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Abstract

This paper introduces and investigates k-unmatchability, a
counterpart of k-anonymity for knowledge graphs. Like k-
anonymity, k-unmatchability enhances privacy by ensuring
that any individual in any external source can always be
matched to either none or at least k different anonymized in-
dividuals. The tradeoff between privacy protection and infor-
mation loss can be controlled with parameter k. We analyze
the data complexity of k-unmatchability under different no-
tions of anonymization.

1 Introduction
The Semantic Web paradigms excel in connecting diverse
data, which increasingly involve personal, possibly sensitive
information such as medical records, governance or finan-
cial data (Bizer 2009; Bizer, Heath, and Berners-Lee 2009).
The confidentiality of this information shall be protected
to meet application requirements and comply with per-
sonal data protection regulations (Bonatti and Sauro 2013;
Cuenca Grau and Kostylev 2019). The IRIs adopted by the
W3C standard RDF uniquely identify resources on the Web,
thereby facilitating the linkage of different pieces of infor-
mation related to the same person. Such resource linkage is
a major source of citizen profiling and privacy breaches.

Privacy-related risks can be mitigated by anonymizing
RDF graphs. Anonymization can be achieved by substitut-
ing blank nodes (blanks, for short) for nodes such as the IRIs
of persons and the literals that denote explicit identifiers, like
name and SSN (Cuenca Grau and Kostylev 2019). Such sup-
pression operations can break the explicit connections be-
tween the knowledge encoded in (multiple) RDF graphs and
the persons it refers to; suppression is analogous to explicit
identifier removal in database anonymization.

Unfortunately, removing explicit identifiers does not suf-
fice to protect privacy. Latanya Sweeney proved this
by re-identifying the governor of Massachusetts in an
“anonymized” medical database. We briefly recall her at-
tack – as reported in (Ohm 2010) – which will be help-
ful in understanding our approach. Sweeney first leveraged
the common knowledge that the governor of Massachusetts
had collapsed unconscious during a public event, and was
taken to the Deaconess Waltham Hospital. Thus, it was
certain that the governor was represented in the hospital’s
public database of patient data (where all explicit identifiers

had been removed). The governor was also listed in Mas-
sachusetts’ public database of voters, where the governor’s
name was associated to his postcode, birthdate, and gender.
A join of the two public databases on these three attributes
produced one match, that associated the governor’s name to
his diagnosis (a severe data breach). The uniqueness of the
match was not by chance, as postcode, birthdate, and gen-
der constitute a quasi identifier, that is, a group of attributes
that uniquely identify a person with very high probability.
The statistical analysis in (Sweeney 2000) showed that the
above quasi identifier uniquely identified all Massachusetts’
citizens of age 25–34 and ≥45, while in general it identified
98% of the entire population.

After this proof-of-concept attack, various anonymiza-
tion techniques have been proposed to strengthen privacy-
preserving data publishing and counteract information link-
age (Dwork 2006; Fung et al. 2010). In particular, k-
anonymity aims at preventing re-identification by ensuring
that each record in a dataset is indistinguishable from at least
k−1 other records (Sweeney 2002; di Vimercati et al. 2023;
Bayardo and Agrawal 2005; Machanavajjhala et al. 2007).
The uncertainty of re-identification grows with parameter k,
as does the amount of concealed information. Implementa-
tions of k-anonymity are available for relational databases,
yet no exact counterpart has been devised for knowledge
graphs, as commonly used in the Semantic Web. Moreover,
the complexity of anonymization has not yet been systemat-
ically studied in this context.

We address this gap by introducing and investigating k-
unmatchability, a counterpart of k-anonymity for knowledge
graphs. We carry out our analysis in a framework similar to
(Cuenca Grau and Kostylev 2019), where the original con-
fidentiality criteria, based on the non-derivability of secret
formulae (which cannot mitigate Sweeney’s attack), are re-
placed by k-unmatchability, which is grounded on the undis-
tinguishability of individuals to prevent re-identification.

We examine three types of anonymizations: strict,
equipotent, and poly anonymizations. The first two types
are tightly related to the suppressors of (Cuenca Grau and
Kostylev 2019), which substitute blanks for constants (e.g.
IRIs or literals). For each anonymization type, we consider
three decision problems, namely checking whether (i) a spe-
cific anonymization is k-unmatchable; (ii) a k-unmatchable
anonymization exists; (iii) a k-unmatchable anonymization
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exists whose cost is bound by a threshold l. Our results al-
most completely characterize the above decision problems
in terms of data complexity, i.e. when the redundancy pa-
rameter k is fixed.

Section 2 is devoted to preliminaries. Section 3 introduces
the anonymization framework, along with an illustrative ex-
ample. The data complexity of k-unmatchability is analyzed
in Section 4. Section 5 offers an overview of related work.
Section 6 concludes the paper with some final remarks and
an outline of future research directions.

2 Preliminaries
2.1 Complexity Classes
K-unmatchability is related to the graph isomorphism and
subgraph isomorphism problems. The former consists in de-
ciding whether two graphs are isomorphic. The latter, given
two graphs G and H , consists in deciding whether some
subgraph of G is isomorphic to H . The subgraph isomor-
phism problem is in the class NPc of NP-complete prob-
lems, while the graph isomorphism problem is conjectured
to be in NP \ (NPc ∪ P). We say that L is gi-hard if graph
isomorphism is many-one reducible toL in polynomial time.
GI denotes the class of problems L that are polynomial-time
Turing reducible to graph isomorphism.

2.2 Knowledge Graphs
The formalism we deal with in this paper is based on the fol-
lowing denumerable sets of symbols: NC (concept names),
NR (role names), NI (individual names) and a subset NB ⊆
NI of ”blank” names. Letters A,B (possibly with subscripts
and superscripts) denote members of NC, letters P,R de-
note members of NR, letter a ranges over all elements in NI,
while letters c, d denote members of NI\NB (a.k.a. constant
names), and letter b denotes blanks in NB.

An ABox A is a finite set of axioms of the form A(a) and
P (a1, a2). Hereafter, sig(A) denotes the set of individual
names occurring in A.

Remark 1. Any ABox A can be represented as an RDF
graph, where an assertion P (a1, a2) corresponds to a triple
(a1, P, a2), and assertions of the form A(a) can be trans-
lated to (a, rdf:type, A). In RDF graphs, literals (e.g. strings
and numbers) may be used as attribute values. For our pur-
poses, it is inconsequential whether an individual is an IRI
or a literal; we treat both as constant names. Note that not
all RDF graphs can be represented as ABoxes, as RDF lacks
strict typing distinction between individuals and predicates.
Here we deal with first-order graphs only.

