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Abstract

While the flat fragment of assumption-based argumentation
(ABA) is widely studied in the literature, the general, non-flat
case has mostly been neglected so far. Until recently, there
was no possible way to instantiate non-flat ABA in terms of
an abstract argumentation framework. While this gap has
been closed for complete-based ABA semantics, capturing
admissible-based semantics cannot yet be achieved by look-
ing at the relation between the instantiated arguments only;
it requires augmenting arguments with their premises, hence
being a semi-abstract instantiaiton. In this paper, we provide
a compact and fully abstract instantiation by making use of
both collective attack and support relations. Then, inspired
by fundamental properties of abstract formalisms, we iden-
tify flaws of native ABA semantics in the non-flat case and
provide refinements thereof, utilizing our novel instatiation.

1 Introduction
Formal argumentation is a central research area within the
field of knowledge representation and reasoning. Among the
most prominent argumentation formalisms is assumption-
based argumentation (ABA). A common restriction here is
that the ABA framework (ABAF) under consideration is flat,
i.e. assumptions cannot be entailed, only assumed to be true
or not. Flat ABAFs have been studied extensively, includ-
ing the study of formal properties (Cyras and Toni 2016;
Dung, Kowalski, and Toni 2006; König, Rapberger, and Ul-
bricht 2022; Rapberger and Ulbricht 2022), computational
aspects (Dvorák and Dunne 2018; Berthold, Rapberger, and
Ulbricht 2023a; Berthold, Rapberger, and Ulbricht 2023b),
implementations (Lehtonen, Wallner, and Järvisalo 2021a;
Lehtonen, Wallner, and Järvisalo 2021b; Lehtonen et al.
2023), and applications in e.g. recommendations for patient
treatment (Cyras et al. 2021) or planning (Fan 2018).
In contrast, the general non-flat fragment has only re-

ceived limited attention within the last years. A severe
drawback of non-flat ABAFs is that they cannot be captured
by Dung’s abstract argumentation frameworks (AFs) (Dung
1995) and consequently, the impressive body of research
conducted for AFs cannot be applied to non-flat ABA (Gab-
bay et al. 2021). Closing this gap and finding a pleasant
way to translate non-flat ABAFs into an abstract network is
thus a promising approach to push forward research on gen-
eral ABAFs. First steps in this direction have been done

already. In (Ulbricht et al. 2024), two possible ways to
instantiate non-flat ABAFs has been considered: The first
one is based on bipolar AFs (BAFs) (Cayrol and Lagasquie-
Schiex 2005), but only works for complete-based semantics.
A significant advantage of this approach is, however, the
lower computational complexity in BAFs compared to non-
flat ABA (Cyras, Heinrich, and Toni 2021). Consequently,
after the computational cost of constructing the BAF has
been paid, the reasoning problems can be solved more ef-
ficiently. The second approach extends BAFs to so-called
premise-augmented BAFs (pBAFs). While pBAFs capture
non-flat ABA under all standard semantics, the drawback is
that in pBAFs, we require more technical baggage.
In this work, we refine the instantiation of non-flat ABA

via an abstract formalism that captures non-flat ABA under
all standard semantics, while maintaining the low compu-
tational cost of Dung’s AFs. To this end we propose bipo-
lar SETAFs (BSAFs), an extension of SETAFs (Nielsen and
Parsons 2006; Bikakis et al. 2021) that is also capable of
modeling collective support among arguments. Studying
the formal properties of BSAFs we will realize that they
inherit several undesired properties from ABA. We demon-
strate how to refine the BSAF semantics in a natural way,
avoiding the aforementioned drawbacks. Having achieved
this, we discuss conceivable consequences of this towards
refining the non-flat ABA semantics.

2 Background
We recall the technical definitions of (ABA) (Čyras et al.
2018). We assume a deductive system, i.e. a tuple (L,R),
where L is a set of atoms and R is a set of inference rules
over L. A rule r 2 R has the form a0  a1, . . . , an, s.t.
ai 2 L for all 0  i  n; head(r) := a0 is the head and
body(r) := {a1, . . . , an} is the (possibly empty) body of r.
Definition 2.1. An ABA framework (ABAF) is a tuple
(L,R,A, ), where (L,R) is a deductive system, A ✓ L
a set of assumptions, and : A ! L a contrary function.

