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Abstract

Is an argument acceptable if all potential counter-arguments
are unacceptable themselves? In standard models of argu-
mentation, the answer to this question is counter-intuitively
not necessarily yes. However, based on the notion of weak
admissibility, a family of semantics has been established
where these unreasonable attacks do not successfully counter
otherwise strong arguments. While in the abstract setting
weak admissibility is well-understood, a similar issue arises
in the context of structured argumentation formalisms like as-
sumption based argumentation (ABA). It is well known that
under standard argumentation semantics, ABA frameworks
can be reduced to abstract argumentation frameworks (AFs),
however, it turns out that in the case of weak admissibility
this approach surprisingly fails. We instead propose to uti-
lize a recently published instantiation technique utilizing col-
lective attacks (SETAFs). We first define weak admissibility
for SETAFs and study basic properties; afterwards, we push
our proposal to the structured setting. We show that via our
approach the characteristic properties of weak admissibility
carry over to ABA, and thus establish a basis for further stud-
ies of these common scenarios also in ABA and related struc-
tured argumentation formalisms.

1 Introduction
Formal argumentation constitutes a vibrant research area in
AI, covering various aspects of knowledge representation,
non-monotonic reasoning, and multi-agent systems (Baroni
et al. 2018). It deals with computational models of argu-
ments and argumentative reasoning workflows. Thereby, the
goal is to determine reasonable viewpoints, i. e. jointly ac-
ceptable sets of arguments in an automated way. In research
on argumentation, two main branches have emerged, namely
structured and abstract argumentation.

Without any doubt the main booster for the development
of the latter was Dung’s seminal paper on abstract argumen-
tation frameworks (AFs) (Dung 1995). In an abstract argu-
mentation framework, arguments are viewed as atomic enti-
ties, and the conflicts between them are viewed as directed
edges. Consequently, Dung obtains a representation as a
directed graph F = (A,R) formalizing the given debate.
AFs have been thoroughly investigated ever since, cover-
ing various aspects such as evaluation techniques (Charwat
et al. 2015), dynamic reasoning environments (Gabbay et

al. 2021), computational aspects (Dvořák and Dunne 2018),
and graph-theoretical properties (Dunne 2007).

In structured argumentation formalisms, a given knowl-
edge base is evaluated by means of argumentative reasoning
techniques: the incorporated, possibly conflicting, informa-
tion gives rise to arguments and attacks among them, con-
structed in a specific way. This way, structured argumen-
tation covers entire argumentative workflows (Baroni et al.
2018). A prominent example is assumption-based argumen-
tation (ABA), which is well developed theoretically (Cyras
et al. 2018) and finds applications in e.g. medical reason-
ing (Cyras et al. 2021) or planning (Fan 2018).

In both structured as well as abstract argumentation, a
key concept is the notion of admissibility. Loosely speak-
ing, admissibility formalizes that, in a given debate, an ac-
ceptable set S of arguments should (i) not contain internal
conflicts and (ii) be able to refute arguments raised against
S. However, as pointed out in several works (Dung 1995;
Dondio and Longo 2019; Baumann, Brewka, and Ulbricht
2022), this requirement is sometimes too strong, especially
in the presence of paradoxical arguments as in the following.

Example 1. Suppose our agent participates in a debate
about climate change. The first argument brought forward
is that “Climate change is happening due to mankind emit-
ting carbon dioxide.” (yielding an assumption for climate
change, cc). Another argument confirms this, stating that
“According to numerous studies, climate change is happen-
ing.” (yielding an assumption in favor of studies, stud).
However, another participant counters this by arguing that
“I read on social media that everything written on the inter-
net is false.” (yielding an assumption in favor of distrusting
information, dis). If we distrust every information on the in-
ternet, this together with the fact that the studies on climate
change are available online constitutes a collective attack
from dis and stud towards cc: if both of these assumptions
are accepted, we have to disregard cc. On the other hand,
dis is a self-attacking argument, because if everything on
the internet is false, then also this same information found
on social media. We obtain the following attack structure.

dis

stud

cc
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As we will see in Example 15, such scenarios can easily oc-
cur in ABAFs. Clearly, in this scenario we would like to dis-
regard the self-attacking argument that represents distrust-
ing reasonable information. However, no commonly agreed
semantics for ABAFs can handle this in a satisfactory way.

In the context of AFs, a quite successful solution to
this issue has been proposed. Based on the notion of
so-called weak admissibility, Baumann, Brewka, and Ul-
bricht (2020b) propose several semantics that are able to ne-
glect paradoxical arguments such as dis in a reasonable way,
while keeping reasonable ones acceptable. Intuitively, weak
admissibility does not require the set S to refute every argu-
ment; it suffices to counter-attack reasonable viewpoints.

Weak admissibility is well understood (Baumann,
Brewka, and Ulbricht 2022; Dauphin, Rienstra, and van der
Torre 2021; Blümel and Ulbricht 2022a); and ABAF and
AFs are closely related (König, Rapberger, and Ulbricht
2022; Caminada et al. 2024). Consequently, a natural idea
would be to try and benefit from weak admissibility for AFs
out of the box: we instantiate the given knowledge base D
and evaluate the argumentation graph FD according to the
weak semantics family. This direct approach, however, does
not work as we demonstrate next.
Example 2. Instantiating the aforementioned ABAF as an
AF yields the following argumentation graph (we will for-
malize this in Example 15 below):

stud dis cc

{dis} ` disc {dis, stud} ` ccc

Instead of disregarding the self-attacking dis, weak admis-
sibility disregards the argument “c(dis) ← dis” which ex-
plicates that this assumption is self-attacking. Consequently,
dis and stud are accepted whereas cc is not. This is surpris-
ingly far away from what we want to achieve; after all, weak
admissibility handles (abstract) self-attackers quite well.

Given that the common AF instantiation does not help
here, we need another strategy to obtain a reasonable notion
of “weak” ABA semantics. An abstract formalism which is
much closer in spirit to ABA compared to AFs are argumen-
tation frameworks with collective attacks (SETAFs), intro-
duced by Nielsen and Parsons (2006). SETAFs and their se-
mantics are well-studied (Flouris and Bikakis 2019; Bikakis
et al. 2021), their relation to ABA is understood (Caminada
et al. 2024; Dimopoulos et al. 2024), computational aspects
have been investigated (Dvořák, Greßler, and Woltran 2018;
Dvořák, König, and Woltran 2022a;2022b), and even a suit-
able notion of a reduct is already available (Dvořák et al.
2024), which is a core concept towards defining the weak
semantics family.

