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No man ever steps in the same river twice, for it’s not the
same river and he’s not the same man.

Heraclitus

Abstract

We introduce a new epistemic space: the space of rational
rankings. This space is very useful for understanding some
aspects of belief dynamics, particularly issues concerning the
improvement of new information. Thus, we define, in a very
clear and succinct way, a class of operators that capture the
fact that new information is improved. An interesting feature
of this space is that the behavior of these operators can be
characterized through a few simple equations and inequalities
whose meaning is transparent. We prove that these operators
are indeed improvement operators. Moreover, we show that
these operators exhibit good behavior when they undergo a
sufficient number of iterations. In such cases, they become
Darwiche and Pearl revision operators.

1 Introduction
Unlike Heraclitus’ quote, in many models of belief revision,
the new information does not affect the epistemic state (Al-
chourrón, Gärdenfors, and Makinson 1985; Darwiche and
Pearl 1997). Thus, the epistemic state remains the same even
if one piece of information arrives multiple times. However,
this is not always true, and we would like to model situa-
tions in which new information always produces a change.
Another behavior observed in most models of belief revision
is that, in general, after revision, there is a loss of plausibility
of the negation of the input. However, one might want the
plausibility of the negation of the input to remain the same
before and after revision.

The following example shows a situation in which per-
manent change is desirable and, at the same time, illustrates
why we don’t want the plausibility of the negation of the
new piece of information to decrease after the change:
Example 1. Dr. Roberts, MD, has been practicing medicine
for 20 years. Since he began his practice, he has applied
treatment A to the common cold. Treatment A always works,
so he has great confidence in this treatment, and this con-
fidence increases with every successful case even when its
effectiveness against the common cold was already part of
his beliefs. One day he receives information about a case
of the common cold where treatment A did not work. This

information comes from a well-respected colleague, so he
gives it some credit, but, backed by all his experience, his
confidence in treatment A does not decrease.

The epistemic states and operators we introduce in this
work allow modeling this kind of situation where the degree
of confidence in treatment A does not change in numerical
terms after receiving the information that the treatment does
not work. However, the degree of confidence in the new in-
formation increases. If this new information is repeated a
sufficient number of times, the doctor must change his opin-
ion about treatment A.

Another feature that one would like to model is that the
changes are produced little by little (very little by little!) as
in the following example:

Example 2. Tom is learning to play the guitar; he is an
absolute beginner. He practices daily, which increases his
confidence in his playing. After some practice, he plays in
front of a small audience. As he receives positive feedback,
he continues building his confidence in his abilities step by
step. Each time he gets a bad reaction from the audience,
he thinks he just had a bad day, but his confidence does not
decrease because it has been reinforced many times. After
some years of receiving positive feedback, he concludes that
he is no longer a beginner but an intermediate player. Never-
theless, he is aware that there is still room for improvement
and he still has a lot to learn about guitar playing.

Having given two examples to illustrate our motivations,
we will now establish the context of our work in detail and
where it fits within the current lines of research.

Our starting point is the logical model for belief change
proposed by Alchourrón, Gärdenfors, and Makinson (1985),
known as the AGM framework. This framework adheres
to three main principles: coherence, success, and minimal
change. Specifically, when dealing with the incorporation
of new information into a corpus of beliefs (belief revision),
these principles form the foundation of the revision process
(revision operators). These operators are functions that map
the epistemic state of an agent and the new information into
a new epistemic state that is coherent (i.e., free of contra-
dictions), incorporates the new information, and remains as
close as possible to the original epistemic state. In the log-
ical AGM framework, epistemic states are represented as
logical theories (sets of sentences closed under logical de-
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duction), and the new information is represented by a logi-
cal formula. Typically, propositional logic serves as the un-
derlying logic. When the logic is finite propositional logic,
Katsuno and Mendelzon (1991) proposed a simplified model
(the KM framework) where the epistemic state corresponds
to a propositional formula, and the new information is also
a propositional formula. The KM framework provides an
easily understandable set of rationality principles and in-
cludes a useful representation theorem: revision operators
are characterized as functions mapping a formula (an epis-
temic state) into a total preorder over the set of interpreta-
tions.1

Both the AGM and KM models are effective for explain-
ing a single step of revision. However, the KM representa-
tion theorem led Darwiche and Pearl (1997) to demonstrate
that these frameworks are inadequate for iterated revision
processes. Consequently, they proposed a new model for it-
erated revision, referred to as the DP framework. The core
concept in the DP framework is the notion of a (complex)
epistemic state. These epistemic states differ from formulas
and theories; they are objects associated with certain beliefs.
For instance, the simplest examples of epistemic states are
total preorders (TPOs) over interpretations, where the be-
liefs associated with a TPO are represented by a formula
whose models are precisely the minimal models of the TPO.

While TPOs provide a natural and straightforward setting
for studying DP revision operators, more general settings ex-
ist where DP revision operators can be defined. For example,
ordinal conditional functions (OCFs) proposed by Spohn
(1988) offer such a general setting. Indeed, there are DP re-
vision operators defined on OCFs that cannot be described in
terms of TPOs (see (Aravanis, Peppas, and Williams 2019)
and (Schwind, Konieczny, and Pino Pérez 2022)). It is
crucial to recognize that a belief change operator, such as
a DP revision operator, must be defined within a specific
“epistemic space,” and numerous epistemic spaces, includ-
ing some quite uncommon ones, exist (Schwind, Konieczny,
and Pino Pérez 2022).

Another important area of research in belief change, par-
ticularly in belief revision, involves non-prioritized change
operators (Hansson 1997; Hansson 1999). In these opera-
tors, the success postulate is relaxed. This category includes
credibility-limited revision operators (Hansson et al. 2001;
Booth et al. 2012), where only information from a credible
set is incorporated, and information not in this set is rejected
with no impact on the current belief state. Another family of
non-prioritized revision operators aims to capture the idea
that the plausibility of new information increases. These
improvement operators (Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010; Med-
ina Grespan and Pino Pérez 2013) uniquely achieve success
after several iterations of the same information, contrast-
ing with credibility-limited revision operators, where some
pieces of information are never incorporated even after mul-
tiple iterations. However, these two approaches have been
successfully merged in credibility-limited improvement op-

1A similar representation theorem in terms of sphere systems
was provided by Grove (1988).

erators (Booth et al. 2014). Notably, research on these oper-
ator families has been primarily conducted within the frame-
work of total preorders as the epistemic space, though some
improvement operators have also defined in the space of
OCFs (Konieczny and Pino Pérez 2008).

