind of traces that we will
consider later on.

Definition 7 (cTHT-satisfaction) Let M be a cTHT-trace
M = 〈H,T, µ〉 over alphabet A and let λ = |H|. Then M
satisfies a temporal formula ϕ at step k ∈

[
0..λ

)
, written

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

223

M, k |= ϕ, if the same conditions 1–8 as in Defn. 1 hold
excepting 5 and 6, which are modified as follows:
5. M, k |= ϕ→ ψ iff both:

(a) M, k 6|= ϕ or M, k |= ψ;
(b) 〈T,T, id〉, j 6|= ϕ or 〈T,T, id〉, j |= ψ ∀j ∈ µ−(k)

6. M, k |= ◦ϕ iff |µ−(k)| = 1, k+1 < λ, and M, k+1 |= ϕ

�

The intuitive meaning of the condition for the next operator
◦ϕ is that the current step k must not be a final state k+1 <
λ, it must be integral (|µ−(k)| = 1) and ϕ must hold at
k+1. The fact that k is integral means that Hk cannot be an
“abbreviation” of a sequence of T states above. That is, to
satisfy ◦ϕ at k we force the existence of a state at k+1 (as
usual) but also that the transition from k to k+1 is integral
for T. To put an example, M, 0 |= ◦q in the interpretation
M = 〈H,T, µ〉 corresponding to the left diagram of Fig. 3,
but not in the right as the transition from 0 to 1 is contracting
in that case. The reason for this restriction has to do with
persistence (anything satisfied in H must be satisfied in T
too) as we will prove later on. Informally speaking, in the
right diagram, from H0 we can see that q holds at the next
state H1. But when we move above, we should check ◦q
both at T0 and T1 as µ−(0) = {0, 1}. Here this holds, but
if T1 were {p} instead, then T0 does not satisfy ◦q and we
would have a case where ◦q is true in H but not in T. If the
transition is integral, as in the left diagram, we can guarantee
that T1 satisfies q because it is restricted by H1 = {q}.
Proposition 4 Satisfaction 〈H,T, id〉, k |= ϕ is equivalent
to satisfaction 〈H,T〉, k |= ϕ in THT.

Corollary 1 〈T,T, id〉, k |= ϕ is equivalent to T, k |= ϕ in
LTL.

Due to these results, we may replace an integral trace
〈H,T, id〉 by the THT-trace 〈H,T〉 and 〈T,T, id〉 by T
when using them in satisfaction relations. Given an interval
or set S of time steps, we will also write T, S |= ϕ to stand
for T, j |= ϕ for all j ∈ S. Using this result and notation, we
can replace item 7(b) in Definition 7 by the simpler condition:

7(b′) T, µ−(k) |= ϕ→ ψ.
The following result lifts an essential property of THT

to the contracted setting: that every formula that is satisfied
by a THT-trace 〈H,T〉 must be satisfied by T viewed as
LTL-interpretation. It reflects the intuitionistic view that
when moving from a state H to a state T with more truth
information, inferences made will be preserved.

Theorem 1 (Persistence) For every cTHT-trace M =
〈H,T, µ〉 with λ = |H| and every k ∈

[
0..λ

)
: M, k |= ϕ

implies T, µ−(k) |= ϕ.

As in THT, the satisfaction of negation ¬ϕ at point k
amounts to an LTL check on the T component, but in this
case, we must make that check on all the preimage points
µ−(k). Formally:

Proposition 5 For every cTHT-trace M = 〈H,T, µ〉, for-
mula ϕ, and position k, M, k |= ¬ϕ iff T, µ−(k) |= ¬ϕ (in
LTL).

As usual, given a temporal formula ϕ for alphabet A,
we write |= ϕ to represent that ϕ is a tautology, that is,
M, k |= ϕ for every cTHT-trace M = 〈H,T, µ〉 over A
and every k ∈

[
0..|H|

)
.

Definition 8 (entailment/equivalence) Let ϕ and ψ be two
temporal formulas over alphabet A. We say that ϕ entails ψ,
written ϕ |= ψ, when M, k |= ϕ implies M, k |= ψ, for any
trace M = 〈H,T, µ〉 over A and every k ∈

[
0..|H|

)
. We

say that ϕ and ψ are equivalent, written ϕ ≡ ψ, when both
ϕ |= ψ and ψ |= ϕ.

Proposition 6 ϕ |= ψ iff |= ϕ→ ψ.

Corollary 2 ϕ ≡ ψ iff |= ϕ↔ ψ.

A cTHT-trace M is a model of a theory Γ if M, 0 |= ϕ
for all ϕ ∈ Γ. The following property from LTL and THT
also holds in cTHT (yet, it is known to be false once we
introduce past operators).
Proposition 7 ϕ ≡ ψ iff ϕ and ψ have the same models.

Proposition 8 The semantics induced for derived operators
is the following. Let M be a cTHT-trace M = 〈H,T, µ〉
over alphabet A and let λ = |H|.
1. M, k |= ♦ϕ iff M, j |= ϕ for some j ∈

[
k..λ

)
2. M, k |= �ϕ iff M, j |= ϕ for all j ∈

[
k..λ

)
3. M, k |= F iff |µ−(k)| = 1 and k+1 = λ

4. M, k |= ◦̂ϕ iff |µ−(k)|= 1 and either k+1 =λ or
M, k+1 |=ϕ.

It is well-known that THT is a strictly weaker logic than
LTL (Aguado et al. 2021), that is THT ⊂ LTL. Proposi-
tion 4 allows proving that cTHT ⊆ THT, namely, that any
cTHT-tautology is also an THT-tautology. We may also ob-
serve that this relation is strict, cTHT ⊂ THT. For instance,
while ◦̂> ≡ ◦> ∨ ¬◦> is a tautology in LTL and in THT,
it is not a tautology any more in cTHT. Indeed, from Propo-
sition 8.4 we conclude that M, k |= ◦̂> iff |µ−(k)| = 1, that
is, satisfying ◦̂> at point k just means requiring that k is
an integral transition. Thus, we can take any interpretation
where k is contracting, such as k = 0 in Figure 2, to falsify
◦̂>. Furthermore, including the axiom:

�◦̂> (INT)

forces all steps to be integral (no contraction), and so, µ = id
collapsing to THT. In other words, cTHT+ (INT) = THT.

