
Forgetting Aspects in Assumption-Based Argumentation

Matti Berthold1 , Anna Rapberger2 and Markus Ulbricht1
1ScaDS.AI, Dresden/Leipzig, Universität Leipzig, Germany

2TU Wien, Austria
{berthold, mulbricht}@informatik.uni-leizpig.de, anna.rapberger@tuwien.ac.at

Abstract

We address the issue of forgetting in assumption-based argu-
mentation (ABA). Forgetting is driven by the goal to remove
certain elements from a knowledge base, while preserving the
structure of its models as well as possible. We introduce sev-
eral forgetting operators tailored to accomplish the removal of
different pieces of the ABA knowledge base—assumptions,
contraries, and atoms—formalizing a diverse selection of per-
spectives on this issue. We examine the quality of our oper-
ators by studying their compliance with suitable desiderata
we propose. Thereby, we investigate the impact of the opera-
tors on the syntax of the given ABA knowledge base, its se-
mantics, but also the instantiated argumentation framework;
thus bridging recent forgetting studies on non-monotonic for-
malisms including argumentation theory.

1 Introduction
A highly relevant research direction in knowledge represen-
tation and reasoning is concerned with the investigation of
dynamical environments, i.e. situations where we are given
knowledge bases undergoing changes (Gabbay et al. 2021).
Argumentation is an inherently dynamic process and it is
therefore not surprising that in this field, researchers inves-
tigated the issue extensively. Several problems concern-
ing dynamics have been considered like enforcing certain
target arguments (Wallner, Niskanen, and Järvisalo 2016;
Niskanen, Wallner, and Järvisalo 2018; Borg and Bex 2021),
strong equivalence (Oikarinen and Woltran 2011), incorpo-
rating new beliefs (Falappa, Kern-Isberner, and Simari 2009;
Haret, Wallner, and Woltran 2018) or repairing a knowledge
base (Baumann and Ulbricht 2019).

Typical dynamic tasks are concerned with adding infor-
mation to a knowledge base and how to deal with arising
conflicts between old and new knowledge. Recently, how-
ever, there has also been an increasing amount of research
on how arbitrary information can be removed, or forgotten,
in such a way that the remaining information represented
by the knowledge base is preserved. Forgetting was first
conceived and resolved in the realm of classical logic (Lin
and Reiter 1994). Later, this topic received broader atten-
tion in the area of knowledge representation and reasoning,
most notably in of logic programming (LP). Due to their
non-monotonicity, at first it was not clear which properties a
“reasonable” forgetting operator should obey for LPs.

Researchers therefore developed several desiderata to in-
vestigate the behavior of forgetting operators (Eiter and
Wang 2008; Zhang and Zhou 2009; Wang, Wang, and
Zhang 2013; Wang et al. 2014; Knorr and Alferes 2014;
Delgrande and Wang 2015). It became apparent that so
called strong persistence captures best the essence of forget-
ting (Gonçalves, Knorr, and Leite 2016). Intuitively, persis-
tence requires that the target atom that is supposed to be for-
gotten is removed from each model of the knowledge base;
otherwise, the models remain unchanged. In addition, there
has been a plethora of suggestions for concrete forgetting
procedures satisfying different sets of desiderata (Zhang and
Foo 2006; Eiter and Wang 2008; Knorr and Alferes 2014;
Gonçalves et al. 2021; Berthold 2022), cf. (Berthold et al.
2019) for an overview.

More recently, forgetting was considered in abstract ar-
gumentation (Baumann, Gabbay, and Rodrigues 2020) and
studied with respect to the forgetting properties in LPs as
well as several new ones (Baumann and Berthold 2022). It
turns out that forgetting from abstract argumentation frame-
works (AFs) cannot be reduced to LPs, and that many of
the desiderata proposed for LPs, including the commonly
agreed persistence, are not feasible for AFs. Consequently
forgetting in AFs has been analyzed with respect to alter-
native desiderata, including one which we coin elimination
here. It requires all extensions with the forgotten arguments
to be removed, thus eliminating their entire context.

The goal of the present paper is to bridge the two
formalisms and to study forgetting in the context of
assumption-based argumentation (ABA), which shares
many common features with both LPs and AFs and is one
of the primal structured argumentation formalisms (Toni
2014). As noticed in various contexts, pushing research
from abstract to structured argumentation is a challeng-
ing endeavor (Wallner 2020; Rapberger and Ulbricht 2022;
Prakken 2022). We will provide a thorough study of forget-
ting with respect to ABA, putting a particular focus on the
two desiderata persistence and elimination.

An ABA knowledge base is composed of different fea-
tures, namely so-called assumptions, their contraries, but
also ordinary atoms. Therefore our study of forgetting in
ABA covers several different aspects, all of which inducing
their own intuition of what forgetting should mean within
the respective context. Consider our running example.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

86

Example 1.1. A group of friends is having a discussion
about vacation plans. They may tie their decision about
whether to go on a city-trip or to the sea to the weather.
In the city there are only expensive hotels because currently
there is carnival season. At the sea there are also cheap op-
tions available. One of the friends, Antoine, does not have
a lot of spare money and can therefore only join if a cheap
hotel is chosen. There are three possible scenarios:
• {good weather , sea, exp hotel},
• {good weather , sea, cheap hotel , antoine joins},
• {bad weather , city , exp hotel}.
Now let us assume that some participants do not like to
swim. Therefore they do not consider going to the sea as
part of the discussion. However, all the other aspects remain
unchanged, i.e. going to the city is still tied to bad weather.
In their eyes the possible outcomes are thus as follows.
• {good weather , sea, exp hotel},
• {good weather , sea, cheap hotel , antoine joins},
• {bad weather , city , exp hotel}.
We will see that updating a knowledge base in this way ad-
heres to the so-called persistence desideratum, requiring to
remove a certain piece of information from each model.

After a night to sleep the discussion over, a participant
may decide that she indeed does not want to go on a trip at
all, if there is bad weather. From her point of view, we need
to update the knowledge base as follows.
• {good weather , sea, exp hotel},
• {good weather , sea, cheap hotel , antoine joins},
• {bad weather , city , exp hotel}.
We will formalize this requirement with the elimination
desideratum that requires to delete certain models entirely.

As a final example, let us suppose our group of friends
does not want to go without Antoine. Unless the premises
of our discussion change, e.g. by pooling money to pay for
Antoine’s stay as well, we arrive at the following models.
• {good weather , sea, exp hotel},
• {good weather , sea, cheap hotel , antoine joins},
• {bad weather , city , exp hotel}.
Formally, the participants remove the counter-argument for
Antoine joining, i.e. the contrary of antoine joins . We will
cover such aspects in our discussion on contrary forgetting.

In this work, we provide a solid theoretical foundation for
limits and possibilities of forgetting different aspects of an
ABA knowledge base. More specifically, the main contribu-
tions of this paper can be summarized as follows.
• We guide our investigation by proposing several desider-

ata which formalize the properties forgetting operators
should have in different scenarios.

• We give (im)possibility results for satisfaction of our
desiderata. Thereby we use both set-theoretical but also
complexity-theoretic arguments, covering both the se-
mantics of an ABA knowledge base as well as the instan-
tiation procedure.