In this paper, we introduce a novel complex epistemic
space called rational rankings, where rankings are repre-
sented by rational numbers. This exploration is motivated by
the idea that studying structures beyond TPOs and OCFs can
offer deeper insights into the properties that improvement
operators should possess in broader contexts. The frame-
work of rational rankings is both rich and intuitive, allow-
ing us to define operators on this space that capture the in-
crease in plausibility of new information. This behavior is
characterized by a set of simple equations and inequalities
with clear, intuitive meanings. We show that these operators
fit within the class of improvement operators proposed in
the literature and demonstrate that, after sufficient iterations,
they function as Darwiche and Pearl’s revision operators.

2 Preliminaries
We consider a finite set of propositional variables P “

tx1, x2, . . . , xnu and the set of propositional formulas, LP
built up from P and the usual connectives. L˚P denotes the
set of consistent formulas from LP . The symbols J and K
denote respectively the tautology and the contradiction. The
set W “ tw1, w2, . . . , w2nu is the set of all interpretations
(or worlds) i.e. the classical truth functions on P . Propo-
sitional formulas will be denoted in general by lower case
Greek letters like α and their set of models is denoted by
JαK.

Let ĺ be a a total pre-order, i.e. a reflexive (x ĺ x),
transitive (px ĺ y^y ĺ zq Ñ x ĺ z) and total (x ĺ y_y ĺ

x) relation over W . The corresponding strict relation ă is
defined as x ă y iff x ĺ y and y ł x, and the corresponding
equivalence relation » is defined as x » y iff x ĺ y and
y ĺ x. We denote w ăă w1 when w ă w1 and there is no w2
such that w ă w2 ă w1.

Operators of change adequate to iteration (Darwiche and
Pearl 1997) have to be defined in epistemic spaces (Schwind,
Konieczny, and Pino Pérez 2022). Let us recall their defini-
tion more precisely.

Definition 1. An epistemic space is an ordered pair E “

xU,By where U is a set whose elements are called epistemic
states and B is a projection function that maps each Ψ P

U to a consistent propositional formula that represents the
belief set associated with Ψ.

Thus an epistemic state is just an element of an epistemic
space, very much as a vector is just an element of a vector
space.

The two more typical examples of epistemic spaces are
the TPO epistemic space, Etpo (TPO is the abbreviation of
total preorder) and the OCF epistemic space, Eocf (OCF

is the abbreviation Ordinal conditional Function).2 More

2An OCF (Spohn 1988) κ is a function associating each world
with a non-negative integer such that there is a world w with
κpwq “ 0. In some works, OCFs are called rankings as well
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precisely, Etpo “ xUtpo, Btpoy where Utpo is the set of
all total preorders over W and Btpo maps each total pre-
order ĺ in Utpo to a consistent formula ψ P L˚P such that
JψK “ minpW,ĺq. And Eocf “ xUocf , Bocf y where Uocf
is the set of all OCFs over W and Bocf maps an OCF κ to a
consistent formula ψ such that JψK “ tw : κpwq “ 0u.

Given an epistemic space E “ xU,By, a change operator
˝ is a function of the form ˝ : U ˆ LP ÝÑ U . General
epistemic states are noted by upper case Greek letters like Ψ.
The output of an operator is noted in infix notation. Thus,
Ψ˝α is the epistemic state obtained from Ψ with the change
produced by the information α.

Given a change operator ˝ we define for every formula α:

Ψ ˝0 α :“ Ψ

Ψ ˝k`1 α :“ pΨ ˝k αq ˝ α k ě 0

The improvement operators proposed in (Konieczny and
Pino Pérez 2008) have an important property, the success
at iteration (I1), which allows stating postulates in terms of
a corresponding revision operator. More precisely, given a
change operator ˝ of the form ˝ : U ˆ LP ÝÑ U defined
in an epistemic space E “ xU,By, which satisfies (I1): for
all Ψ and α, there exists n such that BpΨ ˝n αq $ α, we
can define the operator ‹ : U ˆ L ÝÑ U associated to the
operator ˝ in the following way:

Ψ ‹α “ Ψ ˝k α with k “ min tn P N : Ψ ˝n α $ αu (1)

Then, improvement operators are defined as follows:

Definition 2 ((Konieczny and Pino Pérez 2008)). The
operator ˝ : U ˆ LP ÝÑ U is an improvement operator if
it satisfies the following postulates:

(I1) There exists n such that BpΨ ˝n αq $ α
(I2) If BpΨq ^ α & K, then BpΨ ‹ αq ” BpΨq ^ α
(I3) If α & K, then BpΨ ˝ αq & K
(I4) For any positive integer n if αi ” βi for all i ď n then

BpΨ ˝ α1 ˝ ¨ ¨ ¨ ˝ αnq ” BpΨ ˝ β1 ˝ ¨ ¨ ¨ ˝ βnq
(I5) BpΨ ‹ αq ^ β $ BpΨ ‹ pα^ βqq
(I6) If BpΨ ‹ αq ^ β & K, then BpΨ ‹ pα ^ βqq $
BpΨ ‹ αq ^ β
(I7) If α $ µ then BppΨ ˝ µq ‹ αq ” BpΨ ‹ αq
(I8) If α $  µ then BppΨ ˝ µq ‹ αq ” BpΨ ‹ αq
(I9) If BpΨ ‹ αq &  µ then BppΨ ˝ µq ‹ αq $ µ

In (Konieczny and Pino Pérez 2008), a representation the-
orem of improvement operators in terms of total preorders
over worlds is provided.