Similarly, we may also observe that the THT-equivalent
formulas ◦> and ¬¬◦>(= ¬F) are not equivalent in cTHT
either. While satisfying ◦> at k asserts that k is integral and
jumps to a state k+1, ¬F just means the preimage of k does
not contain the last position in T.
Proposition 9 Let M = 〈H,T, µ〉 be a cTHT-trace. Then,
M, k |= ¬F iff max(µ−(k)) + 1 < |T|.

One important observation is that the non-temporal frag-
ment of cTHT is actually weaker than HT. If we restrict
to propositional connectives ∨,∧,→,⊥,> and atoms, the
satisfaction relation collapses to an intermediate logic whose
Kripke models have the form of “forks”, namely, one point
(or world)H0 that can see a group of worlds Ti for i ∈ µ−(0)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

224

c-THT THT LTL TEL c-TEL
INT EM

INT ∧ EM

EM INT

INT ∧ EM

Figure 4: Relations between LTL, THT, and cTHT.

with no (intuitionistic) accessibility among them. This struc-
ture corresponds to the intermediate logic of Bounded Depth
2 (BD2), one of the seven interpolable intermediate log-
ics (Maksimova 1977), like HT itself, although BD2 is also
strictly weaker. For instance, BD2 does not satisfy the prin-
ciple of weak excluded middle ¬ϕ ∨ ¬¬ϕ, which is an HT-
tautology. In some sense, cTHT can be seen as one of the
(possible) temporal extensions of BD2.

We have seen that axiom (INT) allows collapsing cTHT
into THT. It is also known that THT collapses to LTL by
the addition of the (temporal) excluded middle axiom (EM)
scheme. We also introduce its weaker version (WEM):

EM := �(p ∨ ¬p) (7)
WEM := �(¬¬p ∨ ¬p) (8)

for every p ∈ A. Figure 4 depicts some reductions among
different logics obtained by the inclusion of axioms.

Although cTHT is strictly weaker than LTL, there are
syntactic fragments on which LTL-equivalences are still ap-
plicable for cTHT. For instance:
Proposition 10 Let ϕ,ψ be a pair of→-free, ◦-free formu-
las. Then, the formula ϕ↔ ψ is a cTHT-tautology iff it is
an LTL-tautology.
As an illustration, the LTL-tautology

pU ♦q ↔ ♦q (9)
is also a cTHT-tautology because the formulas on the two
sides of the double implication are→-free and ◦-free. Note
that we can still exploit this result to prove properties about
formulas with ◦ or→. To put an example, the formula

◦ϕU ♦(ψ → γ) ↔ ♦(ψ → γ) (10)
is still a cTHT-tautology because cTHT satisfies the law
of uniform substitution, whose validity can be proved by
contradiction, and we can replace p by ◦ϕ and q by (ψ → γ)
in (9) to obtain (10).

4 Contracted Temporal Equilibrium Logic
We are now introducing a selection criterion over cTHT
models, which requires the nonexistence of a proper logical
summarization. As pointed out in (Lamport 1983), standard
temporal logics like LTL cannot express possibilities (or the
absence of possibilities) over different behaviors; for that,
a second-order logic is needed. TEL already provides a
notion of possibility, in the sense that a selection criteria over
models is employed, but its purpose is to simulate the stable
semantics on a temporal setting only.
Definition 9 (cTEL) A total cTHT-trace 〈T,T, id〉 is a
contracted temporal equilibrium model (or c-stable model)
of a theory Γ if it is a model of Γ (that is T, 0 |= Γ in LTL)
and there is no model 〈H,T, µ〉 of Γ with H ≺ T.

If we constrain µ in Definition 9 to identity id, then we ob-
tain the definition of (integral) temporal equilibrium model as
in (Aguado et al. 2013) for infinite and finite traces, which we
call stable models. A first observation is then the following.

Theorem 2 Any c-stable model of a theory Γ is also a (stan-
dard) stable model of Γ.

Hence, the desidered condition (D1) is satisfied. To see
how the semantics works, let us see some examples.

Example 2 Consider the theory Γ = {♦p}. Its stable mod-
els are the traces T with p at a single state, i.e., T =
∅m · {p} · ∅n with m,n ≥ 0 and, possibly, n = ω. Let us try
to build an H and µ such that 〈H,T, µ〉 |= ♦p and H ≺ T.

• Consider T = {p}. Then |H| = 1 and µ = id must hold;
as T is stable, H ≺ T is not possible, so T is c-stable.

• Consider T = ∅ · {p}. Then H0 = {p} is not possible
as µ(0) = 0, which forces H0 ⊆ T0 = ∅. So, we must
have H0 = ∅; as 〈H,T, µ〉, 0 |= ♦p must hold, this forces
H1 = {p}, µ(1) = 1 and so H = T. Again T is c-stable.

• Also trace T = {p} · ∅ is c-stable: |H| = 1 would force
p ∈ H0 and H0 ⊆ T1 = ∅, while |H| = 1 forces µ = id ;
then H1 ⊆ T1 = ∅ and so H0 = {p} but then H = T.