• Whenever possible, we directly construct intuitive forget-
ting operators satisfying the respective requirements.

2 Background
Abstract Argumentation. We fix a background set U . An
argumentation framework (AF) (Dung 1995) is a directed
graph F = (A,R), where A ⊆ U represents a set of ar-
guments and R ⊆ A × A models attacks between them.
By A(F) and R(F) we denote the arguments and attacks
occurring in F , respectively. For a set E ⊆ A, we let
E+

F = {x ∈ A | ∃y ∈ E, (y, x) ∈ R}; also, E is conflict-
free in F iff for no x, y ∈ E, (x, y) ∈ R. E defends an
argument x iff E attacks each attacker of x. A conflict-free
set E is admissible in F (E ∈ ad(F)) iff it defends all its
elements. A semantics is a function σ : F → 22

U
with

F 7→ σ(F) ⊆ 2A; each E ∈ σ(F) is called a σ extension.
Here we consider so-called complete, grounded, preferred,
and stable semantics (abbr. co, gr , pr , stb).
Definition 2.1. Let F = (A,R) be an AF and E ∈ ad(F).
Then E ∈ co(F) iff E contains all arguments it defends;
E ∈ gr(F) iff E is ⊆-minimal in co(F); E ∈ pr(F) iff E
is ⊆-maximal in co(F); E ∈ stb(F) iff E+

F = A \ E.

Assumption-based Argumentation. We assume a deduc-
tive system (L,R), where L is a set of atoms and R is a
set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an, ai ∈ L; head(r) = a0 is the head and
body(r) = {a1, . . . , an} is the (possibly empty) body of r.
Definition 2.2. An ABA framework, ABAF for short, is a
tupleD = (L,R,A,), where (L,R) is a deductive system,
A ⊆ L a set of assumptions, and : A → L a contrary
function.

In this work, we focus on frameworks which are flat, i.e.,
head(r) /∈ A for each rule r ∈ R, and finite, i.e., L, R, A
are finite; also, each rule is stated explicitly (given as input).
By L(D), R(D) and A(D) we denote the atoms, rules and
assumptions occurring in an ABAF D, respectively. Simi-
larly, by A(r) and L(r), we denote all assumptions, resp.
atoms, appearing in a rule r.

An atom p ∈ L is tree-derivable from assumptions S ⊆
A and rules R ⊆ R, denoted by S ⊢R p, iff there is a finite
rooted labeled tree t such that i) the root of t is labeled with
p, ii) the set of labels for the leaves of t is equal to S or
S ∪ {⊤}, and iii) for each internal node v of t there is a rule
r ∈ R such that v is labeled with head(r) and labels of the
children correspond to body(r) or ⊤ iff body(r) = ∅.

By ThD(S) = {p | ∃S′ ⊆ S : S′ ⊢R p} we denote the
set of all conclusions derivable from an assumption-set S in
an ABAF D. Observe that S ⊆ ThD(S) since each a ∈ A
is derivable from {a} ⊢∅ a (a tree with no internal node).

A set S of assumptions attacks a set T of assumptions iff
a ∈ ThD(S) for some a ∈ T ; S is conflict-free iff it does
not attack itself; S is admissible (S ∈ ad(D)) iff it defends
itself, i.e. for any set T attacking S it holds that S counter-
attacks T as well. We define grounded, complete, preferred,
and stable ABA semantics (abbr. gr , co, pr , stb).
Definition 2.3. Let D = (L,R,A,) be an ABAF. Fur-
ther, let S ⊆ A be admissible in D. Then S ∈ co(D) iff S
contains every assumption it defends; S ∈ gr(D) iff S is ⊆-
minimal in co(D); S ∈ pr(D) iff S is⊆-maximal in co(D);
S ∈ stb(D) iff S attacks each {x} ⊆ A \ S.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

87

We let Σ = {ad , co, gr , pr , stb} be the set of all seman-
tics considered in this paper. For a set S of assumptions, we
let S = {a | a ∈ S}.
Definition 2.4. The associated AF FD = (A,R) of an
ABAFD=(L,R,A,) is given by A = {S ⊢ p | ∃R ⊆ R :
S ⊢R p} and R, where (S ⊢ p, S′ ⊢ p′) ∈ R iff p ∈ S′.

ABA semantics can be interpreted by means of extensions
in the corresponding AF FD as shown in (Čyras et al. 2018).

Proposition 2.5. Given an ABAFD = (L,R,A,), its cor-
responding AF F and a semantics σ ∈ Σ. If E ∈ σ(F) then⋃

S⊢p∈E S ∈ σ(D); if S ∈ σ(D) then {S′ ⊢ p | ∃S′ ⊆
S,R ⊆ R : S′ ⊢R p} ∈ σ(F).

Example 2.6. We formalize our introductory example: let
D = (L,R,A,) with A = {exp hotel , cheap hotel ,
antoine joins , sea, city , good weather , bad weather},
L = A∪ {exp hotelc, cheap hotelc, antoine joinsc, seac,
cityc, good weather c, bad weather c, carnival} and con-
traries x = xc for each x ∈ A. The relationships between
these atoms, such as that good and bad weather are
mutually exclusive, are formalized by the following rulesR:

bad weather c ← good weather seac ← bad weather

good weather c ← bad weather cityc ← good weather

exp hotelc ← cheap hotel cheap hotelc ← exp hotel

cheap hotelc ← city , carnival carnival ←
antoine joinsc ← exp hotel

We obtain the following attacks between assumptions (we
omit attacks between any super-sets since the singletons al-
ready characterize the attack structure of the framework,
that is, assumption-set S attacks assumption-set T iff there
are a ∈ S, b ∈ T , such that {a} attacks {b}).

{good weather} {bad weather}

{cheap hotel} {exp hotel}

{sea}{city} {antoine joins}

The preferred extensions of our ABAF D are given
as the assumption-sets {good weather , exp hotel , sea},
{good weather , cheap hotel , antoine joins , sea}, as well
as {bad weather , city , exp hotel}.

3 Forgetting in ABA
Let us start by stipulating what we mean by a forgetting op-
erator. Within the scope of this work, we focus on forgetting
i) an ordinary atom, ii) an assumption, or iii) a contrary. All
of them occur in the language L of a given ABAF. Thus a
forgetting operator takes an ABAF D together with an ele-
ment of p ∈ L as input, and returns an ABAF f(D, p) with
the intuitive meaning that p is forgotten.

Definition 3.1. Let ABA be the set of all ABAFs, and
AT OM the set of all atoms. A forgetting operator f is a
(partial) mapping f : ABA×AT OM→ ABA.

That is, we do not impose any restriction on the behavior
of f. The following example shall illustrate the variety of
conceivable forgetting operators.
Example 3.2. i) The most trivial forgetting operator is the
identity, i.e. fid(D, p) = D for each ABAFD and p an atom.

ii) Another basic approach to “forget” an atom is by sim-
ply removing it from the knowledge base and all rules it oc-
curs in. Given D = (L,R,A,) and p ∈ L we let

fbasic(D, p) :=
(
L \ {p},R′,A \ {p}, |A\{p}

)
with rules
R′ = {head(r)← body(r) \ {p} | r ∈ R, head(r) ̸= p}.

iii) A somewhat more interesting approach is the follow-
ing: Assuming p ∈ A, let us forget that p is an assumption,
i.e. we do not remove it from L, but we change D in a way
that p is not defeasible anymore. To this end we set

fstrict(D, p) :=
(
L,R∪ {p←},A \ {p}, |A\{p}

)
.

