
Conditional Splittings of Belief Bases and Nonmonotonic Inference with
c-Representations

Christoph Beierle1 , Lars-Phillip Spiegel1 , Jonas Haldimann1,2,3 , Marco Wilhelm4 ,
Jesse Heyninck5,3 , Gabriele Kern-Isberner4

1FernUniversität in Hagen, 58084 Hagen, Germany 2TU Wien, 1040 Vienna, Austria
3University of Capetown and CAIR, Cape Town, South Africa

4TU Dortmund, 44227 Dortmund, Germany
5Open Universiteit, 6419 AT Heerlen, the Netherlands

Abstract

The concept of conditional syntax splitting for inductive in-
ference from conditional belief bases has been proposed as
a generalization of syntax splitting which also covers cases
where the conditionals in the subbases share some atoms.
p-Entailment and system Z fail to satisfy conditional syn-
tax splitting, and up to now, only two inductive inference
operators, lexicographic inference and system W, have been
shown to satisfy this property. In this paper, we introduce
the concept of conditional semantic splitting. We show that
c-representations satisfy a core postulate relating conditional
splittings on the syntax and the semantic level. Based on these
findings, we investigate conditional syntax splitting for non-
monotonic inference with c-representations. Regarding single
c-representations, we utilize the concept of selection strate-
gies, and show that a straightforward property of the selection
strategy leads to inference operators satisfying conditional
syntax splittings. Furthermore, we show that c-inference tak-
ing all c-representations of a belief base into account also
fully complies with conditional syntax splitting.

1 Introduction
The concept of syntax splitting was developed by Parikh
(1999) for belief sets in order to formulate postulates for
belief revision, and was later transferred to other structures
and applications, e.g., (Peppas et al. 2015; Kern-Isberner and
Brewka 2017); a related concept was introduced by Weydert
(1998) as minimum irrelevance. Syntax splitting for non-
monotonic reasoning from conditional belief bases (Kern-
Isberner, Beierle, and Brewka 2020) is a combination of
the postulates relevance and independence, stating that only
conditionals from the considered part of the syntax splitting
of a belief base are relevant for corresponding inferences,
and that inferences using only atoms from one part of the
syntax splitting should be independent of additional infor-
mation on the other parts.

From a theoretical point of view, these splitting prop-
erties are interesting because they implement a notion of
(ir)relevance in inferences. But splitting techniques have
also consequences for applications: They allow for break-
ing down conditional reasoning to the subbases relevant for
a query, hence usually reducing the relevant subsignature
significantly. From a cognitive point of view, splitting tech-
niques bring in the concept of local reasoning which ac-

counts for the limited resources of humans. Moreover, local
reasoning is also fundamental to all works on probabilistic
networks (Pearl 1988). Full splittings in the sense of (Kern-
Isberner, Beierle, and Brewka 2020), however, are quite rare
in real-world applications.

The concept of conditional syntax splitting for inference
from conditional belief bases (Heyninck et al. 2023) is a gen-
eralization of syntax splitting which also allows the subbases
to overlap syntactically, while, in the case of safe splittings,
semantic (conditional) independence holds given the joint
atoms, providing much more realistic application scenar-
ios. The relevance of conditional syntax splitting is further
underpinned by the fact that the so called drowning-effect
(Pearl 1990; Benferhat, Dubois, and Prade 1993) was for-
malized as a violation of conditional syntax splitting (Heyn-
inck et al. 2023). The drowning effect is a phenomenon
where, for some inductive inference relations, special sub-
classes will not properly inherit properties of their super-
class. For example, given the knowledge that birds usually
fly, penguins are usually birds, penguins usually do not fly,
and birds usually have wings, an inductive inference rela-
tion suffering from the drowning effect would not be able to
conclude that penguins usually have wings. This means that
showing conditional syntax splitting is satisfied also implies
that the drowning effect is avoided in general, and not just
for the canonical example.

p-Entailment, characterized by the axioms of system P
(Adams 1965; Kraus, Lehmann, and Magidor 1990), and
system Z (Goldszmidt and Pearl 1996) do not satisfy con-
ditional syntax splitting, and so far, only two inductive in-
ference operators, lexicographic inference (Lehmann 1995)
and system W (Komo and Beierle 2020; Komo and Beierle
2022) have been shown to satisfy it (Heyninck et al. 2023).

In this paper, we extend the study of conditional splittings
of belief bases. As a basis for our investigations we use rank-
ing functions (OCFs) (Spohn 1988) as a well established and
popular semantics for conditional belief bases. In addition
to their popularity, another reason for using OCFs is that the
work on conditional syntax splitting is inspired by proba-
bilistic techniques. Since OCFs can be understood as quali-
tative abstractions of logarithmic probabilities, they provide
a perfect mediating framework to realize such probabilistic
ideas for qualitative nonmonotonic reasoning.
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This paper provides the following four main contribu-
tions.

1. We introduce the concept of conditional semantic splitting
for semantics based on Spohn’s ranking functions (Spohn
1988), and a postulate (CSemSplit) relating conditional
splittings on the syntax and on the semantic level.

2. We show that c-representations, which are special ranking
functions obtained by summing up impacts assigned to
falsified conditionals (Kern-Isberner 2001; Kern-Isberner
2004), satisfy conditional semantic splitting.

3. Regarding single c-representations, we utilize the con-
cept of selection strategies (Kern-Isberner, Beierle, and
Brewka 2020; Beierle and Kern-Isberner 2021) and show
that the property of preserving the impacts chosen for cer-
tain subbases for inferences on the full belief base leads
to inference operators satisfying conditional syntax split-
ting.

4. Without any requirement regarding a selection strategy,
we prove that c-inference, which is the skeptical inference
taking all c-representations of a belief base into account
(Beierle et al. 2018; Beierle et al. 2021), fully complies
with conditional syntax splitting.
The rest of this paper is organized as follows. In Sec-

tion 2, we present the basics of conditional logic needed
here, and in Section 3, we recall the concept of conditional
syntax splitting. In Section 4, we introduce the notion of
conditional semantic splitting and show that it is satisfied
by c-representations. In Section 5, we show that inference
operators for single c-representations with a selection strat-
egy satisfies conditional syntax splitting. In Section 6, we
prove that c-inference taking all c-representations into ac-
count fully complies with condition syntax splitting. In Sec-
tion 7, we conclude and point out further work.

2 Formal Basics
Let L be a finitely generated propositional language over
a signature Σ with atoms a, b, c, . . ., and with formulas
A,B,C, . . .. For conciseness of notation, we may omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e. A means ¬A.
Let Ω denote the set of possible worlds over L; Ω will be
taken here simply as the set of all propositional interpreta-
tions over L. ω |= A means that the propositional formula
A ∈ L holds in the possible world ω ∈ Ω; then ω is called a
model of A, and the set of all models of A is denoted by
Mod (A). For propositions A,B ∈ L, A |= B holds iff
Mod (A) ⊆ Mod (B), as usual. By slight abuse of notation,
we will use ω both for the model and the corresponding con-
junction of all positive or negated atoms. This will allow us
to use ω both as an interpretation and a proposition, which
will ease notation a lot. Since ω |= A means the same for
both readings of ω, no confusion will arise.