• The trace T = ∅ · {p} · ∅ is c-stable: |H| = 3 would
force µ = id, and as T is stable, H ≺ T is not possible.
Otherwise, µ(2) = 1 would force H1 = ∅ thus H0 =
{p} ⊆ T0 = ∅; µ(2) = 0 would force H = H0 = ∅ but
then 〈H,T, µ〉, 0 |= ♦p is not possible.

• Take any trace T = ∅m · {p} · ∅n where m > 1. Then, we
can build H = ∅ · {p} · ∅n and use µ(i) = m+ i− 1 for
all i ≥ 1 for the model H ≺ T, so T is not c-stable.

• Finally for any trace T = ∅m · {p} · ∅n with n > 1 we
similarly build H = ∅m · {p} · ∅ and use µ(i) = i for all
i ∈
[
0..m

)
(remember the last state forces µ(m+ 1) = ω)

for the desired model H ≺ T, so T is not c-stable.

In conclusion, this theory has only four c-stable models: {p},
{p} · ∅, ∅ · {p}, and ∅ · {p} · ∅, which are compactly repre-
sented with the regular expression as T = ∅? · {p} · ∅?. �

Example 3 Consider the dual theory Γ = {�p }. Its stable
models are T = {p}λ where λ ≥ 1 and possibly λ = ω. The
only c-stable stable model is T = {p}: for any λ > 1 we
can use H = {p} and readily show that T is not c-stable.

Example 4 Consider next the theory Γ with the formulas

♦p (11)
�(p→ ◦p ∨ q). (12)

To satisfy (11), any stable model T must make p true
at some point k, and by (12) p must be true forever, i.e.,
Ti = {p} for i ∈

[
k..λ

)
, or until both p and q are true

at some point k′ ≥ q, i.e., Ti = {p} for i ∈
[
k..k′

)
and

Tk′ = {p, q}. By the minimality condition of T, no p or q
can appear before k or after k′, i.e., Ti = ∅ for i ∈

[
0..k

)
and i ∈

[
k′+1..λ

)
, as we could make them all false in a

smaller H for an HT-model; likewise, we could make all p at
i ∈

[
k..λ

)
resp. i ∈

[
k..k′

)
false. Thus, T must be, written

as regular expression, of the form T = ∅∗ · {p, q} · (∅∗+∅ω).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

225

It is not hard to check that any nonempty subsequence ∅k in
T, including ∅ω , can be contracted into ∅, leading to four c-
stable models: {p, q}, ∅ · {p, q}, {p, q} · ∅, and ∅ · {p, q} · ∅,
which are compactly represented as T = ∅? · {p, q} · ∅?. �

Example 5 Let then Γ = {♦(p∧�(p→ ◦p∨q)) }. In LTL,
this theory is weaker than Γ in Example 4, which we rename
to Γ′, as (12) is nested into (11); thus we have Γ′ |=LTL Γ;
the same holds in THT and in cTHT.

Consequently, any stable model T of Γ must be a stable
model of Γ′. Conversely, any stable model T of Γ′ is an LTL
model of Γ, and by its particular form, we can not form a
smaller H such that 〈H,T〉 |= Γ; hence T is also a stable
model of Γ. This likewise holds for c-stable models. Thus Γ
and Γ′ have the same stable resp. c-stable models. �

We next consider occurrence of negation.

Example 6 Let Γ = {�(¬p ∨ p)}. As THT plus EM col-
lapses to LTL, any trace is a stable model of Γ that intuitively
represents a choice for p or ¬p at each point.

To see which of them are c-stable, whenever we have a
state repetition in T, i.e., Ti = Ti+1 for some i ≥ 0, then
we can contract T to T′ by leaving out Ti+1, i.e., we let
µ(j) = j for j ∈

[
0..i
]

and µ(j) = j−1 for j ∈
[
i..|T|

)
,

and obtain 〈T′,T.µ〉 |= Γ; if all Tj , j > i, are the same, we
can also set µ(j) = i. As this can be repeated, the c-stable
models of Γ are all traces that alternate between {p} and ∅;
formally, they are captured by the regular expression
∅·({p}·∅)∗·{p}? + {p}·(∅·{p})∗·∅? + (∅·{p})ω + ({p}·∅)ω

�

In the examples above, repeated states have been elim-
inated, as desired by condition (D2). Clearly, this is not
always possible.

Example 7 Take Γ = {p,◦p}. Its stable models are T =
{p} · {p}(∅∗+∅ω), and the formula ◦p forces any contraction
µ to be integral at step 0; the c-stable models are {p} · {p}
and {p} · {p} · ∅.

The ◦-operator can be seen as a way to state that a given
transition cannot be contracted. Thus, when a ◦-formula
is derived, we may have repetitions of states that cannot
be removed in c-stable models; as we shall see in the next
section, we can safely remove stuttering when we deal with
◦-free formulas, so (D2) will be satisfied.

Regarding (D3), we readily obtain from the discussion
about LTL, THT and cTHT in the previous section that
cTEL+(INT) = TEL and TEL+(EM) = LTL, complet-
ing the diagram in Figure 4.

5 Characterising c-Stable Models
We notice that c-stable models are ω-regular languages,
which follows from an automata construction for deciding
the satisfiability problem in cTEL. Intuitively, this can be
already seen from Defn. 9, as we need to produce an LTL
automaton for the guess T, and a THT automaton for pro-
ducing a defeater H and µ. After completing the defeater
automaton, we project away all the atoms referring to H and
µ, and we compute the intersection of the two automata. All

the above mentioned automata operators are closed under
ω-regular languages (Büchi 1960).

