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Abstract
Explainable Artificial Intelligence and Formal Argumenta-
tion have received significant attention in recent years. Argu-
mentation frameworks are useful for representing knowledge
and reasoning on it. Counterfactual and semifactual explana-
tions are interpretability techniques that provide insights into
the outcome of a model by generating alternative hypothetical
instances. While there has been important work on counter-
factual and semifactual explanations for Machine Learning
(ML) models, less attention has been devoted to these kinds
of problems in argumentation. In this paper, we explore coun-
terfactual and semifactual reasoning in abstract Argumenta-
tion Framework. We investigate the computational complex-
ity of counterfactual- and semifactual-based reasoning prob-
lems, showing that they are generally harder than classical ar-
gumentation problems such as credulous and skeptical accep-
tance. Finally, we show that counterfactual and semifactual
queries can be encoded in weak-constrained Argumentation
Framework, and provide a computational strategy through
ASP solvers.

1 Introduction
In the last decades, Formal Argumentation has become an
important research field in the area of knowledge repre-
sentation and reasoning (Gabbay et al. 2021). Argumenta-
tion has potential applications in several contexts, including
e.g. modeling dialogues, negotiation (Amgoud, Dimopou-
los, and Moraitis 2007; Dimopoulos, Mailly, and Moraitis
2019), and persuasion (Prakken 2009). Dung’s Argumen-
tation Framework (AF) is a simple yet powerful formalism
for modeling disputes between two or more agents (Dung
1995). An AF consists of a set of arguments and a bi-
nary attack relation over the set of arguments that speci-
fies the interactions between arguments: intuitively, if ar-
gument a attacks argument b, then b is acceptable only if a
is not. Hence, arguments are abstract entities whose sta-
tus is entirely determined by the attack relation. An AF
can be seen as a directed graph, whose nodes represent ar-
guments and edges represent attacks. Several argumenta-
tion semantics—e.g. grounded (gr), complete (co), stable
(st), preferred (pr), and semi-stable (sst) (Dung 1995;
Caminada 2006)—have been defined for AF, leading to the
characterization of σ-extensions, that intuitively consist of
the sets of arguments that can be collectively accepted under
semantics σ ∈ {gr, co, st, pr, sst}.

white redfish
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Figure 1: AF Λ of Example 1.

Example 1. Consider the AF Λ shown in Figure 1, describ-
ing tasting menus proposed by a chef. Intuitively, (s)he pro-
poses to have either fish, meat, or pasta and to drink ei-
ther white wine or red wine. However, if serving meat or
pasta then white wine is not paired with. AF Λ has four
stable extensions (that are also preferred and semi-stable
extensions) representing alternative menus: E1 = {fish,
white}, E2 = {fish, red}, E3 = {meat, red}, and
E4 = {pasta, red}. 2

Argumentation semantics can be also defined in terms of
labelling (Baroni, Caminada, and Giacomin 2011). Intu-
itively, a σ-labelling for an AF is a total functionL assigning
to each argument the label in if its status is accepted, out
if its status is rejected, and und if its status is undecided
under semantics σ. For instance, the σ-labellings for AF
Λ of Example 1, with σ ∈ {st, pr, sst}, are as follows:
L1 = {in(fish), out(meat), out(pasta), in(white),
out(red)}, L2 = {in(fish), out(meat), out(pasta),
out(white), in(red)}, L3 = {out(fish), in(meat),
out(pasta), out(white), in(red)}, L4 = {out(fish),
out(meat), in(pasta), out(white) , in(red)}, where Li
corresponds to extension Ei, with i ∈ [1..4], respectively.

Integrating explanations in argumentation-based reason-
ers is important for enhancing argumentation and persua-
sion capabilities of software agents (Moulin et al. 2002;
Bex and Walton 2016; Cyras et al. 2019; Miller 2019). For
this reasons, several researchers explored how to deal with
explanations in formal argumentation (see related work in
Section 7). Counterfactual and semifactual explanations
are types of interpretability techniques that provide insights
into the outcome of a model by generating hypothetical in-
stances, known as counterfactuals and semifactual, respec-
tively (Kahneman and Tversky 1981; McCloy and Byrne
2002). On one hand, a counterfactual explanation reveals
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what should have been different in an instance to obtain a
diverse outcome (Guidotti 2022)—minimum changes w.r.t.
the given instance are usually considered (Barceló et al.
2020). On the other hand, a semifactual explanation pro-
vides a maximally-changed instance yielding the same out-
come of that considered (Kenny and Keane 2021).

While there has been interesting work on counterfac-
tual and semifactual explanations for ML models, e.g. (Wu,
Zhang, and Wu 2019; Albini et al. 2020; Romashov et al.
2022; Dandl et al. 2023; Aryal and Keane 2023), less atten-
tion has been devoted to these problems in argumentation.

In this paper, we explore counterfactual and semifactual
reasoning in AF. Analogously to counterfactual explanations
in ML that reveal what should have been minimally differ-
ent in an instance to obtain a different outcome, our counter-
factuals tell what should have been minimally different in a
solution, i.e. a σ-labeling with a given acceptance status for
a goal argument, to obtain an alternative solution where the
goal has a different status.

Example 2. Continuing with Example 1, assume
that the chef suggests the menu L3 = {out(fish),
in(meat),out(pasta),out(white), in(red)} and the
customer replies that (s)he likes everything except meat (as
(s)he is vegetarian). Therefore, the chef looks for the closest
menus not containing meat, that are L2 = {in(fish),
out(meat), out(pasta), out(white), in(red)} and
L4 = {out(fish), out(meat), in(pasta), out(white),
in(red)}. In this context, we say that L2 and L4 are
counterfactuals for L3 w.r.t. the goal argument meat. 2

Given a σ-labelling L of an AF Λ, and a goal argument g,
a counterfactual of L w.r.t. g is a closest σ-labelling L′ of Λ
that changes the acceptance status of g. Hence, counterfac-
tuals explain how to minimally change a solution to avoid
a given acceptance status of a goal argument. In contrast,
semifactuals give the maximal changes to the considered so-
lution in order to keep the status of a goal argument. That is,
a semifactual of L w.r.t. goal g is a farthest σ-labelling L′ of
Λ that keeps the acceptance status of argument g.

Example 3. Continuing with Example 1, suppose now
that a customer has tasted menu L3 = {out(fish),
in(meat),out(pasta),out(white), in(red)}, and asks to
try completely new flavors while still maintaining the
previous choice of wine as (s)he liked it a lot. Here
the chef is interested in the farthest menus contain-
ing red wine. These menus are L2 = {in(fish),
out(meat), out(pasta), out(white), in(red)} and
L4 = {out(fish), out(meat), in(pasta), out(white),
in(red)}. We say that the labellings L2 and L4 are semifac-
tuals for the labelling L3 w.r.t. the goal argument red. 2

In this paper we introduce the concepts of counterfactual and
semifactual explanations in AF. To the best of our knowl-
edge, this is the first work addressing explainability queries
in AF under both counterfactual and semifactual reasoning.
Contributions. Our main contributions are as follows.

• We introduce counterfactual-based and semifactual-based
reasoning problems for existence, verification, and credu-
lous and skeptical acceptance in AF.

• We investigate the complexity of above-mentioned prob-
lems showing that they are generally harder than classical
ones; this particularly holds for verification and credulous
acceptance problems. Notably, our results hold even for
different generalizations of the concepts of counterfactual
and semifactual, of measures for computing the distance
between labellings, and for multiple goals (cf. Section 6).

• We show that the above-mentioned problems can be en-
coded through weak-constrained AF, that is a generaliza-
tion of AF with both strong and weak constraints.

