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Abstract

The Shapley value, originally introduced in cooperative game
theory for wealth distribution, has found use in KR and
databases for the purpose of assigning scores to formulas and
database tuples based upon their contribution to obtaining a
query result or inconsistency. In the present paper, we ex-
plore the use of Shapley values in ontology-mediated query
answering (OMQA) and present a detailed complexity anal-
ysis of Shapley value computation (SVC) in the OMQA set-
ting. In particular, we establish a FP/#P-hard dichotomy for
SVC for ontology-mediated queries (T , q) composed of an
ontology T formulated in the description logic ELHI⊥ and a
connected constant-free homomorphism-closed query q. We
further show that the #P-hardness side of the dichotomy can
be strengthened to cover possibly disconnected queries with
constants. Our results exploit recently discovered connec-
tions between SVC and probabilistic query evaluation and al-
low us to generalize existing results on probabilistic OMQA.

� This pdf contains internal links: clicking on a notion
leads to its definition.1

1 Introduction
The Shapley value was originally proposed in the context
of cooperative game theory as a method for fairly distribut-
ing the wealth of a coalition of players based upon their re-
spective contributions. It has appealing theoretical proper-
ties, having been shown to be the unique wealth distribution
measure that satisfies a set of desirable axioms. Since its
proposal in (Shapley 1953), it has found application in nu-
merous domains, including various areas of computer sci-
ence. In artificial intelligence, the Shapley value has been
utilized for defining inconsistency measures of propositional
(Grant and Hunter 2006; Hunter and Konieczny 2010) and
description logic knowledge bases (Deng, Haarslev, and
Shiri 2007), and more recently for defining explanations of
machine learning models (Lundberg and Lee 2017). The
Shapley value has also gained attention in the database area
(Bertossi et al. 2023), where it has been employed both
for defining inconsistency values of databases (Livshits and
Kimelfeld 2022) and also for providing quantitative expla-
nations of query answers (Livshits et al. 2021). While other
quantitative measures, such as causal responsibility and the

1https://ctan.org/pkg/knowledge

Banzhaf power index (aka causal effect), have also been con-
sidered for databases, the Shapley value has thus far gar-
nered the most attention. We direct readers to (Livshits et al.
2021; Abramovich et al. 2024) for more details on alterna-
tive measures and how they relate to the Shapley value.

In general, Shapley value computation is known to be
computationally challenging, being #P-hard in data com-
plexity for common classes of queries, such as conjunctive
queries. This has motivated non-uniform complexity studies
aimed at pinpointing which queries admit tractable Shapley
value computation (Reshef, Kimelfeld, and Livshits 2020;
Khalil and Kimelfeld 2023), in particular, by establish-
ing fruitful connections with probabilistic query evalua-
tion and variants of model counting (Deutch et al. 2022;
Kara, Olteanu, and Suciu 2024; Bienvenu, Figueira, and
Lafourcade 2024b).

In the present paper, we revisit the use of the Shapley
value in the ontology setting, building upon these recent
advances in the database area. We shall mostly focus on
how the Shapley value can be employed for explaining an-
swers in the context of ontology-mediated query answering
(OMQA). We recall that the OMQA is used to improve ac-
cess to incomplete and possibly heterogeneous data through
the addition of ontology layer, which provides a user-
friendly vocabulary for query formulation as well as do-
main knowledge that is taken into account when computing
the query answers. Over the past fifteen years, OMQA has
grown into a vibrant research topic within both the KR and
database communities (Poggi et al. 2008; Calı̀ et al. 2011;
Mugnier and Thomazo 2014; Bienvenu and Ortiz 2015;
Xiao et al. 2018). With the increasing maturity and de-
ployment of OMQA techniques, there is an acknowledged
need to help users understand the query results. Various
notions of explanations with different levels of detail can
be considered for OMQA, ranging from providing proofs
of how an answer can be derived (Borgida, Calvanese, and
Rodriguez-Muro 2008; Alrabbaa et al. 2022) to generating
minimal subsets of the KB that suffice to obtain the answer
or identifying the assertions and/or axioms that are relevant
in the sense that they belong to such a minimal subset (Bi-
envenu, Bourgaux, and Goasdoué 2019; Ceylan et al. 2019;
Ceylan et al. 2020). The Shapley value offers a more nu-
anced, quantitative version of the latter approach, by assign-
ing the relevant assertions and axioms scores based upon
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their level of responsibility or importance in obtaining the
considered query answer (or entailment).

For our study of Shapley value computation, we will work
with description logic (DL) knowledge bases (KB), consist-
ing of an ABox (dataset) and TBox (ontology). We intro-
duce some natural ways of defining the Shapley value com-
putation (SVC) problem in the DL setting, by varying what
is to be explained (entailment of a TBox axiom, ABox asser-
tion, or query answer), which parts of the KB are assigned
values, and how the complexity is measured. To begin our
study, we establish the #P-hardness of the Shapley value
computation of a simple graph reachability query, which
we then employ to show #P-hardness of several variants
of the SVC problem, even for inexpressive DLs and atomic
queries. In light of these initial negative results, we em-
bark on a non-uniform complexity analysis, whose aim is
to classify the data complexity of the Shapley value com-
putation problems SVCQ associated with each ontology-
mediated query (OMQ) Q = (T , q). By transferring recent
results from the database setting, we establish a FP/#P-
hard dichotomy result of Shapley value computation prob-
lem SVCQ for OMQs Q = (T , q) where the TBox T is
formulated in the Horn DL ELHI⊥ and q is a constant-free
connected homomorphism-closed query. Moreover, if re-
stricted to the case where q is a conjunctive query, then the
dichotomy is effective, i.e. we can decide whether SVCQ

is FP or #P-hard. Our final and most technically challeng-
ing result is to show that the #P-hardness part of the di-
chotomy can be strengthened to cover OMQs based upon a
wider range of queries q. Specifically, we show that for any
OMQ Q = (T , q) based upon a ELHI⊥ TBox and a UCQ
q (which may be disconnected and/or contain constants),
non-FO-rewritability of Q implies #P-hardness of SVCQ.
Due to the tight connections holding between Shapley value
computation and probabilistic query evaluation, the proof of
this result can be further used to obtain a FP/#P-hard di-
chotomy for probabilistic ontology-mediated queries from
(ELHI⊥,UCQ), substantially generalizing existing results.

The paper is structured as follows. Section 2 introduces
key notions from databases and description logics, and Sec-
tion 3 defines Shapley values and recalls useful results about
Shapley values in databases. We also prove a new hardness
result for graph reachability queries, which we apply in Sec-
tion 4 to show hardness of Shapley value computation in var-
ious ontology settings. In Section 5, we present our FP/#P-
hard dichotomy result for OMQs in the Horn DL ELHI⊥,
and in Section 6, we strengthen the #P-hardness result to
cover a wider range of queries. We conclude the paper in
Section 7 with a summary of our contributions and a discus-
sion of future work. Missing proof details can be found in
the full version (Bienvenu, Figueira, and Lafourcade 2024a).