We further note that for ◦-free formulas, an alphabet of size
at least 2 is needed for having an aperiodic c-stable trace. For
instance, the trace T = ∅ · a · ∅ · ab · ∅ · (ab)2 · ∅ · (ab)3 · . . .
is a c-stable trace for the formula �((a ∨ ¬a) ∧ (b ∨ ¬b)).

5.1 ◦-free Formulas
We now turn our attention to ◦-free formulas, i.e., formulas
without the ◦-operator. The absence of the intricate semantic
behavior of the latter allows us to identify sufficient condi-
tions for the existence of c-stable models as well as charac-
terizations for classes of ◦-free theories, and under restricted
contractions for all such theories.

A key notion for this endeavor is stuttering of traces.

Definition 10 (Stuttering) A trace T is a stuttering of a
trace T′ if T ↓µ T′ for some µ such that Ti = T ′µ(i), for all
i ∈
[
0..|T|

)
; it is proper if, in addition, T 6= T′.

That is, in a stuttering the same state is repeated, possibly
multiple times or even infinitely often; properness ensures
that T must have some repetition that is not in T′.

Let us consider what happens when we “pump” LTL and
THT models of a set Γ of ◦-free formulas.

Lemma 1 (Stutter Equivalences) Suppose T (resp. H) is
a stuttering of T′ (resp. H′) via contraction µ. If ϕ is ◦-free,
then for each j ∈ [0, λ′),
1. T′, j |= ϕ iff T, µ−1(j) |= ϕ, and
2. 〈H′,T′〉, j |= ϕ iff 〈H,T〉, µ−1(j) |= ϕ.

Item 1 of Lemma 1 is a well-known result of the LTL
◦-free fragment, while 2 is an immediate generalization of 1.
Notably, we can summarize stuttered intervals in the There-
trace using contractors while preserving THT satisfaction:

Proposition 11 (T-stutter Equivalence) Let M =
〈T′,T, µ〉 where Ti = Tj for every i, j ∈ µ−(k) and
k ∈ [0, |T′|), and let H ↓µ T′ be a stuttering of T′. If ϕ
is a ◦-free formula, then for each k ∈ [0, |T|), we have
M, µ(k) |= ϕ iff 〈H,T〉, k |= ϕ.

Proposition 11 allows us to link summarisation inference
to ordinary HT-inference. Armed with this proposition, we
then show the following property. Let us call a trace T
stutter-free, if it is not a proper stuttering of any sequence T′.

Proposition 12 For any set Γ of ◦-free formulas, T is a c-
stable model of Γ only if T is a stable model of Γ such that
Ti 6= Ti+1 for all i ∈ [0, λ), i.e., T is stutter-free.

Thus, stutter-freeness is a necessary condition for c-
stability in the absence of the ◦-operator. On the other hand
this condition is not sufficient in general, as shown by the
following example.

Example 8 Consider the theory Γ = {¬p → ♦p}, which
has the stable model T = ∅ · {p}: at i = 0, p is false and
thus p must be true at i = 1. However, while T is stutter-free,
it is not a c-stable model. Indeed, for M = 〈T′,T, µ〉 where
T ′ = ∅ and µ(0) = µ(1) = 0, we have M |= Γ as M 6|= ¬p
and T |= ♦p. Intuitively, contraction of T into T′ affects
stability as the antecedent ¬p is no longer provable. �

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

226

To obtain a fragment of TEL for which stutter-freeness
is a sufficient condition for summarization, we thus have to
impose some restrictions. This intuitively regards negation
respectively implication, as summarization does not affect
provability of formulas without implication, which we call
positive formulas. As it turns out, by excluding nested impli-
cation we achieve this goal.

Let THT1 denote the class of all formulas without nested
implication. We then obtain the following result, which
informally generalizes the only-if direction of Proposition 11
for THT1 theories.

Proposition 13 Let M = 〈T′,T, µ〉 and H ↓µ T′ be a
stuttering of T′. If ϕ is a ◦-free formula from THT1, then
for each k ∈ [0, λ′), M, k |= ϕ implies 〈H,T〉, µ−(k) |= ϕ.

The converse direction does not hold, as shown by T′ = ∅,
T = {p}·∅, µ as obvious, H = ∅·∅, and Γ = {♦(p ∨ ¬p)}.

From Proposition 13, we obtain the converse of Proposi-
tion 12 for THT1:

Proposition 14 Suppose Γ is a set of ◦-free formulas from
THT1. Then T is a c-stable model of Γ if T is a stable model
of Γ such that Ti 6= Ti+1 for all i ∈ [0, λ), i.e., T is not a
proper stuttering of any sequence T′.

From Propositions 12 and 14, we then obtain the charac-
terization of the c-stable models in terms of stable models.

Theorem 3 For any ◦-free THT1 theory Γ, (i) the c-stable
models coincide with the stutter-free stable models; (ii) a
c-stable model exists iff a stable model exists; and (iii) every
stable model becomes c-stable by removing all repetitions.

Revisiting Example 6, we see that the c-stable models of Γ
are captured by the characterization in Theorem 3.

Even ◦-free THT1 formulas allows us to enforce infinite
models sensitive to c-stability.

Example 9 By adding the formula �(◦>) to the theory Γ =
{�(¬p ∨ p)} in Example 6, as well as to any theory, all
models of Γ must be infinite, and only the two infinite traces

(∅ · {p})ω and ({p} · ∅)ω)

would remain as c-stable models.
Infinite models may be also enforced by adding the formula

�((q ∨ ¬q) ∧ ♦q ∧ ♦¬q) (13)

where is q is an auxiliary atom. While �(◦>) restricts any
mapping T ↓µ T′ between traces to identity (µ = id) and
thus c-stability falls back to stability, formula (13) preserves
the full mappability.