For subsets Θ of Σ, let L(Θ) or short LΘ denote the
propositional language defined by Θ, with associated set of
interpretations Ω(Θ) or short ΩΘ. Note that while each sen-
tence of L(Θ) can also be considered as a sentence of L,
the interpretations ωΘ ∈ Ω(Θ) are not elements of Ω(Σ)

if Θ ̸= Σ. But each interpretation ω ∈ Ω can be writ-
ten uniquely in the form ω = ωΘωΘ with concatenated
ωΘ ∈ Ω(Θ) and ωΘ ∈ Ω(Θ), where Θ = Σ\Θ is the com-
plement of Θ in Σ. Note that the syntactical reading of in-
terpretations as conjunctions makes perfect sense here: Ac-
cording to this reading, ω is a conjunction of ωΘ and ωΘ

(with omitted ∧ symbol). ωΘ is called the reduct of ω to Θ
(Delgrande 2017). If Ω′ ⊆ Ω is a subset of models, then
Ω′|Θ = {ωΘ|ω ∈ Ω′} ⊆ Ω(Θ) restricts Ω′ to a subset of
Ω(Θ). In the following, we will often consider the case that
Σ1,Σ2 are disjoint subsignatures of Σ, then we write ωi in-
stead of ωΣi for the reducts to ease notation.

By making use of a conditional operator |, we introduce
the language (L|L) of conditionals over L:

(L|L) = {(B|A) | A,B ∈ L}.

Conditionals (B|A) are meant to express plausible, defea-
sible rules “If A then plausibly (usually, possibly, proba-
bly, typically etc.) B”. A conditional (F |E) is called self-
fulfilling if E |= F , i.e., there is no world that can falsify it.
A popular semantic framework that is often used for inter-
preting conditionals is provided by ordinal conditional func-
tions. Ordinal conditional functions (OCFs), (also called
ranking functions) κ : Ω → N∪{∞} with κ−1(0) ̸= ∅, were
introduced (in a more general form) first by (Spohn 1988).
They express degrees of plausibility of propositional formu-
las A by specifying degrees of disbeliefs of their negations
A. More formally, we have κ(A) := min{κ(ω) | ω |= A},
so that κ(A ∨ B) = min{κ(A), κ(B)}. A proposition A is
believed if κ(A) > 0 (which implies particularly κ(A) = 0).
The uniform OCF κu is defined by κu(ω) = 0 for all ω ∈ Ω.

Degrees of plausibility can also be assigned to condition-
als by setting κ(B|A) = κ(AB) − κ(A). A conditional
(B|A) is accepted in the epistemic state represented by κ,
written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is
more plausible than AB. Conditional belief bases ∆ (over
L) consist of finitely many conditionals from (L | L). Con-
sistency of such a conditional belief base ∆ can be defined
in terms of OCFs (Pearl 1990): ∆ is consistent iff there is an
OCF κ such that κ |= ∆. Using this definition, we focus on
(strongly) consistent belief bases in the sense of (Pearl 1990;
Goldszmidt and Pearl 1996) in order to elaborate our ap-
proach without having to deal with distracting technical par-
ticularities. The nonmonotonic inference relation |∼κ in-
duced by an OCF κ is given by (Spohn 1988)

A |∼κ B iff A ≡ ⊥ or κ(AB) < κ(AB). (1)

The marginal of κ on Θ ⊆ Σ, denoted by κ|Θ, is de-
fined by κ|Θ(ωΘ) = κ(ωΘ) for any ωΘ ∈ Ω(Θ). Note that
this marginalization is a special case of the general forgetful
functor Mod(σ) from Σ-models to Θ-models (Beierle and
Kern-Isberner 2012) where σ is the inclusion from Θ to Σ.

To formalize inductive inference from conditional be-
lief bases, (Kern-Isberner, Beierle, and Brewka 2020) intro-
duced the notion of inductive inference operators. An induc-
tive inference operator (on L) is a mapping C that assigns
to each conditional belief base ∆ ⊆ (L | L) an inference
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relation |∼∆ on L, i.e.,

C : ∆ 7→ |∼∆,

such that the following properties hold:
Direct Inference (DI) if (B|A) ∈ ∆ then A |∼∆ B, and
Trivial Vacuity (TV) A |∼∅ B implies A |= B.

An inductive inference operator for OCFs Cocf maps each
belief base to an OCF over Ω(Σ); the inferene relation |∼∆
asssigned to a belief base ∆ is then the inference relation
|∼∆ = |∼ κ∆

induced by κ∆ according to (1).

3 Conditional Syntax Splitting
Syntax splittings describe that a belief base contains com-
pletely independent information about different parts of the
signature. Let us first recall the notion of syntax splitting
as introduced in (Kern-Isberner, Beierle, and Brewka 2020).
A conditional belief base ∆ splits into subbases ∆1,∆2

if there are disjoint subsignatures Σ1,Σ2 ⊆ Σ such that
∆ = ∆1 ∪ ∆2, ∆i ⊂ (Li|Li),Li = L(Σi) for i = 1, 2,
Σ1 ∩ Σ2 = ∅, and Σ1 ∪ Σ2 = Σ. This is denoted as

∆ = ∆1

⋃
Σ1,Σ2

∆2.

Syntax splittings were generalized in (Heyninck et al. 2023)
to conditional syntax splittings, which allow sub-bases to
share the atoms in a given subsignature Σ3.
Definition 1 ((Heyninck et al. 2023)). We say a conditional
belief base ∆ can be split into subbases ∆1,∆2 conditional
on a subsignature Σ3, if there are Σ1,Σ2 ⊆ Σ such that
∆i = ∆ ∩ (L(Σi ∪ Σ3) | L(Σi ∪ Σ3)) for i = 1, 2, the
signatures Σ1, Σ2 and Σ3 are pairwise disjoint, and Σ =
Σ1 ∪ Σ2 ∪ Σ3. This is denoted as

∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3. (2)

However, conditional syntax splittings in general do not
ensure complete independence of ∆1 and ∆2 (Heyninck et
al. 2023). To fix this, safe conditional syntax splittings were
introduced.
Definition 2 ((Heyninck et al. 2023)). A conditional belief
base ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3 can be safely split into sub-
bases ∆1, ∆2 conditional on a subsignature Σ3, writing:

∆ = ∆1

s⋃
Σ1,Σ2

∆2 | Σ3 (3)

if the following safety property holds:

for every ωiω3 ∈ Ω(Σi ∪ Σ3), there is an ωi′ ∈ Ω(Σi′)

s.t. ωiωi′ω3 ̸|=
∨

(F |E)∈∆i′

E ∧ ¬F for i, i′ ∈ {1, 2}, i ̸= i′.

(4)

Safe conditional syntax splittings guarantee (conditional)
independence of conditionals in ∆1 and ∆2. In essence, the
safety property ensures that any complete conjunction over

Σ3 may not require the falsification of a conditional in ∆1

or ∆2. For a more detailed explanation on why this is nec-
essary, see (Heyninck et al. 2023).