• Finally, we provide an algorithm for the computation
of counterfactuals and semifactuals which makes use of
well-known ASP encoding of AF semantics.

2 Preliminaries
In this section, after briefly recalling some complexity
classes, we review the Dung’s framework.

2.1 Complexity Classes
We recall the main complexity classes used in the paper.
PTIME (or simply P ) consists of the problems that can be
decided in polynomial-time. Moreover, we have that
•Σp0 = Πp

0 = ∆p
0 = P ; •Σp1 = NP and Πp

1 = coNP ; and
•∆p

h = PΣp
h−1 , Σph = NPΣp

h−1 , and Πp
h = coΣph, ∀h > 0

(Papadimitriou 1994). Thus, PC (resp., NPC) denotes the
class of problems that can be decided in polynomial time
using an oracle in the class C by a deterministic (resp., non-
deterministic) Turing machine. The class Θp

h = ∆p
h[log n]

denotes the subclass of ∆p
h consisting of the problems that

can be decided in polynomial time by a deterministic Tur-
ing machine performing O(log n) calls to an oracle in the
class Σph−1. It is known that Σph⊆Θp

h+1⊆∆p
h+1⊆Σph+1⊆

PSPACE and Πp
h⊆Θp

h+1⊆∆p
h+1⊆Πp

h+1⊆PSPACE.

2.2 Argumentation Framework
An abstract Argumentation Framework (AF) is a pair 〈A,R〉,
where A is a set of arguments and R ⊆ A × A is a set of
attacks. If (a, b) ∈ R then we say that a attacks b.

Given an AF Λ = 〈A,R〉 and a set S ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. S iff
∃b ∈ S such that (b, a) ∈ R, and ii) acceptable w.r.t. S iff
for every argument b ∈ A with (b, a) ∈ R, there is c ∈ S
such that (c, b) ∈ R. The sets of defeated and acceptable
arguments w.r.t. S are as follows (where Λ is fixed):

• Def(S) = {a ∈ A | ∃(b, a) ∈ R . b ∈ S};
• Acc(S) = {a ∈ A | ∀(b, a) ∈ R . b ∈ Def(S)}.
Given an AF 〈A,R〉, a set S ⊆ A of arguments is said to be
i) conflict-free iff S ∩ Def(S) = ∅; ii) admissible iff it is
conflict-free and S ⊆ Acc(S).

Different argumentation semantics have been proposed
to characterize collectively acceptable sets of arguments,
called extensions (Dung 1995; Caminada 2006). Every ex-
tension is an admissible set satisfying additional conditions.
Specifically, the complete, preferred, stable, semi-stable,
and grounded extensions of an AF are defined as follows.

Given an AF 〈A,R〉, a set S ⊆ A is an extension called:

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

15



• complete (co) iff it is an admissible set and S = Acc(S);
• preferred (pr) iff it is a ⊆-maximal complete extension;
• stable (st) iff it is a total preferred extension, i.e. a pre-

ferred extension such that S ∪Def(S) = A;
• semi-stable (sst) iff it is a preferred extension such that
S ∪Def(S) is maximal (w.r.t. ⊆);

• grounded (gr) iff it is a ⊆-minimal complete extension.

The argumentation semantics can be also defined in terms
of labelling (Baroni, Caminada, and Giacomin 2011). A
labelling for an AF 〈A,R〉 is a total function L : A →
{in,out,und} assigning to each argument a label: L(a) =
in means that a is accepted, L(a) = out means that a is
rejected, and L(a) = und means that a is undecided.

Hereafter, with a little abuse of notation, a labelling will
be also used to denote a set of labelled arguments, that is L
also denotes the set {`(a) | ` ∈ {in,out,und} ∧ a ∈ A ∧
L(a) = `}. Moreover, we also use the notations in(L) =
{a | a ∈ A ∧ L(a) = in}, out(L) = {a | a ∈ A ∧ L(a) =
out}, and und(L) = {a | a ∈ A∧L(a) = und}, to denote
the sets of arguments labelled as in, out, and und by L,
respectively. For any labelling L and argument a, L[a] =
`(a), where ` ∈ {in,out,und} and L(a) = `, denotes the
projection of L over a.

Given an AF Λ = 〈A,R〉, a labelling L for A is said to be
admissible (or legal) if ∀a ∈ in(L) ∪ out(L) it holds that:
(i) L(a) = out iff ∃ (b, a) ∈ R such that L(b) = in; and
(ii) L(a) = in iff ∀(b, a) ∈ R, L(b) = out holds.

Moreover, L is a complete labelling (or co-labelling) iff
conditions (i) and (ii) hold for all arguments a ∈ A.1

Between complete extensions and complete labellings
there is a bijective mapping defined as follows: for each ex-
tension E there is a unique labelling L(E) = {in(a) | a ∈
E} ∪ {out(a) | a ∈ Def(E)} ∪ {und(a) | a ∈ A \ (E ∪
Def(E))}, and for each labelling L there is a unique exten-
sion, that is in(L). We say that L(E) is the labelling corre-
sponding to E. Moreover, we say that L(E) is a σ-labelling
for a given AF Λ and semantics σ ∈ {co, pr, st, sst, gr}
iff E is a σ-extension of Λ.

In the following, we say that the status of an argument a
w.r.t. a labelling L (or its corresponding extension in(L)) is
in (resp., out, und) iff L(a) = in (resp., L(a) = out,
L(a) = und). We will avoid to mention explicitly the la-
belling (or the extension) whenever it is understood.

The set of complete (resp., preferred, stable, semi-stable,
grounded) labellings of an AF Λ will be denoted by co(Λ)
(resp., pr(Λ), st(Λ), sst(Λ), gr(Λ)). All the above-
mentioned semantics except the stable admit at least one la-
belling. The grounded semantics, that admits exactly one
labelling, is said to be a unique status semantics, while the
others are said to be multiple status semantics. With a little
abuse of notation, in the following we also use gr(Λ) to de-
note the grounded labelling. For any AF Λ, it holds that: i)
st(Λ) ⊆ sst(Λ) ⊆ pr(Λ) ⊆ co(Λ), ii) gr(Λ) ∈ co(Λ),
and iii) st(Λ) 6= ∅ implies that st(Λ) = sst(Λ).

1Although und is not explicitly mentioned, since L is a total
function, it suffices to characterize complete labelings (Caminada
and Pigozzi 2011; Baroni, Caminada, and Giacomin 2011).

ca b

Figure 2: AF of Example 4.

For any pair (L,L′) of σ-labellings of AF Λ = 〈A,R〉
(with σ ∈ {gr, co, st, pr, sst}), we use δ(L,L′) to denote
the distance |{a ∈ A | L(a) 6= L′(a)}| between L and L′ in
terms of the number of arguments having a different status.

Example 4. Let Λ = 〈A,R〉 be an AF where A =
{a, b, c} and R = {(a, b), (b, a), (b, c), (c, c)} whose
graph is shown in Figure 2. AF Λ has three com-
plete labellings: L1 = {und(a),und(b),und(c)},L2 =
{in(a),out(b),und(c)}, and L3 = {out(a), in(b),
out(c)}, and we have that δ(L1,L2) = 2 and δ(L1,L3) =
δ(L2,L3) = 3. Moreover, the set of preferred labellings is
pr(Λ) = {L2,L3}, whereas the set of stable (and semi-
stable) labellings is st(Λ) = sst(Λ) = {L3}, and the
grounded labelling is L1. 2

Four canonical argumentation problems are existence,
verification, and credulous and skeptical acceptance. These
problems can be formalized as follows. Given an AF Λ =
〈A,R〉, for any semantics σ ∈ {gr, co, st, pr, sst}, (i)
the existence problem (denoted EXσ) consists in deciding
whether there is at least one σ-labelling for Λ; (ii) the verifi-
cation problem (denoted VEσ) consists in deciding whether
a given labelling is a σ-labelling for Λ; and (iii) given a
(goal) argument g ∈ A, the credulous (resp., skeptical) ac-
ceptance problem, denoted as CAσ (resp., SAσ), is the prob-
lem of deciding whether in(g) belongs to any (resp., all) σ-
labellings of Λ. Clearly, for the grounded semantics, which
admits exactly one labelling, credulous and skeptical accep-
tance problems become identical.