It is worth remarking that postulate (I4) is stronger than
the DP postulate (R4), that is, BpΨ ˝ αq ” BpΨ ˝ βq when-
ever α ” β; for a discussion on this, see (Konieczny and
Pino Pérez 2008). Actually, (I4) aims to code at the level of
beliefs the fact that if α ” β, then Ψ˝α and Ψ˝β are exactly
the same epistemic state, which is clearly stronger than (R4)
(Darwiche and Pearl 1997).

and they can take values on several ordered sets like natural or
real numbers (Spohn 2009; Kern-Isberner, Skovgaard-Olsen, and
Spohn 2021) or even truly transfinite ordinals (Konieczny 2009).

Definition 3 (Gradual assignment). Given an epistemic
space E “ xE,By and an operator over this space, a map-
ping Ψ ÞÑĺΨ associating each epistemic state Ψ P E with
a total preorder over worlds ĺΨ is called a gradual assign-
ment for ˝ if the following conditions are satisfied:

1. If w,w1 P JBpΨqK, then w »Ψ w1

2. If w P JBpΨqK and w1 R JBpΨqK, then w ăΨ w1

3. For any positive integer n, if αi ” βi for any i ď n,
then ĺΨ˝α1˝...˝αn

“ĺΨ˝β1˝...˝βn

4. If w,w1 P JαK then w ĺΨ w1 ô w ĺΨ˝α w
1

5. If w,w1 P J αK then w ĺΨ w1 ô w ĺΨ˝α w
1

6. If w P JαK, w1 P J αK then w ĺΨ w1 ñ w ăΨ˝α w
1

We have the following representation theorem for the
class of improvement operators:
Theorem 1. A change operator ˝ is an improvement opera-
tor if and only if there exists a gradual assignment such that
for each epistemic state and each formula α, JBpΨ ‹ αqK “
minpJαK,ďΨq.

Note that conditions 4 and 5 align with Darwiche and
Pearl’s conditions (CR1) and (CR2) respectively (Darwiche
and Pearl 1997). Condition 6 corresponds to condition (P)
introduced in (Booth and Meyer 2006; Jin and Thielscher
2007) for defining admissible DP revision operators. Con-
sequently, the operator ‹ associated with an improvement
operator ˝ is an admissible DP revision operator.

Let us give some examples of operators defined on Etpo,
the space of total preorders: the natural revision operator
(Boutilier 1996), the lexicographic revision operator (Nayak
1994) and the one-improvement operator (Konieczny and
Pino Pérez 2008; Konieczny, Medina Grespan, and Pino
Pérez 2010).
Example 3. The natural revision operator ˝N is defined on
the epistemic space Etpo mapping each TPO Ψ P Etpo and
each formula α into the TPO Ψ˝N α that satisfies minpΨ˝N
αq “ minpJαK,ĺΨq along with the following condition:
(N) If w,w1 R minpJαK,Ψq, then wĺΨw

1ô wĺΨ˝Nαw
1,

where ĺΨ denotes Ψ and ĺΨ˝Nα denotes Ψ ˝N α.
That is, Boutilier’s natural revision operator on Etpo se-

lects the set of all minimal models of µ according to an input
TPO and defines this set as the first level of the revised TPO,
leaving the rest of the TPO unchanged.
Example 4. Nayak’s lexicographic operator ˝L is defined
also in the epistemic space Etpo by putting minpΨ ˝L αq “
minpJαK,Ψq, plus conditions 4 and 5 of a gradual assign-
ment, and:
(L) If w ( α and w1 ( α, then w ăΨ˝Lα w

1

Lexicographic revision reorders all models of α to be
higher than all models of  α, while preserving the internal
relationships within the worlds of α and within the worlds
of  α.
Example 5. The one-improvement operator d is defined
also in the epistemic space Etpo by mapping each TPO ĺΨP

Etpo and each formula µ into the TPO (ĺΨ d µ) that satis-
fies conditions 4, 5 and 6 of a gradual assignment, and the
following additional conditions:

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

201



111 110

001

000

101 100

011

010

Ψ

111 110

001

000

101 100

011

010

Ψ ˝N ppô  qq

111 110

001

000

101 100

011

010

Ψ ˝L ppô  qq

111 110

001

000

100101

011

010

Ψd ppô  qq

Figure 1: The natural revision operator ˝N , the lexicographic revi-
sion operator ˝L and the one-improvement operator d at work.

• If w P JαK, w1 P J αK then w1 ăΨ w ñ w1 ĺΨdα w

• If w P JαK, w1 P J αK then w1 ăăΨ w ñ w ĺΨdα w
1

These additional conditions characterize the behavior of
d. They state that the models of α at a level just above a
level with models of  α move down to this level.

Let us now illustrate how the behavior of these operators
differs from each other.

Example 6 (adapted from (Schwind, Konieczny, and Pino
Pérez 2022)). Let P “ tp, q, ru. Figure 1 shows a TPO Ψ
over worlds3 , and the revised TPOs Ψ ˝N pp ô  qq, Ψ ˝L
pp ô  qq and Ψ d pp ô  qq. We have BelpΨq ” p ^ q,
BelpΨ ˝N pp ô  qqq ” BelpΨ ˝L pp ô  qqq ” p ^  q,
but BelpΨd ppô  qqq ” p and the three associated TPOs
are very different. Therefore, it is easy to identify scenarios
(sequences of input formulas) that result in different beliefs
for each TPO.

Note that there are other improvement operators defined
in Eocf , the space of ordinal conditional functions, which
can not be represented in the space of TPOs (see (Schwind,
Konieczny, and Pino Pérez 2022)).

3 Generalized Improvement Operators
We would like to consider operators that improve only a
portion of the new information (for instance, only the most
plausible models of the new information). This approach
could lead to a “natural improvement” operator reminiscent
of Boutilier’s natural revision. To clarify this idea, we will
define the operator ˝NI on the space Etpo, which emulates
this behavior. First, given a TPO ĺΨ and a formula µ, let µΨ

be a formula such that JµΨK “ minpJµK,ĺΨq. Then define
ĺΨ ˝NI µ “ĺΨ d µΨ. Figure 2 illustrates the behavior of
this operator at work.