Note that unlike syntax splitting, conditional syntax split-
ting does not require the subbases ∆1 and ∆2 to be disjoint.
For the remainder of this paper, we will use the notation in-
troduced in the following straightforward proposition.
Proposition 3. If ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 then

∆ = ∆1\3 ∪̇∆2\3 ∪̇∆3 (5)

and ∆1\3,∆2\3,∆3 pairwise disjoint with (6)

∆3 = ∆1 ∩∆2 (7)
∆1\3 = ∆1 \∆3 (8)

∆2\3 = ∆2 \∆3. (9)

Note that ∆3 ⊆ (L(Σ3)|L(Σ3)), more precisely ∆3 =
∆∩ (L(Σ3)|L(Σ3)), and ∆i\3⊆ (L(Σi ∪Σ3)|L(Σi ∪Σ3))

for i ∈ {1, 2}. Furthermore, for ωi ∈ Ω(Σi) and A ∈ Li

we have that

ω1ω2ω3 |= A iff ωiω3 |= A. (10)

We illustrate the notion of safe conditional syntax splitting
with an example.
Example 4 (∆b). Consider Σ = {b, p, f, w} representing
(b)irds, (p)enguins, (f)lying entities, and (w)inged entities.
Let ∆b = {(f |b), (f |p), (b|p), (w|b)} be a belief base de-
scribing the well known penguin triangle together with the
expression that birds usually have wings. Then

∆b = {(f |b), (f |p), (b|p)}
s⋃

{p,f},{w}

{(w|b)} | {b}

is a conditional syntax splitting with Σ1 = {p, f},Σ2 =
{w}, and Σ3 = {b}. According to Proposition 3 we have
∆b

3 = ∅, ∆b
1 = ∆b

1\3 = {(f |b), (f |p), (b|p)} and ∆b
2 =

∆b
2\3 = {(w|b)}.
We can extend any ω1 ∈ Ω(Σ1 ∪ Σ3) by any ω′ ∈ Ω(Σ2)

with ω′ |= w without falsifying a conditional in ∆b
2. Sim-

ilarly we can extend any ω2 ∈ Ω(Σ2 ∪ Σ3) by any ω′′ ∈
Ω(Σ1) with ω′′ |= pf without falsifying a conditional in
∆b

1. Thus, the splitting is safe.
Syntax splittings coincide with conditional syntax split-

tings conditional on Σ3 = ∅.
Proposition 5. Let ∆ be a consistent belief base. We have

∆ = ∆1

⋃
Σ1,Σ2

∆2 iff ∆ = ∆1

s⋃
Σ1,Σ2

∆2 | ∅.

Using the notion of conditional syntax splittings, the pos-
tulates conditional independence (CInd) and conditional
relevance (CRel) for inference from belief bases with con-
ditional syntax splitting have been introduced. They are in-
spired by the postulates (Rel) and (Ind) introduced in (Kern-
Isberner, Beierle, and Brewka 2020). They describe that in-
ference over ∆1 and ∆2 should be independent if we have
full information, i.e., a full conjunction, on the “conditional
pivot” Σ3.
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(CRel) (Heyninck et al. 2023) An inductive inference op-
erator C : ∆ 7→ |∼∆ satisfies (CRel) if for ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3, for i ∈ {1, 2}, A,B ∈ LΣi
, and

a complete conjunction E ∈ LΣ3
we have that

AE |∼∆ B iff AE |∼∆i
B.

Thus, an inductive inference operator satisfies conditional
relevance, if, for any safe conditional syntax splitting, infer-
ence in the language of Σi ∪ Σ3 is dependent only on the
conditionals in ∆i, i.e., only those conditionals in that same
language.

(CInd) (Heyninck et al. 2023) An inductive inference op-
erator C : ∆ 7→ |∼∆ satisfies (CInd) if for ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3, for i, j ∈ {1, 2}, i ̸= j, for any
A,B ∈ LΣi

, D ∈ LΣj
, and a complete conjunction

E ∈ LΣ3
such that DE ̸|∼∆ ⊥ we have

AE |∼∆ B iff ADE |∼∆ B.

The requirement that DE ̸|∼∆ ⊥ was added here. Other-
wise, (CInd) would require that A |∼∆ ⊥ for every formula
A ∈ LΣ1 ∪ LΣ2 . Conditional independence requires that,
given complete knowledge of Σ3, inferences in the language
of Σi∪Σ3 are independent of any formula over the language
of Σj .

The postulate (CSynSplit) is the combination of (CRel)
and (CInd):
(CSynSplit) (Heyninck et al. 2023) An inductive inference

operator satisfies (CSynSplit) if it satisfies (CRel) and
(CInd).
Conditional syntax splitting is closely related to the notion

of conditional κ-independence for OCFs.
Definition 6 ((Heyninck et al. 2023),(Spohn 2012)). Let
Σ1,Σ2,Σ3 ⊆ Σ where Σ1,Σ2 and Σ3 are pairwise dis-
joint and let κ be an OCF. Σ1,Σ2 are conditionally κ-
independent given Σ3, in symbols Σ1 ⊥⊥κ Σ2|Σ3, if for all
ω1 ∈ Ω(Σ1), ω

2 ∈ Ω(Σ2), and ω3 ∈ Ω(Σ3), it holds that
κ(ω1|ω2ω3) = κ(ω1|ω3).

The following lemma provides another useful characteri-
zation of conditional κ-independence.
Lemma 7. Let Σ1,Σ2,Σ3 ⊆ Σ where Σ1,Σ2 and Σ3 are
pairwise disjoint and let κ be an OCF. Σ1,Σ2 are condi-
tionally κ-independent given Σ3 iff for all A ∈ L(Σ1), B ∈
L(Σ2) and complete conjunction C ∈ L(Σ3) it holds that

κ(ABC) = κ(AC) + κ(BC)− κ(C).

Proof. Note that the equation κ(ω1|ω2ω3) = κ(ω1|ω3)
from Definition 6 is equivalent to

κ(ω1ω2ω3) = κ(ω1ω3) + κ(ω2ω3)− κ(ω3) (11)

by applying the definition of ranks of conditionals (cf. Sec-
tion 2). Note that while κ is built over Σ the ωi are treated
here as conjunctions over their respective signatures. We
show both directions of the “iff” separately.

Direction ⇒: Let Σ1,Σ2 be conditionally κ-independent
given Σ3. Then (11) holds for all ω1 ∈ Ω(Σ1), ω2 ∈ Ω(Σ2),
ω3 ∈ Ω(Σ3). Now let ω1ω3 be the world with minimal rank

in the models of AC. Assume the same for ω2ω3 and BC.
Note that since C is a complete conjunction over Σ3, ω3

must be a world with minimal rank in the models of C. Thus
we can rewrite (11) to

κ(ω1ω2ω3) = κ(AC) + κ(BC)− κ(C) (12)
Clearly ω1ω2ω3 |= ABC. We now show that ω1ω2ω3 is
also has minimal rank with this property. Towards a con-
tradiction assume ω1ω2ω3 did not have minimal rank with
this property. Then there is some ω′ with ω′ |= ABC and
κ(ω′) < κ(ω1ω2ω3). Since Σ1,Σ2 and Σ3 are disjoint, ω′

can be split into ω′1 ∈ Ω(Σ1), ω′2 ∈ Ω(Σ2), ω′3 ∈ Ω(Σ3).
Thus it must hold, that

κ(ω′1ω′2ω′3) = κ(ω′1ω′3) + κ(ω′2ω′3)− κ(ω′3) (13)
Since κ(ω′) < κ(ω1ω2ω3) it must hold that κ(ω′1ω′3) <
κ(ω1ω3) or κ(ω′2ω′3) < κ(ω2ω3) or κ(ω′3) > κ(ω3). The
first inequality can not hold, as ω′1ω′3 |= AC but as per
our assumption ω1ω3 is minimal with this property. Analo-
gously the second inequality cannot hold. The third inequal-
ity does not hold either as C is a full conjunction and there-
fore ω3 = ω′3. Thus κ(ω′) < κ(ω1ω2ω3) can not hold and
ω1ω2ω3 must have minimal rank with ω1ω2ω3 |= ABC.
Then we can rewrite (12) to

κ(ABC) = κ(AC) + κ(BC)− κ(C) (14)
completing the proof for this direction.