The complexity of the above-mentioned problems has
been thoroughly investigated (see e.g. (Gabbay et al. 2021)
for a survey), and the results are summarized in Table 1.

3 Counterfactual Reasoning
In this section, after formally defining the concept of coun-
terfactual, we investigate the complexity of counterfactual-
based argumentation problems.

As stated next, a counterfactual of a given σ-labelling
w.r.t. a given goal argument g is a minimum-distance σ-
labelling altering the acceptance status of g.

Definition 1 (Counterfactual (CF)). Let 〈A,R〉 be an AF,
σ ∈ {gr, co, st, pr, sst} a semantics, g ∈ A a goal ar-
gument, and L a σ-labelling for 〈A,R〉. Then, a labelling
L′ ∈ σ(〈A,R〉) is a counterfactual of L w.r.t. g if:

(i) L(g) 6= L′(g), and
(ii) there exists no L′′ ∈ σ(〈A,R〉) such that L(g) 6=
L′′(g) and δ(L,L′′) < δ(L,L′).

We use CFσ(g,L) to denote the set of counterfactuals of
L w.r.t. g.

Example 5. Continuing with Example 2, under stable
semantics, for the labelling L3 = {out(fish), in(meat),
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out(pasta), out(white), in(red)}, we have that
L2 = {in(fish), out(meat), out(pasta), out(white),
in(red)} and L4 = {out(fish), out(meat), in(pasta),
out(white), in(red)} are its only counterfactuals w.r.t. ar-
gument meat, as their distance, δ(L3,L2) = δ(L3,L4) = 2,
is minimal. The other labelling L1 = {in(fish),
out(meat), out(pasta), in(white), out(red)}, such
that L3(meat) 6= L1(meat) is not at minimum dis-
tance as δ(L3,L1) = 4 > δ(L3,L2). Therefore,
CFst(meat,L3) = {L2,L4}. 2

Observe that, in general, the counterfactual relationship
is not symmetric, in the sense that L′ ∈ CFσ(g,L) does
not entail that L ∈ CFσ(g,L′). For instance, in our run-
ning example, we have that L3 ∈ CFst(meat,L1) while
L1 6∈ CFst(meat,L3). Moreover, counterfactual reason-
ing makes sense for multiple status semantics only. In
fact, for any AF 〈A,R〉 and goal g ∈ A, it holds that
CFgr(g,L) = ∅. Thus, hereafter we focus on multiple se-
mantics only, as for the grounded semantics all considered
problems are trivial.

Finding a counterfactual means looking for a minimum
distance labelling. The first problem we consider is a natural
decision version of that problem.
Definition 2 (CF-Existence Problem). Given as input an AF
Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, a goal argu-
ment g ∈ A, an integer k ∈ N, and a σ-labelling L ∈ σ(Λ),
CF-EXσ is the problem of deciding whether there exists a
labelling L′ ∈ σ(Λ) s.t. L(g) 6= L′(g) and δ(L,L′) ≤ k.

In the following, we use CF-EXσΛ(g, k,L) (or simply
CF-EXσ(g, k,L) whenever Λ is fixed) to denote the output
of the CF-EXσ problem with input Λ, g, k, and L.
Example 6. Continuing with Example 2, assume the cus-
tomer asks whether there is a menu not containing meat
and differing from menu L3 by at most two items. Un-
der stable semantics, the answer to the question is given by
CF-EXst(meat, 2,L3): it is yes, as there is menu L2 ∈
st(Λ), with L2(meat) 6= L3(meat) and δ(L3,L2) = 2. 2

The following theorem characterizes the complexity of
the existence problem under counterfactual reasoning.
Theorem 1. CF-EXσ is:
• NP-complete for σ ∈ {co, st}; and
• Σp2-complete for σ ∈ {pr, sst}.

Proof. The membership result follows from the following
guess-and-check strategy: guess a labelling L′ with L(g) 6=
L′(g) and check in PTIME (resp., PTIME, coNP, and coNP)
that L′ ∈ σ(Λ) with σ = co (resp., st, pr, sst) (Dvorák
and Dunne 2017) and that δ(L,L′) ≤ k.

(Sketch.) The hardness results derive from many-to-one
reductions from known problems in AF. For σ = co (resp.,
σ = st), we provide a reduction from the non-empty
co-existence problem EXco¬∅ (resp., st-existence problem
EXst). We show that EXco¬∅ (〈A,R〉) (resp., EXst(〈A,R〉))
is true iff (〈A∗,R∗〉, g, |A|,L∗) is a true instance of CF-EXσ ,
where: A∗ = A ∪ {g}, R∗ = R ∪ {(g, a), (a, g) | a ∈ A},
and L∗ = {in(g)} ∪ {out(a) | a ∈ A}. For σ ∈ {pr, sst}

we provide a reduction from the complement of the skep-
tical σ-acceptance problem for AF SA

σ
. We show that

SA
σ
(〈A,R〉, g) is true iff (〈A∗,R∗〉, g′, |A∗|,L∗) is a true in-

stance of CF-EXσ , where (i) for σ = pr, A∗ = A ∪ {x, g′},
R∗ = R∪{(x, a), (a, x), (x, g′), (g, g′) | a ∈ A}, and L∗ =
{in(x)}∪{out(a) |a∈A∗\{x}}; (ii) for σ = sst, A∗ = A
∪{x, g′, g′′}, R∗ = R ∪ {(x, a), (a, x), (a, g′′), (x, g′),
(g′, g′′), (g′′, g′′), (g, g′) | a ∈ A}, and L∗ = {in(x),
out(g′), und(g′′)} ∪ {out(a) | a ∈ A}.

A problem related to CF-EXσ is that of verifying whether
a given labelling L′ is a counterfactual for L and g, and thus
that the distance between the two labelling is minimal.
Definition 3 (CF-Verification Problem). Given as input an
AF Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, a goal
argument g ∈ A, a σ-labelling L ∈ σ(Λ), and a labelling
L′, CF-VEσ is the problem of deciding whether L′ belongs
to CFσ(g,L).

We use CF-VEσΛ(g,L,L′) (or simply CF-VEσ(g,L,L′))
to denote the output of CF-VEσ with input Λ, g,L, and L′.
Example 7. Consider again the situation of Example 2, and
assume the customer is interested to know whether L2 is the
closest menu to L3 not containing meat. This problem can
be answered by deciding CF-VEst(meat,L3,L2), which is
true as we have that L2 ∈ CFst(meat,L3). 2

Observe that CF-VEσΛ(g,L,L′) is true iff i) L(g) 6= L′(g)
ii) L′ ∈ σ(Λ) (i.e. the classical verification problem, VEσ ,
is true for input L′), and iii) CF-EXσΛ(g, δ(L,L′) − 1,L)
is false. Since the complexity of VEσ is lower than that of
CF-EXσ (cf. Table 1), and checking L(g) 6= L′(g) is in
PTIME, the above-mentioned three-steps strategy suggests
that CF-VEσ can be decided by an algorithm in the comple-
ment complexity class of CF-EXσ . In fact, as entailed by
the next result, the problems CF-VEσ and CF-EXσ are on
the same level of the polynomial hierarchy.
Theorem 2. CF-VEσ is:
• coNP-complete for σ ∈ {co, st}; and
• Πp

2-complete for σ ∈ {pr, sst}.