2 Preliminaries
We recall some important notions related to description
logics (DLs), databases, queries, and complexity, directing
readers to (Baader et al. 2017) for a detailed introduction to
DLs. Our presentation of DLs and databases slightly dif-
fers from the ‘usual’ ones so as that we may employ some
definitions and notations in both settings.

Databases A database D is a finite set of relational facts
P (⃗a), where P is a k-ary symbol drawn from a countably in-
finite set of relation symbols ND and a⃗ is a k-ary tuple of (in-
dividual) constants drawn from a countably infinite set NI.
We shall also consider extended databases which may con-
tain infinitely many facts P (⃗a), and where the elements of
a⃗ are drawn from NI and from a countably infinite set NU

of unnamed elements. The domain dom(D) of D contains
all constants and unnamed elements occurring in D, and we
use const(D) for the constants in D. When D is a database,
dom(D) = const(D).

A homomorphism from an extended database D to an ex-
tended database D′ is a function h : dom(D) → dom(D′)
such that P (h(⃗a)) ∈ D′ for every P (⃗a) ∈ D. We write
D hom−−→ D′ to indicate the existence of such an h. If addi-
tionally h(c) = c for every c ∈ C ∩ const(D), with C ⊆ NI,
then we call h a C-homomorphism and write D C-hom−−−→ D′.

We say that a (possibly extended) database D is con-
nected if so is the underlying undirected graph with vertices
dom(D)∪D and edges {(ai, P (⃗a)) | P (⃗a) ∈ D}. The con-
nected components of D are the maximal subsets of D that
are connected in the underlying graph.

Queries In the most general sense, a k-ary query (k ≥
0) can be defined as a function q that maps every extended
database D to a set of k-tuples of constants from const(D)
(the answers to q). Queries of arity 0 are called Boolean.
When q is a Boolean query, each D is mapped either to {()}
or {}. In the former case, we say that D satisfies q and write
D |= q. If additionally D′ ̸|= q for every D′ ⊊ D, then we
shall call D a minimal support for q.

A Boolean query q is said to be closed under homomor-
phisms, or hom-closed, if D |= q and D hom−−→ D′ implies that
D′ |= q. The notion of C-hom-closed is defined analogously
using C-hom−−−→ instead of hom−−→ . When q is (C-)hom-closed,
D |= q iff D contains some minimal support for q; we say
that q is connected if all its minimal supports are connected.

So far we have considered an abstract notion of query,
but in practice, queries are often specified in concrete query
languages. First-order (FO) queries are given by formulas
in first-order predicate logic with equality, whose relational
atoms are built from predicates from ND and terms drawn
from NI ∪ NV, with NV a countably infinite set of variables,
equipped with standard FO logic semantics (i.e. D |= q if
D, viewed as a first-order structure, satisfies the FO sentence
q). Two prominent classes of FO queries are conjunctive
queries (CQs), and unions of conjunctive queries (UCQs)
which are finite disjunctions of CQs having the same free
variables. We remark that Boolean (U)CQs without con-
stants are hom-closed, and Boolean (U)CQs with constants
in C are C-hom-closed. Other examples of (C)-hom-closed
queries include Datalog queries and regular path queries.

DL Knowledge Bases A DL knowledge base (KB) K =
(A, T ) comprises an ABox (dataset) A and a TBox (ontol-
ogy) T , which are built from countably infinite sets NC of
concept names (unary predicates) and NR of role names (bi-
nary predicates) with NC ∪ NR ⊆ ND, and the individual
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constants from NI. An ABox is a database with relations
drawn from NC ∪ NR and thus contains two kinds of facts:
concept assertions A(c) (A ∈ NC, c ∈ NI) and role asser-
tions r(c, d) (r ∈ NR, c, d ∈ NI). A TBox is a finite set of
axioms, whose form is dictated by the DL in question. We
use L TBox to refer to a TBox formulated in the DL L. For
example, in the DL ELHI⊥ considered later in this paper,
complex concepts are constructed as follows:

C := ⊤ | A | C ⊓ C ′ | ∃R.C A ∈ NC, R ∈ N±R

where N±R = NR ∪ {r− | r ∈ NR}, and ELHI⊥ TBoxes
consist of concept inclusions C ⊑ D (with C,D complex
concepts) and role inclusions R ⊑ S with R,S ∈ N±R . We
shall also consider DL-Litecore TBoxes, which are composed
of concept inclusions of the form

B1 ⊑ (¬)B2 Bi := A | ∃R.⊤ A ∈ NC, R ∈ N±R

The semantics of DL KBs is defined using interpretations
I = (∆I , ·I), where ∆I ⊆ NI ∪ NU is a non-empty set and
·I a function2 that maps every A ∈ NC to a set AI ⊆ ∆I

and every r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . The
function ·I is straightforwardly extended to interpret com-
plex concepts and roles: ⊤I = ∆I , (C ⊓D)I = CI ∩DI ,
(∃R.C)I = {d | ∃ e ∈ CI s.t. (d, e) ∈ rI}, (¬G)I =
∆I \ GI , and (r−)I = {(e, d) | (d, e) ∈ rI}. Note
that by requiring that ∆I ⊆ NI ∪ NU, we ensure that ev-
ery interpretation I can be viewed as an extended database
DI = {A(e) | e ∈ AI} ∪ {r(d, e) | (d, e) ∈ rI}, and we
shall view I as an extended database when convenient.

An interpretation I satisfies a (concept or role) inclusion
G ⊑ H if GI ⊆ HI , and it satisfies an assertion A(c) (resp.
r(c, d)) if c ∈ AI (resp. (c, d) ∈ rI). We call I a model of a
TBox T if it satisfies every axiom in T , a model of an ABox
A if it satisfies every assertion in A, and a model of a KB
(A, T ) if it is a model of both T and A. We use Mod(K)
for the set of models of a KB K. A KB K is consistent if
Mod(K) ̸= ∅ (else it is inconsistent). An ABox A is T -
consistent when the KB (A, T ) is consistent. An axiom α is
entailed from a TBox T , written T |= α, if every model of
T satisfies α, and an axiom or assertion α is entailed from a
KB K, written K |= α, if every model of K satisfies α.

Querying DL KBs We say that a Boolean query q is en-
tailed from a DL KB K, written K |= q, if DI |= q for
every I ∈ Mod(K). The certain answers to a non-Boolean
k-ary query q(x⃗) w.r.t. a KB K = (A, T ) are the k-tuples a⃗
of constants from const(A) such that K |= q(⃗a), with q(⃗a)
the Boolean query obtained by substituting a⃗ for the free
variables x⃗. Note that when the KB is inconsistent, every
Boolean query is trivially entailed, so every possible tuple a⃗
of ABox constants counts as a certain answer.