Direction ⇐: For the other direction assume (14) holds
for all A ∈ L(Σ1), B ∈ L(Σ2) and complete conjunc-
tion C ∈ L(Σ3). Let ω1 ∈ Ω(Σ1), ω

2 ∈ Ω(Σ2), and
ω3 ∈ Ω(Σ3). As we have stated previously all worlds can
be represented by a full conjunction of all literals of their
signature. Let A be such a conjunction for ω1, B for ω2 and
C for ω3. Then (14) is equivalent to (11) completing the
proof.

As for probabilities, conditional independence for OCFs
expresses that information on Σ2 is redundant for Σ1 if full
information on Σ3 is available and used. We can now char-
acterize (CInd) and (CRel) for inference operators for OCFs
as follows:
Proposition 8 ((Heyninck et al. 2023)). An inductive infer-
ence operator for OCFs Cocf : ∆ 7→ κ∆ satisfies (CInd) iff
for any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 we have Σ1 ⊥⊥κ∆ Σ2|Σ3.
Proposition 9 ((Heyninck et al. 2023)). An inductive infer-
ence operator for OCFs Cocf : ∆ 7→ κ∆ satisfies (CRel)
iff for any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, we have κ∆i
=

κ∆ |Σi∪Σ3
for i ∈ {1, 2}.

Proposition 8 lets us use conditional κ-independence to
characterize (CInd), while Proposition 9 allows us to char-
acterize (CRel) in terms of marginalization of OCFs, both of
which are useful for showing that an inference operator for
OCFs satisfies (CInd) or (CRel), respectively.

4 Conditional Semantic Splitting
Now we will define the new concept of conditional seman-
tic splitting, generalizing the notion of semantic splitting
(Beierle, Haldimann, and Kern-Isberner 2021) and show
that c-representations (Kern-Isberner 2001; Kern-Isberner
2004)) satisfy conditional semantic splitting.
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4.1 Model Combinations and Semantic Splittings
For the rest of this paper, we focus on OCF-based seman-
tics and first introduce the notion of model combinations for
ranking models.

Definition 10 (model combination). Let M1,M2 be sets of
OCFs over Σ. Model combinations of M1 and M2, denoted
by M1 ⊕M2 and by M1 ⊖M2, respectively, are given by

M1 ⊕M2 = {κ |κ(ω)=κ1(ω)+κ2(ω), κ1∈M1, κ2∈M2}
M1 ⊖M2 = {κ |κ(ω)=κ1(ω)−κ2(ω), κ1∈M1,κ2∈M2}

Note that in general, M1 ⊕M2 or M1 ⊖M2 may contain
functions that are not ranking functions because, e.g., no ω
is mapped to 0. We consider different subclasses of ranking
models for conditional belief bases in this paper, e.g., sys-
tem Z ranking functions or c-representations. The following
definition provides a joint formal concept for focusing on
such subclasses.

Definition 11. An (OCF based) semantics Sem for condi-
tional belief bases is a function mapping a belief base ∆
over Σ to a set of models Mod Sem

Σ (∆) ⊆ Mod Σ(∆) where
Mod Σ(∆) = {κ | κ |= ∆}.

A conditional semantic splitting of ∆ depends on the
combination of models given by an OCF-based seman-
tics Sem and generalizes the notion of semantic splitting
(Beierle, Haldimann, and Kern-Isberner 2021). Semantic
splittings and conditional semantic splittings apply the no-
tion of splittings to the model level, yielding a desirable
splitting property to evaluate OCF-based semantics.

Definition 12 (conditional semantic splitting). ∆ =
∆1

⋃
Σ1,Σ2

∆2 | Σ3 is a conditional semantic splitting of
∆ for a semantic Sem if

Mod Sem
Σ (∆) = Mod Sem

Σ (∆1)⊕Mod Sem
Σ (∆2)⊖Mod Sem

Σ (∆3).

This yields the base for the following postulate.

(CSemSplit) An OCF-based semantic Sem satisfies
(CSemSplit) if every safe splitting ∆ = ∆1

⋃s
Σ1,Σ2

∆2 |
Σ3 is also a conditional semantic splitting of ∆

Example 13. System P is an axiom system stating desirable
properties for nonmonotonic reasoning with conditionals
(Adams 1975; Kraus, Lehmann, and Magidor 1990). It also
characterizes a semantic that maps a belief base ∆ to all its
models, i.e., Mod System P

Σ (∆) = Mod Σ(∆). This seman-
tics does not satisfy (CSemSplit) which can be illustrated
with ∆ = ∆1 ∪∆2 and ∆1 = {(a|⊤)} and ∆2 = {(b|⊤)}.
Obviously, {∆1,∆2} is a syntax splitting and thus a safe
conditional syntax splitting of ∆ (Proposition 5). Then

κ1 = {ab 7→ 1, ab̄ 7→ 0, āb 7→ 1, āb̄ 7→ 1} accepts ∆1, and

κ2 = {ab 7→ 1, ab̄ 7→ 1, āb 7→ 0, āb̄ 7→ 1} accepts ∆2,

but κ1 + κ2 = {ab 7→ 2, ab̄ 7→ 1, āb 7→ 1, āb̄ 7→ 2} is not
even a ranking function and would also not model ∆ if it
were normalized by reducing all ranks by 1.

Example 14. System Z (Goldszmidt and Pearl 1996) is
based on a notion of tolerance where a conditional (B|A)

is tolerated by a set of conditionals ∆ if there is a world ω
that verifies (B|A) and falsifies no other conditional in ∆.
The ordered partition OP(∆) = (∆0, . . . ,∆n) is defined
by ∆0 = {δ ∈ ∆ | ∆ tolerates δ} and OP(∆ \ ∆0) =
(∆1 . . .∆n). Let Z∆(δ) = i iff δ ∈ ∆i. The uniquely
defined System Z ranking function κz

∆ is then defined via
κz
∆ = max{Z∆(δ) | ω falsifies δ, δ ∈ ∆}. Thus System Z

yields a model semantics given by Mod Sem
Σ (∆) = {κz

∆}.
This semantics also does not satisfy (CSemSplit). Con-

sider ∆b and the conditional syntax splitting in Exam-
ple 4. We have OP(∆b) = {{(f |b), (w|b)}, {(b|p), (f |p)}},
OP(∆b

1) = {{(f |b)}, {(b|p), (f |p)}} and OP(∆b
2) =

{{(w|b)}}. Then we get κz
∆(pbfw) = 1 ̸= 2 = κz

∆1
(pbf)+

κz
∆2

(bw)− κz
∆3

(b). Thus (CSemSplit) is not satisfied.