It is easy to see that the operator ˝NI does not satisfy (I9),
which corresponds to condition 6 of a gradual assignment.
This is evident from Figure 2 where the world 010 remains
at the same level as the world 000 after the change. How-
ever, the operator ˝NI satisfies postulate (I1), which is cen-
tral to the improvement principle. In fact, it is clear that the
operator ‹ associated with ˝NI is indeed the natural revi-
sion operator ˝N . Thus, it is reasonable to replace postulate

3A world w is at the same or at a lower level than a world w1

iff w ďΨ w1. Thus, minimal (i.e., most plausible) worlds are at the
lowest levels.

111 110

001

000

101 100

011

010

Ψ

111 110

001

100101

011

000 010

Ψd ppô  qq

Figure 2: The natural improvement operator ˝NI at work.

(I9) with “non-worsening postulates”, those corresponding
to postulates (C3) and (C4) of Darwiche and Pearl. This
leads to the following definition, which extends the class of
improvement operators:
Definition 4 (Generalized Improvement Operator). The
operator ˝ : U ˆ LP ÝÑ U is a generalized improvement
operator if it satisfies the postulates (I1-I8) plus the follow-
ing ones:

(I9a) If BpΨ ‹ αq $ µ then BppΨ ˝ µq ‹ αq $ µ
(I9b) If BpΨ ‹ αq &  µ, then BppΨ ˝ µq ‹ αq &  µ

Obviously enough, if an operator sastisfies (I9), then it
satisfies (I9a) and (I9b). As a consequence, every improve-
ment operator is a generalized improvement operator.

From the semantic perspective, we have the following:
Definition 5. Given an epistemic space E “ xU,By and an
operator over this space, a mapping Ψ ÞÑĺΨ associating
each epistemic state Ψ P E with a total preorder over worlds
ĺΨ is called a generalized gradual assignment if it satisfies
conditions 1-5 of a gradual assignment and the following
conditions:

6a. If ω P JαK and ω1 P J αK then ω ăΨ ω1 ñ ω ăΨ˝α ω
1

6b. If ω P JαK and ω1 P J αK then ω ĺΨ ω1 ñ ω ĺΨ˝α ω
1

Conditions 6a and 6b above correspond to Darwiche and
Pearl’s conditions (CR3) and (CR4) (Darwiche and Pearl
1997). Then, we can prove with a technique similar to the
proof of Theorem 1 the following result for the class of op-
erators satisfying (I1):
Theorem 2. A change operator ˝ is a generalized improve-
ment operator if and only if there exists a generalized grad-
ual assignment such that JBpΨ ‹ αqK “ minpJαK,ĺΨq.

It is easy to see that if ˝ is a generalized improvement
operator, then its corresponding operator ‹ is a DP revision
operator. More interestingly, we obtain the following corre-
spondence:
Theorem 3. An operator is a generalized improvement op-
erator satisfying (R1) if and only if it is a DP revision oper-
ator satisfying (I4).

4 Rational Improvement Operators
The goal of this section is to better understand the behav-
ior of various improvement operators within a specific epis-
temic space: the space of rational rankings. Given that the
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order on Q is dense and unbounded, it more naturally cap-
tures the dynamics of improvement operators. The density
of Q is particularly advantageous because it enables the in-
sertion of an intermediate layer between two existing layers
without altering their ranks. This capability is not possible
with ordinal conditional functions (OCFs) when the layers
are consecutive. This approach aligns with the principle of
improving without changing the rank of models that contra-
dict the new information.

Although rankings into real numbers have been studied
in (Spohn 2009), there are key differences, which we will
explore in Section 6.

A rational ranking is a function r : W Ñ Q. The set of all
rational rankings is denoted by RpQq. For a given rational
ranking r, we denote rk as the preimage r´1rks for k P Q,
i.e., rk “ r´1rks “ tw PW : rpwq “ ku. The (possibly
empty) set rk represents the k-th level of the ranking r.

Given any consistent formula α and a ranking r, we define
the rank of α in r, denoted by rpαq, as:

rpαq “ max tk P Q : rk X JαK ‰ Hu (2)

The following notation, toppαq, which denotes the set of
most plausible models of α in r, will be useful:

toppαq :“ rrpαq X JαK

Definition 6. The epistemic space of rational rankings,
EQ “ xU,By is defined by taking U as the set of rational
rankings and B as the function from U to L˚P defined as:

w P JBprqK ðñ rpwq “ rpJq (3)

The intended meaning of a rational ranking r as an epis-
temic state is that rpw1q ă rpwq indicates that the world w
is more plausible than the world w1. The beliefs associated
with r correspond to a formula whose models are precisely
those with the highest rank.

In this work, we adopt the perspective that the value as-
signed to a world in a rational ranking directly represents
its plausibility, in contrast to OCFs. We find it natural to
associate higher ranks with greater plausibility.

A significant difference from OCFs is that rational rank-
ings are not normalized, meaning that a rational ranking can
have beliefs with arbitrarily high ranks. This characteristic
allows for the plausibility of models representing new infor-
mation to be increased without altering the plausibility of
models representing the negation of that information.
Definition 7. Given a rational ranking r, its underlying pre-
order ĺr is defined by:

w ĺr w
1 ðñ rpw1q ď rpwq (4)

Observation 1. Since Bprq “ rpJq, we have that

Bprq “ maxpJJK,ĺrq

Definition 8 (Rational improvement operators). ˝ is a ratio-
nal improvement operator if there is a rational number c ą 0
such that the following properties are satisfied for all ratio-
nal ranking r, all consistent formulae α and all worlds w,
w1:
(RI1) If w P JαK then rpwq ď pr ˝ αqpwq

(RI2) there is aw2 P JαK such that rpw2q`c ă pr˝αqpw2q
(RI3) if w R JαK, then rpwq “ pr ˝ αqpwq
(RI4) ifw,w1 P JαK then rpwq ď rpw1q ðñ pr˝αqpwq ď

pr ˝ αqpw1q

(RI5) If α ” β and w P JαK then pr ˝ αqpwq “ pr ˝ βqpwq
Postulate (RI1) states that for any ranking function r, the

plausibility of the models of α does not decrease after a
rational improvement by α. (RI2) asserts that at least one
model of α sees its plausibility strictly increased after a ra-
tional improvement by α. Moreover, this increase has a
lower bound for any formula α in any rational ranking r.
(RI3) requires that a rational improvement by α does not
alter the plausibility of the models of  α. This can be
seen as a strengthening of condition 5 of a gradual assign-
ment, which requires that the relative plausibility between
the models of  α is not altered after revision by α. (RI4)
ensures that the relative order of the models of α should re-
main unchanged after a rational improvement by α. Lastly,
(RI5), together with (RI3), ensures the independence of syn-
tax: a rational improvement by a formula or an equivalent
one should result in the same ranking function.