While it is traditional to view queries as being posed to
the KB, it is sometimes more convenient to adopt a database

2To simplify the comparison with the database setting, we make
the standard names assumption, interpreting constants as them-
selves, but our results also hold under the weaker unique names
assumption. Moreover, to allow for finite interpretation domains,
we do not require all constants to be interpreted.

perspective and treat T and q together as constituting a com-
posite ontology-mediated query (OMQ) Q = (T , q), which
is posed to the ABox A. When we adopt this perspective,
we will write A |= (T , q) or A |= Q to mean (A, T ) |= q.
When convenient, we will use the notation (L,Q) to desig-
nate the class of all OMQs (T , q) such that T is formulated
in the DL L and q is a query from the class of queries Q.

A prominent technique for computing certain answers (or
checking query entailment) is to rewrite an OMQ into an-
other query that can be directly evaluated using a database
system. Formally, we call a query q∗(x⃗) a rewriting of an
OMQ (T , q) if for every ABox A and candidate answer a⃗:

A |= (T , q(⃗a)) iff A |= q∗(⃗a)

If we modify the above definition to only quantify over T -
consistent ABoxes, then we speak instead of a rewriting
w.r.t. consistent ABoxes. When q∗ is a first-order query, we
call it a first-order (FO) rewriting. If an OMQ Q possesses
an FO-rewriting, we say that Q is FO-rewritable, else it is
called non-FO-rewritable.

In Horn DLs, like ELHI⊥ and DL-Litecore, every consis-
tent KB K = (A, T ) admits a canonical model IA,T with
∆IA,T ⊆ const(A) ∪ NU with the special property that it
embeds homomorphically into every model of K. More pre-
cisely, DIA,T

C-hom−−−→ DI for every I ∈ Mod(K) and ev-
ery C ⊆ NI. While the definition of IA,T depends on the
particular Horn DL, the construction typically involves com-
pleting the ABox by adding tree-shaped structures using un-
named elements to satisfy the TBox axioms in the least con-
strained way possible. Importantly, if K = (A, T ) admits a
canonical model IA,T , then for every C-hom-closed query q
(with C ⊆ NI):

K |= q(⃗a) iff IA,T |= q(⃗a)

In particular, this holds when q is a (U)CQ.

Complexity We assume familiarity with FP, the set of
functions solved in polynomial-time; and #P, the functions
which output the number of accepting runs in polynomial-
time nondeterministic Turing machines. We will work with
polynomial-time Turing reductions between computational
tasks, and we write P1 ≡P P2 to denote that there are
polynomial-time algorithms to compute Pi using unit-cost
calls to P3−i, for both i ∈ {1, 2}.

3 Shapley Value: Definition & Basic Results
In this section, we formally define the Shapley value, recall
relevant existing results, and prove a new intractability result
for computing Shapley values in reachability games.

3.1 Definition of Shapley Value
The Shapley value (Shapley 1953) was introduced as a
means to fairly distribute wealth amongst players in a a co-
operative game, based upon their respective contributions.

A cooperative game consists of a finite set of players P
and a wealth function v : ℘(P ) → Q that assigns a value
to each coalition (i.e., set) of players, with v(∅) = 0. Pic-
ture a scenario where the players arrive one by one in a ran-
dom order, and each one earns what she added to the current
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coalition’s wealth on arrival. The Shapley value of a player
p ∈ P is defined as her expected earnings in this scenario,
which can be expressed as:

Sh(P,v, p) :=
1

|P |!
∑

σ∈S(P )

(v(σ⩽p)− v(σ<p)) (1)

where S(P ) denotes the set of permutations of P and σ<p

(resp. σ⩽p) the set of players that appear before p (resp. be-
fore or at p) in the permutation σ. Intuitively, we take the
average marginal contribution v(σ⩽p)−v(σ<p) of p, across
all possible orderings σ of the players. Eq. (1) can be equiv-
alently reformulated as:∑

B⊆P\{p}

|B|!(|P | − |B| − 1)!

|P |!
(v(B ∪ {p})− v(B)) (2)

which will be more convenient in our proofs.

3.2 Existing Results from the Database Setting
There has been significant interest lately in the problem of
computing the Shapley value of database facts as a means
of quantifying their contributions to a query answer. The
formal setting is as follows: the database D is partitioned
into endogenous and exogenous facts, D = Dn ⊎ Dx,3 the
players of the cooperative game are the endogenous facts
Dn, and the wealth function of a given Boolean query q
is defined, for every subset B ⊆ Dn of endogenous facts,
as vq(B) = vB − vx where vB = 1 (resp. vx = 1) if
Dx ∪ B |= q (resp. if Dx |= q), and 0 otherwise. Shap-
ley value computation on q, denoted SVCq , is the problem
of computing the Shapley value Sh(Dn,vq, α) for the input
partitioned database Dn⊎Dx and fact α ∈ Dn. We will write
SVCn

q to refer to the task when restricted to purely endoge-
nous databases, i.e., partitioned databases with only endoge-
nous assertions (of the form D = (Dn,Dx) with Dx = ∅).

Probabilistic Query Evaluation We will exploit known
connections between SVC and probabilistic query evalua-
tion. A tuple-independent probabilistic database is a pair
D = (S, π) where S is a database and π : S → (0, 1] is a
probability assignment. For a Boolean query q, Pr(D |= q)
is the probability of q being true, where each assertion α
has independent probability π(α) of being in the database.
The problem of computing, given a tuple-independent prob-
abilistic database D, the probability Pr(D |= q) is known as
the probabilistic query evaluation problem, or PQEq .

We consider three restrictions of PQEq , by limiting the
probabilities that appear in the image Im(π) of the proba-
bility assignment of the input probabilistic database:

• PQEq(1/2) : input (S, π) is such that Im(π) = {1/2};

• PQEq(1/2; 1) : input (S, π) is such that Im(π) = {1/2, 1};

• single proper probability query evaluation (SPPQEq): in-
put (S, π) is s.t. Im(π) = {p, 1} for some p ∈ (0, 1].

3By A⊎B we denote the union A∪B of two disjoint sets A,B.

These restricted versions of PQE can be also found in the
literature under the names of their counting problem coun-
terparts: PQE(1/2) is also known as the “model counting”
or “uniform reliability” problems, and PQE(1/2; 1) as the
“generalized model counting” problem.

Known results In (Livshits et al. 2021), a FP/#P-hard di-
chotomy was established for self-join-free CQs (i.e. not hav-
ing two atoms with the same relation name). The dichotomy
coincides with the FP/#P-hard dichotomy for PQE (Dalvi
and Suciu 2004), and the tractable queries admit a syntacti-
cal characterization, known as hierarchical queries. In fact,
the PQE dichotomy extends to the more general class of
UCQs (Dalvi and Suciu 2012), where the queries for which
PQE is tractable are known as safe UCQs (hence, in par-
ticular hierarchical CQs are safe). However, it is an open
problem whether UCQs (or even CQs with self-joins) also
enjoy a dichotomy for SVC. Concretely, it is unknown if
SVC is #P-hard for all unsafe UCQs (or even CQs).

