
Monotone Rewritability and the Analysis of Queries, Views, and Rules

Michael Benedikt1 , Stanislav Kikot , Johannes Marti , Piotr Ostropolski-Nalewaja2

1University of Oxford
2University of Wrocław, Poland; TU Dresden, Germany

Abstract

We study the interaction of views, queries, and background
knowledge in the form of existential rules. The motivating
questions concern monotonic determinacy of a query using
views w.r.t. rules, which refers to the ability to recover the
query answer from the views via a monotone function. We
study the decidability of monotonic determinacy, and com-
pare with variations that require the “recovery function” to
be in a well-known monotone query language, such as con-
junctive queries or Datalog. Surprisingly, we find that even
in the presence of basic existential rules, the borderline be-
tween well-behaved and badly-behaved answerability differs
radically from the unconstrained case. In order to understand
this boundary, we require new results concerning entailment
problems involving views and rules.

1 Introduction
Views are a means to define an interface to a datasource.
In the context of relational databases, views allow one to
associate a complex transformation – a view definition – to
a new relation symbol, indicating that the symbol will stand
for the output of the transformation. Given a set of views
V and an instance I of the original schema, an external user
will have access to the view image of I, V(I), in which each
view symbol is interpreted by evaluating the corresponding
definition on I. Views have many uses, including privacy
and query optimization (Afrati and Chirkova 2019).

Our work is motivated by the question of rewriting queries
using views. We have a set of views V defined over some
“base schema”, a query Q over the same schema, and we
want to rewrite Q using V: find a function R on the view
schema such that applying R to the output of the views def-
initions will implement Q. We will be interested in the set-
ting where Q and the view definitions are monotone queries
– defined in languages that do not have negation or dif-
ference. Conjunctive queries (CQs), their unions (UCQs),
and Datalog are query languages that define only mono-
tone queries. In this case, it is natural to desire a rewrit-
ing that is a monotone function of the view images. We
write V(I) ⊆ V(I ′) if for every view definition in V,
its evaluation on I is contained in its evaluation on I ′.
Then Q is monotonically determined over V (Perez 2011;
Nash, Segoufin, and Vianu 2010; Calvanese et al. 2007)
if for every I, I ′ with V(I) ⊆ V(I ′), Output(Q, I) ⊆

Output(Q, I ′). A query Q may not have any rewriting us-
ing the views V over all datasources, but it may be well-
behaved for the data of interest to an application. Here
we will consider datasource restrictions given by standard
classes of knowledge in the form of existential rules:1 rules
with existential quantifiers in the head. Given a set of views
V = V1 . . . Vk, queryQ, and rules Σ, we say thatQ is mono-
tonically determined over V w.r.t. Σ if for I, I ′ satisfying
Σ, V(I) ⊆ V(I ′) implies Output(Q, I) ⊆ Output(Q, I ′).

We say a query R over the view schema is a rewriting of
Q with respect to Σ if for every I satisfying Σ, R(V(I)) =
Output(Q, I) where V(I) is the view image of I.

Example 1. Suppose our base signature has binary rela-
tions R and S, and let Q be ∃x R(x, x). Consider the view
V (x, y) := R(x, y) ∨ S(x, y). It is easy to see that Q is not
rewritable over V , monotonically or otherwise: given a pair
in V , we cannot tell if it is inR or in S. But suppose we know
that our schema satisfies the rule ∀x (S(x, x) → R(x, x)).
Then Q has a simple rewriting ∃x V (x, x).

There are two natural questions about monotonic deter-
minacy: 1. Decidability: Fixing languages for specifying
queries, views, and rules, can we decide monotonic deter-
minacy? 2. Required expressiveness of rewritings: can we
say that when Q is monotonically determined by V w.r.t.
Σ there is necessarily a rewriting in a restricted monotone
language (e.g. CQ, UCQ, Datalog)?

The monotonicity requirement is motivated by the fact
that when we begin with a monotone query, we expect a
monotone rewriting, and also by the need to make the two
questions above manageable. If we do not impose that a
rewriting is monotone, it is known that the behavior of even
very simple queries and views – CQs– is badly-behaved,
even in the absence of rules. We cannot decide whether a
CQ query has a rewriting over CQ views, and in cases where
such a rewriting exists we can say basically nothing about
how complex it may need to be (Gogacz and Marcinkowski
2015; Gogacz and Marcinkowski 2016). In contrast, it is
known that monotonic determinacy behaves very well for
CQ queries and views: decidable in NP (Nash, Segoufin,

1Existential rules are also called tuple-generating depen-
dencies (Abiteboul, Hull, and Vianu 1995), conceptual graph
rules (Salvat and Mugnier 1996), Datalog± (Lukasiewicz, Calı̀,
and Gottlob 2012), and ∀∃-rules (Baget et al. 2011).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

117

and Vianu 2010; Levy et al. 1995). And when rewritings ex-
ist, they can be taken to be CQs (Nash, Segoufin, and Vianu
2010). These results have been shown to extend to many
classes of rules (Benedikt et al. 2016).

Monotone determinacy is well understood for first-order
queries and views, in the absence of rules. It is decidable
in the case of UCQ views and queries, and whenever one
has monotonic determinacy, one has a rewriting that is a
UCQ (Benedikt et al. 2016). Prior work also investigated the
situation when views and queries are monotone and recur-
sive, either as regular path queries or Datalog (Calvanese et
al. 2002; Calvanese et al. 2007; Francis, Segoufin, and Sir-
angelo 2015; Benedikt et al. 2023). Recall that Datalog is a
standard language for defining recursive monotone queries.
For example, the Datalog query QR consisting of the fol-
lowing two rules computes the pairs (x, y) where x reaches
y via edges in a binary relation R:

REACH(x, y) :=R(x, y)

REACH(x, y) :=R(x, z),REACH(z, y)

Let us give a rough summary of the situation for Data-
log, based on the most recent work (Benedikt et al. 2023).
Monotonic determinacy does not behave well for general
Datalog queries and views – it is undecidable, and when
it holds one may need arbitrarily complex rewriting. At a
high level, two well-behaved paradigms for monotonic de-
terminacy have been identified: 1) non-recursive queries
(i.e. UCQ) and general Datalog views, and 2) both views
and queries guarded. Specifically, for decidability, we have:
• The query being non-recursive suffices for good be-

haviour: The query Q being a UCQ suffices for decid-
ability, even for general Datalog views;

• Guarded queries and views behave well: If the views
and queries are both in the standard “guarded recursive
language”, frontier-guarded Datalog, monotonic determi-
nacy is decidable, even if there is recursion in both;

• One case of a recursive query and non-guarded views
behaves well: If the query is recursive, monotonic de-
terminacy behaves well if the query is “very guarded”–
Monadic Datalog (MDL) – and the views are CQs.

• Recursive queries and unguarded views are a problem: If
the views are general (unguarded) UCQs and we allow
recursion in the query Q (even MDL), monotonic deter-
minacy is undecidable.
All the cases above that are well-behaved for decidabil-

ity are also well-behaved for expressiveness of rewritings:
whenever monotonic determinacy holds there is a rewrit-
ing in Datalog. But there are additional ”tame” cases for
rewritability; when a Datalog query is monotonically de-
termined in terms of CQ views or guarded views, there is
a rewriting in Datalog. That is, for views that are CQs or
in guarded Datalog, we do not need to restrict the Datalog
query Q to be sure that monotonic determinacy is witnessed
by a Datalog rewriting. Figures 1 and 2 provide a detailed
look at the case without any knowledge in the form of rules.
In the table Und. means undecidable, and “n. n. Datalog”
means that rewritings are not necessarily in Datalog.