Proof. We sketch the proofs of hardness results only, as the
guess-and-check strategy for showing the membership re-
sults has been discussed earlier. For σ = co (resp., σ = st)
we can provide a reduction from the complement of the non-
empty co-existence problem EXco¬∅ (resp., the st-existence
problem EXst) by showing that 〈A,R〉 is a false (resp.,
true) instance of EXσ¬∅ (resp., EXst) iff (〈A∗,R∗〉, g,L,L′)
is a true instance of CF-VEσ , where (i) for σ = co, A∗

= A ∪{g, g′}, R∗ = R ∪ {(g, g′), (a, g′), (g, a), (a, g) |
a ∈ A}, L = {in(g)} ∪ {out(x) | x ∈ A∗ \ {g}},
and L′ = {und(x) | x ∈ A∗}, (ii) for σ = st, A∗ =
A ∪ {g, g′, xi | i ∈ [1, 2|A|]}, R∗ = R ∪ {(g, g′), (g′, g)}
∪ {(g′, a), (a, g′) (g, a), (a, g) | a ∈ A} ∪ {(g′, xi) |
i ∈ [1, 2|A|]}, L = {in(g),out(g′),out(a) | a ∈ A}∪
{in(xi) | i ∈ [1, 2|A|]}, and L′ = {in(g′),out(x) | x ∈
A∗ \ {g′}}. Finally, for σ ∈ {pr, sst}, we provide a reduc-
tion from the coherence problem CO (Dunne and Bench-
Capon 2002).
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Counterfactual-based acceptance problems extend credu-
lous and skeptical reasoning w.r.t. a set CFσ(g,L) of coun-
terfactuals for labellingL and goal g (under σ). They consist
in deciding whether an additional argument g′ is accepted in
any or all counterfactuals of L w.r.t. g, respectively.
Definition 4 (CF-Acceptance Problems). Given as input an
AF Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, an ar-
gument g ∈ A, a σ-labelling L ∈ σ(Λ), and a goal argument
g′ ∈ A, CF-CAσ (resp., CF-SAσ) is the problem of checking
whether g′ is accepted in any (resp., every) counterfactual in
CFσ(g,L).

We use CF-CAσΛ(g,L, g′) and CF-SAσΛ(g,L, g′) (or sim-
ply CF-CAσ(g,L, g′) and CF-SAσ(g,L, g′)) to denote the
output of the CF-CAσ and CF-SAσ with input Λ, g,L and
g′, respectively.
Example 8. Consider Example 2 where the chef sug-
gests menu L3 and the customer does not eat meat (but
she likes the rest of the menu). Assume now that
the customer is interested to know whether there exists
some menu, among the ones in CFst(meat,L3), con-
taining pasta. The answer to this question, computed
by means of CF-CAσΛ(meat,L, pasta), is “yes” since
CFst(meat,L3) = {L2,L4} and L4(pasta) = in.

Moreover, if we assume that the customer is inter-
ested to know whether all menus in CFst(meat,L3)
contain pasta. The answer to this question, computed
by means of CF-SAst

Λ (meat,L, pasta), is “no” since
CFst(meat,L3) = {L2,L4} and L2(pasta) = out. 2

Our next results address the complexity of counterfactual-
based credulous and skeptical acceptance.
Theorem 3. CF-CAσ is:
• NP-hard and in Θp

2 for σ ∈ {co, st}; and
• Σp2-hard and in Θp

3 for σ ∈ {pr, sst}.

Proof. Consider an instance (Λ, g,L, g′) of CF-CAσ . For
σ ∈ {co, st} (resp., σ ∈ {pr, sst}) the following
Θp

2 (resp., Θp
3) algorithm suffices to prove the member-

ship result. In the following, we also use ˜CF-EXσ , that
is, a variant of CF-EXσ where L′(g′) = in, cf. Def-
inition 2; clearly, ˜CF-EXσ is in the same complexity
class of CF-EXσ . The algorithm starts by computing, by
O(log2(|A|)) calls to CF-EXσ , the minimum value k′ ∈
[0, |A|] s.t. CF-EXσ(g, k′,L) = true. Then, with an ad-
ditional call to (the above-introduced problem), ˜CF-EXσ it
checks the existence of a counterfactual L′ of L w.r.t g such
that (i) it is at distance k′ and (ii) L′(g′) = in. As the
number of calls to the NP (resp., Σp2) oracle is bounded by
O(log2(|A|) + 1) the result follows.

(Sketch.) The hardness results for σ ∈ {st, co, sst}
(resp., σ = pr) derive by reductions from σ-credulous ac-
ceptance (resp., complement of the preferred skeptical ac-
ceptance) problem in AF. We prove that, CAσ(〈A,R〉, g) is
true iff (〈A∗,R∗〉, x, L∗, g) is a true instance of CF-CAσ ,
where (i) for σ ∈ {co, st}, A∗ = A ∪ {x}, R∗ = R ∪
{(x, g), (g, x)} ∪ {(x, a) | a ∈ A}, and L∗ = {in(x)} ∪
{out(a) | a ∈ A}; (ii) for σ = sst, A∗ = A ∪ {x, x̄, xu},

R∗ = R∪{(x, x̄), (x̄, xu), (xu, xu) (x, g), (g, x)}∪{(x, a) |
a ∈ A}, and L∗ = {in(x),out(x̄),und(xu)} ∪ {out(a) |
a ∈ A}. Moreover, for σ = pr we prove that
SA

σ
(〈A,R〉, g) is true iff (〈A∗,R∗〉, gu, L∗, z) is a true in-

stance of CF-CAσ , where A∗ = A ∪ {x, gu, z}, R∗ = R ∪
{(x, gu), (g, gu), (gu, gu), (x, z)}∪ {(x, a), (a, x) |∈ A},
and L∗ = {in(x)} ∪{out(a) | a∈A∗ \ {x}}.

Theorem 4. CF-SAσ is:

• coNP-hard and in Θp
2 for σ ∈ {co, st}; and

• Πp
2-hard and in Θp

3 for σ ∈ {pr, sst}.

Proof. Let (Λ, g,L, g′) be an instance of CF-SAσ . For
σ ∈ {co, st} (resp., σ ∈ {pr, sst}) the following Θp

2
(resp., Θp

3) algorithm suffices to prove the membership re-
sult for the complement CF-SAσ of our problem, that is
the problem of checking whether g′ is not skeptical ac-
cepted in any counterfactual L′ ∈ CFσ(g,L). Consider
the problem ¯CF-EXσ that is a variant of CF-EXσ where
L′(g′) 6= in; observe that ¯CF-EXσ is in the same com-
plexity class of CF-EXσ . The algorithm starts by comput-
ing, by O(log2(|A|)) calls to CF-EXσ , the minimum value
k′ ∈ [0, |A|] s.t. CF-EXσ(g,L, k′) = true. Then with an
additional call to ¯CF-EXσ we check the existence of a coun-
terfactual L′ of L w.r.t g such that (i) it is at distance k′
and that (ii) L′(g′) 6= in. As the number of calls to the NP
(resp., Σp2) oracles is bounded by O(log2(|A|) + 1) we have
that CF-SAσ is in Θp

2 (resp., Θp
3). As Θp

i is closed under
complement, the result follows.