It is important to note that postulates (RI1-RI5) are both
natural and flexible, allowing for the definition of a wide
variety of rational improvement operators, including those
with a uniform behavior. But, one could also define an op-
erator ˝ such that, for some models of α, the plausibility
increases only from the second time α is encountered in a
series of consecutive inputs of α: rpwq “ pr ˝ αqpwq ă
ppr ˝ αq ˝ αqpwq.

The next result is crucial in demonstrating that rational
improvement operators are indeed generalized improvement
operators.
Theorem 4. If ˝ is a rational improvement operator, then it
satisfies (I1).

Proof. Let ∆pαq “ rrpJq ´ min trpwq P Q : w P JαKus.
Since each element in JαK is a binary sequence, we can well-
order this set with lexicographic order. Now define the func-
tion:

f : N ÝÑ JαK

k ÞÑ min
ălex

 

w P JαK : pr ˝k`1 αqpwq ą pr ˝k αqpwq ` c
(

This function is well defined since (RI2) implies that the
set

 

w P JαK : pr ˝k`1 αqpwq ą pr ˝k αqpwq ` c
(

is non-
empty. Since JαK is finite, the pigeonhole principle implies
there is some w0 P JαK with |f´1pw0q| “ ℵ0. Hence

f´1pw0q “ tk1, k2, k3, . . .u

Now, using (RI1), it is easy to that

pr ˝kn αqpw0q ą rpw0q ` nc

By the Archimedean property, there is a natural number N
such that Nc ą ∆pαq, hence

pr ˝kN αqpw0q ą rpw0q `Nc ą rpw0q `∆pαq ą rpJq

As pr ˝kN αqpw0q ě pr ˝kN αqpw0q, we have that pr ˝kN
αqpw0q ą rpJq. Since pr ˝n αqpwq “ rpwq for every w R
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JαK and every n P N, we have that w R JαK ùñ pr ˝n

αqpwq ď rpJq. Thus, the models in pr ˝kN αqpJq are a
subset of JαK hence Bpr ˝kN αq $ α. That is, ˝ satisfies
(I1).

We can now state that:

Theorem 5. Every rational improvement operator is a gen-
eralized improvement operator.

The idea of the proof is to show that the assignment
r ÞÑĺr, where ĺr is the underlying preorder of r, is a gen-
eralized gradual assignment. This, along with Theorem 4,
allows us to apply Theorem 2 to reach our conclusion.

Proof. Let ˝ be a rational improvement operator. Theorem
4 implies that the associated revision operator ‹ is well-
defined. Hence Bpr ‹ αq $ α, thus JBpr ‹ αqK Ď JαK.
Since JBpr ‹ αqK “ rrpJq, it follows from the definition of
ĺr that

JBpr ‹ αqK “ minpJJK,ĺrq

We now want to prove that r ÞÑĺr is a generalized gradual
assignment for ˝. Properties (1.) and (2.) are immediate
from the definition of ĺr and the definition of Bprq. To
prove (3.), it is enough to prove it for n “ 1 and then apply
an inductive argument. To do so, suppose α ” β. Then,
(RI3) along with (RI5) implies that r ˝ α “ r ˝ β, thus
ĺpr˝αq“ĺpr˝βq. (4.) follows directly from (RI4). (5.) is
an immediate consequence of (RI3). (6a.) and (6b.) follow
from (RI1) and (RI3). Therefore, r ÞÑĺr is a generalized
gradual assignment for ˝ and Theorem 2 implies that ˝ is a
generalized improvement operator.

Observation 2. Since every rational improvement operator
˝ is a generalized improvement operator, it follows that its
associated operator ‹ is a DP revision operator.

5 Examples and Properties
In this section, we introduce several families of rational im-
provement operators, discuss some of their properties, and
provide characterizations for some of them.

Example 7. Let t P Q`. The t-translation is the operator

‘t : U ˆ L ÝÑ U

such that, if r is a ranking function and α is a sentence, the
operator ‘t is defined as

pr ‘t αqpwq “

"

rpwq if w R JαK
rpwq ` t if w P JαK

Satisfaction of (RI1), (RI3) and (RI4) is a direct consequence
of the definition of ‘t. Taking any w P JαK and c “ t{2, we
get that rpwq ` c ă rpwq ` t “ pr ‘t αqpwq, hence ‘t
satisfies (RI2). Lastly, if α ” β we have that pr ‘t αqpwq “
pr‘t βqpwq “ rpwq` t for every JαK since JαK “ JβK, thus
(RI5) is satisfied. Therefore, ‘t is a rational improvement
operator.

These operators are named t-translations because they
uniformly move the entire set of models of α “up-
wards”. Translation operators are reminiscent of pAÑxq-
conditionalization (Spohn 2009). However, while condition-
alizations are revision operators, translations are not.

These operators satisfy the following interesting commu-
tativity property:

(Com) pr ˝ αq ˝ β “ pr ˝ βq ˝ α

This property a two-step adaptation to rational rankings
of the commutativity property introduced in (Schwind and
Konieczny 2020).

When an operator satisfies (Com) for every ranking r and
formulas α and β, it is called a commutative operator.

Proposition 1. The operator ‘t is a commutative operator.

Proof. Let w P W . The proof is direct by (RI3) in the case
when w P J αKY J βK. If w P JαKzJβK, then

ppr ‘t αq ‘t βqpwq “ pr ‘t αqpwq (RI3)
“ rpwq ` t

and

ppr ‘t βq ‘t αqpwq “ pr ‘t βqpwq ` t

“ rpwq ` t (RI3)

Hence,

ppr ‘t αq ‘t βqpwq “ ppr ‘t βq ‘t αqpwq “ rpwq ` t

The proof is similar for the case when w P JβKzJαK. The
remaining case is when w P JαKX JβK:

ppr ‘t αq ‘t βqpwq “ pr ‘t αqpwq ` t w P JβK
“ prpwq ` tq ` t w P JαK
“ rpwq ` 2t

ppr ‘t βq ‘t αqpwq “ pr ‘t βqpwq ` t w P JαK
“ prpwq ` tq ` t w P JβK
“ rpwq ` 2t

Thus for every w PW:

ppr ‘t αq ‘t βqpwq “ ppr ‘t βq ‘t αqpwq

This shows that ‘t satisfies (Com).