2.3 Anonymizations
In (Cuenca Grau and Kostylev 2019), anonymized ABoxes
are produced by suppressors, which (non-uniformly) sub-
stitute blanks for constant occurrences. We shall rather
work with the inverse of suppressors, that we call re-
identifications (which uniformly map blanks back to the
corresponding concealed values) because they are simpler
to define and handle, and suffice for our purposes. Re-
identifications are special cases of substitutions:

A substitution over an ABoxA is a function τ : sig(A)→
NI such that if c ∈ NI \ NB then τ(c) = c.1 Given a sub-
stitution τ over an ABox A, τ(A) denotes the ABox ob-
tained fromA by uniformly replacing each a ∈ sig(A) with
τ(a). Then, given two ABoxes A1 and A2, we say that a
substitution τ over A1 is a re-identification of A1 in A2 if
τ(A1) = A2. Hereafter, for the sake of brevity, we omit
from the specifications of substitutions the individuals that
are mapped on themselves.

We are now prepared to introduce the notion of
anonymization. In general, an ABox can be anonymized
by turning some occurrences of its constants into blanks.
Different occurrences of the same constant may be mapped
to different blanks in order to disconnect parts of the RDF
graphs. It is also possible to transform a single axiom
into multiple copies thereof (each of which replaces the ax-
iom’s constants with different blanks), thereby increasing
the number of assertions; the purpose is increasing redun-
dancy within the ABox to obstacle the process of matching
blanks back to known individuals. It is prohibited to trans-
form different individuals into the same blank (anonymiza-
tion should not lie by asserting that two individuals are the
same when they are not). Note that A1 is an anonymiza-
tion of A2 obtained with such transformations if and only if
there exists a re-identification that allows the reconstruction
of A2 from A1 (by mapping the blanks of A1 back to their
original value). The next definition introduces a taxonomy
comprising three distinct types of anonymization, depending
on which of the above transformations are allowed.

Definition 2. Let A1,A2 be two ABoxes, we say that

• A1 is a poly anonymization of A2 if there exists a re-
identification τ of A1 in A2.

• A1 is an equipotent anonymization of A2 if A1 is a poly
anonymization of A2 and |A1| = |A2|.

• A1 is a strict anonymization of A2 if A1 is an equipo-
tent anonymization of A2 through an injective re-
indentification τ .

The above anonymization types are ordered by increasing
information loss. Poly anonymizations are the most general
kind of anonymizations. As their name suggests, they may
create multiple anonymized copies of some axioms, and,
consequently, inflate the ABox. In equipotent anonymiza-
tions, the original number of assertions shall be preserved, so
duplication of facts is forbidden; however, different occur-
rences of the same individual may still be replaced with dis-
tinct blank nodes (this corresponds to deleting some equal-
ities between triple arguments). Both of these approaches
may affect the result of counting queries, so they are un-
suitable for some applications, e.g. some statistical analyses
on the data. In contrast, strict anonymizations uniformly re-
place constant names with blanks (and, consequently, pre-
serve statistics).

Remark 3. It is worth noting that A1 is an equipotent
anonymization of A2 if, and only if, A1 = f(A2), for

1Since NB ⊆ NI, a substitution can potentially map a blank to
another blank, possibly itself.
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some suppressor f of A2, as defined in (Cuenca Grau and
Kostylev 2019).

Moreover, if A1 is a strict anonymization of A2 through
the re-identification τ , then the inverse of τ corresponds to a
strict suppressor.2

When possible, information loss should be avoided, to re-
tain knowledge utility. Thus it is interesting to study the
properties of each of the above anonymization types.

3 The Anonymization Framework
In what follows, definitions and decision problems will be
parameterized according to which type of anonymization is
used. To ease readability, we use x ∈ {poly, equi, strict} as
a prefix to specify anonymization types.

Our framework consists of a tuple 〈A,Q, x,Ap,Aa〉
where:

• A is the original ABox, not accessible to the attacker. In
Sweeney’s attack scenario,A is the full medical database,
with all explicit identifiers.

• Q ⊆ NI \ NB is a nonempty, finite set of constant names
called subjects that occur in A. Q specifies which con-
stants shall be safeguarded against high-probability iden-
tification. The setQ typically comprises individuals from
particular classes, such as Person or Patient.

• x ∈ {poly, equi, strict} indicates the specific type of
anonymization applied. We make the assumption that x
is accessible to potential attackers.

• Ap is a public x-anonymization of A.

• Aa is a subset ofA, up to blank renaming, that represents
the attacker’s knowledge about the contents of A. For
instance, in Sweeney’s attack, Aa encodes the informa-
tion about the governor obtained from the voter list (name,
birthdate, postcode, and gender) which is surely contained
in the hospital’s database, too.

HereafterA,Q, x,Ap, andAa refer to an arbitrary but fixed
anonymization framework.

Our confidentiality criterion requires a notion of match-
ing, which represents a plausible way – to the eyes of the
attacker – to match her knowledgeAa to a subsetA′p ofAp.

Definition 4. We say that a substitution τ over Ap is an x-
matching ofAp inAa (with x ∈ {poly, equi, strict}) if there
exists a subsetA′p ⊆ Ap such thatA′p is an x-anonymization
of Aa through τ .

Hereafter, Tx[Ap,Aa], will denote the set of all x-matchings
of Ap in Aa. Moreover, for all pairs of individual names
a1 ∈ sig(Ap), a2 ∈ sig(Aa), and x ∈ {poly, equi, strict},
we say that a1 is x-matchable in a2 with Tx[Ap,Aa], if
τ(a1) = a2 holds for some τ ∈ Tx[Ap,Aa]. Tx[Ap,Aa]
will be omitted when clear from context.

Next, we introduce the target confidentiality criterion (the
goal of anonymization), namely, k-unmatchability. The
purpose of re-identification attacks (generalizing Sweeney’s

2To accommodate page limits, comprehensive proofs will be
provided in an extended version of this paper.
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Figure 1: The Abox A in Example 6.

scenario) is identifying, for at least one subject c ∈ Q oc-
curring in Aa, a small set S of blanks from Ap (where
“small” means |S| < k) such that c surely “corresponds”
to one of the blanks in S. The following definition of k-
unmatchability states that the above attack cannot be at-
tained, using matchings as a formalization of “correspon-
dence”.

Definition 5 (k-x-unmatchable). We say that Ap is k-x-
unmatchable in Aa w.r.t. Q iff

(i) sig(Ap) ∩Q = ∅, and
(ii) there exist no individuals c ∈ Q and b1, . . . , bk−1 ∈

sig(Ap) ∩ NB such that for all τ ∈ Tx[Ap,Aa], c ∈
{τ(b1), . . . , τ (bk−1)} .

Note that Ap and τ have the same type x. This models the
assumption that the attacker knows the anonymization type
x and – accordingly – considers only x-matchings while de-
anonymizing the blanks of Ap.

The next example, inspired by (Cuenca Grau and
Kostylev 2019), illustrates a scenario of 3-unmatchability
where it is not necessary to anonymize all person identifiers.