We note that Theorem 3 can be extended to non-THT1

theories by imposing syntactic conditions. In particular, it
continues to hold if Γ contains for each non-THT1 formula
ϕ in Γ also (EM) for each variable p that occurs in ϕ; this
enforces totality of models on the variables Aϕ in ϕ, and
thus the condition in Proposition 11 applies relative to Aϕ.
As LTL equals THT + (EM) (cf. Figure 4), the stutter-free
LTL-models of any ◦-free theory Γ are thus characterized by
the c-stable models of Γ ∪ (EM), i.e., by the contractions of
the stable models of Γ under classical semantics.

We further remark that (EM) also belong to the syntactic
fragment THT1 whereas its inclusion captures full LTL: we
can convert each formula ϕ in LTL into negation normal
form in polynomial , by rewriting implication to disjunction
and moving negations inside formulas – in particular, using
¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ and ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ in LTL,
where double negation cancels.

5.2 GP-formulas
While the class THT1 excludes nested implication, it is still
expressive and allows for encoding EXPSPACE-complete
problems, even if ♦ and � are the only temporal operators
available (Bozzelli and Pearce 2015). In particular, it em-
braces theories that include statements of the form

α1 ∧ · · · ∧ αm → β1 ∨ · · · ∨ βn, (14)
�(α1 ∧ · · · ∧ αm → β1 ∨ · · · ∨ βn) (15)
�(�α1 → β1) (16)
�(α1 → ♦β1) (17)
α1 ∨ ¬α1 (18)

m,n ≥ 0, where all αi and βj are positive formulas. They
are rules of temporal logic programs (Aguado et al. 2021)
if the formulas are atoms in (16)-(17) and atoms or formu-
las ◦p in (14)-(15) where p is an atom. For m = 0 these
are (disjunctive) facts, and for n = 0 constraints where the
consequent is ⊥). The formula (18) is a guessing rule which
makes in stable semantics α1 either true or false, which then
leads to two different scenarios reflected in different stable
models (so they exist).

It is well-known that for positive disjunctive logic pro-
grams, which are sets of formulas (14) where all αi and βj
are atoms, the stable models coincide with the ⊆-minimal
(in short, minimal) models. We now present the class GP
(standing for Generalized Positive) of formulas with an anal-
ogous property for theories Γ over this class. The c-stable
models of ◦-free Γ theories are then the minimal stutter-free
models of Γ; furthermore, for no different c-stable models T′
and T of Γ, we can have T′ ≺ T (which for arbitrary ◦-free
theories is possible, cf. Example 6).

Definition 11 (GP formulas) The class GP consists of all
THT1 formulas ϕ where each subformula ϕ1 ∨ϕ2, ϕ1 Uϕ2,
or ϕ1 R ϕ2 of ϕ is positive unless ϕ1 = ⊥.

Clearly GP properly generalizes positive formulas; e.g.
p→ q is positive and an admissible GP formula, but �(p ∧
♦r → q ∨ �s) is only admissible GP. The restriction on
U and R subformulas mirrors the restriction on disjunction
∨, since both operators involve temporal disjunction. i.e.,
over time instants. Exempting the case ϕ1 = ⊥ means
that ϕ1 ∨ ϕ2 amounts to ϕ2, which then simply must be
from THT1, ϕ1 U ϕ2 amounts similarly to ϕ2, and ϕ1 R ϕ2

amounts to �ϕ2, which intuitively is a temporal conjunction
of ϕ2 over the timeline.

Notably, positive (negation-free) temporal logic programs
with rules of the form (14)–(17) fall into the class GP, and
several examples considered above involve GP formulas.

Furthermore, with �◦> but also with ◦-free GP formulas
we may enforce infinite LTL models, such as with �((p→

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

227

c-THT

T-stutter

THT LTL TEL

T-stable

c-TEL

WEM
INT

EM
WEM

INT

EM

Figure 5: T-stuttering and T-stable semantics vs. the other semantics.

♦q)∧(q → ♦p)); by further adding �((p∨q)∧(p∧q → ⊥)),
each infinite stable trace gives rise to some c-stable model.

Based on Theorem 3, we then obtain the following charac-
terization of c-stable models.

Theorem 4 For any theory Γ of ◦-free GP formulas, the
following conditions are equivalent:
(1) T is a c-stable model of Γ;
(2) T is a stutter-free ⊆-minimal model of Γ, i.e., Ti 6= Ti+1

for all i ∈ [0, λ);
(3) T is a (⊆-minimal) model of Γ and no model T′ ≺ T of

Γ exists.

We remark that Theorem 4 does not hold for THT1 formu-
las, which is easily witnessed by Γ = {p∨¬p} and T = {p}:
T is a c-stable model but the conditions (2) and (3) are not
satisfied. As this example shows, requiring in (2) and (3) that
T is an stable model would not change this. However, the
conditions (2) and (3) are sufficient for c-stability.

Proposition 15 For any ◦-free theory Γ of THT1 formulas,
T is a c-stable model of Γ if (1) T is a stutter-free⊆-minimal
model of Γ, or (2) T is a model of Γ and no model T′ ≺ T
of Γ exists.

5.3 Taming Summarization
As we illustrated with Example 8, if our theory is not in the
fragment THT1, stutter-free stable models may not c-stable,
even in the absence of the next-operator. An intuitive expla-
nation for this is that arbitrary contractions can be aggressive
and compromise stability of formulas, as negation has to be
evaluated over a segment in the There-trace. Specifically, this
happens in Example 8 for the contraction of the stable model
T = ∅·{p} of Γ = {¬p→ ♦p,¬p→ ◦p} to T′ = ∅, where
the antecedent ¬p of the implications has to be evaluated over
∅ · {p}, while for stability, it is only evaluated over T0 = ∅.