Observation 3. By the previous proposition and the results
in (Schwind and Konieczny 2020) (Proposition 9 therein) the
t-translation operators can not be representable as improve-
ment operators in the space of TPOs. And the impossibility
also remains for the revision operators corresponding to the
translations.

An interesting behavior of this family of operators is cap-
tured by the following definition:

Definition 9. A rational improvement operator ˝ is a Nayak
operator iff for each formula α, there is some N P N such
that:

w P JαK, w1 R JαK ùñ pr ˝N αqpw1q ă pr ˝N αqpwq
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These operators are named as such because, with a suffi-
cient number of iterations, the underlying preorders behave
similarly to the lexicographical revision proposed by Nayak
(1994).

Observation 4. Notice that t‘t : t P Q`u is a family of
Nayak operators.

However, not all Nayak operators belong to this family.
For instance, in Example 11, one can see operators that fall
outside this classification.

Another interesting family of rational operators exhibits
behavior inspired by Boutilier’s natural revision operator:

Example 8. Given t ą 0 with t P Q, the top-t-translation is
the operator

˚top´t : U ˆ L ÝÑ U

assigning to each ranking r and each sentence α the ranking
˚top´t given by

pr ˚top´t αqpwq “

"

rpwq ` t if w P rrpαq X JαK
rpwq otherwise

It is easy to see from this definition that ˚top´t is a rational
improvement operator.

Proposition 2. The operator ˚top´t is not commutative.

Proof. Consider a ranking r and formulas α, β such that
rpαq “ rpβq. Let n “ rpαq, and let w P JαKzJβK,
w1 P JαKX JβK such that rpwq “ rpw1q “ n. Now

pr ˚top´t αqpwq “ pr ˚top´t αqpw
1q

“ n` t

Now since w1 P JαKX JβK we have

pr ˚top´t αqpαq “ pr ˚top´t αqpβq “ n` t

and ppr ˚top´t αq ˚top´t βqpwq “ n` t since w R JβK. How-
ever, pr ˚top´t βqpwq “ n and pr ˚top´t βqpw

1q “ n` t. As
w1 P JαK, this means that pr ˚top´t βqpαq “ n ` t, hence
pr ˚top´t βqpwq ‰ pr ˚top´t βqpαq and ppr ˚top´t βq ˚top´t
pαqqpwq “ n. Therefore

ppr ˚top´t αq ˚top´t pβqqpwq ‰ ppr ˚top´t βq ˚top´t pαqqpwq

Definition 10. A rational improvement operator ˝ is a
Boutillier operator if the underlying orders of r and r ˝ α
restricted to Wztoppαq coincide.

Observation 5. t˚top´t : t P Q`u is a family of Boutillier
operators.

Not all Boutilier operators belong to this family (see Ex-
ample 10).

It is important to note that simply increasing the plausibil-
ity of models of new information does not necessarily result
in a rational improvement operator. The manner in which
this increase is implemented is crucial. The following ex-
ample illustrates this point.

Example 9. Consider the operator ˝Z that associates each
pair pr, αq with a new ranking r ˝Z α defined as follows: if
rpαq ‰ rpJq, then

pr ˝Z αqpwq “

$

&

%

rpwq if w R JαK

rpwq `
rpJq ´ rpαq

2
if w P JαK

and if rpαq “ rpJq:

pr ˝Z αqpwq “

"

rpwq if w R JαK
rpwq ` 1 if w P JαK

Notice there is no c P Q` such that this operator satisfies
(RI2), so it is not a rational improvement operator. Clearly,
when rpαq ă rpJq, the models of α are “improving” with
repeated applications of ˝. However, this operator does not
generally satisfy (I1), meaning there is no associated ‹ revi-
sion operator. Therefore, ˝ is not an improvement operator
in the usual sense. This demonstrates that simply increas-
ing the ranks of models of new information is insufficient to
define an improvement operator.

Operators exhibiting this behavior can be referred to as
Zeno operators, as they resemble the Zeno Paradox. There is
a goal that is approached but never fully achieved: if rpαq ă
rpJq andw P JαK then for every n P N, pr˝nαqpwq ă rpJq.

We can use the concept from Example 9 to define a
Boutilier operator that is not part of the family described
in Example 8. In Example 10, the operator is designed so
that the highest-ranked models of α always improve by t,
while some lower-ranked models of α move in a Zeno-like
manner.
Example 10. The idea of the operator ˚t, which we are go-
ing to define, is very simple: the top models of α improve
by t. The “isolated” models of α (those in a layer with only
models of α) improve by half of the distance to the consec-
utive upward rank, while the rest of the models don’t move.
More precisely, let q1, q2, . . . , qm be the image of the rank-
ing r where qi ą qi` 1. Define ti “ pqi ´ qi`1q{2. Then,
fix t as a positive rational number and define ˚t as follows:

1. pr ˚t αqpwq “ rpwq ` t if w P toppαq,
2. pr ˚t αqpwq “ rpwq ` ti if rpwq “ qi`1, w P JαK and

there is no w1 R JαK with rpw1q “ qi`1,
3. pr ˚t αqpwq “ rpwq in any other case.

It is easy to see that ˚t is a rational improvement opera-
tor. Moreover, it is clear from the definition of ˚t that it is
a Boutillier operator because the underlying order of r and
r ˚t α restricted to Wztoppαq is the same.

With a similar idea we can define a Nayak operator which
is not a t-translation for any t P Q`.
Example 11. The idea of the operator ‘tt we are about to
define is very simple: the top models of α improve by t. The
other models of α improve by t{2. More precisely,

pr ‘tt αqpwq “

$

&

%

rpwq ` t if w P toppαq
rpwq ` t{2 if w P JαKztoppαq
rpwq if w R JαK
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It is easy to see that ‘tt is a rational improvement opera-
tor. And it is quite simple to verify that it is a Nayak operator
different from ‘t for any t P Q`.