In this work we focus on frameworks which are finite,
i.e. for which L and R are finite. An atom p 2 L is tree-
derivable from assumptions S ✓ A and rules R ✓ R, de-
noted by S `R p, if there is a finite rooted labeled tree t s.t.
i) the root of t is labeled with p, ii) the set of labels for the
leaves of t is equal to S or S [ {>}, and iii) for each node
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v that is not a leaf of t there is a rule r 2 R such that v is
labeled with head(r) and labels of the children correspond
to body(r) or > if body(r) = ;. We write S ` p iff there
exists R ✓ R such that S `R p.
By ThD(S) := {p 2 L | 9S0 ✓ S : S0 ` p} we denote

the set of all conclusions derivable from an assumption-set
S in an ABAF D. A set S ✓ A attacks a set T ✓ A if
there are S0 ✓ S and a 2 T s.t. S0 ` a; if S attacks {a}
we say S attacks a. Set S is conflict-free (S 2 cf (D)) if it
does not attack itself. Given S ✓ A, the closure cl(S) of S
is cl(S) := ThD(S)\A. We write cl(a) instead of cl({a})
for singletons. We call S ✓ A closed if S = cl(S).

Now we consider defense (Bondarenko et al. 1997; Čyras
et al. 2018). Observe that defense in general ABAFs is only
required against closed sets of attackers.
Definition 2.2. A set S of assumptions defends an assump-
tion a iff for each closed set T which attacks a, we have S
attacks T ; S defends itself iff S defends each b 2 S.
A set E of assumptions is admissible (E 2 ad(F )) iff

E is conflict-free, closed and defends itself. We next recall
grounded, complete, preferred, and stable ABA semantics.
Definition 2.3. LetD be an ABAF and let S 2 ad(D). Then
• S 2 co(D) iff it contains every assumption it defends;
• S 2 gr(D) iff S is ✓-minimal in co(D);
• S 2 pr(D) iff S is ✓-maximal in ad(D);
• S 2 stb(D) iff S is closed and attacks each x 2 A(D)\S.
Example 2.4. We consider an ABAF D with literals L =
{a, b, c, d, e, a, b, c, d, e}, assumptions A = {a, b, c, d, e},
their contraries a, b, c, d and e, respectively, and rules

e  e e  a, b a  d c  d

e  b, c d  a d  c

The set {a} is admissible as it defends itself against {d};
it is not complete, however, since it also defends c and b.
The framework has two complete extension {b} and {b, d}.
As a result {b} is the grounded extension. Moreover, the
framework has three preferred extensions {a, c}, {b, c} and
{b, d}, and no stable extensions.

3 Bipolar SETAF
In this section we introduce Bipolar SETAF as a faithful ab-
straction of bipolar AFs as used by (Ulbricht et al. 2024),
before arguing that they capture non-flat ABAFs.
BSAFs combine the ideas underlying SETAFs and BAFs

in the following sense: Instead of only considering an attack
relation, there is also a notion of support. Moreover, BSAFs
can model collective attacks and supports.
Definition 3.1. A bipolar set-argumentation framework
(BSAF) is a tuple F = (A,R, S), where A is a finite set
of arguments, R ✓ 2A ⇥ A is the attack relation and
S ✓ 2A ⇥A is the support relation.

Given a BSAF F = (A,R, S), we call F := (A,R) the
underlying SETAF of F . If |T | = 1 holds for each (T, h) 2
R[S, then we naturally identify F with a biploar AF (BAF).
As usual, we say E attacks E0 in F , iff there are T ✓ E and

h 2 E0, s.t. (T, h) 2 R; E is conflict-free (E 2 cf (F )) if it
does not attack itself.
Definition 3.2. Given a BSAF F = (A,R, S) and a set
E ✓ A of arguments. With