Example 6. Consider an ABox A representing patient data
as depicted in Figure 1, and an attacker whose ABox Aa

consists of the assertions:

seenBy(Alice,Bob), seenBy(Bob,Mary);

The patients who have been seen by an oncologist should
not be identifiable by the attacker, consequently Q consists
of Bob and Alice. Then, we publish a strict-anonymization
Ap of A where Bob, Mary, and Alice are transformed into
blank nodes b1, b2, and b3, respectively. Clearly, there exists
a strict-matching τ1 of Ap in Aa where b1 is mapped into
Bob, b2 into Mary, and b3 into Alice. However, by symme-
try, there also exist two other matchings τ2 and τ3 obtained
by rotating the previous matching – i.e., b2 is mapped into
Bob (b3 into Mary, and b1 into Alice), and b3 is mapped into
Bob (b1 into Mary, and b2 into Alice), respectively. Conse-
quently, Ap is 3-strict-unmatchable in Aa.

Note that (i) John needs not be anonymized; (ii) if Mary
were not anonymized, then the attacker could reconstruct
the original ABox A; (iii) if Aa contained also the as-
sertion dept(Bob,Oncology), then Ap would only be 2-
unmatchable in Aa (since τ2 where b3 is mapped into Mary
is not a strict-matching anymore).

As it should be expected, k-unmatchability is monotonic
with respect to the attacker’s ABox.
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Theorem 7. Given a public ABox Ap and two ABoxes A′a
andAa such thatA′a ⊆ Aa, ifAp is k-x-unmatchable inAa

w.r.t. Q, then Ap is k-x-unmatchable in A′a w.r.t. Q, for all
x ∈ {poly, equi, strict}.

Proof. By assumption Ap is k-x-unmatchable in Aa w.r.t.
Q and so sig(Ap) ∩ Q = ∅. Now, let c ∈ Q and
b1, . . . , bk−1 ∈ sig(Ap) ∩ NB; again by the assumption that
Ap is k-x-unmatchable in Aa w.r.t. Q, we get that there ex-
ists τ ∈ Tx[Ap,Aa] such that c /∈ {τ(b1), . . . , τ (bk−1)}.
Finally, since A′a ⊆ Aa, then τ ∈ Tx[Ap,A′a] too, so we
deduce that Ap is k-x-unmatchable in A′a w.r.t. Q.

As a corollary, when Aa cannot be reliably estimated, the
pessimistic assumption Aa = A constitutes a safe option.

Corollary 8. If Ap is k-x-unmatchable in A w.r.t. Q then
for all Aa ⊆ A, Ap is k-x-unmatchable in Aa w.r.t. Q (and
viceversa).

We conclude this section showing that k-unmatchability
is preserved by “chained” anonymizations.

Theorem 9. Let A be an ABox, Aa ⊆ A and Q be a set
of subjects in A. Let Ap be an x-anonymization of A and
Āp an x-anonymization ofAp, with x ∈ {poly, equi, strict}.
If Ap is k-x-unmatchable in Aa w.r.t. Q, then Āp is k-x-
unmatchable in Aa w.r.t. Q.

Proof. By assumption there exists a re-identification σ1 of
Ap in A and a re-identification σ2 of Āp in Ap. Consider
σ3 = σ1 ◦ σ2. This is a substitution over Āp and σ3(Āp) =
σ1(σ2(Āp)) = σ1(Ap) = A. Furthermore, if x = equi,
clearly, |A| = |Ap| = |Āp|, while if x = strict, then σ1 and
σ2 are injective functions and so is σ3. This proves that Āp

is an x-anonymization ofA. Since substitutions fix constant
names, σ3(sig(Āp)∩Q) ⊆ sig(Ap)∩Q, but by definition of
k-x-unmatchability, sig(Ap)∩Q = ∅, so sig(Āp)∩Q = ∅.
Now let c ∈ Q, b1, . . . , bk−1 ∈ sig(Āp) ∩ NB, and let
a1 = σ2(b1), . . . , ak−1 = σ2(bk−1) ∈ sig(Ap). By
assumption, there exists τ ∈ Tx[Ap,Aa] such that c /∈
{τ(σ2(b1), . . . , τ (σ2(bk−1))}. Consider τ̄ = τ ◦ σ2 and
observe that c /∈ {τ̄(b1), . . . , τ̄(bk−1)}. By definition of x-
matching, there exists A′p ⊆ Ap that is an x-anonymization
ofAa through τ . Then, consider Āp

′
= {α ∈ Āp | σ2(α) ∈

A′p}, then clearly Āp
′ is an x-anonymization of A′p through

σ2. Then, by the same argument provided above, Ā′p is an
x-anonymization of Aa through τ̄ and so τ̄ ∈ Tx[Āp,Aa],
hence the thesis.

4 Data Complexity Analysis
We consider three decision problems, namely checking
whether (i) a specific anonymization Ap of A is k-
unmatchable w.r.t. the estimated knowledge of the attacker;
(ii) such a k-unmatchable anonymization of A exists; (iii)
a k-unmatchable anonymization of A exists whose cost is
bounded by a threshold l. In this context, the parameter k
represents a predetermined level of redundancy required of
the data controller; we regard it as a constant and let only the

ABoxes and the set of subjects Q vary (data complexity).
Concerning the knowledgeAa possessed by the attacker, al-
though in some scenarios Aa can be estimated, there is no
universally applicable method to do it. Therefore, in our
general theoretical analysis, we assume the worst-case sce-
nario where Aa = A (cf. Corollary 8). Thus, the above
decision problems are formalized as follows.
Definition 10 (k-x-UNMATCHABILITY). Given an ABoxA,
an x-anonymization Ap of A (with x ∈ {poly, equi, strict})
and a set Q of subjects in A, decide whether Ap is k-x-
unmatchable in A w.r.t. Q.
Definition 11 (k-x-ANONYMIZATION). Given an ABox A
and a set Q of subjects in A, decide whether there exists an
x-anonymization Ap of A (where x ∈ {poly, equi, strict})
such that Ap is k-x-unmatchable in A w.r.t. Q.

In order to maximize the utility of the public ABox,
the anonymization process should minimize the amount
of concealed information conc(Ap), that we measure
as in (Cuenca Grau and Kostylev 2019). Specifically,
conc(Ap) = occNB

(Ap)+|sig(Ap)∩NB|, where occNB
(Ap)

counts the number of occurrences of blanks in Ap (and
|sig(Ap)∩NB| is the number of distinct blanks used inAp).
Definition 12 (k-x-OPT-ANONYMIZATION). Given an
ABox A, a natural number l and a set Q of subjects in
A, decide whether there exists an x-anonymization Ap of
A (where x ∈ {poly, equi, strict}) such that Ap is k-x-
unmatchable in A w.r.t. Q and conc(Ap) ≤ l.

We now study the data complexity of these problems for
k ≥ 2 and x ∈ {poly, equi, strict}. Hereafter, when n is a
natural number, we shall denote by [n] the set {1, . . . , n}.
Complexity results are summarized in Table 1.

4.1 Upper Bounds
In general k-x-UNMATCHABILITY is in NP, independently
of the type of anonymization.
Theorem 13. For all x ∈ {poly, equi, strict}, k-x-
UNMATCHABILITY is in NP.