Our strategy is thus as follows: we first define weak ad-
missibility for SETAFs and study its properties on an ab-
stract level. Then, we showcase how to transfer this ap-
proach to structured argumentation by translating these se-
mantics to ABA. In order to assess our approach, we propose
desiderata as to how a “good” notion of weak admissibility
for ABA should behave.

More specifically, our main contributions are:
• We develop desiderata for a “weak” semantics family in

the context of ABA and demonstrate why the standard
ABA instantiation is insufficient. Section 3

• We develop weak admissibility for SETAFs. We study
formal properties and show that many properties known
to hold for AFs generalize well to this setting. Section 4

• We propose weak admissibility for ABA by means of the
SETAF SFD induced by some knowledge base D. We
show that these novel ABA semantics indeed satisfy the
previously formulated desiderata. Section 5

2 Background
2.1 Abstract Argumentation
We briefly recall AFs and SETAFs as our utilized notions of
abstract argumentation. Since SETAFs generalize AFs, we
first introduce SETAFs and thereby subsume the AF notions.
Definition 3 (SETAF). A SETAF SF = (A,R) is a pair,
consisting of a finite set of arguments A and an attack rela-
tion R ⊆ 2A × A that contains attacks from a set of argu-
ments towards a single argument.
Definition 4. A set S ⊆ A is called conflicting if for some
(T, h) ∈ R holds T ∪ {h} ⊆ S, otherwise it is conflict-free.
We denote the set of conflict-free sets by cf (SF ). We say S
defends an argument a ∈ A if for each (T, a) ∈ R holds
(S′, t) ∈ R for some S′ ⊆ S, t ∈ T . S defends U ⊆ A if S
defends each u ∈ U .

We set E+
R = {h ∈ A | ∃(T, h) ∈ R : T ⊆ E} and

E⊕R = E ∪ E+
R . We recall grounded, admissible, com-

plete, and preferred semantics (grd, adm, com, and pref re-
spectively (Nielsen and Parsons 2006; Dvořák, Greßler, and
Woltran 2018; Flouris and Bikakis 2019)).
Definition 5. Given a SETAF SF = (A,R) and a conflict-
free set S ∈ cf (SF ). Then,
• S ∈ adm(SF ), if S defends itself in SF ,
• S ∈ com(SF ), if S ∈ adm(SF ) and a ∈ S for all a ∈ A

defended by S,
• S ∈ grd(SF ), if S is ⊆-minimal in com(SF ), and
• S ∈ pref(SF ), if S is ⊆-maximal in adm(SF ).

We introduce AFs (Dung 1995) as a special case of
SETAFs; the terminology and semantics carry over.
Definition 6 (AF). An AF F = (A,R) is a pair, consisting
of a finite set of arguments A and an attack relation R ⊆
A×A that contains attacks from a single argument towards
a single argument.

2.2 Weak Admissibility
As we generalize weak admissibility and related notions to
SETAFs in this paper, we now briefly recall the relevant no-
tions on AFs (Baumann, Brewka, and Ulbricht 2020b). We
start with the E-reduct as the underlying foundation.
Definition 7. Given an AF F = (A,R) and E ⊆ A, the
E-reduct of F is the AF FE = (A′, R′), with

A′ = A \ E⊕R R′ = R ∩ (A′ ×A′)
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We next recall weak admissibility in the context of
AFs (Baumann, Brewka, and Ulbricht 2020b).
Definition 8. Let F = (A,R) be an AF, let E ⊆ A be a set
of arguments, and FE = (A′, R′) its E-reduct. E is called
weakly admissible in F (E ∈ admw(F )) iff

1. E ∈ cf (F ), and
2. for each (t, h) ∈ R with h ∈ E it holds t /∈

⋃
admw(FE).

We also recall weak defense and the induced semantics.
Definition 9. Let F = (A,R) be an AF. Given two sets
E,X ⊆ A, E weakly defends X iff for any attacker y of X ,

1. E attacks y, or
2. y /∈ E, y /∈

⋃
admw

(
SFE

)
and X ⊆ X ′ ∈ admw(SF ).

Definition 10. Let F = (A,R) be an AF. A set E ⊆ A
is called weakly complete in F (E ∈ comw(SF )) iff E ∈
admw(SF ) and for any superset X ⊇ E weakly defended
byE, we have thatX = E. Moreover,E is weakly grounded
iff it is minimal in comw(F ) as well as weakly preferred iff
it is maximal in admw(SF ).
Definition 11. Let SF = (A,R) be a SETAF and let S ⊆ A
be a set of arguments. We define the projection to S as the
SETAF SF↓S= (S,R ∩ (2S × S)).1

2.3 Assumption-Based Argumentation
We recall underlying definitions of ABA (Cyras et al. 2018).
Definition 12 (ABAF). An ABA framework (ABAF) is a
tuple D = (L,R,A, c), where L is a set of atoms, R a set
of inference rules over L of the form a0 ← a1, ..., an with
ai ∈ L for 0 ≤ i ≤ n, A ⊆ L a set of assumptions and
c : A → L a contrary function.

We focus on finite, flat ABA frameworks, i. e. where
L,R,A are finite sets and for each r ∈ R it holds that
head(r) /∈ A. We say that an atom p ∈ L is derivable from
assumptions S ⊆ A and rules R ⊆ R, if p can be derived
from the set S of assumptions and the rules in R in the nat-
ural way. That is, there is a finite rooted labeled tree t such
that the root is labeled with p, the set of labels for the leaves
of t is equal to S or S ∪ {>}, and for every inner node v of
t there is a rule r ∈ R such that v is labelled with head(r),
the number of successors of v is |body(r)| and every suc-
cessor of v is labelled with a distinct a ∈ body(r) or > if
body(r) = ∅. We denote such a derivation by S `t p and
drop the subscript t whenever the underlying tree is unim-
portant. The set of all atoms which are derivable from S is
denoted by thD(S).

Let S, T ⊆ A for a given ABAF D = (L,R,A, c). Set
S attacks T if there are S′ ⊆ S and a ∈ T s. t. S′ ` c(a).
A set of assumptions S ⊆ A is conflict-free, S ∈ cf (D),
iff it does not attack itself. We say S ⊆ A defends some
assumption a ∈ A whenever T ` c(a) implies S ` c(t) for
some t ∈ T . By ΓD we denote the characteristic function
of D, i. e. we let ΓD(S) = {a ∈ A | S defends a}. We drop
the subscript D whenever it is clear from the context.