Recall that within the scope of this study we consider for-
getting an assumption, a contrary or an ordinary atom. How-
ever, we want to avoid situations where an assumption a
is also a contrary and thus forgetting a would correspond
to both situations simultaneously. We therefore stipulate
within this paper that A ∩ A = ∅. We do not lose any
expressive power by this restriction, as the following result
formalizes.
Proposition 3.3. For any ABA D and σ ∈ Σ, there is an
ABA D′ = (L,R,A,) s.t. σ(D) = σ(D′) and A ∩A = ∅.

As we already mentioned, a forgetting operator is in gen-
eral an arbitrary function. The naturally arising question is
therefore: Are the aforementioned operators useful? Are
they well-behaved? In which scenarios is their output satis-
factory? In order to formally address questions of this kind,
research on forgetting is driven by various desiderata. Their
goal is to i) investigate limits and possibilities of forgetting
operators in general and ii) formalize the behavior of given
forgetting operators in the corresponding situation. Conse-
quently, the starting point of study will be the development
of ABA forgetting desiderata. In the following, we discuss
on which aspects our desiderata will focus. We want to em-
phasize that our desiderata are intentionally strong, often-
times not satisfiable simultaneously and sometimes even not
on their own. Consequently, we do not claim that a cer-
tain forgetting operator is “bad”, “counter-intuitive”, or “un-
suitable” when not satisfying certain desiderata. Rather, the
properties we consider are tailored to examine the edge of
satisfiability, thereby providing an investigation of what can
possibly be expected from an operator and what not.

Syntax. A rather basic requirement is that once the infor-
mation is forgotten, it does indeed not occur in the knowl-
edge base anymore, in a mere syntactical sense.
Desideratum 3.4. Given an ABAF D and an atom p ∈ L.
A forgetting operator f satisfies
(D) deletion iff L(f(D, p)) ⊆ L(D) \ {p}.
This desideratum is of course rather straightforward to

satisfy on its own. For example, it is easy to see that fbasic
from Example 3.2 satisfies (D). It is not satisfied by fstrict
though since here the atom is only removed from A, not L.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

88

Semantics. Such syntactical removal of items to be for-
gotten is often considered as a baseline desideratum in the
literature, e.g. in the context of forgetting in logic programs.
However, forgetting was initially only perceived as a seman-
tic notion. The paper (Lin and Reiter 1994) even introduced
forgetting operators that add explicit mentions of facts to be
forgotten to first order formulas. In this work, we follow this
approach and mainly focus on the semantical implications of
forgetting a target information.

A forgetting notion that is rather dominant in the literature
is that of persistence which requires a forgotten atom to be
cut out of all extensions. We will investigate this desidera-
tum and show that in general, it is unfortunately too strong
to be applied to ABA. An alternative notion of forgetting
is that of elimination. It requires all extensions mentioning
the forgotten assumption to be removed. However, the exact
formulation of the semantical desiderata depends on the sit-
uation under consideration – ordinary atoms, assumptions,
or contraries – and we will phrase them suitably within the
corresponding sections.

Arguments. A special feature of structured argumentation
formalisms like ABA is that apart from the given knowledge
base, there is also an induced argumentation framework un-
der consideration. We therefore also want to investigate the
impact of forgetting on the constructed arguments and their
interactions. As in the case of the semantical desiderata, this
depends on the situation at hand.

Computation. Even the most powerful desiderata are
pointless if we cannot compute the forgetting operator f with
reasonable effort. For example, what if f satisfies many
desirable properties, but computation of f requires explicit
knowledge of the semantics of D? Then, computing f(D, p)
would require an intractable task as a pre-processing step.
Or what if f(D, p) is exponential in the size of D? Then we
bloat D although our intention was to “forget” something.
There are many conceivable ways to prevent such counter-
intuitive scenarios. Within the scope of this paper however
we restrict our attention to the most basic requirement, stip-
ulating that f(D, p) can be computed in polynomial time.
Definition 3.5. Given an ABAF D and an atom p, a for-
getting operator f is tractable iff there is a polynomial-time
algorithm which computes f(D, p).

Within the present study we will refrain from constructing
non-tractable forgetting operators. The reason is that doing
so would call for an empirical evaluation witnessing feasi-
bility of the approach. This is however beyond the scope of
our theoretical analysis.

4 Warm-Up: Forgetting an Atom
In this section we will start with the simple case of forgetting
an ordinary atom p ∈ L \ (A ∪ A). Such atoms facilitate
derivations, but do not interact with the extensions directly.
Hence we expect rather strong results in the context of this
section: It should be possible to get rid of p as above without
disrupting the remainder of the knowledge base.

For ease of presentation, within this section we assume
that our operator f is defined for p ∈ L \ (A ∪A) only.

4.1 Atom Forgetting Desiderata
A notable feature of the way ABA semantics are defined is
that the ordinary atoms p ∈ L\(A∪A) are not considered in
the extensions which serve as the models of an ABA knowl-
edge base. More specifically, if E ∈ σ(D), then p /∈ E since
E ⊆ A. Consequently, in the case of atom forgetting it is
even conceivable to remove p from the given ABAF without
changing the semantics at all. This leads to the following,
quite unique desideratum.
Desideratum 4.1. Given an ABAFD, an atom p ∈ L\(A∪
A), a semantics σ. A forgetting operator f satisfies
(S) steadiness iff σ(f(D, p)) = σ(D).

Example 4.2. Although the carnival in our introductory ex-
ample has an effect on the prices of the hotels in the city and
therefore also an effect on the outcome of the discussion, we
may want to dismiss this information, since it is only im-
plicit, and not directly part of the outcome of the discussion.

We observe that steadiness on its own is not a meaningful
desideratum since the identity f = id already satisfies (S).
From an intuitive point of view it is therefore apparent that
we require meaningful forgetting operators to satisfy at least
one further desideratum, e.g. deletion (D) which would al-
ready suffice to rule out trivial forgetting operators.

As we already mentioned, we also want to consider the
AF induced by D. We expect that forgetting p results in a
situation where no agent can argue for p anymore. However,
as the remaining parts of the knowledge base shall be unaf-
fected, we do not seek to alter the other arguments. Recall
that A(F) denote the arguments occurring in an AF F .
Desideratum 4.3. Given an ABAFD and atom p ∈ L\(A∪
A). A forgetting operator f satisfies
(AD) argument deletion iff

A(Ff(D,p)) = {A ⊢ s ∈ A(FD) | s ̸= p}.
We want to emphasize that the attacks in FD are deter-

mined by the assumptions and conclusions of the tree-based
arguments; thus argument deletion (AD) does not alter the
attack structure within the AF, only the occuring arguments.