suppF (E) := E [ {h 2 A | 9 (T, h) 2 S : T ✓ E}
we call clF (E) =

S
i�1 supp

i
F (E) the closure of E; E is

closed if clF (E) = E.
Let us now head to the semantics of BSAFs. A setE ✓ A

defends a 2 A if for each closed set E0 ✓ A attacking a,
E attacks E0; E defends E0 if E defends each a 2 E0. We
define the characteristic function by �F (E) := {a 2 A |
E defends a in F}. If clear from the context, we omit the
subscript F for � and cl . A conflict-free set E is admissible
(E 2 ad(F )) iff E is closed and defends itself.
Definition 3.3. Let F be an BSAF and let E 2 ad(F ).
• E 2 co(F ) iff E contains every assumption it defends;
• E 2 gr(F ) iff E is ✓-minimal in co(F );
• E 2 pr(F ) iff E is ✓-maximal in ad(F );
• E 2 stb(F ) iff E attacks each x 2 A \ E.
Graphically, we depict the attack relation of a BSAF by

solid edges and the support relation by dashed edges.
Example 3.4. Consider the BSAF F = (A,R, S), where
A = {a, b, c, d, e}, R = {({a}, d), ({d}, a), ({d}, c),
({c}, d), ({b, d}, e), ({e}, e)}, and S = {({a, b}, e)}.

b c

ea d

Here we have ad(F ) = {;, {a}, {b}, {c}, {d}, {a, c},
{b, c}, {b, d}}, co(F ) = {{b}, {b, d}}, gr(F ) = {{b}},
pr(F ) = {{a, c}, {b, c}, {b, d}}, and stb(F ) = ;.
Our BSAFs faithfully generalize the BAFs as defined re-

cently: if |T | = 1 holds for each (T, h) 2 R [ S, then the
BSAF amounts to a BAF as defined in (Ulbricht et al. 2024).

3.1 ABA and BSAF
In the following we show that BSAFs are capable of instan-
tiating non-flat ABA under all standard semantics. This is in
contrast to the BAF semantics as considered in (Ulbricht et
al. 2024) which lack the expressive power to spot the neces-
sary collective support behavior in non-flat ABA.
Capturing non-flat ABAFs by means of BSAFs is quite

natural, as shown in the next definition.
Definition 3.5. Let D = (L,R,A, ) be an ABAF. Then we
set FD := (A,R, S), where A := A and

R := {(T, h) | h 2 A, T ` h},
S := {(T, h) | h 2 A, T ` h}}

Example 3.6. Recall the ABAF given in Example 2.4. It is
instantiated by the BSAF in Example 3.4.
The next theorem states that the BSAF FD indeed cap-

tures reasoning in D in the expected way.
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Theorem 3.7. Given a semantics � 2 ⌃, and an ABAF D.
Then �(D) = �(FD).
Vice versa, each BSAF F can be captured by some ABAF

DF as follows.
Definition 3.8. Let F = (A,R, S) be a BSAF, then we de-
fine DF := (L,R,A, ), where A := A and

L := A [ {a | a 2 A},
R := {h  T | (T, h) 2 S, h 2 A} [

{h  T | (T, h) 2 R, h 2 A},
:= {(a, a) | a 2 A}.

Example 3.9. Recall the BSAF in Example 3.4. Using the
construction above, it can be translated into the ABAF given
in Example 2.4 (up to possible renaming of the newly intro-
duced contraries).

Theorem 3.10. Given a semantics � 2 ⌃, and a BSAF F .
Then �(F ) = �(DF ).

3.2 Properties of BSAF
Let us now discuss formal properties of BSAFs. Regarding
basic semantics relations, we observe that admissible, pre-
ferred, and stable semantics are related to each other as we
know it from traditional AF semantics.
Proposition 3.11. Let F be any BSAF. Then it holds that
stb(F ) ✓ pr(F ) ✓ ad(F ) ✓ cf (F ).