Recent work has clarified the relation between the two di-
chotomies by reducing SVC to PQE (Deutch et al. 2022) and
reproving the hardness of SVC (Kara, Olteanu, and Suciu
2024) by reduction from the same model counting problem
for Boolean functions that had been used to show hardness
of PQE for non-hierarchical self-join-free CQs (Dalvi and
Suciu 2004). Further, SPPQE and SVC have been shown
to be polynomial-time inter-reducible for many fragments
of hom-closed queries (Bienvenu, Figueira, and Lafourcade
2024b), in particular for connected queries without con-
stants.

Theorem 1. (Bienvenu, Figueira, and Lafourcade 2024b,
Corollaries 4.1 and 4.2) For every connected hom-closed
Boolean query q, SPPQEq ≡P SVCq; further, on graph
databases, SVCq is in FP if q is equivalent to a safe UCQ
and #P-hard otherwise.

In the context of the previous statement, a graph database
is a database restricted to relations of arity 1 or 2 (hence an
ABox can be seen as a graph database). The result above
relies crucially on the #P-hardness of PQE(1/2) (and hence
of SPPQE) for non-FO-rewritable (a.k.a. unbounded) hom-
closed queries on graph databases (Amarilli 2023), and the
FP/#P-hard dichotomy of PQE(1/2; 1) for UCQs (Dalvi
and Suciu 2012; Kenig and Suciu 2021).

3.3 Hardness of SVC for Reachability Games
This subsection shows the #P-hardness of the Shapley value
computation of graph reachability, which, as we shall see in
Section 4, implies the #P-hardness of several problems in
the setting of ontologies.

Consider the Boolean query st-reach which asks whether
there is a directed path from a vertex s to a vertex t in a (di-
rected) graph. A graph can be seen as a graph database using
a single binary relation, and s, t are individuals. As we show
next, computing the Shapley value for this simple query is
already #P-hard, even in the restricted case of purely en-
dogenous databases.

Proposition 2. SVCn
st-reach is #P-hard.
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µ

Gs tsi· · ·s2s1Gi:

Figure 1: Illustration of the graph Gi.

The result follows via a reduction akin to the one in
(Livshits et al. 2021), but from a different #P-hard task,
namely S-T CONNECTEDNESS, which is the task of, given
a graph G and vertices s, t thereof, counting the number of
subgraphs of G which contain a path from s to t (Valiant
1979, problem 11). This reduction follows a technique that
will be used again in later proofs, which consists in pro-
ducing several related variants of an instance, so that when
applying Equation (2) we obtain a system of linear combi-
nations of the desired values. This system turns out to be
invertible and thus we can obtain the values.

Proof sketch. By reduction from the S-T CONNECTEDNESS
task, known to be #P-hard (Valiant 1979, Theorem 1 &
Problem 11). Let G = (V,E) be the input to the S-T CON-
NECTEDNESS. For each 1 ≤ i ≤ |E|, let Gi = (Vi, Ei)
be the graph having Vi = V ∪ {sj : j ∈ [i]}, Ei =
E ∪ {(si, s), (s1, t)} ∪ {(sj , sj+1) : j ∈ [i − 1]} and let
µ = (s1, t), as shown in Figure 1. The argument then
follows the same lines as (Bienvenu, Figueira, and Lafour-
cade 2024b, Lemma 4.2), where one can show that each
Sh(Ei,v, µ) for the query s1t-reach is a linear combination
(plus constants) of the number of subgraphs of G of a given
size on which there is a path from s to t, and that these form
a solvable system. It suffices to solve the system and add
up all solutions to obtain the total number of subgraphs that
connect s to t.

4 Shapley Values in the Ontology Setting and
First Intractability Results

Now that we that have seen how the Shapley value has been
applied in the database setting, we can adapt the definitions
and techniques to the context of OMQA. There are differ-
ent ways to formalize this, in particular, the ontology may
be considered to be part of the input or not. Remember
that in Proposition 2 we identified the inherent difficulty of
reachability-like queries for SVC. Since reasoning on TBox
axioms inherently involves some form of reachability analy-
sis, we will show that SVC is #P-hard as soon as the TBox
is taken as being part of the input. This will motivate us to
consider a different way of formulating and analyzing the
SVC problem in later sections.

We first present a running example, which showcases the
use of the Shapley value in the ontology setting.

Example 3. Consider the ELHI⊥ KB defined in Figure 2,
where the ABox (bottom half) contains information on some
ingredients and recipes, and the TBox (top half) defines more
complex notions such as a ‘land-sea recipe’. For instance,
∃HasIngr.FishBased ⊑ FishBased intuitively translates as
‘anything that has a fish-based ingredient is fish-based’.

A user of this KB might obtain poulardeNantua as an an-
swer to the query LandSea(x), and wonder which ingredi-

FishBased ⊓MeatBased ⊑ LandSea Fish ⊑ FishBased
∃HasIngr.FishBased ⊑ FishBased Seafood ⊑ FishBased
∃HasIngr.MeatBased ⊑ MeatBased Crustacean ⊑ SeaFood
HasSauce ⊑ HasIngr Meat ⊑ MeatBased

HasIngr
e1

HasSauce e3
HasIngre2

HasIngr
e4

poulardeNantua chicken

nantuaSauce crayfish

Meat

Crustacean

Figure 2: An example KB, with data and knowledge about a recipe
from (Escoffier 1903). The arrows represent role assertions and
labels on top of boxes (e.g. Meat) represent concept assertions.

ents are the most responsible for this fact. She can thus
set everything but the role assertions (which specify ingre-
dients) as exogenous and compute the Shapley values for
the Boolean query LandSea(poulardeNantua). The mod-
eling choice to set only role assertions as endogenous corre-
sponds to considering the background knowledge provided
by the TBox and the concept assertions as being external to
responsibility attribution, since they are not part of recipes.4

We can compute the values via Eq. (1). There are 4! = 24
possible permutations over the 4 endogenous role assertions
{e1, e2, e3, e4}. 14 out of 24 permutations are s.t. v(σ⩽e1)−
v(σ<e1) = 1, and similarly 6 for e2, 2 for e3, and 2 for e4,
making the respective Shapley values: 14/24, 6/24, 2/24 and 2/24.

As expected, e1 has the highest responsibility because it is
necessary to satisfy the query, then comes e2 that only needs
to be combined with e1 and finally e3 and e4 that must be
used together in addition to e1.

Of course a naı̈ve application of Eqs. (1) or (2) is not ef-
ficient, since they involve an exponential number of permu-
tations or subsets. This raises the natural question of when a
tractable approach can be found.