4.2 The Replace Operator
In this subsection we will construct our first meaningful for-
getting operator. In a nutshell, the idea is to bridge the target
atom p in each rule where it occurs. This way, we ensure
that the semantics of D do not alter, but p is not required
anymore for the derivations. The forgetting operator we ob-
tain this way will satisfy deletion (D), argument deletion
(AD), and steadiness (S) simultaneously. In addition, it is
possible to compute it in polynomial time.

Formally, consider the following operator rpl (replace):
Given some atom p we let

rpl(R, p) ={head(r)← (body(r) ∪ body(r′)) \ {p}
| r, r′ ∈ R, p = head(r′) ∈ body(r)},

i.e. any appearance of p within a rule body is replaced with
the body of a rule with p in its head.

We define our forgetting operator by replacing the rules
with appearances of p with these new rules.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

89

Definition 4.4. Let D = (L,R,A,) be an ABAF and p ∈
L \ (A ∪A). Let fl(D, p) := (L \ {p},R′,A,), where

R′ := R \ {r ∈ R | p ∈ L(r)} ∪ rpl(R, p).
As desired, fl bridges each occurrence of p of any tree

derivation in order to ensure that each argument tree can still
be derived analogously, but without explicit entailment of p.
Example 4.5. In our running example the atom carnival
appears in the head of one rule (with empty rule body). If
we apply rpl to the set R and ‘carnival ’, in this special
case, ‘carnival ’ is replaced by nothing, i.e. removed from
all rule bodies. We haveR′:
bad weather c ← good weather seac ← bad weather

good weather c ← bad weather cityc ← good weather

exp hotelc ← cheap hotel cheap hotelc ← exp hotel

cheap hotelc ← city , carnival carnival ←
antoine joinsc ← exp hotel

By definition, p does not occur in fl(D, p). This also im-
plies that no argument in fl(D, p) entails it. Therefore, dele-
tion (D) and argument deletion (AD) are satisfied.
Proposition 4.6. Given an ABAF D and an atom p ∈ L \
(A ∪A). Then fl(D, p) satisfies both (D) and (AD).

Let us now turn our attention to the semantics. As the
following lemma formalizes, the assumptions sets in D and
fl(D, p) agree on what they can entail, except p.
Lemma 4.7. Let D = (L,R,A,) be an ABAF and p ∈
L \ A. Let S ⊆ A. Then Th fl(D,p)(S) = ThD(S) \ {p}.

This implies that fl satisfies steadiness (S) as well. We
also observe that fl can be computed in polynomial time, im-
plying tractability. To summarize, fl is capable of satisfying
all atom forgetting desiderata.
Theorem 4.8. If p ∈ L \ (A∪A), then the forgetting oper-
ator fl satisfies (D), (AD), (S) and is tractable.

5 Forgetting an Assumption
In the previous section, our forgetting operator fl was quite
successful. This is not too surprising since ordinary atoms
only have a moderate impact on the structure of (the models
of) D. In this section we turn to our main subject of in-
vestigation: forgetting an assumption. Assumptions are the
central protagonists in an ABAF and removing them while
trying to ensure an intuitive outcome turns out to be a chal-
lenging endeavor.

The assumption forgetting desiderata we will develop are
not simultaneously satisfiable (see Theorem 5.24). Indeed,
in many cases, they are not even satisfiable on their own.
Due to this observation, after formalizing our desiderat we
will devote a subsection to each of them. Each time, we
start with a theoretical analysis in order to examine if the
desideratum under consideration is satisfiable – and if so, if
there is a tractable operator which does the job. In case we
can answer these questions affirmatively, we will proceed by
constructing suitable operators.

For ease of presentation, within this section we implicitly
assume that our forgetting operator f is defined for assump-
tions a ∈ A only.

5.1 Assumption Forgetting Desiderata
One of the primal desiderata in forgetting in the literature is
persistence. It formalizes that the target conclusion shall be
removed from each extension, but otherwise the models of
the given knowledge base persist. In the context of our mo-
tivating Example 1.1, this corresponds to the situation where
some participants forget about the sea since they are not in-
terested in swimming – the possible outcomes of the discus-
sion remain the same, except no extension contains “sea”
anymore.
Desideratum 5.1. Given an ABAF D, assumption a, and
semantics σ. A forgetting operator f satisfies
(P) persistence iff σ(f(D, a)) = {E \ {a} | E ∈ σ(D)}.

Example 5.2. Applied to the assumption sea , the persis-
tence (P) desideratum formalizes the view point of those
participants who do not consider going to the beach as
part of the discussion at all. Adjusting the knowledge
base according to their plans would require an ABAF
with preferred extensions {good weather , exp hotel},
{good weather , cheap hotel , antoine joins}, as well as
{bad weather , city , exp hotel}.

Another conceivable way to forget is to remove exten-
sions containing a entirely, leading to so-called elimination.
This corresponds to the situation in Example 1.1 where some
participant decides that she does not want to join if there is
bad weather. We therefore eliminate each extension con-
taining some target atom. If the atom is contained in each
extension, we require the resulting ABAF to be trivial. In
order not to lose satisfiability in particular corner cases, we
relax elimination when a skeptically accepted assumption is
forgotten under universally defined semantics. We define
elimination in ABA as follows.
Desideratum 5.3. Given an ABAF D, assumption a, and
semantics σ. A forgetting operator f satisfies
(E) elimination iff

σ(f(D, a)) =


{E ∈ σ(D) | a /∈ E} if a /∈

⋂
σ(D),

{∅} if σ ̸= stb, a ∈
⋂
σ(D),

∅ if σ = stb, a ∈
⋂
σ(D).

Example 5.4. In our Example 2.6, Elimination formalizes
the situation after the group decides to only go on vaca-
tion when there is no bad weather. Adjusting the knowl-
edge base according to their plans would require an ABAF
with preferred extensions {good weather , exp hotel , sea}
and {good weather , cheap hotel , antoine joins , sea}.

Let us now turn our attention towards the effect on the
argumentation structure caused by our forgetting procedure.
We may formulate similarly motivated desiderata about the
structured arguments of the induced framework.

Argument persistence (AP) formalizes that an agent does
not rely on the forgotten assumption a anymore, in order
to bring forward an argument. That is, the arguments that
can be constructed are analogous, but a is not mentioned in
the debate corresponding to f(D, a). This follows the same
rationale as persistence (P), but from the point of view of
the exchange of arguments.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

90

Desideratum 5.5. Given an ABAF D and assumption a. A
forgetting operator f satisfies
(AP) argument persistence iff

A(Ff(D,a)) = {A \ {a} ⊢ s | A ⊢ s ∈ A(FD)}.
Analogously, we consider argument elimination (AE) as

a counterpart to elimination (E). Here, we exclude argu-
ments relying on a. That is, in the debate corresponding to
f(D, a) it is impossible to bring forward these arguments.
Desideratum 5.6. Given an ABAF D and assumption a. A
forgetting operator f satisfies
(AE) argument elimination iff

A(Ff(D,a)) = {A ⊢ s ∈ A(FD) | a /∈ A}.
Note that in our definition of (AE) we do not have to

require s ̸= a explicitly when forgetting a since our ABAFs
are flat, i.e. a /∈ A in A ⊢ s implies s ̸= a.