Another important observation about BSAFs is the nature
of defense. Recall that defense is necessary only against
closed sets of arguments. Due to the potentially involved
collective support relation, it might seem hard at first glance
to search for all such closed attacking sets. However, there
is a simple characterization, given as follows.
Lemma 3.12. Let F = (A,R, S) be a BSAF and letE ✓ A.
Then a 2 �(E) iff for each (T, a) 2 R, E attacks cl(T ).
From this we can deduce that whether or not some set E

defends itself can be verified in polynomial time. Conse-
quently, most reasoning problems are not harder compared
to Dung AFs (and thus easier that in a non-flat ABAF). The
only exception is gr since we cannot compute it by iterating
the characteristic function. Hence, we have to check whether
the input set is minimal in co(F ) from scratch.
Theorem 3.13. Deciding whether
• E 2 �(D) is tractable for � 2 {ad , co, stb}, coNP-
complete for pr , and DP

1 -complete for gr ;
• a is credulously accepted is NP-complete for � 2
{ad , co, pr , stb} and DP

1 -complete for gr ;
• a is skeptically accepted is coNP-complete for ad , DP

1 -
complete for � 2 {co, gr , stb} and ⇧2

P -complete for pr .
However, from the semantics correspondence between

BSAFs and ABA, some undesired properties of BSAFs are
also immediate. We observe admissible extensions may not
always exist, as the following example shows.
Example 3.14. Let F be a BSAF with (;, a) 2 S and
(b, a), (b, b) 2 R. Not even the empty set can be accepted
admissibly: ; supports a which is attacked by the (otherwise
undisputed) self-attacker b.

a b

Moreover, even if admissible extensions exist, it can be
the case that BSAFs may have no complete (thus also no
grounded) extensions.
Example 3.15. Consider a BSAF F with supports
({a, b}, d), ({a, c}, d) 2 S and attack ({d}, d) 2 R.

b

a c

d

The admissible sets are ;, {a}, {b}, {c}, {b, c}. However,
neither a, b, nor c are attacked; hence, all arguments are
defended by ;. However, the set {a, b, c} supports the self-
attacker d. Consequently, F has no complete extensions.
Overall, we observe the following (undesired) properties:

• It might happen that ad(F ) = ; and pr(F ) = ;.
• It might happen that ; /2 ad(F ).
• Even if ad(F ) 6= ;, it might happen that co(F ) = ;.
• Even if co(F ) 6= ;, it might happen that |gr(F )| > 1.
• Even if co(F ) 6= ;, it might happen that someE 2 pr(F )
is not complete.
One of the main technical ingredients to ensure the ben-

eficial behavior of the classical abstract argumentation se-
mantics is Dung’s fundamental lemma (Dung 1995). In a
nutshell, it amounts to the following lemma.
Lemma 3.16. (Dung 1995) Let F = (A,R) be an AF and
let E ✓ A and a 2 A. If E 2 ad(F ) and E defends a, then
E [ {a} 2 ad(F ).

Indeed, for non-flat ABA (as well as our BSAF seman-
tics), the fundamental lemma does not hold.

4 Alternative BSAF Semantics
In the last section we observed that BSAFs inherit some un-
desirable properties from ABA. Intuitively, the reason for
the undesired behavior is that the notions of closure and de-
fense might induce conflicting requirements. In this section,
we set out to fix (most of) these shortcomings by better co-
ordinating these two concepts. We first propose a stricter
notion for closure; however, by doing so, we introduce un-
desired behavior already for admissible-based semantics, as
we discuss. We then propose instead an appropriate adjust-
ment of the closure, which results in a family of novel se-
mantics for BSAFs and, by our translation, also for ABA.

4.1 Fixing Admissible Semantics
Let us first focus on the notion of support. As observed in
Example 3.14, it can be the case that no admissible extension
exists, e.g., if the empty set supports an argument that is im-
possible to defend. We therefore stipulate that an argument
a only counts as supported by a set E if the supporting set is
strong enough to defend a against each attack, and propose
a refined closure notion which takes this into account.
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Definition 4.1. Given a BSAF F = (A,R, S), E ✓ A, and
a 2 A. Then E �-supports a iff a 2 cl(E) and a 2 �(E);
E is �-closed iff E contains all arguments it �-supports.