In the remainder of this section we illustrate how the hard-
ness for SVCn

st-reach can be used to prove the hardness of
many natural applications of the Shapley value using the
same example KB depicted in Figure 2.

4.1 Shapley Values for Axiom Entailment
A first application of the Shapley value to ontologies is to
focus solely on the TBox and determine which axioms are
most responsible for a given TBox entailment, e.g. to find
out why crustaceans count as fish-based. Unfortunately, the
transitive nature of concept inclusions make this a reacha-
bility question and hence #P-hard in light of Proposition 2.
In fact, hardness holds already for the simplest possible DL
Lmin containing only concept name inclusions.

4It is especially important in this scenario to exclude the TBox
axioms because while the axiom Meat ⊑ MeatBased is explicitly
part of the KB, the inclusion Crustacean ⊑ FishBased is only
indirectly inferred. This difference would lower the scores of the
fish-based ingredients relative to the meat-based ones if the TBox
axioms were also set as endogeneous.
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Proposition 4. For every TBox T and S ⊆ T and pair of
concept names A,B, define vA⊑B(S) := 1 if S |= A ⊑ B,
and 0 otherwise. The problem of computing, given a Lmin

TBox T , concept names A,B, and an axioms µ ∈ T , the
Shapley value of µ in the game (T ,vA⊑B) is #P-hard.

Proof. To reduce from SVCn
st-reach, let G = (V,E) a di-

rected graph and s, t ∈ V . Consider the TBox TG := {Ax ⊑
Ay | (Ax, Ay) ∈ E} (it only contains concept name inclu-
sions) and the concept inclusion As ⊑ At. By construction
the reachability from s to t is equivalent to the entailment of
As ⊑ At, which means the two games are isomorphic.

4.2 Shapley Values for Query Entailment
We next consider the application of the Shapley value to
explaining query entailment w.r.t. a DL KB. In our run-
ning example, a user may ask why there is a fish-based
recipe in the KB of Figure 2 if there is no Fish as-
sertion. She could therefore compute the Shapley val-
ues for the CQ ∃x.FishBased(x) and discover that the
crayfish is considered fish-based because of the asser-
tion Crustacean(crayfish) and the axioms Crustacean ⊑
SeaFood ⊑ FishBased. However, the chain of inclusions
needed to satisfy the query expresses a form of reachability,
and thus we can transfer the #P-hardness of SVCn

st-reach.
In this setting we consider as input a partitioned KB K =

(An ⊎ Ax, Tn ⊎ Tx) and the task is to compute the Shapley
value of the statements in An ∪ Tn, in order to quantify their
responsibility in K entailing q. Concretely, for any Boolean
query q we consider the associated cooperative game having
An ∪ Tn as players and vq(S) := vS − vx where vS = 1
(resp. vx = 1) if (Ax ∪ (S ∩An), Tx ∪ (S ∩ Tn)) |= q (resp.
if (Ax, Tx) |= q), and 0 otherwise.

Proposition 5. The problem of computing Shapley values
for Boolean CQs over partitioned KBs on Lmin is #P-hard.
Hardness holds even for queries given as ABox assertions.

Proof. We build a TBox to reduce from SVCn
st-reach: let G =

(V,E) be a directed graph and s, t ∈ V , from which we
define TG := {Ax ⊑ Ay | (Ax, Ay) ∈ E}, with At = A,
and A := {As(c)}. We set the ABox as exogenous and
the TBox as endogenous. Then a subset X ⊆ TG is s.t.
(A,X ) |= q iff X |= As ⊑ At iff X defines a subset of E
which admits a path from s to t. The game for (TG,A) is
therefore isomorphic to the one for SVCn

st-reach on G.

4.3 Shapley Values on Exogenous Ontologies
Propositions 4 and 5 show that computing Shapley values
of axioms is inevitably intractable, as reasoning on concept
and role inclusions naturally involves reachability. One idea
to sidestep this issue would be to treat the whole TBox as
exogenous. Conceptually, this corresponds to treating TBox
axioms as given or obvious, thereby focusing on explana-
tions in terms of the ABox assertions. In our running exam-
ple of Figure 2, the user may wonder what ingredients make
the Poularde Nantua recipe fish-based. She could compute
Shapley values for the CQ FishBased(poulardeNantua), set-
ting everything but the HasIngr-roles as exogenous, and
discover that the recipe is fish-based because of the two

chains of ingredients: poulardeNantua
HasIngr−−−−→ crayfish and

poulardeNantua HasSauce−−−−−→ nantuaSauce
HasIngr−−−−→ crayfish.

In terms of complexity the problem will once again
be #P-hard due to reachability, which this time is ex-
pressed within the data itself. The culprit is the axioms
∃HasIngr.FishBased ⊑ FishBased, which can be found in
any DL at least as expressive as EL.

Proposition 6. Let q be a CQ of the form A(c), for A ∈ NC

and c ∈ NI. Then the problem of computing Shapley values
for q over partitioned KBs on EL is #P-hard, even if we
assume that the TBox only contains exogenous axioms.

Proof. Let G = (V,E) be a directed graph and s, t ∈ V ,
from which we define the partitioned ABox given by Ax :=
{B(cs), D(ct)} and An := {r(cx, cy) | (x, y) ∈ E} with B,
D, r and the cx being all fresh, except cs := c. Then define
the purely exogenous TBox T := {B⊓D ⊑ A, ∃r.D ⊑ D}.
Then a coalition X ⊆ An is s.t. (X ∪ Ax, T ) |= q iff it
defines a subset of G where there is a path from s to t. The
corresponding cooperative game is then the same as the one
defining SVCn

st-reach, hence the desired reduction.

Interestingly, we can show that the problem stated in the
preceding result is tractable for DL-Lite ontologies:

Proposition 7. The problem of computing Shapley values
of CQs of the form A(c) (with A ∈ NC and c ∈ NI) over
partitioned KBs on DL-Litecore is in FP when restricted to
KBs with only exogenous TBox axioms.

Proof. Note that one can compute, in polynomial time, a set
of facts {α1, . . . , αm} ⊆ A such that for every A′ ⊆ A, we
have A |= (T , A(c)) iff A′ |= α1 ∨ · · · ∨ αm. This is only
possible because T is a DL-Litecore TBox.

We can then compute the Shapley values for q∗ = α1 ∨
· · ·∨αm and the database An⊎Ax, disregarding the TBox T
since it is exogenous. We observe that if Ax contains some
αi, all facts in An have value zero. Otherwise, only the facts
αi will have a non-zero Shapley value, and their values can
be easily computed using Eq. (2) and the observation that
there are precisely

(|An|−m
k

)
subsets B ⊆ An \ {αi} of size

k such that vq∗(B ∪ {αi})− vq∗(B) = 1.

Determining for which classes of non-atomic CQs the
previous proposition holds w.r.t. DL-Lite ontologies is chal-
lenging, as it would require us to first establish a full com-
plexity characterization for plain CQs (without an ontology,
on a binary signature), which remains an open question.