5.2 Persistent Forgetting
This subsection is devoted to satisfaction of persistence (P).

Theoretical Analysis. It turns out that, when forgetting
an assumption, persistence alone (without any other require-
ment) is already unsatisfiable for all but gr semantics. The
intuitive reason for pr and stb semantics is that pr(D) and
stb(D) form antichains and this property might get lost
when removing the target assumption from each extension.
Example 5.7. Assume we are given any semantics σ ∈
{stb, pr}, and an ABAF D = (L,R,A,), where

L = {a, b, ac, bc} R = {ac ← b; bc ← a}
A = {a, b} = {(a, ac) , (b, bc)}

Then σ(D) = {{a}, {b}}. In order for a forgetting operator
f to satisfy persistence when forgetting b, we would have to
have σ(f(D, a)) = {{a}, ∅}. There is however no ABAF
with these stable resp. preferred extensions:
• If {a} is preferred, i.e. maximally admissible, then ∅ is

certainly not maximal. Thus, pr(f(D, b)) = {{a}, ∅} is
impossible.

• If ∅ is stable, i.e. attacks each assumption, then {a} is
certainly not conflict-free. Thus, stb(f(D, b)) = {{a}, ∅}
is impossible.
In this previous example, we focused on pr and stb se-

mantics. However, we can make similar observations for ad
and co semantics as well. Put simply, while pr and stb se-
mantics form antichains, there are also characterizing prop-
erties for the ad and co extensions of an ABAF D – and in
general they get lost when trying to forget an assumption s.t.
persistence (P) holds. However, a comprehensive discus-
sion of all technical details is beyond the scope of this work.
We refer the reader to the technical supplement where the
relevant proofs can be found.

On the other hand, we do not face such an issue for gr
semantics. As is known, there is always a unique grounded
extension. Now, given G ∈ gr(D) it is certainly possible
to construct f(D, a) in a way that G \ {a} becomes the
new grounded extension (we refer the skeptical reader to
Definition 5.11). We therefore end up with the following
(im)possibility result for satisfiability of persistence (P).

Theorem 5.8. Let D = (L,R,A,) be an ABAF, σ ∈ Σ,
and a ∈ A. There is a forgetting operator f satisfying (P)
iff σ = gr .

Since this subsection is driven by satisfaction of persis-
tence, we will continue our investigation with grounded se-
mantics and refrain from the remaining cases until our dis-
cussion on elimination (E) forgetting.

Construction of Forgetting Operators. According to our
theoretical results, we should be able to come up with a
tractable forgetting operator for persistent forgetting under
gr semantics. The idea is to remove the assumption a we
want to forget from the body of each rule in D, but only if a
occurs in the grounded extension of D. Towards investigat-
ing our operator, let us note some general observation which
we find interesting on its own, independent of the context of
forgetting. For this, consider the following notion.
Definition 5.9. Given D = (L,R,A,) and a ∈ A we let
rm(D, a) := (L′,R′,A′, |A′) where A′ = A \ {a}, L′ =
L \ {a}, andR′ = {head(r)← body(r) \ {a} | r ∈ R}.

Any σ extension E ∈ σ(D) containing the assumption a
survives the transition to the ABAF rm(D, a), where a is
removed from each rule body. The intuitive reason is that
in rm(D, a), the assumption a is not required anymore to
entail the respective conclusions.
Lemma 5.10. Let D = (L,R,A,) be an ABAF, σ ∈
{ad , co, pr , gr , stb}, and a ∈ A. Moreover, suppose a ∈ E
for E ∈ σ(D). Then E \ {a} ∈ σ(rm(D, a)).

This observation can be exploited in order to construct a
forgetting operator for gr semantics: If a does not occur in
the grounded extension, persistence (P) does not require us
to modify D. Otherwise, we simply apply rm from above.
Definition 5.11. Given D = (L,R,A,) and a ∈ A we let

f(P)gr (D, a) :=
{
D if a /∈ G ∈ gr(D),
rm(D, a) if a ∈ G ∈ gr(D).

Example 5.12. Let D = (L,R,A,), where

L = {a, b, c, ac, bc, cc} R = {cc ← b; bc ← a}
A = {a, b, c} = {(a, ac) , (b, bc) , (c, cc)}

To forget a from D via f(P)gr , we first check whether a is
in the unique ground extension – gr(D) = {{a, c}} – it
is. We are hence in the second case and apply rm(D, a) =
(L′,R′,A′, ′), where

L′ = {b, c, ac, bc, cc} R′ = {cc ← b; bc ←}
A′ = {b, c} ′ = {(b, bc) , (c, cc)}

We summarize the properties of f(P)gr .
Theorem 5.13. The operator f(P)gr is tractable. Moreover,
it satisfies (P) for gr semantics.

However, the construction in Definition 5.11 does not sat-
isfy deletion (D). Indeed, it is not guaranteed that the as-
sumption which we aim to forget is no longer part of the
modified knowledge base. This issue can be circumvented
via the following simple construction:

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

91

Definition 5.14. Given D = (L,R,A,) with G ∈ gr(D)
and a ∈ A we let G′ = G \ {a} and define

f(D)gr (D, a) := (G′ ∪G
′
, ∅, G′, |G′),

where G
′
= {g | g ∈ G′} contains all contraries of G′.

The operator computes the grounded extension G (in
polynomial time) and constructs a framework which con-
tains only G \ {a} without any rules. In contrast to f(P)gr ,
the operator f(D)gr satisfies deletion.

Theorem 5.15. The operator f(D)gr satisfies (D) and is
tractable. Moreover, it satisfies (P) for gr semantics.

5.3 Elimination Forgetting
This subsection is devoted to satisfaction of elimination (E).

Theoretical Analysis. As before, we start the formal in-
vestigation with the underlying satisfiability results. As it
will turn out, elimination is a bit easier to satisfy than per-
sistence. First of all, it is possible to satisfy elimination (E)
for all semantics except co.
Theorem 5.16. Let D = (L,R,A,) be an ABAF, σ ∈ Σ,
and a ∈ A. There is a forgetting operator f satisfying (E)
iff σ ̸= co.

Comparing Theorem 5.16 and Theorem 5.8 the question
arises why persistence is so much harder to satisfy? The
intuitive reason is that persistence (P) requires us to modify
extensions, i.e. delve into and change the structure of the
given models. Elimination (E) on the other hand can be
satisfied by simply excluding certain extensions, i.e. posing
additional constraints on the given models. This observation
is also utilized by our operator from Definition 5.20 which
relies on constraining σ(D) in a suitable way.

Continuing our theoretical analysis, let us turn to
tractability, i.e. for which semantics can elimination forget-
ting be realized by means of a polynomial-time computable
operator? To this end we make the following observation
regarding pr semantics. Suppose we are given an ABAF
D with ad(D) = {∅, {a, b}, {a, b, c}}, i.e. {a, b, c} is the
unique preferred extension. Elimination forgetting a would
require us to remove the whole extension, i.e. pr(D) = {∅}.
But how can we ensure this? Simply removing {a, b, c}
would then imply that {a, b} is now maximal, yielding
pr(f(D, a)) = {{a, b}} which is not the desired outcome.