Although epistemic states always change with applica-
tions of rational improvement operators, the underlying pre-
orders have a fixed point.
Theorem 6. There is some m P N such that

ĺr˝nα“ĺr˝n`1α

for every n ě m.

Proof. Let Utpo be the set of all total preorders on W . Since
W is a finite set, Utpo is also a finite set. Now, define a
function

f : N ÝÑ Utpo
k ÞÑĺr˝kα

Hence, there is some preorder ĺ on W that has an infi-
nite preimage S Ď N. Suppose m is the least element
of S. We are going to prove, using induction, that S “

tn P N : m ď nu, i.e., S is a final segment of N thus ĺr˝mα

is the desired fixed point.
Suppose k P S, then ĺ“ĺr˝kα. Given any two w,w1 we

have to prove that w ĺr˝kα w
1 ðñ w ĺr˝k`1α w

1. This
is immediate if w,w1 R JαK by (RI3) and when w,w1 P JαK
by (RI4).

If w P JαK and w1 R JαK:

w ĺr˝kα w
1 ðñ pr ˝k αqpw1q ď pr ˝k αqpwq (5)

Since w1 R JαK we have that pr ˝k αqpw1q “ pr ˝k`1 αqpw1q
and since w P JαK we have that pr ˝k αqpwq ď pr ˝k`1

αqpwq, thus pr ˝k αqpw1q ď pr ˝k αqpwq implies that
pr ˝k`1 αqpw1q ď pr ˝k`1 αqpwq hence w ĺr˝kα w

1 ùñ

w ĺr˝k`1α w
1.

If w R JαK, w1 P JαK and w ĺr˝kα w1, suppose
w łr˝k`1α w

1. Then pr˝k`1αqpwq ă pr˝k`1αqpw1q. Since
S is infinite, there is some p ą k`1 such that ĺr˝pα“ĺr˝kα

i.e. such that pr ˝p αqpw1q ď pr ˝p αqpwq.
Since w R JαK, we have that pr ˝k αqpwq “ pr ˝n αqpwq

for every n P N thus

pr ˝p αqpw1q ď pr ˝p αqpwq

“ pr ˝k`1 αqpwq

ă pr ˝k`1 αqpw1q

thus pr ˝p αqpw1q ă pr ˝k`1 αqpw1q. Since p ą k` 1, there
is some ` P N, n ą 1, such that p “ k ` `, therefore

pr ˝k`` αqpw1q ă pr ˝k`1 αqpw1q

which is impossible because of (RI1).
Hence, for every pair w,w1 PW and every k P S:

w ĺr˝kα w
1 ùñ w ĺr˝k`1α w

1

In order to prove the reciprocal statement, suppose
w łr˝kα w1. Since ĺr˝kα is a total preorder, this implies
that w1 ăr˝kα w, but by the previous discussion this implies
w1 ăr˝k`1α w, hence w łr˝k`1α w

1. Thus we have proved
w ĺr˝k`1α w

1 ùñ w ĺr˝kα w
1 by contraposition.

Therefore, for every k ą m we have that
ĺr˝kα“ĺr˝k`1α, i.e., S is a final segment of N as we
wanted to prove.

Let us call m0 the minimum m satisfying Theorem 6.
Then the following observation is easy to see:

Observation 6. m0 ě k where

k “ min tn P N : r ˝n α $ αu

When ˝ is a Boutillier operator m0 “ k. If ˝ is Nayak, then
generally k ă m0.

5.1 A characterization of Translations
The translation operators are the operators introduced in Ex-
ample 7. More formally we have the following definition:

Definition 11. A rational improvement operator is a trans-
lation if it is ‘t for some t P Q`.

There are two additional postulates we can include in or-
der to capture all the homogeneity behind the translations:
For any rankings r, r1, any formulas α, β and any worlds w
and w1

(T1) If w P JαK and w1 P JβK then pr ˝ αqpwq ´ rpwq “
pr ˝ βqpw1q ´ rpw1q.

(T2) w P JαK ùñ pr˝αqpwq´rpwq “ pr1˝αqpwq´r1pwq.

(T1) says that the increment of the rank of a given model
does not depend on the formula and (T2) says that said in-
crement does not depend of the ranking.

Lemma 1. Postulate (T1) implies

w,w1 P JαK ùñ rpwq´ rpw1q “ pr ˝αqpwq´ pr ˝αqpw1q
(T1W)

Proof. First, notice that replacing β by α in (T1) we obtain
precisely (T1W), thus (T1) ùñ (T1W).

Theorem 7. ˝ is a translation iff it is a rational improvement
operator satisfying properties (T1) and (T2).

Proof. It is easy to check that every translation satisfies (T1)
and (T2). On the other hand, suppose ˝ is a rational im-
provement operator satisfying (T1) and (T2). We prove it is
a translation. First, take any ranking r, any consistent for-
mula α, and takew a model of α with pr˝αqpwq´rpwq ą 0
(which exists by (RI2)). Define

t “ pr ˝ αqpwq ´ rpwq

Postulate (T2) implies that t is independent of r. (T1W)
implies that t is also independent of w and (T1) implies that
t does not depend on α. Hence t depends only on ˝. (RI3)
entails that pr ˝ αqpwq “ rpwq for every w R JαK. By the
very same definition of t, we have that pr˝αqpwq “ rpwq`t
for every w P JαK. Therefore ˝ “ ‘t for some t ą 0
and we can conclude that postulates (T1) and (T2), together
with the postulates for rational improvement, characterize
translations.
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Note that Postulate (T1W) is strictly weaker than (T1). To
prove this, enumerate the (finite) set of equivalence classes
of LP under the relation ” given by α ” β ðñ JαK “
JβK. We have classes C1, . . . , CN with N “ 22n

. Define
˝”:

r ˝” α “ r ‘k α ðñ α P Ck

It is easy to see that this is a rational improvement operator
that satisfies (T1W) but not (T1), hence (T1W) œ (T1).