4.4 Approximation and Relevance
In view of the hardness results of Propositions 4 to 6, an al-
ternative would be to give up on the precise Shapley value
and instead find an approximation, or at the very least distin-
guish between elements having a zero or non-zero Shapley
value. We call the elements with non-zero values relevant5,
because they are exactly those that appear in some minimal

5The identification of relevant axioms / assertions has been con-
sidered in previous work on explaining DL entailments and query
answers, see e.g. (Peñaloza and Sertkaya 2010; Ceylan et al. 2020).
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support. However, observe that the Shapley value is more
informative than relevance: in Example 3 all considered as-
sertions are relevant, but have different Shapley values.

There have been different works on approximating Shap-
ley values in the context of databases (Livshits et al. 2021;
Khalil and Kimelfeld 2023), but in the case of SVCn

st-reach
it has been shown in (Khalil and Kimelfeld 2023, Theo-
rem 5.1) that no multiplicative FPRAS approximation can
be found unless BPP ⊆ NP,6 because merely deciding rel-
evance is NP-hard —indeed, it can be used to decide if a
given edge lies on a simple path from s to t, which is a
known NP-complete problem. Hence, in the previous cases
we have considered, the intractability stems from the notion
of relevance rather than from the precise Shapley value.

5 A Dichotomy for OMQs in ELHI⊥
The results of Section 4 show that allowing TBoxes to be
part of the input, make the Shapley value computation prob-
lems #P-hard. This suggests the interest of analyzing the
complexity of Shapley value computation at the level of
individual ontology-mediated queries, only taking data as
input. Such a non-uniform approach to complexity analy-
sis has previously been undertaken for several OMQA set-
tings, and in particular in the context of probabilistic OMQA
(Jung and Lutz 2012). Moreover, this perspective aligns
nicely with the formulation of Shapley value computation
for database queries and shall allow us to transfer results
from the database setting.

In the present section, we will be interested in applying
Theorem 1 in a ‘black-box’ fashion, so we will need to iden-
tify a class of OMQs that is hom-closed and connected. To
this end, we prove the following lemma, which shows that
the addition of a ELHI⊥ ontology preserves the connected-
ness of hom-closed queries.

Lemma 8. Let q be a connected C-hom-closed query and
T an ELHI⊥ ontology. Then the OMQ Q := (T , q) is a
connected C-hom-closed query.

Proof. Consider q and T as in the lemma statement, and
define q⊥ as the Boolean query that is satisfied whenever
the input ABox A is inconsistent with T . By inspecting
Datalog rewritings of ABox inconsistency for (extensions
of) ELHI⊥ (Eiter et al. 2012; Bienvenu and Ortiz 2015), it
can be readily verified that the query q⊥ is both (C-)hom-
closed and connected.

Now consider a minimal support A of Q that is T -
consistent. The knowledge base (A, T ) thus admits a canon-
ical model IA,T relative to T , and we may suppose that
IA,T is constructed in a standard way, as in e.g. (Bienvenu
and Ortiz 2015). By definition, IA,T |= q since A |= Q,
so IA,T must contain a minimal support S of q. Moreover,
since q is connected, S must be contained in a single con-
nected component of IA,T . However, it can be easily seen
from the construction of IA,T that the connected compo-
nents of IA,T are the canonical models of the connected

6The same article gives a so-called additive approximation, but
its use is very limited by the fact that it cannot decide relevance.

components of A. It follows that S ⊆ IA∗,T for some con-
nected component A∗ of A. Since IA∗,T contains S , we
have IA∗,T |= q and thus A∗ |= Q. Since A is assumed
to be minimal, then necessarily A∗ = A and thus A is con-
nected. This completes the proof that Q is connected.

To show Q is C-hom-closed, consider ABoxes A,B such
that A |= Q and A C-hom−−−→ B. If A |= q⊥, then B |= q⊥
since q⊥ is hom-closed, and from B |= q⊥ we trivially have
B |= Q. Otherwise, the KB (A, T ) is consistent, and if
B ̸|= q⊥, then so too is (B, T ). An examination of the
canonical model construction in (Bienvenu and Ortiz 2015)
reveals that A C-hom−−−→ B implies IA,T

C-hom−−−→ IB,T . Since
A |= Q, we have IA,T |= q. As q is C-hom-closed, this
yields IB,T |= q, hence B |= Q as required.

The first and most direct application of Lemma 8 is
to establish a dichotomy for OMQs whose base query is
constant-free and connected, as a consequence of the equiv-
alence with probabilistic databases established in (Bienvenu,
Figueira, and Lafourcade 2024b).

Theorem 9. For every connected (constant-free) hom-
closed query q and ELHI⊥ ontology T we have
SVC(T ,q) ≡P SPPQE(T ,q). Further, the problem is in FP
if the OMQ (T , q) can be rewritten into a safe UCQ and
#P-hard otherwise.

Proof. For OMQs (T , q) from the considered class,
Lemma 8 states that (T , q) is a connected (∅-)hom-closed
query, hence Theorem 1 gives the desired results.

It is decidable whether or not a given UCQ is safe (Dalvi
and Suciu 2012, implicit). It therefore follows that the di-
chotomy given by Theorem 9 is effective whenever the first-
order rewritability is decidable for the considered class of
OMQs, and that a first-order rewriting can always be effec-
tively computed when there exists one. This is in particular
true for (ELHI⊥,CQ) (Bienvenu et al. 2016, Theorem 5).

Furthermore, (Jung and Lutz 2012, Theorem 5) gives a
syntactic characterisation of which constant-free connected
OMQs in (DL-Litecore, CQ) are equivalent to safe UCQs.
By Theorem 9, it also characterizes constant-free connected
OMQs Q ∈ (DL-Litecore, CQ) that are s.t. SVCQ ∈ FP.

6 Strengthening the #P-Hardness Result
The dichotomy of Theorem 9 is limited in two respects:

• The result only covers connected constant-free queries.

• When an OMQ is seen as an abstract query, the distinction
between consistent and inconsistent ABoxes is lost. How-
ever, one might be interested in explaining answers to a
query only over consistent ABoxes.

When considering OMQs in (ELHI⊥,UCQ), both of these
points can be improved upon by studying the properties of
such OMQs that are non-FO-rewritable.

Theorem 10. Let q be a UCQ and T a ELHI⊥ ontology.
If the OMQ Q := (T , q) is non-FO-rewritable w.r.t. con-
sistent ABoxes, then SVCQ and PQEQ(1/2; 1) on consistent
ABoxes are both #P-hard.
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αχ αχ+1

. . .. . .

G

Figure 3: Encoding PG of G in P . The endogenous assertions are
indicated by thick lines.