Similarly, aggressive summarization may eliminate sta-
ble models if a change of axioms should only affect lo-
cal stability, as for the theories Γ1 = {�(p ∨ q)} and
Γ2 = {�(¬p → q),�(¬q → p)}, which have the same
stable models. However, while the c-stable models of Γ1

are its (infinitely many) stutter-free stable models, which are
all the finite and infinite traces T that alternate between {p}
and {q}, Γ2 has only {p} and {q} as c-stable models: each
different stable model T can be contracted by µ to T′ = ∅,
for which 〈T′,T, µ〉 |= Γ2 holds.

Aggressive summarization can be avoided by restricting
contractions. In particular, the elimination of repetitions,
which is a necessary feature of c-stable models, would be
sufficient. To this end, we introduce the following notion.

Definition 12 (T-stutter,T-stable model) We call a cTHT-
trace 〈H,T, µ〉 T-stutter, if Ti = Tj whenever µ(i) = µ(j),

for every i, j ∈
[
0..|T|

)
. Furthermore, a trace T is a T-

stable model of a theory Γ if T |= Γ and no T-stutter M =
〈T′,T, µ〉 exists such that M |= Γ and T′ 6= T.

The less aggressive summarization allows us to recover all
the ◦-free THT tautologies.
Proposition 16 Let ϕ,ψ be a pair of ◦-free formulas. Then,
ϕ↔ ψ is a T-stuttering tautology iff it is a LTL-tautology.

In Example 8, we thus can’t contract T = ∅ · {p} to T′=∅,
and T is T-stable; similarly, no stable model T of Γ2 with al-
ternating {p} and {q} can be contracted to any trace T′ 6= T
such that M = 〈T′,T, µ〉 is T-stutter and M |= Γ2. Clearly,
Proposition 17 Every c-stable model T of a theory Γ is a
T-stable model of Γ.

It is not hard to see that we can constrain models M to be
T-stutter by the temporal weak excluded middle axiom. We
thus obtain the following characterization.

Theorem 5 For any theory Γ, the T-stable models of Γ coin-
cide with the c-stable models of Γ ∪ (WEM).

The refined picture of semantics is shown in Figure 5.
Many of the results for c-stable models of THT1 theories
similarly hold for T-stable models. The main result is an
analogon of Theorem 3 for all ◦-free theories.

Theorem 6 For any ◦-free theory Γ, (i) the T-stable models
coincide with the stutter-free stable models; (ii) some T-stable
model exists iff some stable model exists; and (iii) every stable
model becomes T-stable by removing all repetitions.

In other words, the T-stable models capture the stutter-free
stable models of any ◦-free theory. Furthermore,

Corollary 3 For any ◦-free THT1 theory Γ, the T-stable
models of Γ coincide with the c-stable models of Γ.

As a final remark, when we consider the non-temporal
fragment of cTHT under T-stutter traces, it is easy to see
that we return back to the HT intermediate logic – although
the current world in the BD2 structure may still see multiple
accessible worlds in T, all of them have the same valuation
of atoms and collapse to a single point.

6 Computational Complexity and Reasoning
The satisfiability problem for LTL is well-known to
be PSPACE-complete, while Bozzelli and Pearce (2015)
showed that for TEL it is EXPSPACE-complete. They
gave a detailed complexity picture for syntactic fragments
THTnm(Op1, . . . , Opk), where n is the implication depth, m
the temporal operator depth, and (optional) theOp1, . . . , Opk
are the admitted temporal operators, focusing on infinite
traces but with corollaries for arbitrary and finite traces. We
present the following novel results (’c’ stands for ’complete’).

Theorem 7 (TEL complexity) Deciding TEL satisfiability
of a theory, i.e., whether it has some stable model, from
• GP2(�,♦) is EXPSPACE-c for infinite traces;
• THT2

2(U) is EXPSPACE-c for finite and for infinite traces.
• THT1

2(◦,�,♦) is PSPACE-hard for finite traces, and
THT1

2(◦,�,♦, ◦̂,F) is in PSPACE for finite traces.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

228

• THT1
2(�,♦,F) is NP-c for finite traces.

Notably, as a corollary we get that deciding TEL satisfiabil-
ity of ¬-free (and ◦-free) temporal programs from (Cabalar
and Schaub 2019) is PSPACE-c (is NP-c), while it remains
EXPSPACE-c in the general case.

For c-stable semantics, we easily obtain from our discus-
sion about enforcing infinite traces (see Section 5) and the
results in (Bozzelli and Pearce 2015) some lower bounds, as
we can block non-id mappings by adding the formula �◦>.

Lemma 2 Deciding whether a given theory Γ has some c-
stable model is

1. EXPSPACE-hard in general and for THT1
m+1(♦,�),

GP2(♦,�,◦), and THT2
2(U) and

2. PSPACE-hard for THT1(◦,R) and THT0.

The general case has a matching upper bound, which can
be shown using automata-theoretic techniques, similar as for
the result that satisfiability for TEL is in EXPSPACE. Hence,
cTEL does not have higher complexity than TEL.

Theorem 8 (cTEL-complexity) Deciding cTEL satisfiabil-
ity of a theory Γ, i.e., whether Γ has a c-stable model, is
EXPSPACE-complete.

Combining our results in Section 5 with results in (Bozzelli
and Pearce 2015), we obtain some upper bounds for infinite
models (remind the non-duality between U and R in TEL):

Proposition 18 Let INF =def �♦◦> denote an operator
expressing infinity. Then deciding whether a given theory Γ
has an infinite c-stable model is

1. in PSPACE for THT1(R) and THT1(U, INF), and
2. in Σp2 for THT(♦, INF).