We consider how this changes with background knowl-
edge. Clearly, for “arbitrary knowledge” in first-order logic,

nothing interesting can be said about decidability or about
the necessary language for rewritings. We will thus focus on
“tame existential rules” such as those in the Datalog± family
(Calı̀ et al. 2011), frontier-guarded TGDs, which are known
to behave well for standard decidability questions. In the
presence of tame existential rules, a number of new com-
plications arise. First, we need to distinguish two notions
of monotonic determinacy: finite monotonic determinacy, in
which the rewriting must exist only for finite databases, and
unrestricted monotonic determinacy, in which the rewriting
holds for all relational structures, finite or infinite. In the
case of Datalog without rules, these two notions coincide
(Benedikt et al. 2023). But even in the presence of very sim-
ple rules, they differ.

Example 2. Let our schema consist of a binary relation R,
along with a rule: ∀xy R(x, y)→ ∃z R(y, z)

This is a Linear TGD: a universally quantified implication
with a single atom in the hypothesis. It is even a unary in-
clusion dependency (UID): there are no repeated variables,
and only one variable occurs on both sides of the implica-
tion. Such rules are extremely well-behaved. For example,
the implication problem between them is known to be decid-
able in PSPACE (Abiteboul, Hull, and Vianu 1995). Observe
that in a finite database satisfying the rule, there must be a
cycle of R edges.

Consider the Datalog program Q = QR ∪
{GOAL := REACH(x, x)}, where QR is defined above,
and GOAL the goal predicate. Then Q is a Boolean query
checking for the existence of an R cycle. Suppose also
that we have only the Boolean view V () := ∃xy R(x, y).
Clearly, we cannot answer Q using the views over all
instances. But over finite databases, Q is equivalent to V (),
so it is monotonically determined over finite instances.

In this work, we deal mainly with unrestricted monotonic
determinacy, admittedly because it is simpler to analyze.
But even for the unrestricted case, our proofs will involve
interplay between finite and infinite. And we will some-
times be able to infer that the finite and unrestricted cases
agree. We show that the case where both views and queries
are guarded is still well-behaved for decidability in the pres-
ence of guarded rules. But the case of non-guarded views
is significantly different. Without rules, non-recursiveness
can substitute for guardedness. But we show that even when
both the query and views are non-recursive, and even when
the rules are in a well-behaved class, monotonic determi-
nacy is undecidable. We show that decidability can be re-
gained by restricting the view and query to be CQs, and also
imposing that the rules are extremely simple: linear TGDs,
a case analogous to SQL referential constraints.

For expressiveness of rewritings, the most significant
differences introduced by rules come for guarded views
and queries. We show that for monotonically determined
guarded queries and views, we obtain rewritings in fixpoint
logic, and thus in polynomial time. In certain cases we can
conclude rewritability in Datalog.

Contributions, and How to Read this Paper. Our first
contribution is a set of tools for reasoning with queries,
views, and rules:

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

118

Query \ Views CQ MDL, FGDL UCQ DL
CQ, UCQ NP

2EXP
CONEXP 2EXP

MDL in 3EXP
UndecidableFGDL Open

DL

Figure 1: Decidability/Complexity without rules
Query \ Views CQ MDL, FGDL UCQ DL

CQ CQ
UCQ UCQ
MDL FGDL MDL

n. n. DatalogFGDL DLDL

Figure 2: Rewritability without rules

• We extend the “forward-backward” method for obtain-
ing rewritings to the presence of rules. Briefly, we show
that sometimes one can use automata to generate Datalog
rewritings for monotonically determinacy queries.

• We provide results on certain-answer rewritability of Dat-
alog queries with rules (Theorem 3, Proposition 4), and on
finite controllability of recursive queries with rules (The-
orem 4). We recommend that readers interested in tradi-
tional KR reasoning problems start with these results.

• We present a new kind of “compactness property” for
entailments involving Datalog queries, rules, and views.
This is more technical, and arguably more specific to the
setting of view rewriting. It states that when an infinite
view instance entails that a query holds on the base in-
stance it is derived from, then the same holds for some
finite subinstance. This is crucial to rewritability and non-
rewritability results.

While we apply these tools to get positive results about de-
cidability and rewritings for monotonic determinacy, we be-
lieve that all of them – but particularly the results in the sec-
ond item – are of broader interest.

Our second major contribution is a set of surprising unde-
cidability results – strongly contrasting with the case without
background knowledge. For example, Theorem 16 implies
that monotonic determinacy and also CQ rewritability for
CQ queries and CQ views is undecidable even for quite sim-
ple rules: combinations of frontier-one and linear. While
Theorem 18 shows that if the views have disjunction, there
is undecidability even with single attribute referential con-
straints. Briefly, the presence of simple rules implies that
CQ rewriting and determinacy problems become undecid-
able. The reader mostly interested in results about rewriting
with views is recommended to start with these results (Sec-
tion 5) which use direct encodings, not the tools above.

Organization. Section 2 contains preliminaries. Sec-
tion 3 presents key tools for our positive results. Section
4 applies the tools to get positive results on decidability and
rewritability, while Section 5 presents the surprising unde-
cidability results. The paper ends with a summary in Sec-
tion 6. Many proofs, along with some auxiliary results, are
deferred to the full version (Benedikt et al. 2024).

2 Preliminaries
We assume the usual notion of relational schema: a finite
set of relations, with each relation associated with a num-
ber its arity. For predicate R of arity n, an R-fact is of

the form R(c1 . . . cn). A database instance (or simply in-
stance) is a set of facts. The active domain of an instance,
ADOM(I), is the set of elements that occur in some fact.
A query of arity n over schema S is a function from in-
stances over S to relations of arity n. A Boolean query is
a query of arity 0. The output of a query Q on instance I
is denoted as Output(Q, I). We also use the standard no-
tations I |= Q(c) or I, c |= Q to indicate that c is in the
output of Q on input I. A query is monotone if I ⊆ I ′
implies that Output(Q, I) ⊆ Output(Q, I ′). A homomor-
phism from instance I to instance I ′ is a mapping h such
that R(c1 . . . cn) ∈ I implies R(h(c1) . . . h(cn)) ∈ I ′. We
assume familiarity with standard tree automata over finite
trees of fixed branching depth. A few results use automata
over infinite trees (Thomas 1997). Büchi tree automata have
the same syntactic form as regular tree automata: a finite set
of states, subsets that are initial and accepting, and a transi-
tion relation. An automaton accepts an infinite tree if there
is a run that assigns states to each vertex of the tree, obeying
the transition relation, and where every path hits an accept-
ing state infinitely often.
CQs and Datalog. We assume familiarity with FO logic, in-
cluding the notion of free and bound variable. A conjunctive
query (CQ) is a formula of the form Q(x) = ∃y φ(x,y),
where φ(x,y) is a conjunction of relational atoms. Given
any CQ Q, its canonical database, denoted CANONDB(Q),
is the instance formed by treating each atom of Q as a
fact. The output of a CQ Q on some instance I is the
set of all tuples t such that there is homomorphism h :
CANONDB(Q) → I satisfying t = h(x). A union of con-
junctive queries UCQ is a disjunction of CQs with the same
free variables.

