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Abstract
We study the interplay between counterfactual explanations
and model multiplicity in the context of neural network clas-
sifiers. We show that current explanation methods often pro-
duce counterfactuals whose validity is not preserved under
model multiplicity. We then study the problem of generating
counterfactuals that are guaranteed to be robust to model mul-
tiplicity, characterise its complexity and propose an approach
to solve this problem using ideas from relational verification.

1 Introduction
Counterfactual explanations (CFXs) are often used to pro-
vide recourse recommendations to individuals that have
been affected by the predictions of Machine Learning (ML)
models (Karimi et al. 2023). Algorithms to generate CFXs
for a given input x to a model M typically try to find
a minimally altered input x′ for which M gives a differ-
ent output to that of x (Wachter, Mittelstadt, and Russell
2018). These algorithms often operate under the assumption
that there exist only one model with the best accuracy and
that this is the model that will eventually be deployed and
need explanations. While using accuracy as a criterion for
model selection is common, recent studies have drawn at-
tention to the fact that there often exist multiple models that
achieve the same accuracy on a prediction task, but greatly
differ in their internals (Marx, Calmon, and Ustun 2020;
Black, Raghavan, and Barocas 2022). This phenomenon, of-
ten referred to as model multiplicity, has deep implications
for CFXs. Consider the classic scenario of a loan applica-
tion, where a bank employs an ML model to predict whether
a loan should be granted or not. Assume an applicant with
features unemployed status, 30 years of age and low credit
rating is rejected by the bank’s model. A CFX for this pre-
diction might suggest to increase the credit rating to medium
for the loan to be granted. However, under model multiplic-
ity, there may exist another equally accurate model, which
also rejects the original application, but for which increas-
ing the credit rating to medium would still result in the loan
being rejected. This problem is far from being mere theo-
retical speculation. In Table 1, we present a scenario where
n neural networks with same architecture are trained to the
same accuracy on the German Credit dataset (Dua and Graff
2017), using different seeds. We then use two state-of-the-
art algorithms to generate 50 CFXs for each model, and test

n = 2 n = 3 n = 4 n = 5
(Wachter, Mittelstadt, and Russell 2018) 98% 66.7% 74.5% 79.2%

(Looveren and Klaise 2021) 50% 34% 25.5% 19.6%

Table 1: Amount of CFXs that are valid on n different networks.

the validity of each explanation on the remaining n−1 mod-
els. As we can observe, large fractions of the explanations
cease to be valid under model multiplicity, ultimately raising
concerns about the justifiability of these CFXs.

Our contribution. Though previous work has considered
the interplay between CFXs and model multiplicity (Pawel-
czyk, Broelemann, and Kasneci 2020), formal methods for
generating explanations satisfying this property are cur-
rently lacking. In line with recent calls for formal expla-
nations of ML models (Darwiche 2020; Marques-Silva and
Ignatiev 2022; Jiang et al. 2023), we here seek to derive
new techniques to generate CFXs whose validity is guar-
anteed across an ensemble of neural network classifiers.
We propose to tackle this problem using product construc-
tions from relational program verification (Barthe, Crespo,
and Kunz 2011). Relational verfication has mainly been
studied in the context of verifying relations between pro-
grams/executions in the classical program verification set-
ting, but recent work have extended its scope to the anal-
ysis of neural networks (Paulsen, Wang, and Wang 2020;
Paulsen et al. 2020; Khedr and Shoukry 2023; Christakis et
al. 2022). As an example, (Paulsen, Wang, and Wang 2020)
consider two neural networks M and M′ trained for the
same task and assert relational properties such as “M and
M′ are expected to produce the same output when receiving
the same input”.

Inspired by these ideas, in this paper we propose the first
study of robustness to model multiplicity as a relational
property. In particular, we propose a novel product construc-
tion and use it to show that generating a CFX satisfying this
property is NP-complete. Building on this result, we pro-
pose an approach based on Mixed-Integer Linear Program-
ming (MILP) to compute CFXs and demonstrate its applica-
bility on neural network classifiers trained on tabular data.

Related work. Several techniques have been proposed
to compute CFXs for ML models – see, e.g. (Karimi et al.
2023) for a recent survey. Due to space constraints, we will
focus only on approaches that generate CFXs with improved
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robustness. Previous work has considered robustness against
perturbations in the input to be explained (Sharma, Hen-
derson, and Ghosh 2020; Dominguez-Olmedo, Karimi, and
Schölkopf 2022), to adversarial perturbations applied to the
CFX itself (Slack et al. 2021; Pawelczyk et al. 2022; Leo-
fante and Lomuscio 2023) or to bounded changes in the ML
model parameters (Upadhyay, Joshi, and Lakkaraju 2021;
Dutta et al. 2022; Jiang et al. 2023). Our work shares some
similarities with the latter class of approaches. However, we
generalise the notion of robustness by relaxing the require-
ment that changes must be bounded as typically assumed in
the literature. This allows us to capture a broader class of
problems, including scenarios where models with different
architectures are deployed.

Model multiplicity has been the subject of previous stud-
ies within ML (Marx, Calmon, and Ustun 2020; Black,
Raghavan, and Barocas 2022). Most recently, (Pawelczyk,
Broelemann, and Kasneci 2020) proved that CFXs that are
on-manifold also exhibit increased levels of robustness un-
der model multiplicity. In this paper we take a step further
and devise procedures to generate CFXs that are formally
guaranteed to be robust under model multiplicity. Our mo-
tivation for doing so is in line with recent works arguing
that formal approaches are needed to develop trustworthy
explainable AI (Ignatiev, Narodytska, and Marques-Silva
2019; Darwiche 2020; Ignatiev and Silva 2021; Marques-
Silva and Ignatiev 2022; Leofante and Lomuscio 2023).