1Note that our notion of projection differs from the one
in (Dvořák et al. 2024): in our case, if we remove an argument a,
we remove every attack (T ∪ {a}, h) entirely, whereas in (Dvořák
et al. 2024) parts of the attack remain (akin to the reduct).

Definition 13. Let S ∈ cf (D) for an ABAF D =
(L,R,A, c). Then
• S ∈ adm(D) iff Γ(S) ⊆ S,
• S ∈ com(D) iff Γ(S) = S,
• S ∈ grd(D) iff S is ⊆-minimal in com(D),
• S ∈ pref(D) iff S is ⊆-maximal in adm(D).

AFs and ABAFs are closely related. From an ABAF D,
we can construct a semantics-preserving AF FD as follows.
Definition 14. Let D = (L,R,A, c) be an ABAF. The as-
sociated AF FD = (AD, RD) is given by

AD = {S `t a | S `t a is a tree derivation in D}
RD = {(S `t a, T `t b) | a ∈ c(T )}.

Throughout our examples, we depict tree-based argu-
ments S `t p as tuples (S, p) which is known to be an
equivalent representation (see e.g. (Lehtonen et al. 2023)).
Example 15. Let us model the introductory Example 1 as an
ABAF D = (L,R,A, c) with the sets A = {stud, dis, cc},
L = A ∪ {ac | a ∈ A}, contraries c(a) = ac for
each assumption and rules R = {(disc ← dis), (ccc ←
dis, stud)}. Indeed, as we already hinted at in Example 2,
the associated AF FD is given as follows (each assumption
entails a canonical argument for itself and both rules in-
duces arguments with out-going attacks).

stud dis cc

{dis} ` disc {dis, stud} ` ccc

Indeed, the argument in favor of {dis, stud} ` ccc is weakly
admissible as it is only attacked by some self-attacker. Con-
sequently, {cc} /∈ admw(FD) which is not desired here.

3 ABA and Weak Admissibility
The introduction of weak admissibility was motivated by the
desire to accept arguments which cannot defend themselves
against non-serious attackers, for instance a self-attacker or
a member of an isolated odd-length-cycle. These problems
occur in ABAFs as well. Rules like c(a) ← a, which has
the contrary of one of its own assumptions as its head, can
occur and induce arguments, that are not acceptable them-
selves, but still capable of attacking other arguments which
were derived from a consistent subset of rules and would
otherwise be accepted. Instead of coming up with an artifi-
cial version of “weak admissibility” for ABA, let us examine
the behavior we expect.
Example 16. Consider the following simple ABAF D =
(L,R,A, c) with L = {a, ac}, A = {a}, contrary c(a) =
ac, and the ruleR = {ac ← a}.

It is easy to spot that a is a paradoxical assumption as
it derives its own contrary. We would therefore expect no
argument to be weakly admissible, i. e. intuitively we strive
to achieve admw(D) = {∅} in this example. Indeed, if we
remove the assumption causing the issue, a, we are left with
an empty ABAF, as no rule is left.

The associated AF FD, however, is given as follows (we
depict the canonical assumption argument just by a).
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a{a} ` ac

Consider the argument representing the assumption a. Its
only attacker is the argument {a} ` ac which in turn is
a self-attacker. By the nature of weak admissibility, this
self-attacker can be disregarded and consequently, {a} ∈
admw(FD). Thus, while a is the culprit of the irrational ar-
gument (via the rule ac ← a), it is treated like the victim
in FD and rendered acceptable. This is contrary to the in-
tended intuition.

Note that in Example 16 the classic admissible semantics
produces the desired result, i. e. both the assumption a and
the derived argument {a} ` ac are rejected. As the follow-
ing example shows, applying admissible semantics does not
always yield the desired outcome.
Example 17. Consider the ABAF D = (L,R,A, c) with
L = {a, b, c, ac, bc, cc}, A = {a, b}, contraries c(a) = ac
as well as c(b) = bc, c(c) = cc, and the following rulesR:

ac ← a, b bc ← a, b cc ← a, b

Here we have that c is only attacked by the paradoxical as-
sumption set {a, b}, so we expect {c} ∈ admw(D) to hold.

However, the associated AF FD is given as follows.

a

{a, b} ` cc

c b

{a, b} ` ac {a, b} ` bc

Here c is attacked by the argument {a, b} ` cc. Since the
former is only attacked by two self-attackers, {a, b} ` cc is
weakly admissible in FD. It follows that {c} /∈ admw(FD).

Consequently, the problematic behavior observed in Ex-
ample 16 now causes additional harm: the argument
{a, b} ` cc stemming from the paradoxical assumption set
{a, b} is rendered accepted, while c is rejected. Again, this
is contrary to our intuition. The situation is no better under
classic admissibility: here, c is also rejected.

Both classic admissible semantics adm and weakly admis-
sible semantics admw therefore fail to treat the cause and
the consequences of inconsistent arguments resp. assump-
tion sets in ABA Frameworks, when applied to the instanti-
ated AF FD. It is evident the cause of the undesired behavior
lies in the representation of D. The same issues arise in the
presence of odd-length cycles, ruling out exception-handling
of self-attackers as a solution.
Example 18. Consider the following ABAF D =
(L,R,A, c) withL = {a, b, c, d, e, ac, bc, cc, dc, c(e)},A =
{a, b, c, d, e}, the usual contraries, and rulesR:

bc ← a cc ← a dc ← b, c ec ← b, d ac ← d

At first glance, this situation is more involved compared to
Example 16, but it is actually quite similar. Again, we have
a set of assumptions that contradict themselves, here indi-
rectly through an odd-length cycle of attacks. We also have
an innocent bystander, the assumption e is not involved in
the odd cycle of attacks and therefore a promising candidate

for acceptance, since its only attackers b, d are paradoxical
as they are indirectly attacking themselves.

However, in the AF FD, we again have the problem that e
can neither be accepted under adm nor admw.

a bc d e

{d} ` ac

{a} ` cc {a} ` bc

{b, c} ` dc {b, d} ` ec

The argument e is not acceptable under classic admissibility,
because it has an attacker {b, d} ` e, and the two possible
defenders {a} ` b and {b, c} ` d are stuck in a cycle of
length 3, unable to defend themselves. Furthermore, since
both its attackers are part of an unattacked odd cycle, the
argument {b, d} ` e is weakly admissible, so e, which is
attacked by it and has no defender, is not. Again, the at-
tacking set of assumptions {b, d} is the actual problem, but
not punished by weak admissibility in the AF-instantiation.
Note that {b, d} is not attacking itself directly, but is not ac-
ceptable due to attacking its defenders.