Proof. K-unmatchability can be checked with the following
nondeterministic algorithm: first check whether sig(Ap) ∩
Q = ∅; then for all c ∈ Q and for all ~b = 〈b1, . . . , bk−1〉 ∈
(sig(Ap) ∩ NB)k−1, guess a matching τ ∈ Tx[Ap,A] and
check whether c 6∈ {τ(b1), . . . , τ (bk−1)}; accept the input
iff all such tests succeed. Clearly, the above algorithm de-
cides k-x-UNMATCHABILITY, i.e. it has an accepting run iff
(A,Ap,Q) is in k-x-UNMATCHABILITY. Moreover, the al-
gorithm runs in polynomial time since (i) this is true of the
first check, (ii) the number of all tuples 〈c,~b〉 is polynomial
(bounded by |Q| · |sig(Ap)|k−1), (iii) each mapping τ con-
sists of |sig(Ap)| pairs, and (iv) c 6∈ {τ(b1), . . . , τ (bk−1)}
can be checked in polynomial time.

For strict-anonymizations we can refine this upper bound
to GI ∩ NP. The following preliminary result is needed.
Lemma 14. Ap is k-strict-unmatchable in Aa w.r.t. Q iff
sig(Ap) ∩ Q = ∅ and for each c ∈ sig(Aa) ∩ Q there exist
at least k distinct blanks b1, . . . , bk ∈ sig(Ap)∩NB that are
strict-matchable in c.
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k-unmatchability k-anonymization k-opt-anonymization
strict anonymization gi-hard/ GI ∩ NP gi-hard/ GI ∩ NP gi-hard/ NP

equipotent anonymization NP-complete ? / LOGSPACE gi-hard/ NP
poly anonymization NP-complete trivial gi-hard/ NP

Table 1: Lower/upper data complexity bounds.

Proof. (Only if) Let c ∈ Q ∩ sig(Aa) and Bc be the set of
blanks b in Ap that are strict-matchable in c (i.e. τ(b) =
c for some τ ∈ Tstrict[Ap,Aa]). Now, assume by contradic-
tion that for some c ∈ Q∩ sig(Aa), |Bc| < k. By definition
of k-strict-unmatchability there exists τ ∈ Tstrict[Ap,Aa]
such that c /∈ {τ(b) | b ∈ Bc}, a contradiction.

(If) Assume by contradiction that for some c ∈ sig(Aa)∩
Q, for some blanks b1, . . . , bk−1 in sig(Ap) ∩ NB, and for
all τ ∈ Tstrict[Ap,Aa], c ∈ {τ(b1), . . . , τ (bk−1)}. Then,
let b ∈ sig(Ap) ∩ NB be strict-matchable in c. This means
that there exists τ ∈ Tstrict[Ap,Aa] such that τ(b) = c. By
assumption τ(bi) = c, for some i = 1, . . . , k−1. Moreover,
by injectivity, we also have that b = bi. Then, the set of
blanks ofAp that are strict-matchable in c has cardinality at
most k − 1 (a contradiction).

Theorem 15. k-strict-UNMATCHABILITY is in GI.

Proof (Sketch). Let A be an ABox, let Ap be a strict-
anonymization ofA andQ a set of constant names. For each
c ∈ Q we define the ABox Ac = A ∪ {Fc(c)}, where Fc is
a fresh concept name. Moreover, for each blank b occurring
in Ap, let Ac,b

p be Ap ∪ {Fc(b)}. By Lemma 14, deciding
whetherAp is k-strict-unmatchable inA w.r.t. Q reduces to
verifying that sig(Ap)∩Q = ∅ and that for each c ∈ Q, the
number of blanks occurring in Ap that are strict-matchable
in c with Tstrict[Ap,A] is at least k. It is straightforward to
see that b is strict-matchable in c with Tstrict[Ap,A] iff there
exists a strict-matching of Ac,b

p in Ac. Furthermore, finding
a strict-matching between two ABoxes can be polynomial
many-to-one reduced to graph isomorphism.3

Remark 16. Unfortunately, the above proof cannot be read-
ily extended to x ∈ {equi, poly}, because Lemma 14 is not
valid for those x. To see this, let A = {R(c, d1), R(c, d2)},
Ap = {R(b1, d1), R(b2, d2)}, and Q = {c}. The two
blanks b1, b2 are matchable on c; however, since c is always
mapped on both blanks by all matchings, Ap (which is both
an equi-anonymization and a poly-anonymization of A) is
not 2-x-unmatchable in A, for any x ∈ {equi, poly}.

Next, we analyze k-x-ANONYMIZATION. For x = strict,
it is in GI∩NP like k-strict-UNMATCHABILITY because:

Theorem 17. k-strict-ANONYMIZATION is polynomial
many-to-one reducible to k-strict-UNMATCHABILITY.

Proof. For each ABox A, define ABox Ag by uniformly
substituting each individual a ∈ sig(A) with a fresh blank
ba. Note that the substitution τg such that τg(b) = a if

3The reduction will be described in an extended version of this
paper.

b = ba (for all blanks b ∈ sig(Ag)) is injective and satis-
fies τg(Ab) = A, i.e. Ag is a strict-anonymization of A.

Let A′ be any strict-anonymization of A through some
injective τ ′. Define a substitution τ̂ from Ag to A′ so that,
for each blank ba occurring in Ag , τ̂(ba) = b if τ ′(b) = a;
τ̂(ba) = a, otherwise. It is straightforward to see thatAg is a
strict-anonymization of A′ through τ̂ . Then, by Theorem 9,
A has a k-strict-anonymizationA′ w.r.t.Q iffAg is k-strict-
unmatchable in A w.r.t. Q. Clearly, Ag can be computed in
polynomial time.

For x = equi we have a better (LOGSPACE) upper
bound, whose proof needs auxiliary definitions. From each
ABox A obtain an ABox A∗ by replacing each occurrence
of each individual a in sig(A) with a distinct fresh blank bai
– where index i ranges from 1 to the number of occurrences
of a in A. By construction, A∗ is an equi-anonymization
of A through the substitution τA such that τA(b) = a if
b = bai . Our first result says that in order to solve k-equi-
ANONYMIZATION forA it suffices to test the unmatchability
of A∗ in A.

Lemma 18. IfAp is k-equi-unmatchable inA w.r.t.Q, then
also A∗ is k-equi-unmatchable in A w.r.t. Q.

Proof. For all individuals a ∈ sig(A), and each occurrence
of a inA, if that occurrence is translated to bai inA∗, then let
api denote the translation of that same occurrence inAp. For
all blanks bai ∈ sig(A∗), let τ0(bai ) = api . By construction,
τ0(A∗) = Ap, so A∗ is an equi-anonymization of Ap. Then
the Lemma follows from Theorem 9.

We need also a second lemma and auxiliary notation: for
all predicates P ∈ NC ∪ NR and all ABoxes A, #(P,A)
denotes the number of occurrences of P in A; for all c ∈ Q
and i ∈ {1, 2}, #(P, c, i,A) denotes the number of atoms
with predicate P where c occurs as i-th argument. Note that
if P is unary, then #(P, c, 1,A) ≤ 1.