Datalog is a language for defining queries over a relational
schema S. Datalog rules are of the form: P (x) := φ(x,y)
where P (x) is an atom s.t. P 6∈ S, and φ is a conjunction
of atoms, with y implicitly existentially quantified. The left
side of the rule is the head, while the right side is the body of
the rule. In a set of rules, the relation symbols in rule heads
are called intensional database predicates (IDBs), while re-
lations in S are called extensional relations (EDBs). A
Datalog program is a finite collection of rules. For an in-
stance I and Datalog program Π, we let FPEval(Π, I) de-
note the⊇-minimal IDB-extension of the input I which sat-
isfies Π treated as a set of universal FO implications. A
Datalog query Q = (Π,GOAL) is a Datalog program Π to-
gether with a distinguished intensional goal relation GOAL
of arity k ≥ 0. The output of Datalog query Q on an
instance I (denoted as Output(Q, I) or simply Q(I)) is
the set {c | GOAL(c) ∈ FPEval(Π, I)}. Monadic Datalog
(MDL) is the fragment of Datalog where all IDB predicates
are unary. Frontier-guarded Datalog (FGDL) requires that
in each rule P (x) := φ(x,y) there exists an EDB atom
in φ containing x. Frontier-guarded Datalog does not con-
tain MDL; for example, in an MDL program we can have a
rule I1(x) := I2(x), where I1 and I2 are both intensional.
However every MDL program can be rewritten in FGDL
(Benedikt et al. 2023), and thus we declare, as a convention,
that any MDL program is FGDL.

When Datalog query Q holds for tuple t in instance I,

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

119

this means one of an infinite sequence of CQ queries Qn

holds. Here Qn is obtained by unfolding the intensional
predicates by their rule bodies some number of times. Such
a query is called a CQ approximation ofQ. Datalog can also
be seen as a subset of Least Fixpoint Logic (LFP), the ex-
tension of first-order logic with a least fixed point operator
construct: if φ(x1 . . . xK , X) is a formula with free vari-
ables x1 . . . xk and an additional k-ary second order free
variable X , µX,xφ(y1 . . . yk) is a formula in which X is
not free, but y are free. In this work we will also con-
sider an extension of Datalog where we have both the least
fixed point operator, the dual greatest fixpoint operator ν,
but no negation or universal quantification. This logic, de-
noted POSLFP, can still only express monotone queries, but
it can express properties beyond Datalog: e.g., the POSLFP
formula νP,x.[A(x)∧ (∃y R(x, y)∧P (y))](z) holds of ele-
ment z when it is in a unary predicate A and has paths to an
A node of finite length.

Existential rules. Semantic relationships between rela-
tions can be described using existential rules - also referred
to as Tuple Generating Dependencies (TGDs) - that are log-
ical sentences of the form ∀x λ(x) → ∃y ρ(x,y), where
λ(x) and ρ(x,y) are conjunctions of relational atoms whose
free variables are contained in x, and x ∪ y correspond-
ingly. The left-hand side of a TGD (i.e., the conjunction
λ(x)) is the body of the dependency, and the right-hand side
is the head. By abuse of notation, we often treat heads and
bodies as sets of atoms, and we commonly omit the leading
universal quantifiers. The variables that appear in both the
head and the body are the frontier of the rule, and are also
said to be the exported variables.

Let I be an instance and let τ be a TGD. The notion of τ
holding in I (or I satisfying τ , written I |= τ) is the usual
one in first-order logic.

Given CQs Q1 and Q2 along with dependencies Σ, we
say Q1 is contained in Q2 relative to Σ if for every instance
I satisfying Σ, Output(Q1, I) ⊆ Output(Q2, I). We also
write Σ ∧ Q1 |= Q2 in this case. Given a set of facts D,
Boolean CQQ, and dependencies Σ, we sayD and Σ entails
Q if Q holds in every instance containing D and satisfying
Σ. We also write Σ ∧D |= Q. We can similarly talk about
“finite entailment”, where “every instance containing D” is
replaced by “every finite instance containingD”. For a class
of queries and existential rules, we say entailment is finitely
controllable if entailment agrees with finite entailment for
each finite instance D and each query and rules in the class.

Special classes of rule. A rule is linear if the body has
a single atom, and full if there are no existential quantifiers
in the head. It is frontier-guarded (FGTGD) if there is a
body atom that contains all exported variables. It is frontier-
one (FR-1) if there is only one variable in the frontier. A
FR-1 linear TGD with no constants or repeated variables is
a Unary Inclusion Dependency (UID). A set of rules Σ is
Source-to-Target if for every ρ, ρ′ ∈ Σ the head-predicates
of ρ do not appear in the body of ρ′.

The chase. In certain arguments we use the character-
ization of logical entailment between CQs in the presence
of existential rules in terms of the chase procedure (Maier,
Mendelzon, and Sagiv 1979; Fagin et al. 2005). The chase

modifies an instance by a sequence of chase steps until all
dependencies are satisfied. Let I be an instance, and con-
sider a TGD τ = ∀x.λ → ∃y.ρ. Let h be a trigger
– a homomorphism from λ into I. Performing a chase
step for τ and h to I extends I with each fact of the con-
junction h′(ρ(x,y)), where h′ is a substitution such that
h′(xi) = h(xi) for each variable xi ∈ x, and h′(yj), for
each yj ∈ y, is a fresh labeled null that does not occur in I.
For Σ a set of TGDs and I an instance, we use CHASEΣ(I)
to denote any instance (possibly infinite) formed from I by
iteratively applying chase steps, where Σ holds. We say that
CHASEΣ(I) is finite if we can perform finitely many chase
steps and obtain an instance satisfying Σ. We say that Σ has
terminating chase if CHASEΣ(I) is finite for every finite I.

Views and rewritability. A view over some relational
schema S is a tuple (V,QV) where V is a view relation
and QV is an associated query over S whose arity matches
that of V . QV is referred to as the definition of view V .
By V we denote a collection of views over a schema S.
We sometimes refer to the vocabulary of the definitions
QV as the base schema for V, denoting it as ΣB, while
the predicates components V are referred to as the view
schema, denoted ΣV. For an instance I and set of views
V = {(V,QV) | V ∈ ΣV}, the view image of I, denoted
by V(I), is the instance over ΣV where each view predicate
V ∈ ΣV is interpreted by Output(QV , I). Recall from the
introduction that query Q is monotonically determined over
views V relative to rules Σ if for each I, I ′ satisfying Σ
with V(I) ⊆ V(I ′), Q(I) ⊆ Q(I ′). Given views V, rules
Σ and a query Q, a query R over the view schema ΣV is a
rewriting of Q with respect to V and Σ if: for each I over
S satisfying Σ, the output of R on V(I) is the same as the
output of Q on I. A rewriting that can be specified in a par-
ticular language L (e.g. Datalog, CQs) is an L-rewriting of
Q w.r.t. V and Σ, and if this exists we say Q is L-rewritable
over V,Σ. We drop V and/or Σ from the notation when it
is clear from context.