4.2 c-Representations Satisfy Conditional
Semantic Splitting

Among the OCF models of ∆, c-representations are special
ranking models obtained by assigning individual integer im-
pacts to the conditionals in ∆ and generating the world ranks
as the sum of impacts of falsified conditionals.
Definition 15 (c-representation (Kern-Isberner 2001;
Kern-Isberner 2004)). A c-representation of ∆ =
{(B1|A1), . . . , (Bn|An)} is an OCF κ constructed
from non-negative integer impacts ηj ∈ N0 assigned to
each (Bj |Aj) such that κ accepts ∆ and is given by:

κ(ω) =
∑

1⩽j⩽n

ω|=AjBj

ηj (15)

c-Representations can conveniently be specified using a
constraint satisfaction problem (for detailed explanations,
see (Kern-Isberner 2001; Kern-Isberner 2004)):
Definition 16 (CR(∆), (Kern-Isberner 2001; Beierle et al.
2018)). Let ∆ = {(B1|A1), . . . , (Bn|An)}. The constraint
satisfaction problem for c-representations of ∆, denoted by
CR(∆), is given by the conjunction of the constraints, for
all j ∈ {1, . . . , n}:

ηj ⩾ 0 (16)

ηj > min
ω|=AjBj

∑
k ̸=j

ω|=AkBk

ηk − min
ω|=AjBj

∑
k ̸=j

ω|=AkBk

ηk (17)

Note that (16) expresses that falsification of condition-
als should make worlds not more plausible, and (17) en-
sures that κ as specified by (15) accepts ∆. A solution of
CR(∆) is a vector #»η = (η1, . . . , ηn) of natural numbers.
Sol(CR(∆)) denotes the set of all solutions of CR(∆).
For #»η ∈ Sol(CR(∆)) and κ as in Equation (15), κ is the
OCF induced by #»η and is denoted by κ#»η . CR(∆) is sound
and complete (Kern-Isberner 2001; Beierle et al. 2018): For
every #»η ∈ Sol(CR(∆)), κ#»η is a c-representation with
κ#»η |= ∆, and for every c-representation κ with κ |= ∆,
there is #»η ∈ Sol(CR(∆)) such that κ = κ#»η . Thus c-
representations yield an OCF-based model semantics

Mod c-rep
Σ (∆) = {κ#»η | #»η ∈ Sol(CR(∆))}.
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ω
δ1:
(f |b)

δ2:
(f |p)

δ3:
(b|p)

δ4:
(w|b)

impact
on ω

κ#»η 1

(ω)
κ#»η 2

(ω)
κ#»η 3

(ω)

b p f w v f v v η2 2 4 5
b p f w v f v f η2 + η4 3 7 12
b p f w f v v v η1 1 3 4
b p f w f v v f η1 + η4 2 6 11
b p f w v − − v 0 0 0 0
b p f w v − − f η4 1 3 7
b p f w f − − v η1 1 3 4
b p f w f − − f η1 + η4 2 6 11
b p f w − f f − η2 + η3 4 8 11
b p f w − f f − η2 + η3 4 8 11
b p f w − v f − η3 2 4 6
b p f w − v f − η3 2 4 6
b p f w − − − − 0 0 0 0
b p f w − − − − 0 0 0 0
b p f w − − − − 0 0 0 0
b p f w − − − − 0 0 0 0

impacts: η1 η2 η3 η4
#»η 1 1 2 2 1
#»η 2 3 4 4 3
#»η 3 4 5 6 7

Table 1: Verification and falsification with induced impacts for ∆b

in Example 17.

For an impact vector #»η , we will simply write #»η 1 and
#»η 2 for the corresponding projections #»η |∆1

and #»η |∆2
, and

( #»η 1, #»η 2) for their composition. Similarly we will write
( #»η 1, ηj) for the composition of a vector with a singular nat-
ural number ηj .

Example 17 (∆b continued). CR(∆b) contains ηi ⩾ 0 for
i ∈ {1, 2, 3, 4} and the following constraints:

η1 > min
ω∈ΩΣ

ω|=bf

∑
j ̸=1

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=bf

∑
j ̸=1

ω|=AjBj

ηj

η2 > min
ω∈ΩΣ

ω|=pf

∑
j ̸=2

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=pf

∑
j ̸=2

ω|=AjBj

ηj

η3 > min
ω∈ΩΣ

ω|=pb

∑
j ̸=3

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=pb

∑
j ̸=3

ω|=AjBj

ηj

η4 > min
ω∈ΩΣ

ω|=bw

∑
j ̸=4

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=bw

∑
j ̸=4

ω|=AjBj

ηj

Table 1 shows some solutions for ∆b as well as
their corresponding c-representations. For example #»η 1 =
(1, 2, 2, 1) ∈ Sol(CR(∆b)), #»η 1

1 = (1, 2, 2) ∈
Sol(CR(∆b

1\3)) and #»η 2
1 = (1) ∈ Sol(CR(∆b

2\3)).

A fundamental property of c-representations is that for
any syntax splitting ∆ = ∆1

⋃
Σ1,Σ2

∆2 the composition of

any impact vectors for the subbases yields an impact vector
for ∆, and vice versa (Kern-Isberner, Beierle, and Brewka
2020). Before proving a generalization of this observation
to conditional syntax splitting, we state two useful lemmas.
Lemma 18. Let ∆ be a conditional belief base, #»η ∈
Sol(CR(∆)), and (F |E) a conditional where E |= F . Then
( #»η , η) ∈ Sol(CR(∆∪{(F |E)})) where η ∈ N, and in par-
ticular κ#»η (ω) = κ( #»η ,η)(ω) for all ω ∈ Ω.

Proof. Since ω ̸|= EF for all worlds ω, the impact η
assigned to (F |E) only has to satisfy η ⩾ 0, and it
does not appear in the sum-expression (15) defining a c-
representation.

Lemma 19. Let ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3. Then all condi-
tionals in ∆3 = ∆1 ∩∆2 are self-fulfilling.

Proof. Let i, i′ ∈ {1, 2} where i ̸= i′ and (B|A) ∈
∆3, A,B ∈ L(Σ3). Towards a contradiction, assume there
were some ω with ω |= AB. Then for ω3 = ω|Σ3 it must
also hold that ω3 |= AB. Due to the safety property (4), ω3

must have extensions ωi ∈ Ω(Σi) and ωi′ ∈ Ω(Σi′) such
that no conditional in ∆i respectively ∆i′ is falsified. Since
(B|A) ∈ ∆3 and thus (B|A) ∈ ∆1 and (B|A) ∈ ∆2, we
get ω3 ̸|= AB, contradicting our assumption.

Note that in our example base ∆b, ∆3 is empty while Σ3

is not. The crucial (conditional) link between ∆1 and ∆2 is
given semantically by Σ3.

The following proposition provides the key for showing
that c-representations satisfy conditional semantic splitting.
Proposition 20. For any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, where
∆3 = ∆1 ∩∆2, we have Sol(CR(∆)) = {( #»η 1, #»η 2, #»η 3) |
#»η i ∈ Sol(CR(∆i\3)), i ∈ {1, 2}; #»η 3 ∈ N|∆3|}, i.e.:

Sol(CR(∆)) = Sol(CR(∆1\3))×Sol(CR(∆2\3))×N|∆3|

Proof. We consider two cases. First we will consider the
case that ∆3 = ∅. Then we have that ∆ = ∆1\3 ∪∆2\3.