Desiderata The main issue raised by these examples is
that in ABA a set of assumptions might not be paradoxical
to begin with, but only contradicts itself when instantiated
with rules that induce direct or indirect self-contradictions.
A weak admissibility semantics for ABA has to account for
this difference from AFs. Bearing that in mind, we formu-
late desiderata to capture the desired behavior of the weak
admissibility semantics family for ABA.

First of all, weak admissibility is supposed to be a weaker
version of Dungs admissibility. Consequently, we expect the
following to hold for a natural definition of admw.

(L) Liberalization: It holds that
⋃

adm(D) ⊆
⋃

admw(D).

In abstract argumentation, Liberalization has been utilized
to describe inter-semantical relations before (Blümel and Ul-
bricht 2022a). Note that the above formalization emphasizes
the accepted arguments, and does not make any direct state-
ment about the individual extensions.

Along these lines, but from a slightly more technical point
of view, we recall Dung’s fundamental lemma stating that,
if E ∈ adm(F ) and E defends a, then E ∪ {a} is admis-
sible as well. Since weak admissibility is supposed to be a
liberalization of adm, we expect a similar behavior here:

(F) Fundamental Lemma: If S ∈ admw(D) defends a, then
D ∪ {a} ∈ admw(D).

The main goal driving weak admissibility is to neglect
the impact self-attacking arguments have on the remaining
knowledge base. In fact, we want to be able to ignore an
assumption that derives its own contrary completely. To for-
malize this desideratum we have to talk about ABAFs in-
duced by subsets of the assumptions. We define the projec-
tion of an ABAF to a subset of its assumptions as follows:

Definition 19. Let D = (L,R,A, c) be an ABAF, T ⊆ A.
The projection D↓T = (L′,R′,A′, c′) of D to T is defined

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

181



by L′ = (L \ (A \ T )) ∪ {xc}, A′ = T , the rules are
R′ = R \ {r | body(r) ∩ (A \ T ) 6= ∅}, and for all a ∈ T

c′(a) =

{
c(a) if c(a) ∈ L′
xc otherwise

Recall that we study flat ABAFs here, so even if an as-
sumption is the contrary of another assumption it never oc-
curs in the head of a rule and is therefore never derived from
the rule set of the projection. Therefore replacing it by the
placeholder xc does not cause any harm. We are now ready
to define our desideratum for paradoxical assumptions.

(P) Paradoxical Assumptions: If {a} ` c(a), then it holds
that admw(D) = admw(D ↓A\{a}).

If our notion of weak admissibility adheres to this prin-
ciple, then we have formally established the neglection of
self-attacking assumptions, as it is the case for admw in AFs,
where self-attackers can simply be removed under admw.

A conceptual difference to AFs is that in ABA, assump-
tions sometimes collectively attack others, e. g. when a rule
requires multiple assumptions in order to derive a contrary.
Hence, a set of assumptions can attack its own members with
a collective attack (see Example 17). For this type of self-
attack no counterpart exists in AFs. The behavior we expect
here is that a rule with a self-attacking set of assumptions in
its body can be ignored. We have to be careful, though, for
we do not want to ignore a rule that is involved in the at-
tack of the paradoxical set on itself nor can we ignore a rule
that defends any of the involved assumptions. For instance,
in Example17 the attack on a should be maintained, while
the attack on c can be ignored. This leads to the following
notion of paradoxical rules.
Definition 20. A rule r of the form r = (a ← S) is para-
doxical iff for every s ∈ S there is an S′ ⊆ S s.t.
• S′ ` c(s)
• head(r) 6= c(s′) for any s′ ∈ S′
• there exists a derivation tree t such that S′ `t c(s) and r

does not occur in t

(PR) Paradoxical Rules: Removing a paradoxical rule
r does not alter the models of D, i. e. admw(D) =
admw(D′) where D′ = (L,R \ {r},A, c).

The treatment of problematic assumptions should not be
limited to self-attackers. As Example 18 shows, the pres-
ence of odd cycles of attacks can lead to the exclusion of
unrelated assumptions. Weak admissibility should allow for
assumptions, which are not actively involved in deadlocks
of this type, to be accepted. To formalize this we define the
counterpart of an unattacked set of an AF in ABA.
Definition 21. Let D = (L,R,A, c) be an ABAF. A set of
rules Q is independent if for any r ∈ R \ Q it holds that if
head(r) = c(a), then a /∈

⋃
q∈Q

body(q).

That is, no attack on the assumptions used in Q can be
derived from the rules in R \ Q. Hence an independent set
of rules induces a part of an ABAF that is not attacked by
any argument outside of it. The ABAF D|Q = (L, Q,A, c)
is called the restriction of D to Q.

Now suppose D|Q does not contain any weakly admissi-
ble assumption. Then we expect that D|Q is no threat to the
remaining part of the ABAF since the entire sub-framework
is paradoxical. Now, a rule r /∈ Q with body(r) ⊆⋃
q∈Q

body(q) relies on these paradoxical assumptions in Q

in order to fire, while it cannot impact the (non-accepted)
assumptions in Q. We expect such rules to be redundant.

(I) Independence: Let Q be an independent set of rules in
an ABAF D = (L,R,A, c). If admw(D|Q) = {∅}, then
removing a rule r /∈ Q with body(r) ⊆

⋃
q∈Q

body(q) does

not alter the models of D, i. e. admw(D) = admw(D′)
where D′ = (L,R \ {r},A, c).

Moreover, we strive to define a well-behaved semantics
family. Consequently, we expect the usual relations:

(SR) Semantics Relation: For any ABAF D = (L,R,A, c)
1. admw(D), comw(D), prefw(D), grdw(D) 6= ∅,
2. comw(D) ⊆ admw(D)

3. prefw(D) = {S ⊆ A | S is maximal in comw(D)}
To ensure the described behavior, adapting weak admis-

sibility for ABAFs is a promising approach. However, as
the examples show, one cannot use the weakly admissible
semantics as-is on the AF associated with an ABAF. The
remainder of the paper therefore investigates a more sophis-
ticated adaption of weak admissibility for ABA. We first el-
evate the notion of weak admissibility to abstract SETAFs in
the next section and then apply it to a SETAF-instantiation
of ABAFs in Section 5.