It is clear that if Q has a rewriting in a language that de-
fines only monotone queries, like Datalog, then Q must be
monotonically determined. We will be concerned with the
converse to this question. The main questions we will con-
sider, fixing languages LQ, LV, LΣ for the queries, views,
and rules (e.g. Datalog, fragments of Datalog for the first
two, special classes of existential rules for the third) are:
• can we decide whether a Q in LQ is monotonically deter-

mined over V,Σ in LV, LΣ?
• fixing another language L for rewritings, if Q is mono-

tonically determined over V,Σ, does it necessarily have
a rewriting in L?
Finite and unrestricted variants. We have noted in

the introduction that there are variants of our definitions
of monotonic determinacy and rewritability depending on
whether only finite instances are considered, or all instances.
In the definitions above, we make unrestricted instances the
default. We say that query Q is monotonically determined
over views V,Σ over finite instances if in the definition “for
any each instances I, I ′ satisfying . . . ” is replaced by “for
each finite instances I, I ′ satisfying . . . ”. We similarly ar-
rive at the notion of a query R being a rewriting over V,Σ

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

120

for finite instances by changing “for each I over S” in the
definition of rewriting to “for each finite I over S”. If the
finite and unrestricted versions coincide, we say that mono-
tonic determinacy is finitely controllable for a class of view,
queries, and rules. In (Benedikt et al. 2023) finite controlla-
bility was observed in the absence of rules, while Example
2 shows that it fails even for simple rules.

Monotonic determinacy characterized using approxi-
mations and the chase. Algorithm 1 gives an abstract pro-
cedure for checking monotonic determinacy of Boolean Dat-
alog query Q over Datalog views V with respect to rules
Σ. We universally choose an approximation Qn of Q, and
then chase the canonical database of this query with Σ. One
can think of each of the results as a generic instance sat-
isfying Q and Σ. We let Jn be the view image of such
a database: thus Jn is a set of view facts. We then take
each fact Vi(c) in Jn, where Vi is a view predicate, and
non-deterministically choose witnesses facts for it. For each
Vi(c) we choose an approximation for the query QVi

as-
sociated with Vi, and then take the canonical database of
this with c substituted in for the free variables. For an in-
stance J of the view schema, we let BACKVV(J) be the
instances of the base schema that results from this process.
In the case that the views are CQs, we can assume there is
only one instance in BACKVV(J), namely the chase of J
with rules of the form ∀x [Vi(x) → QVi(x)]. When views
are UCQs or Datalog, BACKVV(J) can be thought of as
the result of a “disjunctive chase”. Next, we chase instances
in BACKVV(Jn) using Σ – thus chasing a second time. We
have described a non-deterministic process that generates in-
stances I ′ in the base schema, where each I ′ satisfies Σ, and
has a view image containing one of the Jn. That is, each of
these “test instances” has a view image containing the view
image of an instance satisfying Q and Σ, and thus mono-
tonic determinacy states they should satisfy Q. The process
is non-deterministic because we have guesses for the initial
approximation Qn, and guesses for the approximation wit-
nessing each view fact. If each of the databases I ′ resulting
from this process satisfies the original query Q, monotonic
determinacy holds.

Algorithm 1 Process for checking monotonic determinacy.
MONDET(Q,V,Σ):
1: for Qn approximation of Q do . unfold the query
2: Cn := CHASEΣ(CANONDB(Qn)) . Chase an

unfolding
3: Jn := V(Cn) . Apply views
4: for Q′m,n ∈ BACKVV(Jn) do . Guess a witness

for each view fact
5: C ′m,n := CHASEΣ(Q′m,n) . Chase again
6: IF C ′m,n 6|= Q . Check if Q holds
7: return false
8: return true

The fact that this process captures monotonic determinacy
with respect to existential rules is straightforward (see also
Lemma 5.4 in (Benedikt et al. 2023))

Proposition 1. Q is monotonically determined over V w.r.t.
Σ if and only if the process of Algorithm 1 returns true.

The “process” above is not an algorithm, even in the ab-
sence of rules, since there are infinitely many choices forQn

and infinitely many choices for the approximations to sub-
stitute in Step 4. With rules, there is also the problem that
the chase may be infinite. Nevertheless, all of our results on
monotonic determinacy will make use of this characteriza-
tion. Intuitively, one way to analyze monotonic determinacy
is by moving forward in the process: getting effective rep-
resentations of the intermediate artifacts produced in each
step. A second technique is to move backward, rewriting
away steps of the process to get a simpler algorithm that
does not use these steps. We will make use of both of these
approaches in our results.

3 Tools for the positive results
Our undecidability results will be direct reductions, and thus
do not require much prior machinery. But as mentioned in
the introduction, for our positive results we develop some
techniques for analyzing rules, views, and queries involving
Datalog, which we then apply to the process of Figure 1.

Review of the forward-backward approach and the
bounded tree-width view image property. We now review
an idea from (Benedikt et al. 2023): we can “capture the in-
termediate artifacts in Figure 1 using tree automata”. And
we can sometimes move from tree automata in the view sig-
nature to Datalog over the views (backward mapping).

For a number k a tree decomposition of adjusted width k
for an instance I is a pair TD = (τ, λ) consisting of a rooted
directed tree τ = (VERTICES, E), either finite or countably
infinite, and a map λ associating a tuple of distinct elements
λ(v) of length at most k (called a bag) to each vertex v in
VERTICES such that the following conditions hold: – for ev-
ery atom R(c) in I, there is a vertex v ∈ VERTICES with
c ⊆ λ(v); – for every element c in I, the subgraph of τ
induced over the set { v ∈ VERTICES | c ∈ λ(v) } is con-
nected. A tree decomposition TD of an instance I can be
associated with a labelled tree T where labels describe the
facts holding on the elements associated with a node. We
use a standard encoding – see the full version (Benedikt et
al. 2024). Any such tree T will be a k tree code of the in-
stance I. Given a tree code T , we denote the instance it
encodes with D(T).

Above we abuse notation slightly by re-using λ(v) to indi-
cate the underlying set of elements, as well as the tuple. The
adjusted treewidth of an instance I, TW+(I), is the mini-
mum adjusted width of a tree decomposition of I. For a
tree decomposition TD of data instance I let TSPAN(TD)
(the treespan of the decomposition) be the maximum over
elements e of I of the number of bags containing e.

A counterexample to monotonic determinacy consists of
instances I, I ′ satisfying Σ such that V(I) ⊆ V(I ′),
I |= Q, and I ′ |= ¬Q. We will consider such a pair as
a single instance in the signature with two copies of the base
schema, one interpreted as in I while the other is interpreted
as in I ′, along with one copy of the view predicates, inter-
preted as in V(I). A tree code of a counterexample to mono-
tonic determinacy is a tree code for the instance formed from

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

121

a counterexample in the vocabulary above. The following
proposition, an application of Courcelle’s theorem (Cour-
celle 1991), states that for any fixed k, we can recognize
counterexamples that are of low treewidth, using automata.
Proposition 2. [Forward Mapping] For each Q in FGDL,
V in FGDL or FO, Σ existential rules, and each k there is
a tree automaton that accepts all finite k tree codes of coun-
terexamples to monotonic determinacy of Q,V,Σ. There is
a a Büchi automaton over infinite trees that holds exactly
when there is an arbitrary (possibly infinite) k tree code of
such an instance.