While it is possible to circumvent this issue, it would re-
quire us to be aware of each admissible set in D. However,
the set of extensions is no part of the input of our forgetting
operator and thus it is hardly conceivable that this is possi-
ble in polynomial time. We can formalize this observation
in the following theorem, stating that elimination forgetting
(E) is only possible for pr semantics when making use of
an intractable operator f.
Theorem 5.17. Unless coNP = Π2

P, there is no forgetting
operator satisfying (E) that is tractable for σ = pr .

Indeed, the proof of this result relies on the fact that skep-
tical reasoning with preferred semantics is hard due to the
maximization incorporated in the definition (Dvorák and
Dunne 2018).

Construction of Forgetting Operators. In contrast to
the previous subsection, it is this time possible to find a
polynomial-time computable forgetting operator for stb and
ad semantics. As we already mentioned, the underlying idea
is to constrain the given extensions σ(D). To this end we
turn the target assumption a which shall be forgotten into a
self-attacker. This renders any extension E ∈ σ(D) with
a ∈ E self-conflicting. The remaining admissible resp. sta-
ble extension remain unaffected by this modification.

Before doing so, however, we have to take care of one ad-
ditional hurdle: It might be the case that a shares a contrary
with some other assumption b, i.e. a = b which would un-
dermine our idea, because we do not want to introduce addi-
tional attacks to b when forgetting a. To deal with this, con-
sider the following pre-processing step which ensures that
the contrary of a is not shared.
Definition 5.18. Given an ABAF D = (L,R,A,) and as-
sumption a we let ac be a fresh atom. Define uc(D, a) :=
(L′,R′,A, ′), where L′ := L ∪ {ac} and
R′ := R∪ {ac ← a} ′ := |A\{a} ∪ (a, ac)

Our operator uc(D, a) (unique contrary) does not alter the
semantics of D and simply ensures that no assumption apart
from a has the same contrary.
Lemma 5.19. For any ABAF, assumption a, and semantics
σ ∈ Σ, we have σ(D) = σ(uc(D, a)).

Having ensured that a does not share the contrary, we
can now provide our forgetting operator for elimination (E)
w.r.t. ad and stb semantics.
Definition 5.20. Given D = (L,R,A,) and a ∈ A we let
self(D, a) := (L,R∪ {a← a},A,) and define

f(E)adstb(D, a) = self(uc(D, a), a).
Thus, f(E)adstb ensures that the contrary of a can be en-

tailed once a is in our extension-set – hence enforcing a con-
flict. Extensions not containing a remain unaffected.
Example 5.21. We consider a slightly modified version of
Example 5.7. Let D = (L,R,A,), where
L = {a, b, c, ac, bc, cc} R = {ac ← b, c; bc ← a}
A = {a, b, c} = {(a, ac) , (b, bc) , (c, cc)}

We have ad(D) = {∅, {a}, {b, c}} and stb(D) = {{b, c}}.
We omit computation of uc(D, c) since no contrary is shared
among assumptions. Thus f(E)adstb(D, c) (forgetting c) is
given as f(E)adstb(D, c) = (L,R′,A,), where

R′ = {ac ← b, c; bc ← a; cc ← c}.
Indeed, this yields ad(f(E)adstb(D, c)) = {∅, {a}} as well
as stb(f(E)adstb(D, c)) = ∅ as desired.

The next theorem shows that this was no coincidence and
our operator indeed serves our purpose.
Theorem 5.22. The operator f(E)adstb is tractable. More-
over, it satisfies (E) for σ ∈ {ad , stb}.

Turning to gr semantics, we can simply adapt the idea
from Definition 5.14 to obtain a forgetting operator satisfy-
ing (D), and (P) that is tractable. Since this is a rather natu-
ral modification to our previous operator, we do not discuss
this approach in detail here.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

92

5.4 Argument Persistence and Elimination
In this subsection we will focus on the argumentation struc-
ture that is induced by the forgetting result. This is closely
related to previous work that has been conducted on for-
getting in abstract argumentation (Baumann, Gabbay, and
Rodrigues 2020; Baumann and Berthold 2022). Recall
that argument elimination (AE) requires that all arguments
including a are removed and argument persistence (AP)
holds if a is removed from all arguments; both notions are
thus similar in spirit to elimination (E) and persistence (P).

As usual, we start with a general theoretical analysis be-
fore moving on to construct operators.

Theoretical Analysis. We first note that both (AE) and
(AP) are satisfiable on their own, but not simultaneously.
Proposition 5.23. Let D = (L,R,A,) be an ABAF, σ ∈
Σ, and a ∈ A.
• There is a forgetting operator f satisfying (AP).
• There is a forgetting operator f satisfying (AE).
• There is no operator f satisfying both (AP) and (AE).

Next we want to formalize that our instantiation-driven
desiderata are not compatible with the semantical ones we
discussed above. Indeed, it turns out that in general they
are mutually exclusive. That is, there is a trade-off between
having intuitive modifications w.r.t. the semantics σ(D) and
w.r.t. the induced AF FD. We give the following result.
Theorem 5.24. Let D = (L,R,A,) be an ABAF and a ∈
A. For each σ ∈ Σ, each of the following pairs of desiderata
are not simultaneously satisfiable: (P) and (AP); (P) and
(AE); (E) and (AP); (E) and (AE).

This result can be shown by building upon known ABA
results quite naturally. The underlying reason is that the se-
mantics of an ABAF D can be computed by means of the
corresponding AF FD. Hence, since argument persistence
(AP) resp. argument elimination (AE) specify Ff(D,a),
these desiderata also uniquely determine the semantics of
the ABAF f(D, a) after forgetting a.
Lemma 5.25. Given a forgetting operator f, an assumption
a ∈ A(D) and semantics σ ∈ Σ.
• If f satisfies (AP), then

σ(f(D, a)) = σ(FD|{A\{a}⊢s|A⊢s∈A(FD), s ̸=a})

• If f satisfies (AE), then
σ(f(D, a)) = σ(FD|{A⊢s|a/∈A})

Here σ both describes ABA as well as AF semantics.
Given this lemma, it suffices to note that the modifications

which are required to satisfy the desiderata (AE) and (AP)
are not compatible with elimination (E) and persistence (P)
as discussed earlier.

Construction of Forgetting Operators. As our last re-
mark on assumption forgetting let us demonstrate how to
obtain operators satisfying (AE) resp. (AP). It turns out
that the rm operator, which we introduced in Definition 5.9
satisfies argument persistence.
Proposition 5.26. The operator f(AP)(D, a) := rm(D, a)
satisfies (AP).

Example 5.27. Let D = (L,R,A,), where

L = {a, b, c, p, q, r, s} A = {a, b, c}
R = {p← a; q ← b; r ← a, b; s← r, c}

(and some arbitrary contray function). We have arguments
{a} ⊢ p, {b} ⊢ q, {a, b} ⊢ r, and {a, b, c} ⊢ s. Applying
the remove operator rm(D, a) yields the set of rules R′ =
{p ←; q ← b; r ← b; s ← r, c} with arguments ⊤ ⊢ p,
{b} ⊢ q, {b} ⊢ r, and {b, c} ⊢ s.