As a consequence of Theorem 10, we obtain the following
dichotomy for the probabilistic evaluation of OMQs, which
extends (Jung and Lutz 2012, Theorem 7) by generalizing
from (ELI, CQ) to (ELHI⊥, UCQ).
Theorem 11. Let Q be a (ELHI⊥,UCQ) OMQ. Then
PQEQ(1/2; 1) , SPPQEQ and PQEQ are all in FP if Q is FO-
rewritable into a safe UCQ, and #P-hard otherwise. Fur-
ther, this dichotomy is effective if Q ∈ (ELHI⊥, CQ).

The remainder of this section will be devoted to proving
Theorem 10. We start in Section 6.1 by explaining the core
idea for the reduction with a restricted case, and showing the
existence of the necessary structures to build the reduction.
Then, in Section 6.2, we show how to apply the idea from
the restricted case in general.

6.1 Proof Idea via a Restricted Setting
The idea behind the proof is the fact that any non-FO-
rewritable OMQ Q = (T , q) ∈ (ELHI⊥,UCQ) must
have minimal supports that contain arbitrarily deep tree-
like structures (see Claim 13). These must contain some
arbitrarily long path, where we define a path between two
constants a0 and ak to be any non-empty set of assertions
P = {R1(a0, a1), . . . , Rk(ak−1, ak)}, where a0, . . . , ak
are pairwise distinct constants and each Ri(ai−1, ai) stands
for a role assertion of the form r(ai−1, ai) or r(ai, ai−1). To
give the intuition, we shall first consider the restricted case
where P is a minimal support for Q on its own, and where
Q is connected and hom-closed.

Similarly to what has been done to prove (Livshits et al.
2021, Proposition 4.6), we wish to reduce from the known
#P-hard problem of counting the number of independent
sets in a bipartite graph G = (X,Y,E). For a sufficiently
large P , we can take two consecutive internal individuals
(aχ, aχ+1), and duplicate them to encode an arbitrary bipar-
tite graph as an ABox PG, as shown in Figure 3. We set as
endogenous every role assertion linking aχ−1 to a copy of
aχ, or linking a copy of aχ+1 to aχ+2, the remaining asser-
tions are exogenous.

Any coalition X ⊆ PG
n naturally maps to a set VX ⊆

X ∪Y of vertices of G. If VX is not independent, then there
is a path homomorphic to P in X ∪PG

x , hence X ∪PG
x |= Q.

Otherwise, if VX is independent, then any connected subset
of X ∪PG

x will homomorphically map to a proper subset of
P . Since Q is connected and P is a minimal support for it,
this implies that X ∪ PG

x ⊭ Q. From this we can use the
same technique as (Livshits et al. 2021, Proposition 4.6) to
count the independent sets of G, as we shall see later.

6.2 The General Case
Now that we have seen the underlying idea for the restricted
case, we formally show the existence of the path P upon

which we shall build the reduction.
To fix the notations, let Q = (T , q) ∈ (ELHI⊥,UCQ)

be the non-FO-rewritable (w.r.t. consistent ABoxes) OMQ
we consider. We write q =

∨
i∈I

∧
j∈Ji

qi,j where the qi,j
are connected components, that is, maximal connected sub-
queries.7 For every qi,j we write Ci,j := const(qi,j), and
C :=

⋃
i∈I

⊎
j∈Ji

Ci,j . Note that the last union is indeed
disjoint because the connected components of a CQ cannot
share any constant or variable.

The following is a simple consequence of Q being non-
FO-rewritable w.r.t. consistent ABoxes.

Claim 12. There exist i, j such that for all N ∈ N, there are
T -consistent ABoxes SN

i,j ,SN
i,¬j with |SN

i,j | ⩾ N such that:

(1) const(SN
i,j) ∩ const(SN

i,¬j) = ∅ and SN
i,j ⊎ SN

i,¬j is a
minimal support for Q;

(2) SN
i,j and SN

i,¬j are minimal supports for (T , qi,j) and
(T , qi,¬j) respectively, where qi,¬j :=

∧
j′∈Ji\{j} qi,j .

Let us henceforth fix qı,ȷ as having the indices ı, ȷ satisfy-
ing the statement of Claim 12. The next claim is a straight-
forward application of (Bienvenu et al. 2020, Prop. 23)8.

Claim 13. For all k ∈ N, there exists a minimal support
Ak for (T , qı,ȷ) that is T -consistent, individuals a0, . . . , ak,
and N ∈ N s.t.:

(1) Ak C-hom−−−→ SN
ı,ȷ;

(2) Ak has a path P = {R1(a0, a1), . . . , Rk(ak−1, ak)},
and further P is the only path between a0 and ak in Ak;

(3) {a0, . . . , ak} ∩ C = ∅.

We now have the minimal support A◦ := Ak ⊎ SN
ı,¬ȷ we

need for the reduction. However, it differs from the one in
the restricted case of Section 6.1 in two respects:

1. the path P is merely a subset of the minimal support;

2. the OMQ Q is not necessarily connected.

To deal with the first issue we introduce some notions.
Let Ak

χ := Ak \ {Rχ(aχ−1, aχ), Rχ+1(aχ, aχ+1)}. Given
an assertion α ∈ Ak and an individual aχ on the path P , we
say that α is below (resp. left of, resp. right of) aχ if α is
in the connected component of aχ in Ak

χ (resp. aχ−1, resp.
aχ+1). Further, we say that the assertions Rχ(aχ−1, aχ) and
Rχ+1(aχ, aχ+1) are respectively left and right of aχ.

Claim 14. For every assertion aχ on the path P , the sets
B(aχ), L(aχ) and R(aχ) of assertions that are below, left
of and right of aχ resp. are disjoint. Furthermore, if χ < λ,
then R(aχ) contains B(aλ) and R(aλ), while L(aλ) con-
tains B(aχ) and L(aχ) (see Figure 4).

Proof sketch. If any two of B(aχ), L(aχ) and R(aχ) were
to intersect, then we could build a path between a0 and ak
other than P . As for the inclusions, they are fairly intuitive
when looking at Figure 4.

7Observe that, for example, the CQ R(x, c) ∧ S(c, y), where c
is a constant, has only one connected component.

8This paper is the extended version of (Bienvenu et al. 2016).
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B(aλ)

R(aλ)R(aχ)

· · · · · · · · ·aχ aλ

Figure 4: Illustration of why R(aχ) contains B(aλ) and R(aλ).

Ak

AG
. . .. . .

aχ . . .. . .a0 ak

G

Ak\
CC(P)

SN
ı,¬ȷ

Ak\
CC(P)

SN
ı,¬ȷ

P

Figure 5: Construction of AG from A◦ and G. Thick lines repre-
sent endogenous assertions. The boxes are sets with no structure,
and the triangle below some a is the connected B(a). CC(P) de-
notes the set of assertions in the connected component of P .

Claim 14 allows us to generalize the construction we
made for the restricted case. The idea is simple: every time
we copied an assertion in the restricted case, we also copy
its B set, always with fresh constants. Note that the con-
struction still depends on a pair (aχ, aχ+1) of consecutive
individuals of P that are internal (i.e., not in {a0, ak}). We
call such pair an interface. We overlook the choice of this
interface for now, but it will become relevant later.