For a BSAF F , we call a set E ✓ A of arguments �-
admissible (E 2 ad�(F )) iff E defends itself and is �-
closed. The new �-support notion naturally induces the re-
fined complete-based semantics co�, gr� and pr�.
Example 4.2. Heading back to the BSAF from Exam-
ple 3.14, we observe that the empty set is now acceptable:
since a cannot be defended against b we do not include it in
the �-closure of ;. Hence ; is admissible.
Our adjusted semantics is successful in ensuring the exis-

tence of at least one admissible extension.
Proposition 4.3. Let F be a BSAF. Then ad�(F ) 6= ; as
well as pr�(F ) 6= ;.

We therefore successfully adjusted BSAF-semantics such
that there are always admissible (and hence also preferred)
extensions. From a theoretical perspective this would be a
solid foundation to also consider adjustments to the com-
pleteness notion. However, a closer inspection reveals cer-
tain obstacles of our novel semantics. Revisiting Exam-
ple 3.15 indicates that the proposed fix is too liberal; each
subset of {a, b, c} is accepted under �-admissible semantics.
Example 4.4. Consider again the BSAF from Example 3.15.
The �-admissible sets are ;, {a}, {b}, {c}, {b, c}, but also,
{a, b}, {a, c}, and {a, b, c}. The collective support towards
d can be ignored since d cannot be defended.
In the above example, contrary to any intuition, the argu-

ments a, b and c may be jointly accepted, even without d,
even though they pose a sufficient condition for d to hold.

Moreover, although our new support notion requires de-
fense, it holds that ad�(F ) 6= ; does not imply co�(F ) 6= ;,
the following example illustrates.
Example 4.5. Let F be a BSAF with supports ({b}, d),
({a}, d) 2 S and attacks ({a}, b), ({a}, b), ({c}, d) 2 R.

b

a

cd

Here we have ad(F ) = ad�(F ) = {;, {c}}. On the
other hand, co(F ) = co�(F ) = ;: c (and its closure) is
unattacked, hence it is in any complete extension. Also, c
defends b from a since it attacks the closure of a. Vice versa
c defends a from b, as well. Then the closure of {a, b, c} is
not conflict-free; hence, no complete extension exists.
The example indicates that the original notion of defense

might be too liberal to confirm our intuition. In the following
we therefore propose an adjustment which interleaves sup-
port and defense but this time by proposing a novel defense
notion while sticking to the original closure definition.

4.2 Fixing Complete Semantics
In the previous section we successfully redefined the support
s.t. admissible semantics are universally defined. However,
we were still facing unwanted behavior in the semantics.

Let us now adjust the notion of defense in order to circum-
vent the aforementioned issues. Recall that in BSAFs, com-
plete extensions do not necessarily exist, even if ad(F ) 6= ;.
We observe that the absence of complete extensions in such
a situation stems from the fact that checking a 2 �(E) ig-
nores the consequences of including a into our given exten-
sion E. More specifically, the closure cl(E [ {a}) might
contain arguments we did not yet take into consideration.
We thus refine defense by stipulating that cl(E [ {a}) ✓
�(E) in order for E to defend a.

Definition 4.6. Given a BSAF F = (A,R, S), E ✓ A, and
a 2 A. Then E �-defends a if cl(E [ {a}) ✓ �(E).

We note that each admissible (and preferred) extension�-
defends itself. The new �-defense notion naturally induces
the refined complete-based semantics co� and gr�.

Definition 4.7. Let F be an BSAF and let E 2 ad(F ).

• E 2 co�(F ) iff it contains each �-defended argument;
• E 2 gr�(F ) iff E is ✓-minimal in co�(F ).

Let us first reconsider the BSAF from Example 3.15.

Example 4.8. Recall the BSAF F from Example 3.15. The
set S1 = {a} does not �-defend any further arguments: al-
though b is defended (because it is unattacked) we have that
{a, b} supports d; thus cl(S1 [ {b}) = {a, b, d} 6✓ �(S1) =
{a, b, c}. The analogous observation holds for c. Therefore,
we have that co�(F ) = gr�(F ) = {{a}, {b, c}}.

Let us next revisit Example 4.5.