Lemma 19. A∗ is k-equi-unmatchable in A w.r.t. Q iff,
for all P ∈ NC ∪ NR, c ∈ Q, and i ∈ {1, 2} such that
#(P, c, i,A) > 0, #(P,A) ≥ k − 1 + #(P, c, i,A).

Proof. (If) Assume that #(P, c, i,A) > 0 implies
#(P,A) ≥ k − 1 + #(P, c, i,A). Let c be any subject
inQ and b1, . . . , bk−1 be any blanks in sig(A∗). We have to
prove that there exists an equi-matching τ of A∗ in A such
that c 6∈ {τ(b1), . . . , τ (bk−1)}. Such τ can be constructed
incrementally as follows, starting with unary axioms.

By assumption, for each unary axiom P (c) ∈ A there
exist at least k − 1 + #(P, c, 1,A) = k axioms of the form
P (a) ∈ A. For each of these axioms, A∗ contains a distinct
axiom P (b). So A∗ must contain at least one axiom P (b′)
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where b′ 6∈ {b1, . . . , bk−1}. Choose one of such axioms and
set τ(b′) = c.

Next τ is extended to the arguments of binary axioms in
a similar way: by assumption, for each axiom of the form
P (c, a) there exist at least n = k − 1 + #(P, c, 1,A) ax-
ioms of the form P (a′i, a

′′
i ) ∈ A (1 ≤ i ≤ #(P,A)). So

A∗ must contain at least #(P, c, 1,A) axioms of the form
P (b′i, b

′′
i ) where b′i 6∈ {b1, . . . , bk−1}. Choose a set S con-

taining #(P, c, 1,A) of such axioms and set τ so that τ(S)
is the set of all axioms of the form P (c, a′) in A (this is al-
ways possible because every blank in sig(A∗) occurs in A∗
exactly once). Deal with axioms of the form P (a, c) in a
similar way, each time picking axioms from A∗ whose ar-
guments are not yet in the partial domain of τ .

The partial definition of τ specified above maps a sub-
set of A∗ onto all the axioms of A involving c, without
assigning any values to b1, . . . , bk−1. Now any predicate-
preserving extension of this partial definition of τ that maps
each of the remaining axioms ofA∗ on any of the axioms of
A not involving c is clearly an equi-matching of A∗ in A.
Moreover, by construction, c 6∈ {τ(b1), . . . , τ (bk−1)}.

(Only if) Assume that for some P, c, i of the appropriate
type, #(P, c, i,A) > 0 but #(P,A) < k−1+#(P, c, i,A).

Let BP
i = {b1, . . . , b#(P,A)} be the blanks occurring as

the i-th arguments of the axioms of A∗ with predicate P .
Let n = #(P,A)−#(P, c, i,A) and note that n < k − 1.

Now let τ be any equi-matching of A∗ in A. τ must map
#(P, c, i,A) axioms with predicate P onto the axioms ofA
with predicate P where c occurs in the i-th position. Then
τ shall map #(P, c, i,A) of the blanks in BP

i on c. Since
the remaining blanks in BP

i are n < k − 1, it follows that
for some j ∈ [1,m], where m = min(k − 1,#(P,A)),
τ(bj) = c. Since τ is an arbitrary equi-matching, we con-
clude that for all such matchings, c ∈ {τ(b1), . . . , τ (bm)},
where m ≤ k − 1. It follows immediately that A∗ is not
k-equi-unmatchable.

Theorem 20. k-equi-ANONYMIZATION is in LOGSPACE.

Proof. By Lemmas 18 and 19, A has a k-equi-unmatchable
equi-anonymization iff, for all P ∈ NC ∪ NR, c ∈ Q, and
i ∈ {1, 2} such that #(P, c, i,A) > 0, #(P,A) ≥ k − 1 +
#(P, c, i,A).

Note that each of P , c, i, #(P,A), and #(P, c, i,A) may
take at most n values, where n is the size of A, so they
can be encoded with log(n) bits, and the above test can be
computed in space O(log n).

We are left to analyze k-poly-ANONYMIZATION, which
turns out to be trivial.

Theorem 21. Let A be an ABox and Q a set of subjects in
A, then A has a k-poly-unmatchable anonymization A∗poly
w.r.t. Q, such that |A∗poly| = k · |A| and occNB

(A∗poly) =

|sig(A∗poly) ∩ NB| ≤ 2k · |A|.

Proof. Let A∗poly = A∗1 ∪ . . . ∪ A∗k, where each A∗i is a
renaming of the A∗ used in the proofs of Lemma 18, where
sig(A∗i ) ∩ sig(A∗j ) = ∅ (1 ≤ i < j ≤ k). Recall that by
construction each A∗i is a poly-anonymization of A.

By construction, |A∗poly| = k · |A|. To prove that A∗poly
is a k-poly-anonymization of A first note that A∗poly satisfies
point (i) of Definition 5 by construction, because it contains
only blanks. Point (ii) of Definition 5 can easily be proved
by leveraging the k copies of A∗ included in A∗poly (the de-
tails are left to the reader due to space limitations). Thus
A∗poly is a k-poly-anonymization of A w.r.t. Q.

Finally, note that: (i) every blank occurs at most once
in A∗poly, so occNB

(A∗poly) = |sig(A∗poly) ∩ NB|; (ii) each
A∗i contains at most 2 · |A| distinct blanks (the limit is
reached when all axioms in A are binary), hence the bound
|sig(A∗poly) ∩ NB| ≤ 2k · |A|.

Finally, consider k-x-OPT-ANONYMIZATION. Theo-
rem 21 implies a bound on the cardinality of poly-
anonymizations whose cost is bound by a constant `.
Lemma 22. For all integers `, if A has a poly-
anonymization Ap which is k-poly-unmatchable in A w.r.t.
Q, such that conc(Ap) ≤ `, then there exists A′p with the
same properties asAp and such that |A′p| ≤ 2kk−1|Q|·|A|k.

Proof. By Theorem 21, every ABox A has a k-poly-
unmatchable anonymization A∗poly such that conc(A∗poly) ≤
4k · |A|. Thus, if ` is greater than, or equal to this bound,
then the Lemma is proved with A′p = A∗poly. Now assume
that ` < 4k · |A| and note that conc(Ap) < 4k · |A| implies
that |sig(Ap) ∩ NB| ≤ conc(Ap)/2 < 2k · |A| (because
|sig(Ap) ∩ NB| ≤ occNB

(Ap)).
Take any poly-anonymization Ap of A that is k-poly-

unmatchable in A w.r.t. Q and such that conc(Ap) ≤ `.
By k-unmatchability, Ap contains no subjects from Q and,
for all c ∈ Q and B = {b1, . . . , bk−1} ⊆ sig(Ap) ∩ NB,
there is a poly-matching τc,B of Ap in A such that c 6∈
{τc,B(b1), . . . , τc,B(bk−1)}. For each τc,B , let Ac,B denote
the subset ofAp such that τc,B(Ac,B) = A (which exists by
definition of matching).