4 SETAFs and Weak Admissibility
In recent studies, SETAFs have demonstrated multiple times
that they are much closer to the behavior of ABA than the
classical AF instantiation, and have thus more potential to
be the suitable tool for our purpose (König, Rapberger, and
Ulbricht 2022; Caminada et al. 2024; Dimopoulos et al.
2024). In this section, we introduce weak admissibility for
SETAFs, guided by the motivation for the proposal in the
AF case (Baumann, Brewka, and Ulbricht 2020b). Then in
Section 5, due to the close correspondence between ABA
and SETAFs, we revisit weak admissibility for ABA, with
SETAFs as the means to instantiate the given ABAF.

4.1 Basic Definitions
The core concept underlying weak admissibility for AFs is
the E-reduct (Baumann, Brewka, and Ulbricht 2020a). To-
wards weak admissibility for SETAFs, we first briefly recall
the SETAF version of the E-reduct (Dvořák et al. 2024).

Definition 22. Given a SETAF SF = (A,R) and E ⊆ A,
the E-reduct of SF is the SETAF SFE = (A′, R′), with

A′ = A \ E⊕R
R′ = {(T \ E, h) | (T, h) ∈ R, T ∩ E+

R = ∅,
T 6⊆ E, h ∈ A′}
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Dvořák et al. (2024) argue that the SETAF-reduct indeed
generalizes the AF-reduct, in that for each SETAF SF =
(A,R) s.t. for each (T, h) ∈ R it holds |T | = 1 (i.e., SF
effectively is equivalent to an AF) the two reduct notions
coincide. Moreover, the SETAF-reduct captures the same
intuition by setting the arguments inE to true, the arguments
in E+ to false, and leaving the remaining ones as they are.

We recall the characteristic feature that theE-reduct w.r.t.
a SETAF SF will sometimes contain “parts” of original at-
tacks, and reiterate the underlying intuition.
Example 23. Consider the SETAF SF = (A,R) (left) and
the reduct SFE w.r.t. E = {d} (right).

aSF :

b

c

e

d

aSFE :

b

c

e

d

While the attack ({b, e}, d) is removed entirely since e ∈
E+

R , for the attack ({c, d}, a) we retain the attack ({c}, a).
Intuitively, since the reduct w.r.t. E simulates the remaining
framework after accepting E, we can remove each attack
(T, h) where T ∩ E+ 6= ∅, as the remaining arguments are
defended against these attacks. Regarding d’s incoming at-
tack ({c, d}, d), since d is accepted (in E), additionally ac-
cepting c leads to a rejection of the attacked argument (in
this case, d itself) whereas defeating c renders d acceptable.

The E-reduct gives us the tools to generalize weak ad-
missibility, originally due to Baumann, Brewka, and Ul-
bricht (2020b), to SETAFs. Note that the definition is
recursive, but well-defined as in each recursion step the
reduct contains fewer arguments and we deal only with fi-
nite SETAFs.
Definition 24. Let SF = (A,R) be a SETAF, let E ⊆ A be
a set of arguments, and SFE = (A′, R′) its E-reduct. Then
E is called weakly admissible in SF (E ∈ admw(SF )) iff

1. E ∈ cf (SF ), and
2. for each (T, h) ∈ R with h ∈ E, and T ∩E+

R = ∅ it holds
@E′ ∈ admw(SFE) s.t. T ∩A′ ⊆ E′.
Let us head directly to some illustrative examples.

Example 25. Recall the SETAF SF from Example 23. We
show that E = {d} is weakly admissible. We have already
computed the reduct SFE , so let us check the recursive defi-
nition: Since the attack ({c, d}, d) is collective,E ∈ cf (SF )
holds. Now we consider the two in-coming attacks:
• For ({b, e}, d) we have that T = {b, e} does not satisfy
T ∩E+

R = ∅ so this attack can be disregarded (intuitively,
E defends itself against ({b, e}, d)).

• For ({c, d}, d) we have that T = {c, d} satisfies T ∩
E+

R = ∅. We therefore need to check whether there is
some E′ ∈ admw(SFE) containing T ∩A′ = {c}. How-
ever, it can be checked that an isolated odd-length cycle
has no weakly admissible argument, so no such E′ exists.

We conclude E ∈ admw(SF ).
Example 26. Now let us modify the previous example by
disrupting the odd cycle:

aSF :

b

c

e

d

f

We note that E = {c, f} ∈ adm(SF ). Consequently, in
the reduct SFE , there is no attack towards E (an admissi-
ble set counters every attack). Therefore, E ∈ admw(SF )
as well; indeed, this observation generalizes as we see in
Proposition 30 below. Utilizing this observation also leads
to E′ = {d} /∈ admw(SF ) since this time, the paradoxical
odd-length cycle is disrupted and c, attacking d in its reduct,
can be accepted (together with f ).

In order to handle more involved examples as well, we
made several design choices in generalizing admw. Let us
next examine these choices by contrasting weak admissi-
bility on AFs and SETAFs, and argue why the alternative
choices do not properly capture the intuition of weak ad-
missibility. While the first conditions of Definition 8 and
Definition 24 coincide, we see the following differences for
the second conditions:

(a) Instead of comparing the set T to the set of accepted argu-
ments over all weakly admissible extensions in SFE (i.e.,⋃

admw(SFE)), we require T as a whole not to appear in
each weakly admissible extension of SFE ,

(b) we only consider attacks where T ∩ E+
R = ∅, and

(c) we specify T ∩A′ for the comparison to E′.
Towards (a), first note that condition (2) of Definition 8 for
AF weak admissibility can be equivalently reformulated as

2. for each (t, h) ∈ Rwith h ∈ E it holds @E′ ∈ admw(FE)
s.t. t ∈ E′.

It becomes apparent that our definition of weak admissibility
for SETAFs indeed generalizes its AF-counterpart in this re-
gard. To argue for the need of this reformulation we provide
the following illustrating example.
Example 27. We illustrate the need of difference (a) from
above: consider the following SETAF SF with E = {c}.

aSF :

b

c

aSFE :

b

c

Since we cannot accept the conflicting set {a, b}, c cannot
be defeated by the attack. Hence, we would expect the set
{c} to be weakly admissible in SF . However, we have
admw(SFE) = {{a}, {b}}, i.e., {a, b} ⊆

⋃
admw(SFE).

Consequently, we insist that a single extension E′ contain-
ing both arguments must exist; and we indeed observe that
there is no E′ ∈ admw(SFE) s.t. {a, b} ⊆ E′, as desired.