(Sketch.) The hardness results derive for σ ∈
{st, co, sst} (resp., σ = pr) by reductions from the
complement of the σ-credulous acceptance (resp., preferred
skeptical acceptance) problem in AF. By using construc-
tions similar to those used in the hardness proof of Theo-
rem 3, we can show that, for σ ∈ {st, co, sst} (resp., σ =

pr) CAσ(〈A,R〉, g) is true iff (〈A∗,R∗〉, x, L∗, x) (resp.,
(〈A∗,R∗〉, gu, L∗, gu)) is a true instance of CF-SAσ .

4 Semifactual Reasoning
In this section, following what is done in the previous sec-
tion, we investigate the complexity of semifactual-based ar-
gumentation problems. We first introduce the concept of
semifactual that, in a sense, is symmetrical and complemen-
tary to that of a counterfactual.

Definition 5 (Semifactual (SF)). Let 〈A,R〉 be an AF, σ ∈
{gr, co, st, pr, sst} a semantics, g ∈ A a goal argument,
and L a σ-labelling for 〈A,R〉. Then, L′ ∈ σ(〈A,R〉) is a
semifactual of L w.r.t. g if:

(i) L(g) = L′(g), and
(ii) there exists no L′′ ∈ σ(〈A,R〉) such that L(g) =
L′′(g) and δ(L,L′′) > δ(L,L′).

We use SFσ(g,L) to denote the set of semifactuals of L
w.r.t. g.
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Classical problems Counterfactual-based problems Semifactual-based problems
σ EXσ VEσ CAσ SAσ CF-EXσ CF-VEσ CF-CAσ CF-SAσ SF-EXσ SF-VEσ SF-CAσ SF-SAσ

co T P NP-c P NP-c coNP-c NP-h, Θp2 coNP-h, Θp2 NP-c coNP-c NP-h, Θp2 coNP-h, Θp2
st NP-c P NP-c coNP-c NP-c coNP-c NP-h, Θp2 coNP-h, Θp2 NP-c coNP-c NP-h, Θp2 coNP-h, Θp2
pr T coNP-c NP-c Πp2-c Σp2-c Πp2-c Σp2-h, Θp3 Πp2-h, Θp3 Σp2-c Πp2-c Σp2-h, Θp3 Πp2-h, Θp3
sst T coNP-c Σp2-c Πp2-c Σp2-c Πp2-c Σp2-h, Θp3 Πp2-h, Θp3 Σp2-c Πp2-c Σp2-h, Θp3 Πp2-h, Θp3

Table 1: Complexity of classical, counterfactual-based and semifactual-based problems in AF under complete (co), stable (st), preferred
(pr), and semi-stable (sst) semantics. For any complexity class C, C-c (resp., C-h) means C-complete (resp., C-hard); an interval C-h, C′

means C-hard and in C′. New results are highlighted in cyan. T means trivial (from the computational standpoint).

Example 9. Consider the stable labelling L3 =
{out(fish), in(meat),out(pasta),out(white), in(red)}
for the AF of Example 3. We have that L2 = {in(fish),
out(meat), out(pasta), out(white), in(red)} and
L4 = {out(fish), out(meat), in(pasta), out(white),
in(red)} are the only semifactuals of L3 w.r.t. the argument
red as there is no other st-labelling agreeing on red and
having distance greater than δ(L3,L2) = δ(L3,L4) = 2.
In fact, L1 = {in(fish), out(meat), out(pasta),
in(white), out(red)}, having distance δ(L3,L1) = 4, is
not a semifactual for L3 w.r.t. red as L1(red) 6= L3(red).
Thus, SFst(red,L3) = {L2,L4}. 2

Similarly to the case of counterfactuals, the semifactual
relationship is not symmetric, that is, L′ ∈ SFσ(g,L) does
not entail that L ∈ SFσ(g,L′).

As for the case of counterfactuals, semifactual reasoning
makes sense only for multiple status semantics. Thus, here-
after, we do not consider the grounded semantics.

The semifactual-based existence problem is as follows.

Definition 6 (SF-Existence Problem). Given as input an AF
Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, a goal argu-
ment g ∈ A, an integer k ∈ N, and a σ-labelling L ∈ σ(Λ),
SF-EXσ is the problem of checking whether there exists a
labelling L′ ∈ σ(Λ) s.t. L(g) = L′(g) and δ(L,L′) ≥ k.

We use SF-EXσΛ(g, k,L) (or simply SF-EXσ(g, k,L)
whenever Λ is fixed) to denote the output of SF-EXσ with
input Λ, g, k, and L.

Example 10. Continuing with Example 3, assume the cus-
tomer is interested to know whether there exists a menu con-
taining red wine and differing fromL3 by at least two items.
Under stable semantics, the answer to this question is yes,
as there exists menu L2 ∈ st(Λ), with L2(red) = L3(red)

and δ(L3,L2) = 2, i.e. SF-EXst(red, 2,L3) is true. 2

The following theorem characterizes the complexity of
the existence problem under semifactual reasoning.

Theorem 5. SF-EXσ is:

• NP-complete for σ ∈ {co, st}; and
• Σp2-complete for σ ∈ {pr, sst}.

Proof. For the membership result, guess a labelling L′
with L(g) = L′(g) and check in PTIME (resp., PTIME,
coNP, and coNP) that L′ ∈ σ(Λ) with σ = co (resp.,
st, pr, sst) (Dvorák and Dunne 2017) and δ(L,L′) ≥ k.

(Sketch.) For σ = co (resp., σ = st), we pro-
vide a reduction from the non-empty co-existence prob-
lem EXco¬∅ (resp., st-existence problem EXst), as done for
the hardness results of CF-EXσ but with different construc-
tions. We show that EXco¬∅ (〈A,R〉) (resp., EXst(〈A,R〉))
is true iff (〈A∗,R∗〉, ḡ, k = 1, L∗) is a true instance
of SF-EXσ , where: A∗ = A ∪ {g, ḡ}, R∗ = R ∪
{(g, a), (a, g), (a, ḡ), (g, ḡ) | a ∈ A}, and L∗ = {in(g)} ∪
{out(a) | a ∈ A∗ \ {g}}. For σ ∈ {pr, sst} we pro-
vide a reduction from the complement of the skeptical σ-
acceptance problem for AF, namely SA

σ
. We we show that

SA
σ
(〈A,R〉, g) is true iff (〈A∗,R∗〉, ḡ, k = 1, L∗) is a

true instance of SF-EXσ , where A∗ = A∪ {x, x̄, xu, ḡ, gu},
R∗ = R ∪ {(g, ḡ), (ḡ, ḡ), (ḡ, gu), (gu, gu), (x, x̄), (x̄, xu),
(xu, xu), (x, gu)∪ {(x, a), (a, x) | a ∈ A}, and L∗ =
{in(x),out(x̄),und(xu),und(ḡ),out(gu)} ∪ {out(a) |
a ∈ A}.

For semifactuals, the verification problem is checking
whether a given labelling L′ is a semifactual for L and g
(hence the distance between the two labelling is maximal).

Definition 7 (SF-Verification Problem). Given as input an
AF Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, a goal
argument g ∈ A, a σ-labelling L ∈ σ(Λ), and a labelling
L′, SF-VEσ is the problem of checking whether L′ belongs
to SFσ(g,L).

We use SF-VEσΛ(g,L,L′) (or simply SF-VEσ(g,L,L′))
to denote the output of SF-VEσ with input Λ, g,L, and L′.
Example 11. Consider the situation in Example 3, and as-
sume the customer is interested to know whether L2 is the
farthest menu w.r.t. L3 containing red wine. This prob-
lem can be answered by deciding SF-VEst(meat,L3,L2),
which is true as we have that L2 ∈ SFst(red,L3). 2

Theorem 6. SF-VEσ is:

• coNP-complete for σ ∈ {co, st}; and
• Πp

2-complete for σ ∈ {pr, sst}.