Notably, in many cases, the existence of a stable model
for a formula ϕ is, as shown by (Bozzelli and Pearce 2015),
equivalent to the existence of a stable model T that is strongly
ultimately periodic, i.e., that some j ≥ k exists such that
Ti = Tj for all i ≥ j, where j is bounded in the size of the
formula ϕ. For c-stability, the ultimate periodic part may
either remain or be reduced to a finite suffix of the trace; thus,
finite c-stable model existence is covered as well.

A detailed study of the complexity of cTHT and cTEL
is beyond this paper. We remark, however, that are also low
complexity fragments of cTEL semantics. In particular,

Proposition 19 Deciding whether a given ◦-free theory Γ
has some c-stable model is NP-complete for THT1

1 and GP1.

This holds as some c-stable model exists in case of THT1
1

(which includes GP1) by Theorem 3 iff some stable model
exists iff some infinite stable model exists (as states can be
stuttered), which is NP-complete to decide (Bozzelli and
Pearce 2015). The NP-hardness holds for GP1, as it includes
positive disjunctive logic programs (empty rule heads permit-
ted), for which deciding stable model existence is well-known
to be NP-complete (Eiter and Gottlob 1995). Proposition 19
thus shows that the benign complexity of a major class of
logic programs extends to a meaningful temporal analogue.

6.1 Reasoning
Theorem 6 can be exploited to obtain the T-stable models of
Γ from the stable models of an extension of Γ.

Let diff be a fresh atom and let Γdiff be defined as
Γdiff = Γ ∪ { diff , �(¬diff → ⊥)} ∪

{�((p ∧ ◦¬p) ∨ (¬p ∧ ◦p)→ ◦diff) | p ∈ A}.
That is, diff must be derived at each position; it is a fact at
position 0, but at later positions can be derived iff adjacent
positions are different. In case A or Γ is finite, we can also
eliminate the auxiliary atom. Formally, we obtain:
Proposition 20 The T-stable models T of any theory Γ of
◦-free THT1 formulas correspond 1-1 to the stable models
T′ of Γdiff , where T ′i = Ti ∪ {diff } for all i ∈ [0, λ).

From Theorem 6, We obtain that inference from the T-
stable models of Γ is captured by inference from the stable
models of Γdiff . Furthermore, by Corollary 1, for ◦-free
formulas, inference from the stable models is preserved:
Theorem 9 Let Γ be a ◦-free theory and ϕ be a formula
over A. Then the following conditions are equivalent:
(1) T |= ϕ for every / some T-stable model T of Γ;
(2) T |= ϕ for every / some stable model T of Γdiff ;
(3) T |= ϕ for every / some stable model T of Γ, if ϕ is

◦-free.
Since by Corollary 3 the T-stable models of ◦-free THT1

theories coincide with the c-stable models, we obtain for this
syntactic fragment an analogous result to Theorem 9 with
with c-stable models in place of T-stable models.

7 Applications
We briefly discuss two applications of contractions. The first
one is a query-based application. Let TS be the transition sys-
tem depicted in Figure 6, representing an environment model.
Given a query ϕ = �(p1 ∨ p0), we may be interested in the
stable models of ϕ which are consistent with the possible evo-
lutions in TS. The respective c-stable models are T1 = {p1}
and T2 = {p1}·{p0}·{p1}, which represent two qualitatively
different fulfillments of ϕ consistent with TS. Applying the
shortest selection criterion to the possible evolutions as in
(Schuppan and Biere 2005) would single out T1; for a set
of samples that cover all qualitative-different evolutions, T2

should also be selected. This feature may be exploited in
Runtime Verification (Falcone, Havelund, and Reger 2013;
Leucker and Schallhart 2009), where given a prefix with
all transitions integral, a complete sample of different pos-
sible evolutions can be provided; a starting point may be
progression-based TEL monitoring (Soldà et al. 2023).

At the same time, given a finite trace T, we may want
a stable trace T′ of ϕ such that 〈T′,T, µ〉 |= ϕ for a
contraction µ, where ϕ is a formula that concerns only
some aspects of the examined behavior. Suppose T =
{p, q}·{p, r}·{q, s}·{r, s}·{q} and that we focus on ϕ =
pUs. The unique c-stable model T′ such that 〈T′,T, µ〉 |= ϕ
is T′ = {p}·{s}·∅. Note that the trace T could be also in-
finite, but finitely represented in a prefix plus loop form.
Therefore, if ϕ represents a set of faulty behaviors, in this
way, we can obtain a logical succinct representation of them.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

229

{p1}start

{p0}

∅

{p1}

Figure 6: Transition System TS

8 Related Work and Conclusion
As mentioned in the Introduction, other works such as (Schup-
pan and Biere 2005; Dodaro, Fionda, and Greco 2022) aim at
cost-based trace selection in LTL, using length or weighted
atoms. Our setting relies on a non-monotonic logic, and con-
traction may preserve patterns that are eliminated by cost
based selection, e.g. for Γ = {�(p ∨ ¬p)}.

Stutter-invariance of ◦-free formulas in LTL is widely
used, and our results generalize it to cTEL thanks to the
recoverage of LTL. Extensions to nesting of ◦ and patterns
in LTL have been studied, cf. (Kucera and Strejcek 2002),
which would be interesting to explore for cTEL as well.

In planning, some approaches render simplified plans, such
as CEGAR planning, (Seipp and Helmert 2013) or hierarchi-
cal planning, where macro-actions are composed of concrete
actions. However, both are different from summarization in
c-stable models: the former focuses on sets of states whereas
the latter has an I/O flavor, disregarding intermediate states.