The difference (b) is explained entirely by the workings
of the SETAF-reduct, as the next example illustrates.
Example 28. Consider the SETAF SF with E = {c}.

aSF :

b

c

aSFE :

b

c
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Clearly, {c} is weakly admissible (and, in fact, also classi-
cally admissible). We know from Example 23 why we delete
the entire attack ({a, b}, c) when we calculate the reduct
w.r.t. {c} and do not retain a partial attack ({a}, c): this
is because b ∈ {c}+R, which means c is defended against
the attack. Hence, we also do not need to consider ({a}, c)
for weak admissibility of {c} in this case. Finally, note that
in the AF case we always trivially apply this restriction, as
arguments a with a ∈ E+

R are excluded from the E-reduct.
Similarly, (c) is entirely due to the SETAF reduct. In this

case we specify the intuitive requirement that for checking
the “relevant” arguments in the reduct, all of the considered
arguments actually appear in the reduct. In particular, no
argument outsideA′ could appear in anyE′ ∈ admw(SFE).

4.2 Basic Properties
Now we have discussed and justified the definition of weak
admissibility for SETAFs, and at the same time we have
argued that indeed our notion properly generalizes its AF-
counterpart. Let us next establish that the core properties of
the semantics carry over from AFs to SETAFs. First of all,
the SETAF version of weak admissibility coincides with the
classical one whenever SF is an AF.
Proposition 29. Let SF = (A,R) be a SETAF s.t. |T | = 1
for each (T, h) ∈ R. Let F be the AF induced by SF. Then
admw(SF ) (via Definition 24) and admw(F ) (via Defini-
tion 8) coincide.

Moreover, admw generalizes classical admissibility.
Proposition 30. For all SETAFs SF = (A,R) it holds
adm(SF ) ⊆ admw(SF ).

Let us now investigate the feature of weak admissibility
that self-attacking arguments can safely be removed from an
argumentation framework without altering the weakly ad-
missible sets (see Baumann, Brewka, and Ulbricht 2020b).
We will see that in our setting, we can remove even more
irrelevant parts of the framework. Let us investigate the de-
sired property in more detail via the following example.
Example 31. Consider the following SETAFs SF1 and SF2.

aSF1 :

b

c

aSF2 :

b

c

We are again interested in E = {c}. In both SF1 and SF2

we cannot have the conflicting set {a, b} in any weakly ad-
missible extension. Hence, as expected we get that E ∈
admw(SF1) and E ∈ admw(SF2) (cf. Example 27). Even
though SF2 contains no self-attacks, the two cases are very
similar: ({a, b}, c) cannot have any effect on the weakly ad-
missible extensions, since the arguments in its tail {a, b} at-
tack each other. Attacks with conflicting tails are referred
to as “inactive” attacks (Dvořák, Rapberger, and Woltran
2020). However, we cannot remove all inactive attacks:

aSF3 :

b

c

d

aSF
{a}
3 :

b

c

d

While in SF3 the set {a} is weakly admissible (since SF {a}3
contains an odd-cycle), removing the attack ({a, b}, c) leads
to {a} not being weakly admissible (since then {b, c} is
(weakly) admissible in the reduct, attacking a).

We show that attacks with a certain type of conflicting tail
(cf. SF2 in Example 31) can safely be removed w.r.t. weak
admissibility without changing the set of extensions.
Proposition 32. Let SF = (A,R) be a SETAF, and let
(T, h) ∈ R with T 6= ∅ be an attack s.t. for every t ∈ T
there exists a set T ′ ⊆ T \ {h} s.t. (T ′, t) ∈ R. Then
admw(SF ) = admw(SF ′), where SF ′ = (A,R\{(T, h)}).

Due to Proposition 29, this result also applies to AFs,
where it amounts to the removal of out-going attacks of self-
attackers. Indeed, self-attackers can also be removed: we set
SF ◦ = SF ↓A′ where A′ = A \ {a | ({a}, a) ∈ R}. We
can show that the removal of A′ does not alter admw(SF ).
Theorem 33. For any SETAF SF it holds admw(SF ) =
admw(SF ◦).

In view of Proposition 32, one might wonder whether at-
tacks of the form (T ∪ {a}, a) (with T 6= ∅) can also be
removed. The intuitive reason why this is not the case is that
the head h of the attack (T, h) can play a role in its own
defense. Consequently, only if the “sub-conflict” occurs in
T \ h, the property still applies. The following example il-
lustrates this idea.
Example 34. For the SETAF SF depicted below we get that
admw(SF )={∅, {a}, {b}}. Consider E = {a}.

aSF : b aSFE : b

Obviously, removing either argument changes the weakly
admissible sets. Moreover, removing both attacks introduces
the weakly admissible set {a, b}, while removing only one at-
tack ({a, b}, a) gives us the weakly admissible sets {∅, {a}}
(the other case is symmetrical).

Another central property is the compliance of weakly ad-
missible extensions E with those in their reduct SFE . This
is formalized in the so-called modularization property.
Proposition 35 (Modularization). Let SF = (A,R) be a
SETAF and letE,E′ ⊆ A be disjoint. (i) IfE ∈ admw(SF )
and E′ ∈ admw(SFE), then E ∪ E′ ∈ admw(SF ). (ii) If
E ∈ admw(SF ) and E ∪ E′ ∈ admw(SF ), then E′ ∈
admw(SFE).

A direct consequence of modularization for weakly ad-
missible semantics is that Dung’s fundamental lemma holds.
Proposition 36. Let SF be a SETAF. If E ∈ admw(SF )
and E defends a ∈ A, then E ∪ {a} ∈ admw(SF ).

4.3 Weak Defense
Having established the basic notion of weak admissibility,
let us now turn our concept into a proper semantics family
by also studying a suitable version of weak defense. That
is, given E ⊆ A, under which conditions do we deem some
argument a ∈ A as “weakly defended” byE? To familiarize
the reader with potential issues, let us consider an example.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

184



Example 37. Consider the following SETAF SF :

aSF :

b

c d e

Our goal is to find a weak defense notion where e weakly
defends c. To this end consider the two attacks (d, c) and
({a, b, }, c) directed towards it. i) The first one is refuted
by e and thus should cause no harm. ii) The second one,
({a, b, }, c), stems from a collective attack that is never valid
in any reasonable viewpoint: a and b attack each other and
can therefore never be jointly accepted.