Let A′p =
⋃

c,B Ac,B . Note that A′p is k-poly-
unmatchable in A w.r.t. Q, since it is a subset of Ap (which
contains no subjects from Q), and for all c ∈ Q and B =
{b1, . . . , bk−1} ⊆ sig(A′p) ∩ NB, there is a matching τ ′c,B
of A′p in A such that c 6∈ {τ ′c,B(b1), . . . , τ ′c,B(bk−1)} (each
τ ′c,B is simply the restriction of τc,B to A′p).

We are only left to assess the size of A′p. Each Ac,B can
be assumed to have the same cardinality as A, without loss
of generality (by removing redundant axioms). Thus |A′p| ≤
|Q| · |sig(Ap) ∩ NB|k−1 · |A| ≤ |Q| · (2k · |A|)k−1 · |A| ≤
2kk−1 · |Q| · |A|k.

This yields an upper bound for all optimal anonymizations.
Theorem 23. For each x ∈ {poly, equi, strict}, k-x-OPT-
ANONYMIZATION is in NP.

Proof. The following is a nondeterministic polynomial al-
gorithm that decides k-x-OPT-ANONYMIZATION. First
guess an x-anonymization Ap of the given ABox A. Then
apply the polynomial nondeterministic algorithm illustrated
in the proof of Theorem 13 to check whether Ap is k-x-
unmatchable in A w.r.t. the given Q. Finally, compute
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conc(Ap) and check whether it is bound by the given thresh-
old l.

The first guess takes polynomial time, since for x in
{strict, equi}, |Ap| = |A|, and for x = poly, we can as-
sume a polynomial bound on cardinality by Lemma 22. We
have already proved that k-unmatchability can be checked
in polynomial nondeterministic time. Clearly, checking
whether conc(Ap) ≤ l can be done in polynomial time.

4.2 Lower Bounds
Due to space limitations, we provide detailed proofs for
k = 2. The proofs for the general case k ≥ 2 use straight-
forward but lengthy extensions of the encodings, so they will
be described in an extended version of this paper.

We start by proving that graph isomorphism can be re-
duced to k-strict-UNMATCHABILITY and subgraph isomor-
phism to k-x-UNMATCHABILITY for x ∈ {poly, equi}. For
this purpose, we encode any given pair of graphs G and H
with the ABox A(G,H) illustrated in Table 2. Constants
gG and gH represent graphs G and H , respectively, and are
marked by the concept “graph”. Each vertex v ∈ VG (resp.
w ∈ VH ) is represented by constant cv (resp. cw).4 Graph
edges are encoded by role “edge”, whereas role “node” as-
sociates vertices to the graph they belong to.

For each x ∈ {poly, equi, strict}, we shall define an x-
anonymization of A(G,H) that is k-x-unmatchable iff G
and H are in a suitable isomorphism relation.

We start withAp(G,H)strict (defined in Table 2), a strict-
anonymization of A(G,H) that replaces blanks bgG and
bgH for gG and gH, respectively, while blanks bv and bw
replace cv and cw, respectively. Ap(G,H)strict is a strict-
anonymization of A(G,H) through the following injective
re-identification.
Definition 24. Let G,H be graphs, we define the substitu-
tion τG,H

a over Ap(G,H)strict as follows:

τG,H
a (bv) = cv ∀v ∈ VG
τG,H
a (bw) = cw ∀w ∈ VH
τG,H
a (bgG) = gG
τG,H
a (bgH) = gH

The next two lemmas show that the isomorphisms ofG inH
correspond to the class of strict-matchings ofAp(G,H)strict

in A(G,H) that map bgH in gG.
Lemma 25. Let G,H be graphs and let ϕ be a graph iso-
morphism from G to H , then there exists a strict-matching
τϕ of Ap(G,H)strict in A(G,H) such that τϕ(bgH) = gG.

Proof (Sketch). Let substitution τϕ on Ap(G,H)strict be:

τϕ(bv) = cϕ(v) ∀v ∈ VG
τϕ(bw) = cϕ−1(w) ∀w ∈ VH
τϕ(bgG) = gH
τϕ(bgH) = gG

This substitution uses graph isomorphism ϕ to map the
blanks corresponding to the vertices of G in the constant
names corresponding to the vertices of H and the blanks

4We assume w.l.o.g. that G and H have disjoint sets of vertices.

corresponding to the vertices of H in the constant names
corresponding to the vertices ofG. This ensures that τϕ is an
injective re-identification ofAp(G,H)strict inA(G,H).

Lemma 26. Let G,H be graphs and let τ be a strict-
matching of Ap(G,H)strict in A(G,H) such that τ(bgH) 6=
gH, then G and H are isomorphic.

Proof (Sketch). Note thatA(G,H) only contains two atoms
using the concept graph: graph(gG) and graph(gH). So,
since τ is a strict-matching of Ap(G,H)strict in A(G,H)
and τ(bgH) 6= gH, the atom graph(bgH) must be mapped by
τ in the atom graph(gG), therefore τ(bgH) = gG. This im-
plies that all atoms of type node(bgH, a) must by mapped by
τ in atoms of type node(gG, a′). The injectivity of τ and the
fact that it is a matching thus establishes a bijection between
vertices of G and the vertices of H . Morover this bijec-
tion is a graph isomorphism, because atoms of type edge are
mapped in atoms of type edge by τ , hence adjacent vertices
are mapped in adjacent vertices and vice versa.

From these lemmata it follows that:

Theorem 27. k-strict-UNMATCHABILITY is gi-hard.

Proof (Sketch). Let G,H be graphs, we build the ABoxes
A(G,H) and Ap(G,H)strict in polynomial time. Let Q =
sig(A(G,H)). Now, assume there exists a graph isomor-
phism ϕ of G in H and let us prove that Ap(G,H)strict is 2-
strict-unmatchable inA(G,H) w.r.t. Q. Assume by contra-
diction there exist c ∈ Q and b ∈ sig(Ap(G,H)strict) ∩ NB

such that for each τ ∈ Tstrict[Ap(G,H)strict,A(G,H)],
τ(b) = c. Now, consider the strict-matching τG,H

a of
Definition 24 and the strict-matching τϕ obtained as in
Lemma 25. Observe that for each b′ ∈ sig(Ap(G,H)strict)∩
NB, τG,H

a (b′) 6= τϕ(b′), but by assumption τG,H
a (b) =

τϕ(b) = c, hence an absurd. Conversely, assume
that Ap(G,H)strict is 2-strict-unmatchable in A(G,H)
w.r.t. Q and note that bgH ∈ sig(Ap(G,H)strict). So,
by definition of k-strict-unmatchability, there is τ ∈
Tstrict[Ap(G,H)strict,A(G,H)] such that τ(bgH) 6= gH,
hence by Lemma 26, there exists a graph isomorphism from
G to H . This completes the proof for k = 2. The proof for
k > 2 can be obtained by encoding k − 1 copies of G in
A(G,H) and Ap(G,H)strict, and adapting the above proofs
accordingly.

For x ∈ {equi, poly}, we define the x-anonymization
Ap(G,H)equi of A(G,H) illustrated in Table 2, which uses
a pair of blanks b1e , b

2
e for each edge e ∈ EG, a blank bgvG

and a blank bv for each v ∈ VG, a blank bw for each w ∈ VH
and the blanks bgH, bgG.