Let i, i′ ∈ {1, 2} and i ̸= i′. Let
∆1\3 = {(B1|A1), . . . , (Bn1

|An2
)}, ∆2\3 =

{(Bn1+1|An1+1), . . . , (Bn1+n2 |An1+n2)}, ∆ =
{(B1|A1), . . . , (Bn|An)}, thus n = n1 + n2. Then,
for (Bj |Aj) ∈ ∆ we have (Bj |Aj) ∈ ∆i\3 iff (Bj |Aj) ̸∈
∆i′\3. We start with the following assumption:

(S1) #»η 1 ∈ Sol(CR(∆1\3)), #»η 2 ∈ Sol(CR(∆2\3))

Let us denote the constraint variables in CR(∆1\3) with
η11 , . . . , η

1
n1

and in CR(∆2\3) with η2n1+1, . . . , η
2
n. Hence

we can write the constraints (17) in CR(∆i\3) as:

ηij > min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i\3

ηik

︸ ︷︷ ︸
Vmin (j,i)

− min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i\3

ηik

︸ ︷︷ ︸
Fmin (j,i)

(18)

Due to the safety property (4), CR(∆1\3) does not mention
any constraint variable from CR(∆2\3) and vice versa, thus
(S1) is equivalent to:
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(S2) ( #»η 1, #»η 2) ∈ Sol(Γ1), Γ1 = CR(∆1\3)∪CR(∆2\3)

For (Bj |Aj) ∈ ∆i\3, let Vmin(j, i
′) and Fmin(j, i

′) be:

Vmin(j, i
′) = min

ω|=
AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i′\3

ηi
′

k (19)

Fmin(j, i
′) = min

ω|=
AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i′\3

ηi
′

k (20)

Note that both Vmin(j, i
′) and Fmin(j, i

′) only involve im-
pacts corresponding to falsified conditionals from the sub-
base the conditional (Bj |Aj) does not belong to.

Due to the safety property (4), any world ω ∈ Ω that min-
imizes the sum in Vmin(j, i

′), falsifies no conditionals in
∆i′\3. Analogously this holds for Fmin(j, i

′) and therefore
we have Vmin(j, i

′) = Fmin(j, i
′) = 0.

Thus, adding Vmin(j, i
′) − Fmin(j, i

′) to the right-hand
side of (18) yields the following constraint having the same
set of solutions as (18):

ηij > min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i\3

ηik

︸ ︷︷ ︸
Vmin (j,i)

+ min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i′\3

ηi
′

k

︸ ︷︷ ︸
Vmin (j,i′)

− min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i\3

ηik

︸ ︷︷ ︸
Fmin (j,i)

− min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆i′\3

ηi
′

k

︸ ︷︷ ︸
Fmin (j,i′)

(21)

Because the minimizations in Vmin(j, i) and Vmin(j, i
′)

(in Fmin(j, i) and Fmin(j, i
′), respectively) are independent

from each other, the Vmin -minimizations and the Fmin -
minimizations in (21) can be combined without changing
the set of solutions. Together with Lemma 19 this yields the
constraint:

ηij > min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆

ηik − min
ω|=

AjBj

∑
k ̸=j

ω|=AkBk

(Bk|Ak)∈∆

ηik (22)

Because the constraints (18), (21), and (22) all have the same
set of solutions, (S2) and thus also (S1) is equivalent to:

(S3) ( #»η 1, #»η 2) ∈ Sol(Γ2), where Γ2 is obtained from Γ1
by replacing each constraint (18) by (22).

Using η11 , . . . , η
1
n1
, . . . , η2n1+1, . . . , η

2
n as constraint vari-

ables for expressing CR(∆), we observe that Γ2 = CR(∆).
Next we consider the case that ∆3 ̸= ∅. Due to Lemmata

19 and 18 the impact η assigned to (F |E) in Sol(CR(∆3))
has no influence on Sol(CR(∆1\3)) or on Sol(CR(∆2\3)),
and furthermore Sol(CR(∆3)) = N|∆3| completing the
proof.

Proposition 20 shows that, just like for syntax splittings,
for safe conditional syntax splittings, the impact vectors for
the subbases can be calculated independently, yielding an
impact vector for ∆ through composition. We illustrate this
with an example.
Example 21 (∆b continued). Recall the safe conditional
syntax splitting from Example 4. According to Proposi-
tion 20, in order to obtain a solution for CR(∆b) it suffices
to calculate a solution for CR(∆b

1) and CR(∆b
2) separately,

where CR(∆b
1) consists of the first three constraints from

Example 17 and CR(∆b
2) consists of the fourth one. Thus

we have that, e.g., #»η 1 = (1, 2, 2, 1) ∈ Sol(CR(∆b)) can be
obtained by composing #»η 1

1 = (1, 2, 2) ∈ Sol(CR(∆b
1\3))

and #»η 2
1 = (1) ∈ Sol(CR(∆b

2\3)). I.e., for the projections
of #»η 1 we have #»η 1|∆1\3 = #»η 1

1, and #»η 1|∆2\3 = #»η 2
1. We

can also compose #»η 1
2 = (3, 4, 4) ∈ Sol(CR(∆b

2\3)) and
#»η 2

3 = (7) ∈ Sol(CR(∆b
2\3)) to obtain #»η 4 = (3, 4, 4, 7) ∈

Sol(CR(∆b)).
With Proposition 20 we can now show that c-

representations satisfy conditional semantic splitting.
Proposition 22. c-Representations satisfy (CSemSplit).

Proof. Let κ be a c-representation for a belief base ∆ and let
∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, where ∆3 = ∆1 ∩∆2. We have
to show that this is also a conditional semantic splitting, i.e.
that
Mod Sem

Σ (∆) = Mod c-rep
Σ (∆1)⊕Mod c-rep

Σ (∆2)⊖Mod c-rep
Σ (∆3)

(23)
holds. With Proposition 20 we have that every #»η ∈
Sol(CR(∆)) can be split into ( #»η 1, #»η 2, #»η 3) such that
#»η 1 ∈ Sol(CR(∆1\3)), #»η 2 ∈ Sol(CR(∆2\3)), and #»η 3 ∈
Sol(CR(∆3)). Vice versa, for every #»η 1 ∈ Sol(CR(∆1\3)),
#»η 2 ∈ Sol(CR(∆2\3)), and #»η 3 ∈ Sol(CR(∆3)) we have
( #»η 1, #»η 2, #»η 3) ∈ Sol(CR(∆)). Therefore we have that

Mod c-rep
Σ (∆) = Mod c-rep

Σ (∆1\3)⊕ Mod c-rep
Σ (∆2\3)

⊕ Mod c-rep
Σ (∆3).

(24)

With Lemmata 19 and 18 we have that Mod c-rep
Σ (∆1) =

Mod c-rep
Σ (∆1\3), Mod c-rep

Σ (∆2) = Mod c-rep
Σ (∆2\3) and

Mod c-rep
Σ (∆3) = {κu}, where κu is the uniform OCF map-

ping every world ω to 0 (cf. Section 2). Thus (24) is equiva-
lent to (23) finishing the proof.

5 Conditional Syntax Splitting and Inference
w.r.t. Single c-Representations

We will now define model-based inductive inference oper-
ators assigning a c-representation κ to each ∆. Since every
c-representation κ with κ |= ∆ yields an inference relation
expanding the beliefs in ∆, we employ a selection func-
tion for modelling the different possible choices of which
c-representation should be selected.
Definition 23 (selection strategy σ, (Kern-Isberner,
Beierle, and Brewka 2020)). A selection strategy (for
c-representations) is a function σ

σ : ∆ 7→ #»η
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assigning to each conditional belief base ∆ an impact vector
#»η ∈ Sol(CR(∆)).
Definition 24 (inductive inference operator Cc-rep

σ , (Kern-Is-
berner, Beierle, and Brewka 2020)). An inductive inference
operator for c-representations with selection strategy σ is a
function

Cc-rep
σ : ∆ 7→ κσ(∆)

where σ is a selection strategy for c -representations and, as
before, |∼κσ(∆)

is obtained via Equation (1) from κσ(∆).

Note that Cc-rep
σ is an inductive inference operator because

each |∼κσ(∆)
satisfies both (Direct Inference) and (Trivial

Vacuity). A recent example for a specific selection strat-
egy are minimal core c-representations (Wilhelm, Kern-
Isberner, and Beierle 2024).