Consequently, for each attack (T, h) there are two differ-
ent reasons for considering h as “weakly defended” against
it: i) (T, h) is counter-attacked or ii) T is not a “serious
threat” for h. This motivates the following definition.
Definition 38. Let SF = (A,R) be a SETAF and let
E,X ⊆ A. We sayE weakly defendsX (abbr.E w-defends
X) if for each (T, h) ∈ R with h ∈ X , one of the following
two conditions hold:
• E attacks T , or
• the following two conditions hold simultaneously:

1. there is no E′ ∈ admw(SFE) with T ⊆ E ∪ E′,
2. there is some X ′ s.t. X ⊆ X ′ ∈ admw(SF ).
Let us break down Definition 38. Given E ⊆ A, we want

to know whether it defends some argument a. If for each
(T, a) ∈ R we have that E attacks T , then a is even classi-
cally defended. In this case, the first condition fires and thus,
E weakly defends a. An example for the second condition
is illustrated next.
Example 39. Recall Example 37. Now E = {e} indeed
weakly defends X={c}: we need to consider two attackers
(d, c) and ({a, b}, c). Regarding the former, the first condi-
tion in Definition 38 is satisfied, so we move on to ({a, b}, c).
The setE does not counter-attack {a, b} so we have to check
for the three conditions in the second item of Definition 38:
1. In SFE which coincides with SF2 from Example 31, the
set {a, b} is not weakly admissible; 2. X = X ′ itself is
weakly admissible in SF .

The notion of weak defense for AFs has been refined in
several ways (see e.g. (Dauphin, Rienstra, and van der Torre
2021) for thorough discussion on this matter). Within the
scope of this work, we adapt a characterization from (Bau-
mann, Brewka, and Ulbricht 2022) to SETAFs.
Proposition 40. Let SF = (A,R) be a SETAF and let E ∈
admw(SF ). Then, for any D,X ⊆ A s.t. E ⊆ X and
X = E∪̇D we have that E w-defends X iff

1. for any (T, h) ∈ R with h ∈ X , there is no E′ ∈
admw(SFE) with T ⊆ E ∪ E′, and

2. there is some D′ s.t. D ⊆ D′ with D′ ∈ admw(SFE).
This allows us to define our weak-semantics family.

Definition 41. Let SF be a SETAF and let E ∈ admw(F ):
• E is weakly complete, E ∈ comw(SF ), iff for each X ⊇
E s.t. E w-defends X , we have E = X ,

• E is weakly preferred, E ∈ prefw(SF ), iff E is maximal
w.r.t. ⊆ in admw(SF ),

• E is weakly grounded, E ∈ grdw(SF ), iff E is minimal
w.r.t. ⊆ in comw(SF ).

Example 42. Recall the SETAF from Example 37. First of
all, the empty set weakly defends e. Then, as we have dis-
cussed already, e weakly defends c, Since no further argu-
ments are weakly defended, we get {c, e} ∈ comw(SF ).
Clearly, {c, e} ∈ grdw(SF ) follows. Regarding weakly
preferred semantics, note that e. g. {a, c, e} is maximal in
admw(SF ), so prefw(SF ) = {{a, c, e}, {b, c, e}}.

We mention some central properties that hold for our
novel weak semantics. First of all, these weak semantics
faithfully generalize the AF case, as formalized below.
Proposition 43. Let SF = (A,R) be a SETAF s.t. |T | = 1
for each (T, h) ∈ R. Let F be the AF induced by SF. Then
σw(SF ) (via Definition 41) and σw(F ) (via Definition 10)
coincide for any σ ∈ {com, pref, grd}.

As in the AF case, comw extensions always exist.
Proposition 44. For all SETAFs SF , comw(SF ) 6= ∅.

Moreover, weakly preferred semantics can alternatively
be defined as maximal in comw(SF ) instead of admw(SF ).
Proposition 45. For all SETAFs SF , E ∈ prefw(SF ) iff E
is ⊆-maximal in comw(SF ).

We mention, however, that grdw is not necessarily unique:
this is inherited from the AF weak admissibility. As a final
remark, we note that Theorem 33 can be extended to the
remaining semantics as well.
Theorem 46. Let SF be a SETAF. It holds σw(SF ) =
σw(SF ◦) for any σ ∈ {com, pref, grd}.

5 ABA, SETAFs and Weak Admissibility
Equipped with our thorough study on SETAF weak admis-
sibility in Section 4, we are now ready to move on to ABA.
ABAFs and SETAFs are closely related; we consider the fol-
lowing construction (König, Rapberger, and Ulbricht 2022;
Caminada et al. 2024).
Definition 47. Let D = (L,R,A, c) be an ABAF. We define
the corresponding SETAF SFD = (A,R) by

A = A
R = {(T, h) | h ∈ A, T ⊆ A and T `t c(h)}

Example 48. Recall our introductory Example 15 about cli-
mate change whereA = {stud, dis, cc}, L = A∪{ac | a ∈
A}, contraries c(a) = ac for each assumption and rules
R = {(disc ← dis), (ccc ← dis, stud)}. The instantiated
SETAF SFD is given as follows.

dis

stud

cc

We have that admw(SFD) = {∅, {stud}, {cc}, {stud, cc}}.
For the classical semantics, the following semantics cor-

respondence is known.
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Proposition 49. Let D be an ABAF. For any semantics σ ∈
{adm, com, grd, pref}, it holds that σ(D) = σ(SFD)

We take this semantics correspondence as our starting
point, and obtain the weak semantics for ABA as follows.
Definition 50. Let D be an ABAF and SFD be the instanti-
ated SETAF. For any σw ∈ {admw, comw, grdw, prefw} we
let σw(D) = σw(SFD).

Hence, the models of an ABAF under weak admissibility
are directly given by the corresponding weakly admissible
semantics for the instantiated SETAF.
Example 51. Continuing Example 48, the weakly admissi-
ble extensions of D can be read from the associated SETAF,
i. e. admw(D) = {∅, {stud}, {cc}, {stud, cc}}. Moreover,
we e.g. have that prefw(D) = {{stud, cc}} which is the de-
sired outcome (our agent accepts the scientific studies and
the fact that climate change is real).

This first example already shows that attacks from self-
conflicting sets of assumptions are now treated satisfactory,
i. e. they are ineffective. Let us examine the issues raised in
Section 3. First of all, the SETAF for the ABAF D from
Example 16 is just a single self-attacking argument, SFD =
({a}, {(a, a)}), so {a} is no longer weakly admissible as per
Definition 50. The conflict was successfully directed to the
paradoxical assumption itself. Building on this simple case,
we furthermore demonstrate that self-attacking sets are now
evaluated correctly.
Example 52. Recall Example 17 with the ABAF D =
(L,R,A, c) where L = {a, b, c, ac, bc, cc}, A = {a, b},
contraries c(a) = ac as well as c(b) = bc, c(c) = cc, and
the following rulesR. We compute the instantiated SETAF:

R:
ac ← a, b

cc ← a, b
bc ← a, b

aSFD :

b

c

In the reduct SF {c}D the joint attack from {a, b} to a re-
mains, so {a, b} is not conflict-free. As a and b jointly attack
c while there is no weakly admissible extension of SF {c}D
containing both, the attack to c can be ignored. Hence
{c} ∈ admw(SFD). By Definition 50 the assumption c has
thus become acceptable under weak admissibility for ABA,
i. e. {c} ∈ admw(D) which is the desired behavior.