This is an equi-anonymization and a poly-anonymization
through the following following substitution.
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ABox A(G,H) ABox Ap(G,H)strict ABox Ap(G,H)equi

edge(cv1 , cv2), ∀(v1, v2) ∈ EG

edge(cw1 , cw2), ∀(w1, w2) ∈ EH

node(gG, cv), ∀v ∈ VG
node(gH, cw), ∀w ∈ VH
graph(gG)
graph(gH).

edge(bv1 , bv2), ∀(v1, v2) ∈ EG

edge(bw1 , bw2), ∀(w1, w2) ∈ EH

node(bgG, bv), ∀v ∈ VG
node(bgH, bw), ∀w ∈ VH
graph(bgG)
graph(bgH).

edge(b1e , b
2
e), ∀e ∈ EG

edge(bw1 , bw2), ∀(w1, w2) ∈ EH

node(bgvG, bv), ∀v ∈ VG
node(bgH, bw), ∀w ∈ VH
graph(bgG)
graph(bgH).

Table 2: ABoxes used in Section 4.2, parameterised by graphs G and H

Definition 28. For all graph pairsG,H let τG,H
a be defined

as:
τG,H
a (bv) = cv ∀v ∈ VG
τG,H
a (bw) = cw ∀w ∈ VH
τG,H
a (bgG) = gG
τG,H
a (bgH) = gH
τG,H
a (b1e) = cv ∀e = (v, v′) ∈ EG

τG,H
a (b2e) = cv′ ∀e = (v, v′) ∈ EG

τG,H
a (bgvG) = gG ∀v ∈ VG

Analogously to the strict case, there is a correspondence
between the subgraph isomorphisms of H in G and the
x-matchings (with x ∈ {equi, poly}) of Ap(G,H)equi in
A(G,H) that do not map bgH in gH. First we recall some
definitions and properties about subgraph isomorphism.
Definition 29. Let G and H be graphs; a subgraph isomor-
phism of H in G is a pair (G′, f) where G′ is a subgraph of
G, i.e. VG′ ⊆ VG and EG′ ⊆ EG ∩ (VG′ × VG′), and f is a
graph isomorphism between G′ and H .
The following proposition establishes a well known suffi-
cient condition for the existence of a subgraph isomorphism.
Proposition 30. Let G and H be graphs and let h : VH →
VG be an injective function such that for all (v, w) ∈ EH ,
(h(v), h(w)) ∈ EG. Then, there exists a subgraph isomor-
phism f of H in G.
Then, we can prove the following preliminary results.
Lemma 31. Let G,H be graphs and let ϕ be a subgraph
isomorphism of H in G. For all x ∈ {equi, poly}, there
exists an x-matching τϕ of Ap(G,H)equi in A(G,H) such
that τϕ(bgH) = gG.

Proof (Sketch). Let ϕ = (G′, f), where G′ is a subgraph of
G and f : G′ → H is a graph isomorphism. We define τϕ
as follows.

τϕ(bv) = cf(v) ∀v ∈ VG′
τϕ(bv) = cv ∀v ∈ VG \ VG′
τϕ(bw) = cf−1(w) ∀w ∈ VH
τϕ(bgH) = gG
τϕ(bgvG) = gH ∀v ∈ VG′
τϕ(bgvG) = gG ∀v ∈ VG \ VG′
τϕ(b1e) = cv ∀e = (v, v′) ∈ EG \ EG′

τϕ(b1e) = cf(v) ∀e = (v, v′) ∈ EG′

τϕ(b2e) = cv′ ∀e = (v, v′) ∈ EG \ EG′

τϕ(b2e) = cf(v′) ∀e = (v, v′) ∈ EG′

τϕ(bgG) = gH

One can easily check that τϕ is an equi-matching (and so
a poly-matching too). The main observation is that atoms

regarding vertices of H are mapped in atoms regarding ver-
tices ofG′ and vice versa; while for other atoms, τϕ behaves
as τG,H

a .

Lemma 32. Let A1,A2 be two ABoxes such that |A1| =
|A2| and let τ be an x-matching of A1 in A2, with x ∈
{equi, poly}. If α1, α2 ∈ A1 are such that τ(α1) = τ(α2),
then α1 = α2.

Proof (Sketch). Let x ∈ {equi, poly}, by definition of x-
matching, there exists A′1 ⊆ A1 such that A′1 is an x-
anonymization of A2 through τ and so τ(A′1) = A2. By
the fact that |A2| = |τ(A′1)| ≤ |A′1| ≤ |A1| and by the as-
sumption that |A1| = |A2|, we can deduce that A′1 = A1.
Then, since |A1| = |A2| = |τ(A1)|, we get the thesis.

Lemma 33. Let G,H be graphs and x ∈ {equi, poly}.
Assume there exists an x-matching τ of Ap(G,H)equi in
A(G,H) such that τ(bgH) 6= gH, then there exists a sub-
graph isomorphism of H in G.

Proof. By assumption τ is an x-matching of Ap(G,H)equi

in A(G,H), so τ(graph(bgH)) ∈ A(G,H), this means that
A(G,H) contains an atom α = graph(a) for some a ∈ NI.
By construction, a can either be gG or gH. But by assumption
τ(bgH) 6= gH, therefore it must be that τ(bgH) = gG. Now,
let w ∈ VH and consider the atom β = graph(bgH, bw).
Since τ is an x-matching ofAp(G,H)equi inA(G,H), there
exists an atom β′ ∈ A(G,H) such that τ(β) = β′, therefore
β′ must be of the form node(gG, a), where a ∈ NI. Further-
more, by definition of A(G,H), a is of type cv, for some
v ∈ VG. Therefore for each w ∈ VH , there exists a unique
v ∈ VG such that τ(bw) = cv. We can thus define a function
ϕ mapping each w ∈ VH to the unique v ∈ VG such that
τ(bw) = cv. Observe that ϕ is injective, in fact assume that
there exist w1, w2 ∈ VH such that w1 6= w2 but ϕ(w1) =
ϕ(w2), then τ(bw1) = τ(bw2) and so τ(node(bgH, bw1)) =
τ(node(bgH, bw2)). But by Lemma 32, this is absurd. Fi-
nally, assume (w1, w2) ∈ EH , then edge(bw1 , bw2) ∈
Ap(G,H)equi. Remember that there exist v1, v2 ∈ VG
such that τ(bw1) = cv1 and τ(bw2) = cv2 ; moreover,
by definition, ϕ(w1) = v2 and ϕ(w2) = v2. So, since
τ is an x-matching and edge(bw1 , bw2) ∈ Ap(G,H)equi,
we have that τ(edge(bw1 , bw2)) = edge(cϕ(w1), cϕ(w2)) ∈
A(G,H). Finally, by definition of A(G,H), we have that
(ϕ(w1), ϕ(w2)) ∈ EG. So, by Proposition 30, there exists a
subgraph isomorphism of H in G.