Starting with a bipartite graph G = (X,Y,E) whose in-
dependent sets we wish to count, we build the partitioned
ABox AG illustrated in Figure 5 (cf. with the restricted case
of Figure 3), which we formally define as follows. Start-
ing from A◦, we focus on the 3 assertions Rχ(aχ−1, aχ),
Rχ+1(aχ, aχ+1), Rχ+2(aχ+1, aχ+2) of P that intersect the
chosen (aχ, aχ+1). We replace aχ (resp. aχ+1) with a
family (bx)x∈X (resp. (cy)y∈Y ) of copies with fresh con-
stants. We also copy every assertion below aχ (resp. be-
low aχ+1), again with fresh constants. Finally, we add
the assertions {Rχ(aχ−1, bx)}x∈X , {Rχ+1(bx, cy)}(x,y)∈E ,
{Rχ+2(cy, aχ+2)}y∈Y to obtain an ABox, which we de-
note by AG. As for the associated partition, we set the en-
dogenous assertions AG

n := {Rχ(aχ−1, bx) | x ∈ X} ∪
{Rχ+2(cy, aχ+2) | y ∈ Y } and the rest as exogenous.

We can now try to apply to AG the same arguments that
we used on PG for the restricted case. If we consider a
coalition X ⊆ PG

n , it once again naturally maps to a set of
vertices of G, via a bijection we denote by η : AG

n → X∪Y .
If η(X ) is not independent, then there is a path C-

homomorphic to P in X ∪ AG
x , and since every assertion

in A◦ \ P is present in AG
x (or at least has the necessary C-

aχ+2aχ−1 . . .. . .

Ak\
CC(P)

SN
ı,¬ȷ

(a)

. . .

S←
aχ−1 aχ+2 . . .

S→

Ak\
CC(P)

SN
ı,¬ȷ

(b)

Figure 6: (a) Example of what S could look like. There is no path
between aχ−1 and aχ+2, but the ABox can still collapse back to
the whole A◦ by ρ. This implies in particular that the whole black
regions are present. (b) Partition of S into S← ⊎ S→ that makes
the interface splittable.

isomorphic copies in the case of the assertions below aχ and
aχ+1), this implies X ∪AG

x |= Q.
If η(X ) is independent, however, we cannot directly use

the argument above, because Q is no longer assumed to be
connected. In fact X ∪AG

x could conceivably contain a dis-
connected minimal support S for Q such as depicted in Fig-
ure 6.(a). Nevertheless, if we denote by ρ : AG → A◦ the
C-homomorphism that maps every fresh constant back to its
original counterpart (essentially, ρ reverses the construction
of AG), then we must have ρ(S) = A◦. Otherwise, this
would contradict the minimality of A◦. In fact, by leverag-
ing the fact that the OMQ (T , qi,j) built from any connected
component qi,j is connected by Lemma 8; we can further
show that such an S always admits a partition S = S←⊎S→
with specific properties. This motivates the following defi-
nition of splittable interfaces.

An interface (aχ, aχ+1) is said to be splittable if there
exists some i ∈ I , two sets J←, J→ ⊆ Ji of connected
components of the ith disjunct of q, and a minimal support
S← for

∧
j∈J← qi,j which contains every assertion left of aχ

and no assertion right of aχ+1, and the symmetrical prop-
erty for J→, with the added condition that S→ is connected.
These two minimal supports correspond to the red and green
regions in Figure 6.(b), and they are the only way the con-
struction can fail:
Claim 15. AG is T -consistent and, if it is built from an
unsplittable interface (aχ, aχ+1), then for every coalition
X ⊆ AG

n , X ⊎AG
x ⊨ Q iff η(X ) isn’t independent in G.

The final ingredient is the fact that we can always find an
unsplittable interface in P if it is long enough.
Claim 16. The number of splittable interfaces in P is
bounded by a function of q.

Proof sketch. Two disjoint interfaces cannot have the same
J→ otherwise it would contradict the minimality of the sup-
ports in the definition of splittability. The total number
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of splittable interfaces is therefore bounded by 2 times the
number of sets of connected components of q.

Once we have this, Claim 15 gives a bijection between
the X s.t. X ⊎ AG

x ⊭ Q and the independent sets of G, and
we can conclude by exactly reproducing the end of the proof
for (Livshits et al. 2021, Proposition 4.6), which consists in
building several variants of the graph G to obtain a solvable
linear system for the number of independent sets of G of
each size. Proof details can be found in the full version.

7 Discussion
While the Shapley value had previously been suggested for
ontology debugging (Deng, Haarslev, and Shiri 2007), its
application to ontology-mediated query answering, and a
precise analysis of the complexity of SVC, had not yet been
considered. The present paper exploits very recent results on
Shapley value computation in the database setting to obtain
complexity dichotomies for OMQs whose TBoxes are for-
mulated in the well-known Horn DL ELHI⊥. In particular,
Theorem 9 identifies classes of OMQs for which the Shapley
value can be computed in FP, while Theorem 10 provides a
general #P-hardness result for non-FO-rewritable OMQs.
Using the same techniques, and leveraging known connec-
tions between Shapley value computation and probabilistic
query evaluation, we were further able to obtain a general
dichotomy result for probabilistic OMQA (Theorem 11).

The dichotomy result we obtain for probabilistic OMQA
is stronger than the one we obtain for SVC. This is to be
expected as existing results on SVC in the pure database set-
ting do not cover UCQs that are disconnected or with con-
stants, and it is an important open question whether there is
a dichotomy for SVCq for all Boolean UCQs q. We remark
however that any progress on this question can be immedi-
ately transferred to the OMQA setting.

In the context of probabilistic databases, existing works
prove that PQEq(1/2; 1) ≡P PQEq for any q that is ei-
ther a UCQ or a (constant-free) hom-closed query. Our
Theorem 11 shows that this equivalence also holds for any
q ∈ (ELHI⊥, UCQ) (with constants), suggesting that it
might hold for the full class of C-hom-closed queries.

An interesting but challenging direction for future work
is to study SVC for ontologies formulated using tuple-
generating dependencies (a.k.a. existential rules). We ex-
pect that the extension of our results to such ontologies will
be non-trivial, due both to the presence of higher-arity pred-
icates and the lack of forest-shaped models. Indeed, in Sec-
tion 5, the dichotomy for SPPQE that we exploited to ob-
tain Theorem 9 is currently only known for arity 2 relations
(i.e., graph databases). The techniques in Section 6, on the
other hand, rely on the existence of a unique path between
anonymous elements, which was ensured by the existence of
forest-shaped canonical models. By contrast, the bounded
treewidth canonical models obtained for many classes of ex-
istential rules do not satisfy this unique-path condition.
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