Example 4.9. Let us consider again the BSAF from Exam-
ple 4.5. In the previous case, c defended both a and b be-
cause their closure cl(a) and cl(b) were attacked. With our
new adjustment, the argument c does not defend the argu-
ments anymore: by definition, {c} defends a if cl({c, a}) is
defended by {c}. The closure of {c, a} is the set {a, c, d}
which is attacked by c. Therefore, the set {c} is already �-
complete. We have co�(F ) = {{c}}.
Overall, we observe that the proposed �-defense notion

guarantees that each admissible set has a completion; more-
over, a restricted version of the fundamental lemma holds,
and each preferred set is complete.

Proposition 4.10. Let F be a BSAF.

• If ad(F ) 6= ; then co�(F ) 6= ;.
• If E is admissible and �-defends a 2 A, then there is
some admissible set E0 2 ad(F ) s.t. E0 ◆ E [ {a}.

• It holds that pr(F ) ✓ co�(F ) ✓ ad(F ).

These results demonstrate that the newly introduced se-
mantics admit an intuitive behavior whilst confirming to nat-
ural adjustments of the defense mechanism.
As a final remark regarding the novel semantics defined

in Sections 4.1 and 4.2 we want to mention that the ad-
justed versions of support and defense merely introduce an
additional polynomial check when computing extensions.
Therefore, we strongly conjecture that the computational
complexity persists; however, a thorough investigation of
this issue is left for future work.
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4.3 Consequences for ABA
Due to the close relation between BSAFs and ABAFs that
we have established in the previous section, we can directly
translate our newly introduced semantics and our results to
the realm of ABA. Thereby, we provide an adjustment of
complete(-based) semantics that adheres to desired behavior
of argumentation semantics.
Definition 4.11. Given an ABAFD = (L,R,A, ),E ✓ A,
and a 2 A. Then E �-defends a if cl(E [ {a}) ✓ �(E).

As it is the case for BSAFs, it holds that each admissi-
ble (and preferred) assumption extension �-defends itself.
We are ready to define the refined complete-based seman-
tics co� and gr� for ABA.
Definition 4.12. Let D be an ABAF and let E 2 ad(D).
• E 2 co�(D) iff it contains each�-defended assumption;
• E 2 gr�(D) iff E is ✓-minimal in co�(D).
The direct correspondence between (non-flat) ABA and

BSAF holds under our newly defined semantics. As a con-
sequence from the results established in the previous section,
our novel semantics satisfy the following properties.
Proposition 4.13. Let D = (L,R,A, ) be an ABAF.
• If ad(D) 6= ; then co�(D) 6= ;.
• If E is admissible and �-defends a 2 A, then there is
some admissible set E0 2 ad(D) s.t. E0 ◆ E [ {a}.

• It holds that pr(D) ✓ co�(D) ✓ ad(D).

5 Conclusion
We presented a compact and fully abstract expansion of
Dung AFs that capture general (non-flat) assumption-based
argumentation frameworks. In order to overcome certain
flaws of the traditional ABA semantics, we discussed al-
ternative ways of connecting defense and support of argu-
ments. We identified an intuitive adjustment of the defense
notion (�-defense) and showed that the induced complete-
based semantics admit intuitive properties.
In the literature, there is a fruitful debate as to how define

BAF semantics suitably (Karacapilidis and Papadias 2001;
Cayrol and Lagasquie-Schiex 2005; Amgoud et al. 2008;
Oren and Norman 2008; Nouioua and Risch 2011; Cayrol
and Lagasquie-Schiex 2020); however, since our aim was to
capture non-flat ABAFs, our definition of the semantics was
inspired by those. Nonetheless, an interesting future work
direction consists in comparing our semantics to the exist-
ing ones. Evidence-based argumentation frameworks (Oren
and Norman 2008) are syntactically similar to BSAFs in the
sense that they also features set-to-argument supports and
attacks. The support relation there, however, works dif-
ferently, as an argument is accepted only if it is supported
through a chain of arguments tracking back to some ground
truth; i.e., their paper considers necessary support whereas
our notions are closer related to deductive support. It would
be interesting to find a formalism that encompasses both of
these support interpretations. Another interesting avenue for
future research would be to see how BSAFs behave with re-
spect to the recently conceived principles of bipolar argu-
mentation (Yu et al. 2023).BSAF isn’t BASF!
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