Not only self-attackers, but also odd cycles of attacks are
handled as intended under the SETAF-instantiation.
Example 53. Recall Example 18 with the ABAF D =
(L,R,A, c) where L = {a, b, c, d, e, ac, bc, cc, dc, ec}, A =
{a, b, c, d, e}, the usual contraries, and rulesR:

ac ← d bc ← a cc ← a dc ← b, c ec ← b, d

The instantiated SETAF is depicted below.

a

cSFD : b

d

e

We have admw(D) = {∅, {e}}, of which {e} is the only
complete, preferred and grounded extension. As we argued
in Example 18, we deem {e} acceptable which is captured
by our SETAF instantiation.

Moving on from realizing the behavior we expect on our
examples, let us now consider our desiderata. First of all,
the relations between the semantics specified in desidera-
tum (SR) translate directly from the SETAF setting to ABA,
along with other properties we identified in Section 4. Most
notably, we inherit the modularization property for ABA
from the SETAF-setting, which guarantees that the union
of a weakly admissible set of assumptions E together with
any set of assumptions E′, that is weakly admissible in the
reduct SFE

D , is weakly admissible, a non-trivial result under
non-classical notions of admissibility that has proved pow-
erful in multiple settings in AFs. Modularization is indis-
pensable for the derivation of structural properties like the
desiderata (F) and (I).

Another, straightforward advantage of the proposed
SETAF-based weak semantics for ABA is that in contrast to
the AF-instantiation assumptions can become self-attackers
themselves in the SETAF-instantiation, which makes negat-
ing their impact on other assumptions much easier and
clearer. It comes as no surprise that the desiderata regarding
paradoxical assumptions (P) and rule sets (PR) are satisfied
under the proposed approach. We conclude our introduction
of a SETAF-based weak admissibility for ABA by showing
that our semantics satisfy the desiderata specified in Sec-
tion 3.

Theorem 54. The weakly admissible semantics for ABAF
satisfies (L), (F), (P), (PR) and (I). The weakly complete
and weakly preferred semantics satisfy (SR).

6 Summary und Related Work
In this paper, we studied paradoxical assumption sets in
ABA and means to prevent them from blocking the accep-
tance of reasonable viewpoints. A similar problem received
a lot of attention in abstract argumentation, namely the han-
dling of self-attackers, direct and indirect. Several solutions
have been proposed (Bodanza and Tohme 2009; Dondio
and Longo 2019; Baumann, Brewka, and Ulbricht 2020b;
Dvorák et al. 2022; Thimm 2023). Striving to tackle the
issue for ABA, we decided to focus on one approach and
introduced the weak admissibility semantics family to ABA
which we believed to be the most promising candidates. The
properties of weakly admissible semantics have been exten-
sively studied for abstract argumentation (Dauphin, Rien-
stra, and van der Torre 2020; Dvorák, Ulbricht, and Woltran
2021; Baumann, Brewka, and Ulbricht 2022; Blümel and
Ulbricht 2022b), which serves as a solid starting point for
realizing the desired handling of paradoxical assumptions in
ABA. That being said, we consider adding further weak se-
mantics for ABA an important objective of future work.

We started by formalizing desiderata to capture the behav-
ior we expect from a reasonable liberalization of classical
admissibility for ABA. By doing so we provide a wider base
for introducing and discussing more different weak seman-
tics for ABA in the future, e. g. the undecidedness blocking
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semantics. Most of the principles, like independence, were
motivated by our previous investigations of principle satis-
faction by weak abstract argumentation semantics (Blümel
and Ulbricht 2022a). We then observed that applying admw

to the instantiated AF FD does not provide us with intu-
itive acceptance conditions. However, SETAFs as proposed
by Nielsen and Parsons (2006) are much closer to ABAFs
compared to AFs, as they are capable of modeling collective
attacks, a feature which is intrinsic to ABA. Driven by this
observation, we proposed weak admissibility for SETAFs,
as a faithful generalization of the weak semantics for Dung’s
AFs. We demonstrated that our proposal preserves many
desirable properties known to hold for the weak AF seman-
tics. We then applied these semantics to ABA by means of a
SETAF instantiation and showed that they are well-behaved.

Our strategy to define weak admissibility for ABA was
based on an instantiated abstract argumentation graph. This
is similar in spirit to e.g. ASPIC+ (Modgil and Prakken
2014) where the semantics are given in terms of the underly-
ing AF. However, ABAFs are equipped with native seman-
tics on their own, and thus do not rely on the construction
of FD to compute (classically) admissible extensions. This
provides another viewpoint on the accepted assumptions
besides the graph-theoretic interpretation, and also boosts
the performance of ABA reasoners (Lehtonen, Wallner, and
Järvisalo 2021; Lehtonen et al. 2023). Thus, both from a
conceptual as well as computational point of view, it would
be interesting to study how to define weak admissibility on
ABAFs directly, without relying on abstract argumentation.

The conducted export of weak admissibility from Dung’s
classical AFs to two further argumentation formalisms,
namely SETAFs and ABA, opens up a multitude of direc-
tions for future work. An important next step is a systematic
investigation of the properties of weakly admissible seman-
tics wrt. structured argumentation, e. g. whether it satisfies
the rationality postulates (Caminada and Amgoud 2007).
Several recent developments in the field of abstract argu-
mentation are based on the notion of the reduct (Bengel and
Thimm 2022; Dauphin, Rienstra, and van der Torre 2021;
Blümel and Thimm 2023). This paper lays the groundwork
for translating their results into SETAFs and ABA, in partic-
ular, the fact that the modularization property can be main-
tained is a promising result. Our work also contributes to a
better understanding of inconsistent sets of assumptions in
ABAFs by discussing both problematic cases and providing
a first working solution. Equipped with this knowledge, one
can now explore different options for handling the pointed
out issues.
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Dvořák, W., and Dunne, P. E. 2018. Computational prob-
lems in formal argumentation and their complexity. In
Handbook of Formal Argumentation. College Publications.
chapter 14, 631–687. Also appears in IfCoLog Journal of
Logics and their Applications 4(8):2557–2622.
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