Of course, for monotonic determinacy, we are interested
not just in treelike counterexamples, but arbitrary counterex-
amples. However, in some cases, low treewidth is enough.
A triple (Q,V,Σ) has the bounded treewidth view image
property (BTVIP) if we can compute a k such that for ev-
ery approximationQn and some chaseC of CANONDB(Qn)
under Σ it holds that TW+(V(C)) ≤ k. If we can choose a
finite C, we say (Q,V,Σ) has the finite bounded treewidth
view image property (FBTVIP).
Proposition 3. If Σ are FGTGDs, (Q,V,Σ) has the BTVIP
(resp. FBTVIP), V is in Datalog, then there is k, computable
from (Q,V,Σ), such that whenever monotonic determinacy
fails, there is some counterexample (resp finite counterexam-
ple) of treewidth k.

In particular, the two propositions tell us that, when the
hypotheses of both propositions apply, it suffices to check
that the automaton from Proposition 2 is nonempty. This
will allow us to get decidability results on monotonic deter-
minacy in the presence of the BTVIP.

For getting results on rewriting, it is useful to move back-
ward from tree automata accepting certain codes to a Data-
log query accepting their decodings. Here is one formaliza-
tion of the backward mapping, a variation of (Benedikt et al.
2023, Proposition 7.1)
Theorem 1. [Backward Mapping] Let σ be a relational sig-
nature, k ∈ ω andA a tree automaton over the signature for
tree codes of treewidth k structures over σ. Then there is
a Datalog program EA such that for every σ-structure M:
M |= EA iff there is a finite tree code T over σ accepted by
A with a homomorphism from D(T) to M.

In our rewriting theorems – see Theorems 12 and 14 in
Section 4 – the idea is to first apply the forward mapping of
Proposition 2 to get an automaton accepting treelike coun-
terexamples. We then project to get an automaton over codes
of view instances. We apply backward mapping of Theorem
1 to get a Datalog program. We emphasize that the same
process was used in (Benedikt et al. 2023) for the rewrit-
ing results in Figure 2. The main difference is that we will
need a modification dealing with the fact that the treecodes
involved may be infinite. This required us to extend to au-
tomata over infinite trees in Proposition 2, and in Theorem
12 it will require us to expand the rewriting language from
Datalog to the larger logic POSLFP.

Certain answer rewritings. The alternative to “moving
forward” in the process of Figure 1 is to go backwards, elim-
inating steps in the process via certain answer rewriting re-

sults. This will require us to obtain new results eliminating
entailment steps.

For an instance I, logical sentences Σ, and Boolean query
Q, we write I ∧ Σ |= Q if Q returns true on every instance
that includes I and satisfies Σ. This is just the usual logical
entailment when I is considered as a conjunction of facts.
We also say that Q is certain for I,Σ. A certain-answer
rewriting (C.A. REWRITING) of Q with respect to rules Σ
is a query QΣ such that running QΣ on every I will tell
whether Q is certain for I,Σ. For a query language L, we
talk about an L-C.A. REWRITING. Informally, Q has an
L-C.A. REWRITING over Σ if we can check whether Q is
certain w.r.t Σ with an L query.

The following is easy to derive from prior results.
Theorem 2. UCQs have UCQ C.A. REWRITINGs over lin-
ear TGDs (Calı̀, Lembo, and Rosati 2003, Thm. 3.3). UCQs
have FGDL C.A. REWRITINGs over FGTGDs (Bárány,
Benedikt, and ten Cate 2018, Thm 5.6).

In all cases where we write that something has a
C.A. REWRITING, the generation of the rewriting is effec-
tive. We omit the precise bounds here. We can refine the ar-
gument from (Bárány, Benedikt, and ten Cate 2018) to show
that for FR-1 rules, the rewriting is in MDL:
Theorem 3. CQs have MDL C.A. REWRITINGs over FR-1
TGDs.
Less is known when Q is in Datalog. For Q ∈ FGDL we
get a result from Thm. 2 and “moving Datalog rules into the
existential rules”:
Proposition 4. FGDL queries have FGDL
C.A. REWRITINGs over FGTGDs.

A new finite controllability result. We now consider a
subset of Datalog that is less restrictive than MDL or even
FGDL. The Extensional Gaifman graph of a Datalog rule
is the graph whose nodes are the variables in the head and
whose edges connect two variables if there is an atom over
an extensional relation that connects them. A query or pro-
gram is extensionally-connected (EC) if in each rule the Ex-
tensional Gaifman graph is connected. EC Datalog sub-
sumes FGDL and hence MDL. Recall the definition of “en-
tailment is finite controllable” from Section 2. We can show:
Theorem 4. For the class of FR-1 rules and EC-Datalog
queries, entailment is finitely controllable.

This is the first non-trivial finite-controllability result we
know of for Datalog queries with arbitrary arity. The proof
modifies an approach of “finite quotients”, stemming from
work in finitely controllability for description logics, e.g
(Gogacz, Ibáñez-Garcı́a, and Murlak 2018):

Proof. Fix the database instance D, the set of frontier-one
TGDs Σ, and an EC Datalog query Q. Let C denote the
chase of D by Σ, let n denote the maximal size of any rule
in both Σ and Q, and let N = 4 · n2. In this sketch we
make some drastic simplifications to convey the idea: 1. The
database instanceD is a single unary atom. 2. The EDB rela-
tional symbols are at most binary. 3. The rules of Σ have ex-
actly one frontier variable. 4. No atoms of the shapeE(x, x)
appear in D,Σ, and Q 5. Heads of rules of Σ are trees. We

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

122

disregard the direction of binary predicates whenever dis-
cussing graph-theoretic notions, such as distances, trees, or
cycles. From the assumptions we easily see:

Proposition 5. The chase of D by Σ forms a regular tree.

Definition 1 (Unabridged). Given an instance I and a cy-
cle C in I we say that C is unabridged if for every pair of
elements t, t′ of C the shortest path between them in I goes
through C.

Note that above we treat instances as undirected graphs.

Definition 2 (Trimming). Consider a tree T with a node v.
The process of removing all the children of node v is referred
to as trimming at node v. Note, that trimming at leaves is
allowed, but it has no effect.

Definition 3 (Unfolding tree). For a Datalog program P
without repeated variables in rule heads, the unfolding tree
is any tree derived from a CQ-approximation tree T of P
through the process of trimming at one or more nodes of T .

Then, an unfolding of P is a conjunction of labels from
any unfolding tree of P . Note that the resulting CQ may
include IDB predicates.

Definition 4 (Succession). We say that an unfolding tree T
is a direct successor of an unfolding T ′ if T ′ can be obtained
from T by trimming it at a node with only leaves as its chil-
dren. We define succession as the transitive closure of direct
succession. These notions naturally extend to unfoldings.

To prove Theorem 4 we need to show that iff C does not
entailQ then there exists a finite modelM of Σ containingD
that does not entail Q as well. We give only the construction
of M here, leaving the verification for the full version.

Definition 5 (Ancestor). Given an infinite tree T , a natural
numberm, and a node u of T , we define them-ancestor of u
as the ancestor of u at a distance ofm, if it exists; otherwise,
the m-ancestor of u is the root of T..