In principle, for every ∆, a selection strategy may choose
some impact vector independently from the choices for all
other belief bases. The following property characterizes se-
lection strategies that preserve the impacts chosen for sub-
bases if ∆ splits into these subbases.

(IP-CSP) A selection strategy σ is impact preserving w.r.t.
conditional belief base splitting if, for i ∈ {1, 2}, we have
σ(∆i) = σ(∆)|∆i

for every safe conditional belief base
splitting ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3.

We illustrate selection strategies with an example.
Example 25 (∆b continued). Recall Example 17. Let σ
be a selection strategy satisfying (IP-CSP) with σ(∆b) =
(1, 2, 2, 1). Then σ(∆b

1\3) = (1, 2, 2) and σ(∆b
2\3) = (1).

In (Beierle and Kern-Isberner 2021) an algorithm is intro-
duced for generating selection strategies satisfying an im-
pact preserving postulate for (unconditional) syntax split-
tings, providing a basis for an algorithm for generating se-
lection strategies satisfying (IP-CSP).

The following proposition relates c-representations to
conditional syntax splitting via Proposition 8.
Proposition 26. Let ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, and κ a
c-representation with κ |= ∆. Then Σ1 ⊥⊥κ Σ2|Σ3.

Proof. Let ω = ω1ω2ω3 and let #»η ∈ Sol(∆) such that
κ = κ#»η . Recall the definition of c-representations (15). We
can rewrite (15) to

κ#»η (ω) =
∑

ω|=AjBj

(Bj |Aj)∈∆1\3

ηj +
∑

ω|=AjBj

(Bj |Aj)∈∆2\3

ηj +
∑

ω|=AjBj

(Bj |Aj)∈∆3

ηj

(25)

By simply adding and subtracting the last sum of (25) we
obtain the following equation.

κ#»η (ω) =
∑

ω|=AjBj

(Bj |Aj)∈∆1\3

ηj +
∑

ω|=AjBj

(Bj |Aj)∈∆2\3

ηj +
∑

ω|=AjBj

(Bj |Aj)∈∆3

ηj

+
∑

ω|=AjBj

(Bj |Aj)∈∆3

ηj −
∑

ω|=AjBj

(Bj |Aj)∈∆3

ηj

(26)

Then we can combine the sums for ∆1\3 and ∆2\3 with the
sum for ∆3 to obtain sums for ∆1 and ∆2 respectively.

κ#»η (ω) =
∑

ω|=AjBj

(Bj |Aj)∈∆1

ηj +
∑

ω|=AjBj

(Bj |Aj)∈∆2

ηj −
∑

ω|=AjBj

(Bj |Aj)∈∆3

ηj

(27)

Since ∆1 is in L(Σ1 ∪Σ3), ∆2 is in L(Σ2 ∪Σ3) and ∆3

is in L(Σ3) we can use (10) to simplify (27).

κ#»η (ω) =
∑

ω1ω3|=AjBj

(Bj |Aj)∈∆1

ηj +
∑

ω2ω3|=AjBj

(Bj |Aj)∈∆2

ηj −
∑

ω3|=AjBj

(Bj |Aj)∈∆3

ηj

(28)

Thus, we obtain with Proposition 20 and Lemmata 19 and 18

κ#»η (ω
1ω2ω3) = κ#»η 1(ω1ω3)+κ#»η 2(ω2ω3)−κ#»η 3(ω3) (29)

which, together with Proposition 20, is equivalent to

κ#»η (ω
1ω2ω3) = κ#»η (ω

1ω3) + κ#»η (ω
2ω3)− κ#»η (ω

3) (30)

which is equivalent to κ#»η (ω
1|ω2ω3) = κ#»η (ω

1|ω3), com-
pleting the proof.

Now we show that any inductive inference operator Cc-rep
σ

based on an impact preserving selection strategy σ satisfies
the property of conditional syntax splitting.
Proposition 27. Let σ be a selection strategy that satisfies
(IP-CSP). Then Cc-rep

σ satisfies (CSynSplit).

Proof. Let ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 and σ a selection strat-
egy satisfying (IP-CSP). Let i, i′ ∈ {1, 2} with i ̸= i′. Let
ηij be the impact of (Bj |Aj) ∈ ∆i.

We show (CInd) first. Due to Proposition 26 we know
that Σ1 ⊥⊥κ∆ Σ2|Σ3 holds. Thus, with Proposition 8, Cc-rep

σ
satisfies (CInd). Note that it is not necessary for σ to satisfy
(IP-CSP) in this step.

Next we show that Cc-rep
σ satisfies (CRel). Let ωiω3 ∈

Ω(Σi∪Σ3). Note that here both κ∆i
and κ|Σi∪Σ3

are defined
on worlds in Ω(Σi ∪ Σ3). According to the marginalization
of ranking functions (cf. Section 2) we have

κ|Σi∪Σ3(ω
iω3) = κ(ωiω3) = min{

∑
ω|=AjBj

(Bj |Aj)∈∆

ηj | ω |= ωiω3}

(31)

Due to the safety property (4), there is an extension ωi′

of ωiω3 such that ωiω3ωi′ falsifies no conditional in ∆i′ .
Therefore we can simplify (31) by only considering ∆i as
follows:

κ|Σi∪Σ3(ω
iω3) =

∑
ωiω3|=AjBj

(Bj |Aj)∈∆i

ηj (32)

Note that we no longer need to consider a minimum over
worlds, since ∆i ⊆ (L(Σi ∪ Σ3)|L(Σi ∪ Σ3)) and ωiω3 ∈
Ω(Σi ∪ Σ3) is a full conjunction, thus any minimal world
that is a model of ωiω3 falsifies the same conditionals in ∆i
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as ωiω3. Because σ satisfies (IP-CSP) we have ηij = ηj |∆j

and thus (32) is equivalent to

κ|Σi∪Σ3(ω
iω3) =

∑
ωiω3|=AjBj

(Bj |Aj)∈∆i

ηij (33)

which is the definition of κ∆i(ω
iω3). This holds for all ωiω3

and accordingly κ∆i
= κ|Σi∪Σ3

which, together with Propo-
sition 9, implies (CRel).

6 c-Inference Satisfies Conditional Syntax
Splitting

c-Inference was introduced in (Beierle, Eichhorn, and Kern-
Isberner 2016; Beierle et al. 2018) as the skeptical inference
relation obtained by taking all c-representations of a belief
base ∆ into account.

Definition 28 (c-inference, |∼c-sk
∆ , (Beierle, Eichhorn, and

Kern-Isberner 2016)). Let ∆ be a belief base and let A, B
be formulas. B is a (skeptical) c-inference from A in the
context of ∆, denoted by A |∼c-sk

∆ B, iff A |∼ κB holds for all
c-representations κ of ∆, yielding the inductive inference
operator

Cc-sk : ∆ 7→ |∼c-sk
∆

Before proving that c-inference satisfies conditional syn-
tax splitting, we show a proposition, stating the following
observations. Consider a safe conditional syntax splitting of
∆ into ∆1 and ∆2, and a c-representation κ#»η determined by
a solution vector #»η ∈ Sol(CR(∆)) together with its pro-
jections κ#»η 1 and κ#»η 2 to ∆1 and ∆2, respectively. Then the
rank of any formula Fi over the language L(Σi ∪Σ3) of ∆i

under the projection κ#»η i coincides with the rank of the for-
mula rank determined by κ#»η , while its rank under the other
projection κ#»η i′ evaluates to zero.