One can wonder whether postulates (T1) and (T2) are in-
dependent of each other or not. The answer is positive:

Proposition 3. Postulates (T1) and (T2) are independent.

Proof. Notice that ˝” satisfies (T2) thus (T2) œ (T1).
Finally, given an enumeration r1, r2, . . . of rankings, con-

sider the function ˚k defined as r ˚k α “ r ‘k α iff r “ rk.
This is a rational improvement operator satisfying (T1) but
not (T2), therefore (T1) œ (T2).

Let us finish this section about translations with one ob-
servation about them.

Note that r ‘t J is the the ranking r1 obtained from r
by shifting the rank of all the models by t. Thus, clearly,
r1 ‰ r but the underlying preorder of both rankings is the
same. Moreover, we have the following:

Observation 7. Given r and α, if r1 “ pr ‘t αq ‘t  α
we have that r1 “ r ‘t J. Thus, r and r1 have the same
underlying preorder but r ‰ r1. In other words, the operator
‘t has a cancellation property at the level of underlying
orders.

6 Related Work
Soft improvement. The notion of soft improvement oper-
ators introduced in (Konieczny, Medina Grespan, and Pino
Pérez 2010) can be translated to the context of rational rank-
ings as follows:

(r-Soft) If w P JαK, w1 R JαK and rpw1q ą rpwq, then
rpw1q ě pr ˝ αqpwq

This means that the increase in plausibility cannot result
in the rank of a model being strictly greater than that of a
counter-model which was more plausible in the initial rank-
ing.

Unfortunately, our rational improvement operators cannot
satisfy (r-Soft). The reason is that if an operator satisfies
(RI2), it necessarily violates (r-Soft). Specifically, we can
find a rational ranking r where the underlying order is linear
and the difference between rpJq and the minimum rank in
the image of r is less than the constant c given by property
(RI2). If we choose an α such that toppJq X JαK “ H,
then it is clear that if w is the model of α given by (RI2), it
violates (r-Soft) because pr ˝ αqpwq ą rpJq.

Nevertheless, for certain inputs, rational improvement op-
erators can exhibit soft behavior. For instance, if r is a ra-
tional ranking such that the image of r consists of the set
tq1, . . . , qku with qi ´ 1 “ qi`1, then ‘ 1

2
displays soft

behavior. In such cases, its behavior resembles that of the
half improvement operator (Konieczny, Medina Grespan,
and Pino Pérez 2010).

Decrement operators. The decrement operators intro-
duced by Sauerwald et al. (2019) are related to soft changes
aimed at achieving contraction. The idea is to decrease the
plausibility of the input until it is no longer believed. Related
to this, we can define in the space of rational rankings oper-
ators that we call regressions. They are defined similarly to
translations but use a negative rational number t.

These operators will generally not be soft, but for certain
inputs, they behave like decrement operators. For example,
if r is a rational ranking where the ranks in the image have a
difference of 1 between consecutive ranks, then the regres-
sion operator ‘´ 1

2
behaves as a decrement operator.

General properties for iteration. In (Schwind,
Konieczny, and Pino Pérez 2023), some generalized
DP postulates were proposed for revision. These postulates
aimed to ensure homogeneity in the behavior of operators.
In the space of TPOs, these postulates characterized a family
reduced to only three operators: Nayak lexicographic revi-
sion, Boutilier natural revision, and the restrained revision
of Booth and Meyer (2006). The semantic aspect of these
postulates is satisfied by the translations. A natural question
is whether these (or similar) postulates can characterize the
family of translations.

Expressive power of rankings. Rational rankings are
not more expressive than OCFs, under standard hypothe-
ses (postulate (G) in (Schwind, Konieczny, and Pino Pérez
2022)). However, in this paper we aim to work with a mean-
ingful, unnormalized structure and consider a framework
with rationality postulates directly applied to these struc-
tures, rather than just at the level of beliefs. Within this
context, OCF-based operators are clearly not rational im-
provement operators in the sense of Definition 8.

Spohn’s work on rankings. There are some important
differences between our work and Spohn’s work (2009):
First, Spohn defines normalized rankings into the positive
real numbers, while our rational rankings are not normal-
ized. Additionally, he defines rankings into the set R Y
t´8,8u. In Spohn’s framework, negative ranks model de-
grees of disbelief, which is not the intention in our work.
Moreover, the density of Q is a key property for our devel-
opment, which is overlooked in Spohn’s work.

7 Conclusions and Future Work
A first contribution of this work is the introduction and char-
acterization of the class of generalized improvement op-
erators. We have defined the epistemic space of rational
rankings and the associated rational improvement operators.
These operators consistently produce changes, and notably,
improving new information does not require decreasing the
plausibility of models that do not satisfy this new informa-
tion. This framework effectively models scenarios such as
the evolution of Dr. Roberts’ beliefs in Example 1.

By working within the space of rational rankings, we can
define t-translations with very small values of t. This flex-
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ibility allows us to model Tom’s evolving beliefs in Exam-
ple 2, demonstrating the need for many iterations to achieve
a goal.

Another notable feature of using rational rankings is the
ability to define regressions simply with negative numbers.

Through a few equations and inequalities with clear
meanings, we have established a class of operators that cap-
ture the notion of improving the plausibility of the input: the
rational improvement operators. Additionally, we have pro-
vided two independent postulates that characterize the trans-
lation operators.

The space of rational rankings can be very useful as a field
of experimentation in order to find the properties character-
izing well behaved operators. For instance, we can define
operators as the Zeno operators (Example 9) which show
that it is not enough to increase the plausibility of certain
models of the input, for being a real improvement opera-
tor (to achieve success iterating the input enough number of
times).

Some concepts, such as the softness of operators, are in-
trinsically contextual. As demonstrated, this is incompati-
ble with (RI2). Future work should explore more relaxed
notions than (RI2) that accommodate contextual operators,
particularly postulates compatible with (r-Soft).

An important direction for future research is to determine
the syntactic characterization of the classes of operators de-
fined in this work. Additionally, investigating whether rank-
ings on real numbers would provide a richer framework,
potentially incorporating properties such as completeness,
could be a valuable avenue for exploration.
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