Definition 6 (Perspective). Given a natural number m and
a node u of an infinite tree T , we define the m-perspective
of u as the pair 〈T ′, u〉 where T ′ is the subtree of T that is
rooted at the m-parent of u. We consider m-perspectives up
to isomorphism.

Let type(u), for a term u in C, consist of two values:
1. The depth of u in C modulo N . 2. The N -perspective

of u. Note that Proposition 5 indicates there are only a finite
number of such perspectives, keeping in mind that we count
only up to isomorphism. Define M as a structure that is a
quotient of C using the “is of the same type” relation, where
type is defined as above.

Using an analysis of how Q can be satisfied, we can show
that M witnesses finite controllability: M extends D, satis-
fies Σ, and does not satisfy Q.

Compactness of entailment. Let us go back to the for-
ward approach for analyzing pipelines of chasing and views,
such as the process of Figure 1. We start by using an automa-
ton to represent the view images of chases of unfoldings of
the query, which we can do when we have the BTVIP and

some extra conditions on the views. But usually we need an
automaton over infinite trees to do this, as in Proposition 2.
This is unfortunate, because our backward mapping result,
Theorem 12, requires an ordinary finite tree automaton to
map backward into Datalog. What will help us is that we
are interested in cases where the entire process succeeds –
which means monotonic determinacy holds. We would like
to argue that this depends on only a finite part of the view
image of the chase, and later conclude that a finite tree au-
tomata suffices to capture this part. We give a general result
about entailment that will be useful for those purposes.

Fix a set of views V, rules Σ, and a query Q, and let J be
an instance of the view schema. A V,Σ-sound realization of
J is an instance of the base schema satisfying Σ whose view
image includes J . An instance J is said to be Q-entailing
(w.r.t Σ,V) if every V,Σ-sound realization of J satisfies
Q. We also write J |=V,Σ Q. Monotonic determinacy can
be restated as: for every instance I satisfying Q and Σ, its
view image is Q-entailing w.r.t. Σ,V.

It is easy to see that if Σ consists of existential rules, and
views are CQs, then when J is Q-entailing there is a finite
subinstance J0 that is Q-entailing w.r.t. Σ, V. We only
need enough facts from J to fire the chase rules needed to
generate a match of Q. In the case where the views are in
Datalog, this is not clear. But it turns out we can often obtain
this “compactness property”:

Theorem 5. [Compactness for view and rule entailment]
Let Σ consist of FGTGDs, V a set of views defined by Dat-
alog queries, and Q an FGDL query. For every J such that
J is Q-entailing w.r.t. Σ, V, there is J0 a finite subinstance
of J such that J0 is Q-entailing.

Note that under the hypotheses, if we take a particular
unfolding of J – a choice of witness for each view fact –
then Q will hold in the chase of the corresponding instance,
and the satisfaction of Q will depend on only finitely many
facts in the chase, thus on only finitely many facts in J . The
issue is that there are infinitely many witness unfoldings, and
one worries that more and more facts from J are required
for different witnesses. The proof of Theorem 5 works by
observing that the set of witnesses needed will only depend
on the j quantifier rank type in guarded second order logic,
for sufficiently large j. There are only finitely many such
types, and thus we need only finitely many facts. Note that
when we move to general Datalog Q, this result fails: see
the full version (Benedikt et al. 2024) for details.

Recognizing Q-entailing instances with automata.
Now consider a tree-like view instance J : one with
treewidth k, given by some tree code T . Theorem 5 tells
us that there is a finite prefix T0 of T whose decoding is
Q-entailing. It turns out that we can often recognize these
Q-entailing finite prefixes by running an ordinary finite tree
automaton. This result and Theorem 5 together will allow
us to reduce monotonic determinacy to reasoning with finite
tree automata, rather than dealing with infinite trees.

Theorem 6. [Automata for entailing witnesses] Let Σ con-
sist of FGTGDs, V a set of views defined by FGDL queries,
and Q a FGDL query. Let k be a number. There is a tree
automaton TQ,V,Σ,k running over k-tree codes in the view

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

123

signature such that for finite J0 of tree-width k, TQ,V,Σ,k

accepts a code of J0 if and only if J0 |=V,Σ Q.

The proof of this theorem involves elimination of quan-
tification over extensions of a tree in favor of quantification
within a tree, an idea inspired by prior work in embedded
finite model theory over trees (Benedikt, Libkin, and Neven
2007). Consider the set E of tree codes of finite instances
J0 such that J0 |=V,Σ Q. The entailment relation quantifies
over all extensions of J0. But in our setting, it equivalently
quantifies over all tree-like instances, finite or infinite. Since
all the queries involved are well-behaved, we can write a
monadic second order sentence φ quantifying over infinite
trees such that a finite tree is in E if and only if all of its ex-
tensions – “suffixes” that add on additional branches, both
finite and infinite – satisfy φ. But we can argue that quanti-
fying over all infinite extensions in the way does not take us
out of regular tree languages.

4 Applying the Tools for Decidability and
Rewritability

We first apply the tools from Section 3 to give decidability
results. We focus on three decidable cases: FGDL TGDs,
FGDL queries, and FGDL views – that is “everything is
guarded”; Fr-1 TGDs, MDL queries and CQ views – which
we shorten as “Fr-1 rules and queries, CQ views”. and fi-
nally, linear TGDs, CQ query, CQ views – that is, “linearity
and CQs”; For brevity we omit complexity bounds in the
statements, but elementary upper bounds are easy to derive.
What we want to highlight here is that the conditions are
very restrictive, but just afterwards we will show that they
are necessary.

Decidability via bounding treewidth. In the first case
mentioned above, we establish decidability via the forward-
reasoning approach in the previous section, and more specif-
ically the Forward mapping tools:

Theorem 7. Let Q range over FGDL queries, Σ over FGT-
GDs, and V over FGDL views. Then monotonic determi-
nacy is decidable.

Proof. It is easy to show that we have the BTVIP in the case
above: the approximations of Q are tree-like, chasing with
FGTGDs adds on additional branches to the tree, and apply-
ing FGDL preserves the tree structure. We just check non-
emptiness of the automaton of Proposition 2. By Proposition
3 this is sufficient

The same method applies to the second case above, MDL
queries and CQ views, and FR-1 rules:

Theorem 8. Let Q range over MDL queries, Σ over FR-1
TGDs, and V over CQ views. Then monotonic determinacy
is decidable.

Proof. When we approximate an MDL query and chase, we
get a structure with bounded tree-width and low treespan.
That is, a value appears in a fixed number of bags. When we
apply CQ views, the treewidth is bounded (Benedikt et al.
2023, Lem 6.5, Thm 8.2).

Decidability based on certain answer rewriting. We
tackle the final decidable case by giving decidability via the
“backwards analysis”, using certain answer rewriting tech-
niques from the previous section. Recall that in the case of
CQ views, Step 4 in the process of Figure 1 amounts to chas-
ing with respect to the source-to-target rules BACKVV men-
tioned earlier. Thus the entire process can be considered to
consist of chase steps, and we can proceed by a rewriting
approach that removes some of these steps: we first find a
C.A. REWRITING R1 of Q with respect to Σ, and then a
C.A. REWRITING R2 ofR1 with respect to BACKVV. Then
we have monotonic determinacy ofQ over V with respect to
Σ exactly when Q entails R2 with respect to Σ. We can ap-
ply this straightforwardly in the case of linear TGDs, where
Theorem 2 tells us we can find UCQ C.A. REWRITINGsR1,
which will generate another UCQ C.A. REWRITING R2.
Theorem 9. If Σ ranges over linear TGDs, then monotonic
determinacy of UCQ Q over CQ views V relative to Σ is
decidable.