Proof. The following guess-and-check algorithm provides
the membership result for the complement of our prob-
lem. First, check whether L(g) = L′(g), and then guess
a labelling L′′ with L(g) = L′′(g) and check in PTIME
(resp., PTIME, coNP, and coNP) that L′′ ∈ σ(Λ) with
σ = co (resp., st, pr, sst) (Dvorák and Dunne 2017) and
that δ(L,L′′) > δ(L,L′) (in PTIME). If both condition
holds then the complement of our problem is true.
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(Sketch.) For σ = co (resp., σ = st) we pro-
vide a reduction from the complement of the non-empty
co-existence problem EXco¬∅ (resp., st-existence problem
EXst) by showing that 〈A,R〉 is a false (resp., true) instance
of EXσ¬∅ (resp., EXst) iff (〈A∗,R∗〉, g,L,L) is a true in-
stance of SF-VEσ , where (i) for σ = co, A∗ = A ∪ {g, gu},
R∗ = R ∪ {(g, g), (gu, gu), (gu, a), (a, gu), (gu, g) | a ∈
A}, and L = {und(x) | x ∈ A∗}; (ii) for σ = st
A∗ = A ∪ {g, ḡ}, R∗ = R ∪ {(ḡ, g), (a, g), (a, ḡ), (ḡ, a) |
a ∈ A}, and L = {in(ḡ),out(g)} ∪ {out(a) | a ∈ A}.
For σ ∈ {pr, sst}, we provide a reduction from coherence
problem CO by proving that (〈A,R〉) is a true instance of CO
iff (〈A∗,R∗〉, b,L,L) is a true instance of SF-VEσ where
A∗ = A ∪ {g, b, z, h, k, c} ∪ {ā, â | a ∈ A}, R∗ = R ∪
{(g, h), (h, k), (k, k), (g, c), (c, c)}∪ {(g, a), (a, g), (g, z),
(a, ā), (ā, â), (a, â), (a, h), (a, k), (â, z), (z, b), (b, b) | a ∈
A}, and L = {in(g),out(c), out(h), und(k), out(z),
und(b)}∪ {out(a), in(ā),out(â) | a ∈ A}.

Finally, we investigate semifactual-based acceptance
problems, that is credulous and skeptical reasoning w.r.t. a
set SFσ(g,L) of semifactual for labelling L and goal g.

Definition 8 (SF-Acceptance Problems). Given as input an
AF Λ = 〈A,R〉, a semantics σ ∈ {co, st, pr, sst}, an argu-
ment g ∈ A, a σ-labelling L ∈ σ(Λ), and a goal argument
g′ ∈ A, SF-CAσ (resp., SF-SAσ) is the problem of decid-
ing whether g′ is accepted in any (resp., every) semifactual
L′ ∈ SFσ(g,L).

We use SF-CAσΛ(g,L, g′) and SF-SAσΛ(g,L, g′) (or
SF-CAσ(g,L, g′) and SF-SAσ(g,L, g′)) to denote the out-
put of SF-CAσ and SF-SAσ with input Λ, g,L and g′, re-
spectively.

Example 12. In our running example, assume the cus-
tomer is interested to know whether in any (resp., all) of
the farthest menus w.r.t. L3 containing red wine, pasta
is present. The answer to the first question is positive as
SF-CAst(red,L3, pasta) is true, while that to the second
one is negative as SF-SAst(red,L3, pasta) is false. 2

The next theorems state the complexity of semifactual-
based credulous and skeptical acceptance problems.

Theorem 7. SF-CAσ is:

• NP-hard and in Θp
2 for σ ∈ {co, st}; and

• Σp2-hard and in Θp
3 for σ ∈ {pr, sst}.

Theorem 8. SF-SAσ is:

• coNP-hard and in Θp
2 for σ ∈ {co, st}; and

• Πp
2-hard and in Θp

3 for σ ∈ {pr, sst}.
Thus, semifactual- and counterfactual-based reasoning

problems share the same complexity bounds. Moreover,
the considered problems are generally harder than the cor-
responding classical argumentation problems; this particu-
larly holds if we focus on the verification problem, credulous
acceptance under preferred semantics, and skeptical accep-
tance under complete semantics.

5 WAF and ASP Mappings
We first show that counterfactual and semifactual explana-
tions can be encoded through Weak constrained AF (WAF),
which is a generalization of AF with strong and weak con-
straints, and then provide an algorithm for computing coun-
terfactuals and semifactuals by making use of well-known
ASP encoding of AF semantics as well as of constraints cap-
turing counterfactuals and semifactuals’ semantics.

5.1 Weak Constrained AF
Constraints in argumentation frameworks have been inves-
tigated in several works (Coste-Marquis, Devred, and Mar-
quis 2006; Arieli 2015; Sakama and Son 2020; Alfano et
al. 2024b; 2023c). They extend AF by considering a set of
strong and weak constraints, that are sets of propositional
formulae to be satisfied by extensions. Intuitively, con-
straints introduce subjective knowledge of agents, whereas
the AF encodes objective knowledge. Strong constraints in
AF allow restricting the set of feasible solutions, but do not
help in finding “best” or preferable solutions. To express this
kind of conditions, weak constraints have been introduced,
that is, constraints that are required to be satisfied if possi-
ble (Alfano et al. 2021b). In the following, for the sake of
presentation, we consider constraints as propositional for-
mulae built over labelled arguments, as e.g. in (Sakama and
Inoue 2000), instead of propositional formulae defined over
argument literals. An AF with strong and weak constraints
is said to be a Weak constrained Argumentation Framework
(WAF).

Definition 9 (WAF). A Weak Constrained AF (WAF) is a
quadruple 〈A,R, C,W〉 where 〈A,R〉 is an AF, and C andW
are sets of propositional formulae called strong and weak
constraints, respectively, both built from the set of labeled
arguments λA = {in(a),out(a),und(a) | a ∈ A} by us-
ing the connectives ¬, ∨, and ∧.

We say that a labelling L satisfies a constraint κ if and
only if L is a (2-valued) model of κ, denoted as L |= κ, that
is, if the formula obtained from κ by replacing every atom
occurring in L with true, and every atom not occurring in
L with false, evaluates to true. Moreover, we say that L
satisfies a set K = {κ1, . . . , κn} of constraints, denoted as
L |= K, whenever L |= κi ∀i ∈ [1, n]. The set of constraints
in K satisfied by a labelling L will be denoted by KL.

Maximum-cardinality semantics for WAF prescribes as
preferable extensions those satisfying the largest number of
weak constraints (Alfano et al. 2021b). This is similar to the
semantics of weak constraints in DLV (Alviano et al. 2017)
where, in addition, each constraint has assigned a weight.

Definition 10. Given a WAF Υ = 〈A,R, C,W〉, a σ-
labelling L for 〈A,R〉 is a maximum-cardinality σ-labelling
for Υ if L |= C and there is no σ-labelling L′ for 〈A,R〉 with
L′ |= C a such that |WL| < |WL′ |.

The set of maximum-cardinality σ-labellings of a WAF Υ
will be denoted by mc-σ(Υ), with σ ∈ {co, st, pr, sst}.