We use the previous lemmas to prove the NP-hardness of
k-x-UNMATCHABILITY for x ∈ {equi, poly}.
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Theorem 34. k-x-UNMATCHABILITY is NP-hard for x ∈
{equi, poly}.

Proof. We prove the theorem by reducing subgraph isomor-
phism to k-x-UNMATCHABILITY. We provide details for
k = 2; proofs can be extended to k > 2 by including k − 1
encodings of G in the ABoxes.

Let G,H be graphs, we build the ABoxes Ap(G,H)equi

and A(G,H) in polynomial time. Let Q = {gH}. Now,
assume there exists a subgraph isomorphism ϕ of H in G
and let us prove that Ap(G,H)equi is 2-x-unmatchable in
A(G,H) w.r.t. Q. Assume by contradiction there exist a
blank b ∈ sig(Ap(G,H)equi) ∩ NB such that for each x-
matching τ of Ap(G,H)equi in A(G,H), τ(b) = gH. Now
consider the x-matching τa, by definition of x-matching, for
each α ∈ Ap(G,H)equi, τa(α) ∈ A(G,H). In particu-
lar, if b ∈ sig(α), then gG ∈ sig(τ(α)). So, by defini-
tion of A(G,H), τ(α) is necessarily of type graph(gH, a),
hence α must be of type graph(b, a′). By definition of
Ap(G,H)equi, then, b is either bgH or another blank bgvG,
for some v ∈ VG. By definition of τa, though, for each
v ∈ VG the blanks bgvG are mapped in gG, and this means that
b = bgH. Now, consider the x-matching τϕ, by Lemma 31,
τϕ(bgH) = gG, so we reach an absurd. Conversely, assume
that Ap(G,H)equi is 2-x-unmatchable in A(G,H) w.r.t. Q.
Then, for each blank b ∈ sig(Ap(G,H)equi)∩NB, there ex-
ists an x-matching τ of Ap(G,H)equi in A(G,H) such that
τ(b) 6= gH. Thus, if we choose b = bgH, we can find an
x-matching τ such that τ(bgH) 6= gH and so by Lemma 33,
there exists a subgraph isomorphism of H in G.

Now we focus on k-x-ANONYMIZATION. For x = strict,
the following theorem provides the same lower bound as k-
strict-UNMATCHABILITY.

Theorem 35. k-strict-ANONYMIZATION is gi-hard.

Proof. LetG,H be graphs and consider the ABoxA(G,H)
(which can be construed in polynomial time) and let Q =
sig(A(G,H)). In Theorem 17, we defined for each ABox
A, an ABox Ag and we proved that for each ABox A, there
exists a k-strict-unmatchable anonymization of A w.r.t. Q
iff Ag is k-strict-unmatchable in A w.r.t. Q. Now observe
that in our case A(G,H)g is (up to blank renaming) the
ABox Ap(G,H)strict. Therefore, Theorem 27 proves that
the graphs G and H are isomorphic iff Ap(G,H)strict is
k-strict-unmatchable in A(G,H) w.r.t. Q, hence the the-
sis.

Finally, for k-x-OPT-ANONYMIZATION, we have the fol-
lowing lower bound.

Theorem 36. k-x-OPT-ANONYMIZATION is gi-hard, for all
x ∈ {poly, equi, strict}.

Proof. We are proving this result by reducing the problem
k-strict-UNMATCHABILITY, where Q = sig(A) \ NB (k-
strict-UNMATCHABILITY remains gi-hard, as the proof of
Theorem 27 satisfies this restriction).

For all ABoxesA, letQA = sig(A)\NB and let occNI
(A)

denote the number of occurrences of individuals in A.

Transform any given instance (A,Ap,QA) of k-strict-
UNMATCHABILITY into the instance (A,QA, `) of k-
x-OPT-ANONYMIZATION where x is any member of
{poly, equi, strict} and ` = occNI

(A) + |sig(A)|. Note that
this transformation can be computed in polynomial time.

Since QA covers all constant names of A, all x-
anonymizations Ap of A satisfy sig(Ap) ⊆ NB (by
Def. 5.(i)). Consequently, occNB

(Ap) = occNI
(A)

and |sig(Ap) ∩ NB| = |sig(Ap)|, thus conc(Ap) =
occNI

(A) + |sig(Ap)|. In order to satisfy conc(Ap) ≤
`, it must be |sig(Ap)| ≤ |sig(A)|, which is possible
only if Ap is a strict-anonymization. It follows immedi-
ately that (A,QA, `) is in k-x-OPT-ANONYMIZATION iff
(A,Ap,QA) belongs to k-strict-UNMATCHABILITY.

5 Related Work
Graph anonymization based on variants of k-anonymity
has been investigated for social networks. Usually the
attacker is assumed to know only the neighborhood of
subjects, and the isomorphism of subjects required by k-
anonymity is accordingly limited to adjacent nodes (Liu
and Terzi 2008; Zhou and Pei 2008; Zhou and Pei 2011;
Hoang, Carminati, and Ferrari 2020; Hoang, Carminati, and
Ferrari 2022; Hoang, Carminati, and Ferrari 2023). Graphs
are anonymized only by adding and deleting edges. These
works use cost functions different from conc, because conc
has the same value in all anonymizations, due to the fact
that only subjects are blanked (in some models all nodes are
subjects). Only a few works prove that the counterparts of k-
x-OPT-ANONYMIZATION are NP-hard (Zhou and Pei 2008;
Zou, Chen, and Özsu 2009); there is no attempt at charac-
terizing exactly the complexity of anonymization, especially
upper bounds.

The graphs and anonymizations of (Cuenca Grau and
Kostylev 2019) are similar to ours, however the confidential-
ity goal is preventing the entailment of the answers to a set of
queries called policies. The works summarized in (Baader
et al. 2021) adopt a similar confidentiality goal in a more
general framework, comprising terminological knowledge.
Since policy compliance cannot prevent Sweeney’s attack,
these works can be regarded as complementary to ours.

6 Conclusions and Future Work
We introduced k-unmatchability and systematically ana-
lyzed the complexity of the related decision problems for
three types of anonymizations, based on replacing constants
with blanks. Our results are summarized in Table 1. In
most cases, we prove narrow complexity bounds comprised
between gi-hard and NP. In two cases we obtained a com-
plete characterization (NP-complete). We also found that
k-x-ANONYMIZATION ranges from trivial to gi-hard as x is
progressively restricted.

We plan to refine our theoretical analysis, to narrow com-
plexity gaps. Additionally, we aim at identifying tractable
cases for k-x-OPT-ANONYMIZATION and approximate so-
lutions to the general problem, proving their scalability on
real-world knowledge graphs. Furthermore, we are plan-
ning to extend our theoretical analysis along several di-
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rections, such as: more general anonymizations, capable
of edge removal and value abstraction; refinements of k-
anonymity like l-diversity (Machanavajjhala et al. 2007) and
t-closeness (Li, Li, and Venkatasubramanian 2007); and
more general knowledge bases which include terminologi-
cal knowledge.
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