Decidability in the finite using the finite controllability
result. We have sketched the argument for decidability of
monotonic determinacy over all instances for three cases. In
these cases, we can show that monotonic determinacy is also
decidable in the finite as well. We focus on a special case of
the second decidable case, which will make use of the finite
controllability tool (Theorem 4) from the previous section.
Theorem 10. Let Q be a CQ query, V a set of CQ views,
and Σ is a set of FR-1 TGDs. If Q is monotonically deter-
mined by V with respect to Σ over finite structures, then the
same holds over all structures.

Proof. Using our result on certain-answer rewriting, Theo-
rem 3, we get an MDL certain answer rewriting R1 of Q
w.r.t. Σ. By a direct argument we get an MDL c.a. rewriting
R2 of R1 with respect to the rules that correspond to view
definitions.

Now if monotonic determinacy fails over all instances, we
know, by Proposition 1 and the properties of c.a. rewritings,
that R2 is not entailed by Q and Σ. But now we can ap-
ply Theorem 4 to conclude there is a finite counterexample
I1, satisfying Q ∧ Σ ∧ ¬R2. The view image of I1, and its
chase under the backward mapping rules is likewise a finite
instance I ′1. We claim that there is a finite instance I2 con-
taining I ′1, satisfying Σ ∧ ¬Q. If this were the case, I1 and
I2 together would contradict monotonic determinacy in the
finite. We obtain I2 by simply applying Theorem 4 again
for I ′1,Σ, and R1.

We now apply the tools to investigate what kind of rewrit-
ings we can obtain.

View rewritings based on certain answer rewritings.
One approach to obtaining rewritings is “working back-
wards” on the pipeline in Fig. 1, applying the tools related
to certain answer rewritings in Section 3 to remove the last
steps in the process.
Theorem 11. Let Σ be a set of FGTGDs, Q be a FGDL
query, and V a set of CQ views. Then if Q is monotonically
determined over V with respect to Σ, there is a rewriting of
Q in Datalog.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

124

Proof. We apply Proposition 4 to get a Datalog certain an-
swer rewritingR1 ofQ under Σ, thus reversing the final step
in the process. We then get a certain answer rewriting R2

of R1 under the rules BACKVV, which are source-to-target
TGDs. We can check that R2 is the desired rewriting.

View rewriting based on forward-backward. The
certain-answer rewriting approach applies only to CQ views.
We now provide an approach based on bounding treewidth.

Theorem 12. Let Σ be a set of FGTGDs, Q a Boolean
Datalog query and V a set of FGDL views. Then if Q is
monotonically determined by V w.r.t. Σ there is a POSLFP
rewriting.

Proof. We use a modification of the forward-backward ap-
proach mentioned after Theorem 1. Using the same argu-
ment as Proposition 2 we can get a Büchi automaton for
tree-like view images of unfolding of Q. We can project
on to the view signature to get a Büchi automaton accepting
view images. And because Σ, Q,V has the BTVIP it is suf-
ficient to check such tree-like counterexamples. If we ignore
acceptance conditions in this automaton, we get an ordinary
finite tree automaton. We apply the backward mapping of
Theorem 1 to this to get Datalog rules. We can add nested
fixpoints to capture the Büchi acceptance conditions.

We do not know if Datalog suffices for FGTGDs. But we
can show POSLFP is necessary in order to rewrite Q mono-
tonically determined over V w.r.t. Σ for cases when we have
the BTVIP:

Theorem 13. There are Σ, Datalog Q and V such that
the BTVIP holds, with Q monotonically determined by V
w.r.t. Σ, where there is a POSLFP rewriting but no Datalog
rewriting over all structures.

The argument will rely on the failure of “compactness of
entailment” for this class. We provide an example where
compactness fails, and show that this failure implies that a
Datalog rewriting is impossible.

Better rewritings using Compactness of Entailment
and Automata for Entailing Witnesses. We can also use
Compactness of Entailment and Automata for entailing wit-
nesses from Section 3 to show that if Q is in FGDL, we can
do better than POSLFP:

Theorem 14. Let Σ be a set of FGTGDs, Q a Boolean
FGDL query, V a set of FGDL views. Then if Q is mono-
tonically determined by V w.r.t.Σ, then there is a Datalog
rewriting.

Proof. Since Q,V,Σ has the BTVIP, there exists natural k
such that for every CQ approximation of Q there exists its
chase Cn under Σ having TW+(V(Cn)) ≤ k.

Applying Compactness of Entailment, Theorem 5, for any
view instance of treewidth k that entails (via BACKV and Σ)
Q, there is a finite J contained in it that entails Q the same
way. By the Automata for entailing witnesses result, Theo-
rem 6, there is an ordinary tree automaton A that captures
the codes of these finite subinstances. We convert A to Dat-
alog, using the backward mapping of Theorem 1.

Using a similar technique, we can also conclude
rewritability when Q is a CQ but V are arbitrary Datalog.
Theorem 15. Suppose Q is a Boolean UCQ (resp. CQ), V
a set of Datalog views, with Q monotonically determined by
V w.r.t.Σ. Then there is a UCQ (resp. CQ) rewriting of Q
over V relative to Σ.

5 Surprising Undecidability
The three cases that give us decidability in Section 4 amount
to much stronger hypotheses than in the absence of rules,
where all the cases without recursion are decidable. Re-
markably, they cannot be loosened. If we just mix the con-
straint classes from the second and third decidable cases, we
get undecidability even with CQ queries and views.
Theorem 16. The problem of monotonic determinacy is un-
decidable when Σ ranges over combinations of Linear TGDs
and Frontier-1 TGDs, Q over Boolean CQs, and V over CQ
views. If we allow MDL queries, we have undecidability
with just Linear TGDs.

The idea is that we can code a cellular automaton in a
monotonic determinacy problem.

If we allow UCQ views – adding disjunction, but no re-
cursion – we can even get undecidability for rules in the in-
tersection of the two well-behaved rule classes:
Theorem 17. The problem of monotonic determinacy is un-
decidable when Σ ranges over UIDs, which are linear and
frontier-1, Q over Boolean UCQs, and V over UCQ views.

Here the idea is to code a tiling problem (or a non-
deterministic Turing Machine). In the process of Figure 1,
chasing the canonical database of one disjunct of the UCQ
– the “start disjunct” – with the rules will generate two in-
finite axes, while one disjunct of a UCQ view will gener-
ate the cross product of the axes: all(x, y) co-ordinate pairs.
“Reverse chasing” with the other disjuncts of the views will
generate grid points for each such pair, with each grid point
tagged with a tile predicate. Another disjunct of the CQ –
a “verification disjunct” – will return true if the tiles violate
one of the forbidden patterns. Note that the use of a UCQ
will allow us to code non-deterministic computation, while
a CQ view (as in the previous theorem) allows us only to
mimic deterministic computation.

With effort we can get undecidability even with Q a CQ:
Theorem 18. The problem of monotonic determinacy is un-
decidable when Σ are UIDs, Q is a Boolean CQ, and V are
UCQ views.