Another related line is the HyperLTL extensions of LTL
using sets of traces for modeling concurrent processes. This
was recently enriched with control of moving/stuttering traces
(Baumeister et al. 2021) and lockstepwise traversal of sub-
traces removing “redundant” positions HyperLTL (Bozzelli,
Peron, and Sánchez 2021). While our contraction establishes
some asynchronous relationship between traces, it aims to
support non-monotonic inference rather than to control exe-
cution traces; possible connections remain for study.

Outlook Our core work can be continued in several direc-
tions. Regarding logic and semantics, normal forms or equiv-
alence in cTHT and cTEL may be investigated. Further
characterizations of the c-stable models, in particular in the
presence of the next-operator, are an intriguing issue.

For computation, refining the complexity picture is sug-
gestive and will help in guiding the development of suitable
algorithms and implementations, especially for finite traces,
where existing solvers such as telingo may be used.

Finally, we also plan to explore the application of c-stable
models in the context of planning and explanation finding,
such as for constructing plans or counterexamples.

Acknowledgments
The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 101034440.
This work has been partially supported by the WWTF project
ICT22-023.

References
Aguado, F.; Cabalar, P.; Diéguez, M.; Pérez, G.; and Vidal,
C. 2013. Temporal equilibrium logic: a survey. Journal of
Applied Non-Classical Logics 23(1-2):2–24.
Aguado, F.; Cabalar, P.; Diéguez, M.; Pérez, G.; Schaub, T.;
Schuhmann, A.; and Vidal, C. 2021. Linear-time temporal
answer set programming. Theory and Practice of Logic
Programming 1–55.
Baumeister, J.; Coenen, N.; Bonakdarpour, B.; Finkbeiner,
B.; and Sánchez, C. 2021. A temporal logic for asynchronous
hyperproperties. In Silva, A., and Leino, K. R. M., eds.,
Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I, volume 12759 of Lecture Notes in Computer Science,
694–717. Springer.
Bozzelli, L., and Pearce, D. 2015. On the complexity of
temporal equilibrium logic. In 30th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2015, Kyoto,
Japan, July 6-10, 2015, 645–656. IEEE Computer Society.
Bozzelli, L.; Peron, A.; and Sánchez, C. 2021. Asynchronous
extensions of hyperltl. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021, 1–13. IEEE.
Büchi, J. R. 1960. Weak second-order arithmetic and finite
automata. Mathematical Logic Quarterly 6(1-6).
Cabalar, P., and Schaub, T. 2019. Dynamic and temporal
answer set programming on linear finite traces. In Alviano,
M., and Pieris, A., eds., Datalog 2.0 2019 - 3rd International
Workshop on the Resurgence of Datalog in Academia and In-
dustry co-located with the 15th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR
2019) at the Philadelphia Logic Week 2019, Philadelphia,
PA (USA), June 4-5, 2019, volume 2368 of CEUR Workshop
Proceedings, 3–6. CEUR-WS.org.
Dodaro, C.; Fionda, V.; and Greco, G. 2022. LTL on
weighted finite traces: Formal foundations and algorithms.
In Raedt, L. D., ed., Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, 2606–2612. ijcai.org.
Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case. Ann.
Math. Artif. Intell. 15(3-4):289–323.
Falcone, Y.; Havelund, K.; and Reger, G. 2013. A tutorial
on runtime verification. Engineering dependable software
systems 141–175.
Heyting, A. 1930. Die formalen Regeln der intuitionistis-
chen Logik. Sitzungsberichte der Preussischen Akademie der
Wissenschaften. Physikalisch-mathematische Klasse.
Kucera, A., and Strejcek, J. 2002. The stuttering principle
revisited: On the expressiveness of nested X and U operators
in the logic LTL. In Bradfield, J. C., ed., Computer Science
Logic, 16th International Workshop, CSL 2002, 11th Annual
Conference of the EACSL, Edinburgh, Scotland, UK, Septem-
ber 22-25, 2002, Proceedings, volume 2471 of Lecture Notes
in Computer Science, 276–291. Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

230

https://taiger.logic.at
https://taiger.logic.at

Lamport, L. 1983. What good is temporal logic? In IFIP
congress, volume 83, 657–668.
Leucker, M., and Schallhart, C. 2009. A brief account of
runtime verification. The journal of logic and algebraic
programming 78(5):293–303.
Maksimova, L. 1977. Craig’s theorem in superintuitionistic
logics and amalgamable varieties of pseudo-boolean algebras.
Algebra and Logic 16:427–455.
Pearce, D. 2006. Equilibrium logic. Annals of Mathematics
and Artificial Intelligence 47(1-2):3.
Schuppan, V., and Biere, A. 2005. Shortest counterexamples
for symbolic model checking of ltl with past. In International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 493–509. Springer.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14,
2013. AAAI.
Soldà, D.; Lopez-Miguel, I. D.; Bartocci, E.; and Eiter, T.
2023. Progression for monitoring in temporal ASP. In Gal,
K.; Nowé, A.; Nalepa, G. J.; Fairstein, R.; and Radulescu, R.,
eds., ECAI 2023 - 26th European Conference on Artificial In-
telligence, September 30 - October 4, 2023, Kraków, Poland
- Including 12th Conference on Prestigious Applications of
Intelligent Systems (PAIS 2023), volume 372 of Frontiers
in Artificial Intelligence and Applications, 2170–2177. IOS
Press.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

231

	Introduction
	Preliminaries
	Contracted THT
	Contracted Temporal Equilibrium Logic
	Characterising c-Stable Models
	-free Formulas
	GP-formulas
	Taming Summarization

	Computational Complexity and Reasoning
	Reasoning

	Applications
	Related Work and Conclusion