As stated next, counterfactual and semifactual expla-
nations one-to-one correspond to maximum-cardinality la-
bellings of appropriate WAFs.
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Proposition 1. For any AF Λ = 〈A,R〉, semantics σ ∈
{co, st, pr, sst}, goal g ∈ A, and σ-labelling L of Λ,
• CFσ(g,L)=mc-σ(〈A,R, {¬L[g]}, {L[a] | a ∈ A \ {g}}〉);
• SFσ(g,L)=mc-σ(〈A,R, {L[g]}, {¬L[a] | a ∈ A \ {g}}〉).
Example 13. Consider the AF 〈A,R〉 of Example 1 and
recall from Example 5 that CFst(meat,L3)={L2,L4}.
We have that L2 ∈ mc-st(〈A,R, C,W〉) where C =
{¬in(meat)}, and W = {out(fish), out(pasta),
out(white), in(red)} (C consists of a single strong con-
straint, while W consists of four weak constraints). More-
over, recalling from Example 9 that SFst(red, L3) =
{L2,L4}, we have that L2 ∈ mc-st(〈A,R, C,W〉) where
C = {in(red)}, and W = {¬out(fish), ¬out(pasta),
¬out(white), ¬in(red)}. 2

asprin Encoding
Given the tight relationship between formal argumentation
and Answer Set Programming (ASP), we introduce EX-
PLAIN in Algorithm 1 that computes the set of counter-
factual and semifactual explanations by leveraging existing
ASP-based solvers. In particular, we rely on the asprin
framework, that is ASP for preference handling (Brewka
et al. 2015a; 2015b). Intuitively, Algorithm 1 encodes the
distance measure δ between labellings/extensions through
(weighted) preferences in ASP to select best extensions,
among extensions given by ASP encodings of AF seman-
tics. We use Pσ to denote a set of rules corresponding to the
encoding of semantics σ. As an example, an encoding for
stable semantics is as follows2 (Dvorák et al. 2020):

Pst =


in(X) :- not out(X), arg(X);
out(X) :- not in(X), arg(X);
defeated(X) :- in(Y ), att(Y,X);
:- in(X), in(Y ), att(X,Y );
:- out(X), not defeated(X);

 .

Algorithm 1 takes as input an AF Λ = 〈A,R〉, a goal
argument g ∈ A, a semantics σ ∈ {co, st, pr, sst}, a σ-
labelling L, and the task type T ∈ {CF, SF} (either coun-
terfactual or semifactual). After defining the set of ASP
rules, Pσ , encoding AF semantics (Line 1), the ASP encod-
ing PΛ for AF Λ is computed (Line 2). Then, using the result
of Proposition 1, a set PS containing a single strong con-
straint (Line 4 forCF , Line 7 for SF ) and a set of weak con-
straints PW (Line 5 for CF , Line 8 for SF ) are computed.
As an example, if T = CF , to compute answer sets repre-
senting counterfactuals, the constraint “:- L[g]”, stating that
L[g] must be false is added. In contrast, if T = SF , to com-
pute answer sets representing semifactuals, the constraint “:-
notL[g]”, stating thatL[g] must be true, is added. Moreover,
to ensure that an answer set corresponds to a counterfactual
of L w.r.t. g, it should satisfy as less constraints of the form
w(a) :- not L[a] as possible, so that the distance w.r.t. L
is minimized (a similar approach is used for semifactuals).
To this end the following asprin preference statement and
optimization directive are given when invoking asprin over
P = Pσ ∪ PΛ ∪ PS ∪ PW (Line 9).

2To denote sets of clauses in asprin we shall will the semicolon,
as the comma is used to represent the “and” operator.

Algorithm 1 EXPLAIN(Λ, g, σ,L, T )

Input: AF Λ = 〈A,R〉, goal g ∈ A, σ ∈ {co, st, pr, sst},
σ-labelling L of Λ, task T ∈ {CF, SF}.

Output: CFσ(g,L) if T = CF , SFσ(g,L) if T = SF .
1: Let Pσ be the ASP encoding for semantics σ;
2: PΛ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R};
3: if T = CF then
4: PS = {:- L[g]};
5: PW = {w(a):- not L[a] |a ∈ A\{g}};
6: else
7: PS = {:- not L[g]};
8: PW = {w(a):- L[a] |a ∈ A\{g}};
9: return ASPRIN(PΛ ∪ Pσ ∪ PS ∪ PW );

• #preference(p,less(cardinality)){w(X) : arg(X)};
• #optimize(p).

As stated next, our algorithm is sound and complete.
Theorem 9. Algorithm 1 is sound and complete.

Example 14. Considering the AF Λ of Example 1, st-
labelling L3 = {out(fish), in(meat), out(pasta),
out(white), in(red)}, and goal argument meat, the as-
prin program P built in Algorithm 1 with T = CF is
P = Pst ∪ PΛ ∪ PS ∪ PW , where Pst is as shown earlier,
and:

PΛ =


arg(fish); att(meat, fish); att(fish, meat);
arg(white); att(pasta, white); att(meat, white);
arg(red); att(red, white); att(white, red);
arg(meat); att(pasta, meat); att(meat, pasta);
arg(pasta); att(pasta, fish); att(fish, pasta);


PS = { :- in(meat); }

PW =


w(fish) :- not out(fish);
w(pasta) :- not out(pasta);
w(white) :- not out(white);
w(red) :- not in(red);


The result of ASPRIN(P ) is CFst(meat,L3)={L2,L4 }. 2

6 Discussion
In this section, we consider definitions of counterfactual and
semifactual more general than those in given Definitions 1
and 5, respectively. In particular, we focus on the following
extensions: (a) more general distance measures between la-
bellings; (b) more general criterion for changing the status
of the goal argument; and (c) set of goal arguments (instead
of a single argument). Notably, regardless of the above-
mentioned generalization adopted for Definitions 1 and 5,
the complexity bounds in Table 1 still hold.

More general distance measures. The measure δ used
Definitions 1 and 5 does not distinguish among different la-
belling changes. For example, labelling in(fish) has the
same distance, 1, from out(fish) or und(fish). Here, we
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redefine the concept of counterfactual and semifactual w.r.t.
a more general distance measure η, that is, a (polynomial-
time computable) function η : A × {in,out,und} ×
{in,out,und} → N, which assigns a (positive) number
to every possible labelling change for each argument. Then,
we use η(L,L′) =

∑
a∈A η(a,L(a),L′(a)) to denote the

(weighted) distance between σ-labellings L and L′.
Observe that δ is a special case of η where, ∀a ∈ A,

η(a,L(a),L′(a)) = 0 if L(a) = L′(a), 1 otherwise.
Given the new distance measure η, we can redefine coun-

terfactuals and semifactuals by replacing item (ii) of Defini-
tions 1 and 5 as follows.

• Minimality condition for Definition 1: there is no L′′ ∈
σ(Λ) s.t. L(g) 6= L′′(g) and η(L,L′′) < η(L,L′).

• Maximality condition for Definition 5: there is noL′′ ∈
σ(Λ) s.t. L(g) = L′′(g) and η(L,L′′) > η(L,L′).

As a proposal for η to capture the idea that the
distance should distinguish between the changes in(a)-
to/from-out(a) from those in(a)-to/from-und(a) or
out(a)-to/from-und(a), we could define it as follows:
η(a,L(a),L′(a)) = 0 if L(a) = L′(a); otherwise,
η(a,L(a),L′(a)) = 1 (resp., 2) if und(a) ∈ {L(a),L′(a)}
(resp., und(a) 6∈ {L(a),L′(a)}). This way changes be-
tween decided values are weighted double of the others.

Example 15. Consider the AF obtained from that of
Figure 1 by removing the argument pasta (and the attacks
involving it), whose co-labellings are :
L1 = {in(fish),out(meat), in(white),out(red)},
L2 = {in(fish),out(meat),out(white), in(red)},
L3 = {out(fish), in(meat),out(white), in(red)},
L4 = {und(fish),und(meat),out(white), in(red)},
L5 = {in(fish),out(meat),und(white),und(red)},
L6 = {und(fish),und(meat),und(white),und(red)}.