We proceed with argument elimination (AE). We did not
yet describe a forgetting operator satisfying this property,
so we construct a novel one. Recall that argument elimina-
tion requires us to remove any argument which relies on the
given assumption a. Since we assume our ABAFs to be flat,
we do not have to consider cases where a might be entailed
from some rule r ∈ R. It therefore suffices to remove each
rule where a ∈ body(r), thereby ensuring that the arguments
making use of such rules cannot be constructed anymore.
Definition 5.28. Given D = (L,R,A,) and a ∈ A we let
f(AE)(D, a) :=

(
L \ {a},R′,A \ {a}, |A\{a}

)
with rules

R′ = R \ {r ∈ R | a ∈ body(r)}.
Example 5.29. Let D be the ABAF from Example 5.27. Ap-
plying f(AE)(D, a) yields R′ = {q ← b; s← r, c} leaving
only the argument {b} ⊢ q constructible.

Indeed, the operator f(AE)(D) satisfies argument elimina-
tion, as formalized in the following proposition.
Proposition 5.30. The operator f(AE)(D, a) satisfies (AE).

6 On Contrary Forgetting
In this section, we briefly discuss approaches towards for-
getting the contrary of an assumption. That is, we interpret
contrary forgetting in the sense that defeasibility of the cor-
responding assumption is forgotten. Of course, strictly tech-
nical speaking, this is not possible since by definition each
assumption a ∈ A has a contrary. However, it is possible to
modify D in a way that a does not play any role anymore.

We will see that elimination (E) can be adapted to this
setting while we argue that for persistence (P) this might
cause counter-intuitive results. As usual we assume that our
forgetting operator f is defined for contraries p ∈ A only.

6.1 Contrary Forgetting Desiderata
To keep this section brief, we will only consider the semanti-
cal desiderata here. We need to be cautious, in order to avoid
counter-intuitive scenarios. Let us for example consider the
primal persistence (P) desideratum we introduced for as-
sumption forgetting. A given forgetting operator f satisfies
persistence iff σ(f(D, a)) = {E\{a} | E ∈ σ(D)}, i.e. a is
removed from each extension. When forgetting the contrary
a instead of the assumption a, it would therefore seem natu-
ral to require σ(f(D, a)) = {E ∪ {a} | E ∈ σ(D)} instead,
i.e. a is added to each extension. This idea turns out to be
too disruptive though, as we illustrate next.
Example 6.1. Let D = (L,R,A,), where

L = {a, b, ac, bc} R = {ac ← a; ac ← b; bc ← a}
A = {a, b} = {(a, ac) , (b, bc)}

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

93

Considering stable extensions we observe stb(D) = {{b}}.
When removing the contrary of a by means of a forgetting
operator we expect b to not attack a anymore. However,
forgetting a has no effect on the rule “b← a” implying that
a and b are still incompatible. Thus σ(f(D, a)) = {{a, b}}
would be the output of some counter-intuitive operator f.

Besides persistence (P) we also considered elimination
(E) stating that extensions containing a shall be removed.
This is a more cautious approach since it does not rely on
modifying the interactions of assumptions, but merely re-
moves some models of the knowledge base. We consider
the following “contrary forgetting” version of elimination.
Desideratum 6.2. Given an ABAF D and an assumption
a ∈ A. A forgetting operator f satisfies
(CE) contrary elimination iff

σ(f(D, a)) =


{E ∈ σ(D) | a ∈ E} if a ∈

⋃
σ(D),

{∅} if σ ̸= stb, a /∈
⋃
σ(D),

∅ if σ = stb, a /∈
⋃
σ(D).

Hence, the forgetting operator f shall keep only exten-
sions containing a. In corner cases ∅ is allowed.
Example 6.3. Recall the running example about plan-
ning the vacation. Removing the outcomes in which An-
toine is not joining the trip corresponds to forgetting about
antoine joinsc via (CE).

6.2 Contrary Elimination Forgetting
The attentive reader may already expect that (CE) is not
satisfiable for all semantics. As usual, for the positive cases
we provide corresponding forgetting operators.

Theoretical Analysis. If a ∈ A is credulously accepted
w.r.t. ad , then a forgetting operator f satisfying (CE) would
output an ABAF s.t. ∅ /∈ ad(f(D, a)); this is of course im-
possible since the empty set is always admissible. We there-
fore conclude that no such operator exists. Regarding com-
plete semantics, consider the following example.
Example 6.4. Let D = (L,R,A,), s.t. A = {a, b, c, d},
L = A ∪ {ac, bc, cc, dc}, a = ac for all a ∈ A, andR:

cc ← b bc ← c ac ← d dc ← b dc ← c

That is, b and c mutually attack each other, both defend-
ing a from the attack coming from d. We therefore conclude
co(D) = {∅, {a, b}, {a, c}}. If we want to forget ac satis-
fying (CE), then we require σ(f(D, ac)) = {{a, b}, {a, c}}
which is impossible due to the lack of a unique grounded
extension.

For the remaining semantics gr , pr , and stb we do not
face such issues. We infer the following possibility result
regarding contrary elimination (CE).
Theorem 6.5. Let D = (L,R,A,) be an ABAF, σ ∈ Σ,
and a ∈ A. There is a forgetting operator f satisfying (CE)
iff σ ∈ {gr , pr , stb}.

Notably, we do not require any complexity-theoretic argu-
ment to further distinguish between the semantics. Indeed,
we find tractable forgetting operators in all three cases.

Construction of Forgetting Operators. Satisfaction of
(CE) relies on imposing constraints on the given set of ex-
tensions, as it was the case for the elimination notion (E)
for assumption forgetting. This time we introduce a fresh
assumption x which attacks itself as well as each assump-
tion in D. Then, we construct an attack from a to x. This
way, stable resp. preferred extensions containing a remain
unaffected, but the remaining ones get excluded.

Definition 6.6. Given D = (L,R,A,) and a ∈ A we let
f(CE)prstb(D, a) = (A ∪ {x},R′,L ∪ {x, xc}, ∪ (x, xc))

whereR′ = R∪ {b← x | b ∈ A ∪ {x}} ∪ {xc ← a}.
We formalize that f(CE)prstb(D, a) is indeed suitable.

Theorem 6.7. The operator f(CE)prstb satisfies contrary-
elimination for σ ∈ {pr , stb}.

We note that we can construct an operator for grounded
semantics that in addition satisfies deletion (D), by using
similar methods as in the case of assumption persistence.

7 Conclusion
In this paper, we covered several forgetting aspects in
assumption-based argumentation (ABA). We adapted com-
mon desiderata from the literature to our setting and com-
prehensively investigated their (un)satisfiability. We consid-
ered forgetting ordinary atoms, assumptions, and contraries,
both semantical as well as syntactical properties of our for-
getting operators, but also their impact on the instantiation
procedure. Whenever possible we constructed a suitable
polynomial-time computable operator.

We want to mention that forgetting contraries as a dual
version of assumptions forgetting is similar in spirit to en-
forcement. While similar problems have been studied in
the context of formal argumentation (Baumann and Brewka
2010; Baumann and Brewka 2015; Borg and Bex 2021;
Rapberger and Ulbricht 2022), we are not aware of any work
in the context of ABA which studies this particular notion.