Proposition 29. For any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, for all
#»η ∈ Sol(CR(∆)), Fi ∈ L(Σi ∪ Σ3), i ∈ {1, 2}, we have
κ#»η 1(F2) = κ#»η 2(F1) = 0 and κ#»η (Fi) = κ#»η i(Fi).

Proof. Let i, i′ ∈ {1, 2}, i ̸= i′. We show κ#»η i(Fi′) =

κ#»η i′ (Fi) = 0 first. Consider some world ωiω3 ∈ Ω(Σi∪Σ3)

with ωiω3 |= Fi. Then due to the safety property (4) there
is some ωi′ ∈ Ω(Σi′) such that ωiω3ωi′ does not falsify any
conditional in ∆i. Then we have κ#»η i′ (ωiω3ωi′) = 0 and
thus κ#»η i′ (Fi) = 0.

Next we show κ#»η (Fi) = κ#»η i(Fi). We have

κ#»η (Fi) = min{
∑

ω|=AjBj

(Bj |Aj)∈∆

ηj | ω |= Fi} (34)

Let ωiω3 = ω|Σ1∪Σ3 then ωiω3 |= Fi. Furthermore ω and
ωiω3 falsify the same conditionals in ∆i\3, since ∆i\3 ∈
(L(Σi ∪ Σ3)|L(Σi ∪ Σ3)). Due to the safety property (4)
there is some extension ωi′ ∈ Ω(Σi′) such that ωiω3ωi′

does not falsify any conditional in ∆i′\3. Clearly ωiω3ωi′ is
a minimal world in the sense of (34) if ωiω3 is a minimal

world in the sense of (34). Since ωiω3ωi′ does not falsify
any conditional in ∆i′ we can omit ∆i′ from (34) in the
following way:

κ#»η (Fi) = min{
∑

ωiω3|=AjBj

(Bj |Aj)∈∆i\3

ηij | ωiω3 |= Fi} (35)

Thus we have κ#»η (Fi) = κ#»η i(Fi).

The next proposition shows that skeptical c-inference sat-
sifies conditional syntax splitting. Note that since in general,
the inference relation |∼c-sk

∆ can not be represented by an
OCF, no corresponding characterization of syntax splitting
is applicable to it. Thus, the techniques used in the proofs of
the propositions here are different from those used in previ-
ous proofs.

Proposition 30. Cc-sk satisfies (CSynSplit)).

Proof. Let ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3. W.l.o.g. assume
A,B ∈ L(Σ1), C ∈ L(Σ2), Ḃ ∈ {B,B} and assume
D ∈ L(Σ3) is a complete conjunction with CD ̸≡ ⊥.

To prove that Cc-sk satisfies (CRel) we need to show that
AD |∼c-sk

∆ B iff AD |∼c-sk
∆1

B. By applying the definition of
|∼c-sk

∆ we obtain:

∀ #»η ∈ Sol(CR(∆)) : κ#»η (ADB) < κ#»η (ADB)

iff ∀ #»η 1 ∈ Sol(CR(∆1\3)) : κ#»η 1(ADB) < κ#»η 1(ADB)

With Proposition 20 we have that every #»η ∈ Sol(CR(∆))
can be split into ( #»η 1, #»η 2, #»η 3) ∈ Sol(CR(∆)), and vice
versa every #»η i ∈ Sol(CR(∆i\3)) has an extension #»η i′ such
that ( #»η i, #»η i′ , #»η 3) ∈ Sol(CR(∆)) for i, i′ ∈ {1, 2}, i ̸= i′.
Therefore it suffices to show that

κ#»η (ADB) < κ#»η (ADB) iff κ#»η 1(ADB) < κ#»η 1(ADB)
(36)

for all #»η = ( #»η 1, #»η 2, #»η 3) ∈ Sol(CR(∆)). With Propo-
sition 29 this follows directly because κ#»η (ADḂ) =

κ#»η 1(ADḂ) since A,B ∈ L(Σ1), D ∈ L(Σ3) and ∆1 ⊆
(L(Σ1 ∪ Σ3)|L(Σ1 ∪ Σ3)).

Next we prove that Cc-sk satisfies (CInd). We need to
show AD |∼c-sk

∆ B iff ACD |∼c-sk
∆ B. Again, due to to Propo-

sition 20 it suffices to show that

κ#»η (ADB) < κ#»η (ADB) iff κ#»η (ACDB) < κ#»η (ACDB)
(37)

for all #»η ∈ Sol(CR(∆)). Since Proposition 26 states that
Σ1 and Σ2 are conditionally κ#»η -independent given Σ3 we
have with Lemma 7 that κ#»η (AḂCD) = κ#»η (AḂD) +
κ#»η (CD)− κ#»η (D) and therefore (37) holds.

Thus c-inference fully complies with (CSynSplit). Note
that Cc-sk does not make use of selection strategies any more.
We give an Example illustrating Propositions 29 and 30.
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Example 31 (∆b continued). Recall Example 17. According
to Proposition 29, for p∧f ∈ L(Σ1), we get κ#»η 1

1
(p∧f) = 1

and κ#»η 2
1
(p∧ f) = 0 from κ#»η 1

(p∧ f) = 1 without having to
compute κ#»η 1

1
or κ#»η 2

1
. This also works in the other direction,

where we do not have to compute κ#»η 1
if we have knowledge

about κ#»η 1
1
.

Next consider again the safe conditional syntax splitting
given in Example 4. Taking the constraints in Example 17
into account, it follows that pb |∼c-sk

∆1
f holds. With Propo-

sition 30 we know that Cc-sk satisfies (CRel) and (CInd).
From (CRel) we conclude pb |∼c-sk

∆ f . Furthermore, accord-
ing to (CInd), we know that pbw |∼c-sk

∆ f and pbw |∼c-sk
∆ f .

7 Conclusions and Future Work

For inductive reasoning from conditional belief bases, the
concept of conditional syntax splitting has been introduced
in the literature as a generalization of syntax splitting. It is
applicable also to cases where the conditionals in the sub-
bases share some atoms, and it leads to a formalization of the
drowning effect which had been described previously only
by means of examples.

In this paper, we extended the study of conditional split-
tings and introduced the concept of conditional seman-
tic splitting for OCF-based semantics of conditional be-
lief bases. We showed that c-representations, which ex-
hibit notable properties desirable for nonmonotonic rea-
soning, satisfy the conditional semantic splitting pos-
tulate (CSemSplit). For inference based on single c-
representations, we showed that the concept of selection
strategies leads to inductive inference operators satisfying
the conditional syntax splitting postulate (CSynSplit). Fur-
thermore, we proved that c-inference which is obtained by
taking all c-representations of a belief base into account also
satisfies (CSynSplit) and thus fully complies with condi-
tional syntax splitting.

Generally, the belief bases ∆ considered in the proposi-
tions of this paper are assumed be be consistent in the sense
that a ranking model for ∆ exists that maps every world
to a natural number. Our current and future work includes
extending the study of splittings further to cover also be-
lief bases satisfying only a weaker notion of consistency
(cf. (Haldimann et al. 2023; Haldimann, Beierle, and Kern-
Isberner 2024)) and to exploit the benefits of conditional
splittings in implementations of inductive inference, e.g.,
in the reasoning platform InfOCF (Beierle, Eichhorn, and
Kutsch 2017; Kutsch and Beierle 2021).
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