Using distance δ, we have that CFco(meat,L3) = {L2,
L5} and SFco(red,L3) = {L2,L4}, while for η defined
as in the paragraph preceding this example, we have that
CFco(meat,L3) = {L5} and SFco(red,L3) = {L2}. 2

As stated next, our complexity results holds irrespective
of how η is instantiated.

Proposition 2. The results of Theorems 1–8 still hold if mea-
sure η is used (instead of δ) in Definitions 1 and 5.

Replacing criterion for goals’ status change. A coun-
terfactual L′ for L and g could also be defined by
requiring that the status of the goal g w.r.t. L′ is
not undecided, that is by changing condition (i) of
Definition 1. For instance, we could replace con-
dition (i) L(g) 6= L′(g), equivalently rewritten as

L′(g) ∈

{ {out,und} if L(g) = in
{in,und} if L(g) = out
{in,out} if L(g) = und

with the following one:

L′(g) ∈

{ {out} if L(g) = in
{in} if L(g) = out
{in,out} if L(g) = und

Again, replacing condition (i) of Definition 1 with that
above—or any other that can be checked in PTIME—does
not alter the complexity results in Table 1.

Considering multiple goal arguments. For the sake of
presentation, we focused on a single goal argument g ∈ A.
However, a set S ⊆ A of goal arguments whose status is re-
quired to change (resp., to not change) could be considered
in Definitions 1 and 5, respectively, or their generalizations
introduced earlier. More formally, given an AF Λ = 〈A,R〉,
distance measure η, semantics σ ∈ {co, st, pr, sst}, goal
arguments S ⊆ A, and σ-labelling L, we say that L′ is an
η-counterfactual (resp., η-semifactual) of L w.r.t. S if con-
dition (i) and (ii) of Definition 1 (resp., Definition 5) are
satisfied for all g ∈ S, where measure η is used (instead of
δ). Still, adopting these definitions of counterfactuals and
semifactuals does not alter the complexity bounds of Theo-
rems 1–8 as conditions (i− ii) can be checked in PTIME.

7 Related Work
Several researchers explored how to deal with explana-
tions with in formal argumentation (Cyras et al. 2021;
Vassiliades, Bassiliades, and Patkos 2021). Important work
includes e.g. (Fan and Toni 2015), where a new argumenta-
tion semantics is proposed for capturing explanations in AF,
and (Craven and Toni 2016) that focuses on ABA frame-
works (Craven and Toni 2016; Dung, Kowalski, and Toni
2009; Hung 2016). They treat an explanation as a seman-
tics to answer why an argument is accepted or not. In (Fan
and Toni 2015) an explanation is as a set of arguments jus-
tifying a given argument by means of a proponent-opponent
dispute-tree (Dung, Mancarella, and Toni 2007). An ap-
proach based on debate trees as proof procedure for com-
puting grounded, ideal, and preferred semantics, has been
proposed in (Thang, Dung, and Hung 2009). The approach
in (Alfano et al. 2023a) build explanations that are sequences
of arguments by exploiting topological dependencies among
arguments. An alternative definition for explaining com-
plete extensions has been proposed in (Baumann and Ul-
bricht 2021). It exploits the concept of reduct, i.e. a sub-
framework obtained by removing true and false arguments
w.r.t. a complete extension. The concept of strong explana-
tion is proposed in (Ulbricht and Wallner 2021), inspired by
the related notions introduced in (Brewka and Ulbricht 2019;
Brewka, Thimm, and Ulbricht 2019; Saribatur, Wallner, and
Woltran 2020). Finally, in (Cocarascu, Rago, and Toni 2019)
quantitative argumentation frameworks have proven effec-
tive in generating explanations for review aggregations.

Counterfactual reasoning in AF has been firstly intro-
duced in (Sakama 2014), where considering sentences of the
form “if awere rejected, then bwould be accepted”, an AF Λ
is modified to another AF Λ′ such that (i) argument a which
is accepted in Λ is rejected in Λ′ (ii) and the Λ′ is as close
as possible to Λ. An interesting problem related to this is
enforcement (Niskanen, Wallner, and Järvisalo 2016; 2018;
Wallner, Niskanen, and Järvisalo 2017), that is how changes
in the AF affects the acceptability of arguments, and how
to modify an AF to guarantee that some arguments get a
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given labelling. In particular, extension enforcement con-
cerns how to modify an AF to ensure that a given set of
arguments becomes (part of) an extension (Baumann et al.
2021). Moreover, in (Borg and Bex 2024), a framework for
determining argument-based explanations in both abstract
and structured settings is proposed. The framework is able
to answer why-question, such as ‘why is argument a credu-
lously accepted under pr’? Finally, an approach to explain
the relative change in strength of specified arguments in a
Quantitative Bipolar AF updated by changing its arguments,
their initial strengths and/or relationships has been recently
proposed in (Kampik, Cyras, and Alarcón 2024).

However, none of the above-mentioned approaches deals
with semifactual reasoning and most of them manipulate the
AF by adding arguments or meta-knowledge. In contrast, in
our approach, focusing on a given AF, novel definitions of
counterfactual and semifactual are introduced to help under-
stand what should be different in a solution (not in the AF)
to accommodate a user requirement concerning a given goal.

8 Conclusions and Future Work
We have proposed the concept of counterfactual and semi-
factual explanations in abstract argumentation, and inves-
tigated the complexity of counterfactual- and semifactual-
based reasoning in AF. It turns out that the complexity of
the considered problems is not lower than those of corre-
sponding classical problems in AF, and is provably higher
for fundamental problems such as the verification problem.
It is worth mentioning that, though their formulation is sim-
ilar and they share the same complexity bounds, the consid-
ered counterfactual-based and semifactual-based problems
are not dual problems—we do not see how to naturally re-
duce one to the other; however, a (possibly complex) reduc-
tion may exist as our complexity results do not rule this out.

Although counterfactual- and semifactual-based reason-
ing suffers from high computational complexity (as many
other computational problems in argumentation (Alfano,
Greco, and Parisi 2019; 2021; Alfano et al. 2023c; 2023b;
2024c)), several tools and techniques emerged in the last
few years that can tackle such kinds of computational issues,
including ASP- and SAT-based solvers. This is witnessed
by the several efficient approaches presented at the ICCMA
competition,3 which aims at nurturing research and develop-
ment of implementations for computational models of argu-
mentation. In this regard, we have proposed an asprin-based
approach that enables leveraging existing tools and tech-
niques to deal with complex problems by reducing to weak-
constrained AF and then to ASP with preferences, enabling
implementations by using asprin (Brewka et al. 2015b).

It can be shown that our complexity results carry over to
other frameworks whose complexity is as that of AF, such
as Bipolar AF (Cohen et al. 2014; Alfano et al. 2020) and
AF with recursive attacks and supports (Cohen et al. 2015;
Cayrol et al. 2018; Alfano et al. 2024a), among others (Vil-
lata et al. 2012; Gottifredi et al. 2018; Dvorák et al. 2024).

Future work will be devoted to considering more general
forms of AF, such as incomplete and probabilistic AF (Li,

3https://argumentationcompetition.org

Oren, and Norman 2011; Hunter 2012; 2013; Baumeister
et al. 2021; Alfano et al. 2022) as well as structured argu-
mentation formalisms (Modgil and Prakken 2014; Cyras,
Heinrich, and Toni 2021; Garcia, Prakken, and Simari 2020;
Alfano et al. 2018; 2021a).
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