An interesting future work direction would be the con-
sideration of more natural, non-trivial forgetting operators.
For example our study did not cover cases where in general
there is no forgetting operator. However, it might be pos-
sible to find operators that work in most cases, for certain
ABA fragments, or approximate the target set of extensions.
Moreover, we only covered a handful of desiderata, all of
which are quite strong. A more comprehensive study of fur-
ther ones or weaker versions of those we proposed would
be an interesting topic for future research as well. More
broadly, further forgetting research in ABA would benefit
from a thorough investigation of its expressive power, as
it has been conducted for AFs (Baumann and Strass 2013;
Dunne et al. 2015; Ulbricht 2021). We mention that for-
getting has already been applied successfully to shorten
proofs in description logics (Alrabbaa et al. 2020). It would
be compelling to investigate whether similar results can be
achieved for ABA. Finally, this paper focused on ABA as the
underlying formalism of the structured arguments. Consid-
ering forgetting in other well-established argumentation for-
malisms, like defeasible logic programming (Moguillansky
et al. 2008), may be an interesting avenue for future studies.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

94

Acknowledgements
This research has been supported by the Vienna Science
and Technology Fund (WWTF) through project ICT19-065,
the Austrian Science Fund (FWF) through project P32830,
and by the Federal Ministry of Education and Research
of Germany and by Sächsische Staatsministerium für Wis-
senschaft, Kultur und Tourismus in the programme Center of
Excellence for AI-research “Center for Scalable Data Ana-
lytics and Artificial Intelligence Dresden/Leipzig”, project
identification number: ScaDS.AI.
This work was partially conducted while Matti was a visit-
ing PhD student at the University of Luxembourg. So long,
and thanks for all the fish.

References
Alrabbaa, C.; Baader, F.; Borgwardt, S.; Koopmann, P.; and
Kovtunova, A. 2020. Finding small proofs for description
logic entailments: Theory and practice (extended technical
report). arXiv preprint arXiv:2004.08311.
Baumann, R., and Berthold, M. 2022. Limits and possibili-
ties of forgetting in abstract argumentation. In Proceedings
of (IJCAI-22), 2539–2545.
Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proceedings of (COMMA-10), 75–86.
Baumann, R., and Brewka, G. 2015. AGM meets abstract ar-
gumentation: Expansion and revision for dung frameworks.
In Proceedings of (IJCAI-15), 2734–2740.
Baumann, R., and Strass, H. 2013. On the maximal and
average numbers of stable extensions. In Proceedings of
(TAFA-13), 111–126.
Baumann, R., and Ulbricht, M. 2019. If nothing is accepted–
repairing argumentation frameworks. Journal of Artificial
Intelligence Research 1099–1145.
Baumann, R.; Gabbay, D. M.; and Rodrigues, O. 2020. For-
getting an argument. In Proceedings of (AAAI-20), 2750–
2757.
Berthold, M.; Gonçalves, R.; Knorr, M.; and Leite, J.
2019. A syntactic operator for forgetting that satisfies strong
persistence. Theory and Practice of Logic Programming
1038–1055.
Berthold, M. 2022. On syntactic forgetting with strong per-
sistence. In Proceedings of (KR-22).
Borg, A., and Bex, F. 2021. Enforcing sets of formulas in
structured argumentation. In Proceedings of (KR-21), 130–
140.
Čyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018.
Assumption-based argumentation: Disputes, explanations,
preferences. In Handbook of Formal Argumentation. chap-
ter 7, 365–408.
Delgrande, J. P., and Wang, K. 2015. A syntax-independent
approach to forgetting in disjunctive logic programs. In Pro-
ceedings of (AAAI-15), 1482–1488.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence 321–
357.

Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S.
2015. Characteristics of multiple viewpoints in abstract ar-
gumentation. Artificial Intelligence 153–178.
Dvorák, W., and Dunne, P. E. 2018. Computational prob-
lems in formal argumentation and their complexity. In
Handbook of Formal Argumentation.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artificial Intelligence 1644–1672.
Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2009.
Belief revision and argumentation theory. In Argumentation
in Artificial Intelligence. 341–360.
Gabbay, D.; Giacomin, M.; Simari, G. R.; and Thimm, M.,
eds. 2021. Handbook of Formal Argumentation.
Gonçalves, R.; Janhunen, T.; Knorr, M.; and Leite, J. 2021.
On syntactic forgetting under uniform equivalence. In Pro-
ceedings of (JELIA-21), 297–312.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016. You can’t
always forget what you want: On the limits of forgetting
in answer set programming. In Proceedings of (ECAI-16),
957–965.
Haret, A.; Wallner, J. P.; and Woltran, S. 2018. Two sides of
the same coin: Belief revision and enforcing arguments. In
Proceedings of (IJCAI-18), 1854–1860.
Knorr, M., and Alferes, J. J. 2014. Preserving strong equiv-
alence while forgetting. In Proceedings of (JELIA-14), 412–
425.
Lin, F., and Reiter, R. 1994. Forget it. In Working Notes of
AAAI Fall Symposium on Relevance, 154–159.
Moguillansky, M. O.; Rotstein, N. D.; Falappa, M. A.;
Garcı́a, A. J.; and Simari, G. R. 2008. Argument theory
change applied to defeasible logic programming. In Pro-
ceedings of (AAAI-08), 132–137.
Niskanen, A.; Wallner, J. P.; and Järvisalo, M. 2018. Ex-
tension enforcement under grounded semantics in abstract
argumentation. In Proceedings of (KR-18), 178–183.
Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artificial Intel-
ligence 1985–2009.
Prakken, H. 2022. Formalising an aspect of argument
strength: Degrees of attackability. In Proceedings of
(COMMA-22), 296–307.
Rapberger, A., and Ulbricht, M. 2022. On dynamics in struc-
tured argumentation formalisms. In Proceedings of (KR-22).
Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument and Computation 89–117.
Ulbricht, M. 2021. On the maximal number of complete
extensions in abstract argumentation frameworks. In Pro-
ceedings of (KR-21), 707–711.
Wallner, J. P.; Niskanen, A.; and Järvisalo, M. 2016. Com-
plexity results and algorithms for extension enforcement in
abstract argumentation. In Proceedings of (AAAI-17), 1088–
1094.
Wallner, J. P. 2020. Structural constraints for dynamic oper-
ators in abstract argumentation. Argument and Computation
151–190.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

95

Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowl-
edge forgetting in answer set programming. Journal of Arti-
ficial Intelligence Research 31–70.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
answer set programs revisited. In Proceedings of (IJCAI-
13), 1162–1168.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artificial In-
telligence 739–778.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. Artificial Intelligence 1525–1537.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

96

	Introduction
	Background
	Forgetting in ABA
	Warm-Up: Forgetting an Atom
	Atom Forgetting Desiderata
	The Replace Operator

	Forgetting an Assumption
	Assumption Forgetting Desiderata
	Persistent Forgetting
	Elimination Forgetting
	Argument Persistence and Elimination

	On Contrary Forgetting
	Contrary Forgetting Desiderata
	Contrary Elimination Forgetting

	Conclusion