Similarly to the proof of Theorem 17 we code a tiling
problem. The main new challenge is we do not have mul-
tiple disjuncts in Q to test for different violations. So now
conjuncts in our CQ will represent different violations of a
correct tiling. We arrange that if there is one violation of
correctness of a tiling, there are “degenerate ways” to map
the remaining conjuncts of the CQ. Details are in the full
version (Benedikt et al. 2024).

Thus far we have focused on FGTGDs, where the chase
may not terminate. For full TGDs (no existentials in the
head) the chase terminates. It follows that monotonic de-
terminacy is finitely controllable. Some of the rewritability

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

125

Q\V CQ MDL,
FGDL

UCQ,
DL

CQ,
UCQ

Fr-1 ∪ Lin - Und., Thm. 16
Lin - Dec., Thm. 9 FGTGD - Dec., Thm. 7

MDL
Lin - Und., Thm. 16

full TGD - Und., Thm. 19
Fr-1 - Dec., Thm. 8

full TGD - Und., Thm. 19
FGTGD - Dec., Thm. 7

FGDL Lin - Und., Thm. 16

DL UID - Und., Thm. 18

Figure 3: Decidability with Rules

Q\V CQ MDL,
FGDL UCQ DL

CQ CQ, † CQ Thm. 15

UCQ UCQ,
Thm 2.8 †

UCQ,
Thm 2.8 † UCQ Thm. 15

MDL,
FGDL DL, Thm. 11

DL, Thm. 14

DL Open PosLFP, Thm. 12 n.n. DL

Figure 4: Rewritability with Rules; †(Benedikt et al. 2016)

results easily carry over from the case without rules. For
example, for the case of CQ views, we can infer that mono-
tonically determined Datalog queries are Datalog rewritable,
using the inverse rules algorithm (Duschka, Genesereth, and
Levy 2000). But we can show that even for full TGDs, some
of the decidable cases from Fig. 1 become undecidable. In
particular:

Theorem 19. The problem of monotonic determinacy is un-
decidable when Q ranges over MDL, V over unary atomic
views, and Σ over full TGDs. For suchQ,V,Σ the problems
of Datalog rewritability, CQ rewritability, and the variants
of these problems over finite instances are also undecidable.

We proceed here by constructing a family of Q,Σ,V
where chasing the approximations of Q allows us to build
an arbitrarily large deterministic computation graph. The
views will just indicate whether this computation is accept-
ing. This will allow us to encode a deterministic machine
acceptance problem as monotonic determinacy. Because V
are so restricted (unary atomic!), monotonic determinacy co-
incides with CQ rewritability for this family.

6 Conclusions
We investigated reasoning problems involving the interac-
tion of views, queries, and background knowledge. We de-
veloped tools which can be applied to get positive results
about monotonic determinacy. And we show that even when
you combine simple queries, views, and rules, static analysis
problems involving all of them can become undecidable.

The goal in this paper was not to discuss all we know
about monotonic determinacy with rules. Many results fol-
low easily from prior work. But for completeness, Figures
3 and 4 summarize our knowledge. The results apply to
FGTGDs, except where we indicate restrictions (e.g. LIN
for Linear rules). In the tables bold font highlights a sig-
nificant difference from the case without rules. In Figure 4
Blue indicates that results from prior work (Benedikt et al.
2016) can be used out of the box. Red indicates use of cer-
tain answer-rewriting approaches, while Black indicates an
approach based on bounding treewidth. For readability, we
omit some results for full existential rules in the table. As

shown in the table, a number of cases are left open, both for
decidability and rewritability.

Acknowledgements
Piotr Ostropolski-Nalewaja was supported by the European
Research Council (ERC) Consolidator Grant 771779 (De-
ciGUT).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Afrati, F., and Chirkova, R. 2019. Answering Queries Using
Views. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artificial Intelligence 175(9):1620–1654.
Bárány, V.; Benedikt, M.; and ten Cate, B. 2018.
Some model theory of guarded negation. J. Symb. Log.
83(4):1307–1344.
Benedikt, M.; ten Cate, B.; Leblay, J.; and Tsamoura, E.
2016. Generating Plans from Proofs: the Interpolation-
based Approach to Query Reformulation. Morgan Claypool.
Benedikt, M.; Kikot, S.; Nalewaja-Ostropolski, P.; and
Romero, M. 2023. On monotonic determinacy and
rewritability for recursive queries. ACM TOCL.
Benedikt, M.; Kikot, S.; Marti, J.; and Ostropolski-
Nalewaja, P. 2024. Monotone rewritability and the analysis
of queries, views, and rules. CoRR abs/2407.14907.
Benedikt, M.; Libkin, L.; and Neven, F. 2007. Logical
definability and query languages over ranked and unranked
trees. ACM Trans. Comput. Log. 8(2):11.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; and Pieris, A. 2011.
A logical toolbox for ontological reasoning. SIGMOD
Record 40(3):5–14.
Calı̀, A.; Lembo, D.; and Rosati, R. 2003. Query rewriting
and answering under constraints in data integration systems.
In IJCAI.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2002. Lossless regular views. In PODS.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2007. View-based query processing: On the relation-
ship between rewriting, answering and losslessness. Theo-
retical Computer Science 371(3):169–182.
Courcelle, B. 1991. Recursive queries and context-free
graph grammars. Theoretical Computer Science 78(1).
Duschka, O. M.; Genesereth, M. R.; and Levy, A. Y. 2000.
Recursive query plans for data integration. J. Log. Prog.
43(1):49 – 73.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theoreti-
cal Computer Science 336(1):89–124.
Francis, N.; Segoufin, L.; and Sirangelo, C. 2015. Datalog
rewritings of regular path queries using views. LMCS 11(4).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

126

Gogacz, T., and Marcinkowski, J. 2015. The hunt for a red
spider: Conjunctive query determinacy is undecidable. In
LICS.
Gogacz, T., and Marcinkowski, J. 2016. Red spider meets a
rainworm: Conjunctive query finite determinacy is undecid-
able. In PODS.
Gogacz, T.; Ibáñez-Garcı́a, Y. A.; and Murlak, F. 2018. Fi-
nite query answering in expressive description logics with
transitive roles. In KR.
Levy, A. Y.; Mendelzon, A. O.; Sagiv, Y.; and Srivastava, D.
1995. Answering queries using views. In PODS.
Lukasiewicz, T.; Calı̀, A.; and Gottlob, G. 2012. A general
datalog-based framework for tractable query answering over
ontologies. Journal of Web Semantics 14(0):57–83.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. TODS 4(4):455–469.
Nash, A.; Segoufin, L.; and Vianu, V. 2010. Views and
queries: Determinacy and rewriting. TODS 35(3).
Perez, J. 2011. Schema Mapping Management in Data Ex-
change Systems. Ph.D. Dissertation, University of Chile.
Salvat, E., and Mugnier, M.-L. 1996. Sound and complete
forward and backward chainings of graph rules. In ICCS.
Thomas, W. 1997. Languages, Automata, and Logic. In
Rozenberg, G., and Salomaa, A., eds., Handbook of Formal
Languages.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

127

	Introduction
	Preliminaries
	Tools for the positive results
	Applying the Tools for Decidability and Rewritability
	Surprising Undecidability
	Conclusions