2 Background
Feed-forward neural networks. A feed-forward neural
network (FFNN) is a directed acyclic graph whose nodes
are arranged in subsequent layers L0, . . . , Lk (Goodfellow,
Bengio, and Courville 2016). L0 is the input layer, Lk is the
output layer and each non-input layer Li, i ∈ {1, . . . , k}, is
parametrised by a weight matrix Wi and a bias vector Bi.
An FFNN computes an output by propagating a given input
through its layers as defined below.
Definition 1. Given an input x ∈ Rm and an FFNNM, let:
• L0 = x;
• Li = σi(Wi · Li−1 + Bi) for i ∈ {1, . . . , k − 1}, where
σi is an activation function applied element-wise.

The output ofM (on x) is defined as Lk =Wk ·Lk−1+Bk.

Here, w.l.o.g. we focus on FFNNs using ReLU activations
trained to solve binary classification tasks, i.e., we assume
that Lk is the vector (o0, o1)ᵀ. In this setting, we charac-
terise the classification outcome of an FFNN as follows.
Definition 2. Given an input x ∈ Rm, we say that an
FFNN M classifies x as 0 if o0 > o1, 1 if o0 < o1 and
undefined otherwise. We writeM(x) = 0 andM(x) = 1
to denote the binary classification outcomes.

Definition 2 distinguishes between three cases to remove
the ambiguity in determining the classification outcome as
implemented in modern deep learning libraries, which typ-
ically return the lowest index of the maximal value in Lk

(see, e.g. (Paszke et al. 2019)). This is crucial to ensure that
CFXs achieve their goal reliably.

Counterfactual explanations. CFXs attempt to explain
the outcome of an ML model by showing how an input could
be changed to produce a different decision. CFXs are com-
monly computed as solutions to the constraint problem de-
fined as follows (Mohammadi et al. 2021).
Definition 3. LetM be a binary classifier, x ∈ Rm a fac-
tual input s.t.M(x) = c, d : Rm × Rm → R+ a distance
metric and δ ∈ R+ a distance threshold. A counterfactual
explanation (CFX) for x, δ,M is any x′ ∈ Rm such that

M(x′) = 1− c and d(x, x′) ≤ δ.
Moreover, a CFX x′ is optimal if d(x, x′) is minimal.
The formulation above ensures that the input x′ is close

enough to x under metric d and makes the classification
flip. In many cases, one is actually interested in comput-
ing an optimal CFX that represents a minimal change to
the factual input, which in practice is used to provide a
recourse recommendation to the user for the desired out-
come to be achieved. The `1 norm, also known as Man-
hattan distance, (Wachter, Mittelstadt, and Russell 2018;
Mohammadi et al. 2021) is a common choice for d and the
one we assume in this paper. This metric enforces sparsity
of changes, which is often used as a proxy for the effort a
user will have to make to implement the recommended re-
course (Wachter, Mittelstadt, and Russell 2018).

3 Robust CFXs under Model Multiplicity
In this section we formalise the problem of finding a CFX
that is robust under model multiplicity. We begin by defin-
ing a property of a set of models called consistency, an in-
variance criterion under model multiplicity.
Definition 4. A set M of models is consistent for an input x
if all models in M produce the same classification for x.

We are interested in studying the decision problem con-
cerned with the existence of a CFX that is robust across a set
of models, the latter being formally defined as follows.
Definition 5. Consider a factual input x ∈ Rm, a distance
threshold δ ∈ R+ and a set M of models consistent for x.
An input x′ ∈ Rm is a robust counterfactual across M if:
(C1) x′ is a CFX for x, δ and for eachM∈M, and
(C2) M is consistent for x′.
Note that condition (C1) subsumes condition (C2) for binary
classifiers that are the focus of this paper. Therefore, in what
follows we will only be concerned with checking (C1).

Definition 5 does not make any assumptions about the
type of models under consideration. The only requirement
is that the models are compatible in the inputs they accept
and the outputs they produce. A special case is when M is
a set of homogeneous FFNNs, that is, FFNNs with the same
number, sizes and activations of layers.

The robustness property in Definition 5 is an instance of
a relational property, relating the executions of two or more
models. One of the key contributions of our work is a reduc-
tion of this relational property (the robustness property) for
sets of homogeneous FFNNs into a unary property defined
over the execution of a single FFNN. This step relies on the
concept of product construction, presented below.
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Product construction. Given a set M = {M1, . . . ,Mn}
of homogeneous FFNNs and a class c ∈ {0, 1}, we seek to
construct a product network Pc such that for x′ ∈ Rm and
Pc(x

′) = (v, u1, . . . , un)ᵀ, the following are equivalent:
(P1) v = 0 and uj > 0 for all j ∈ {1, . . . , n}
(P2) M(x′) = 1− c for eachM∈M.
Intuitively, v = 0 ensures that Mj(x

′) 6= c, for each j.
Additionally, we use u1, . . . , un to detect whether the clas-
sification outcome of some model is undefined for x′, thus
ruling it out as a potential CFX. Namely, uj = 0 would
mean thatMj(x

′) is undefined. We now present how Pc is
constructed (see Figure 1 for a pictorial representation).

Assume that each modelMj has k layers with W j
i being

the weight matrix and Bj
i the bias vector in its i-th layer.

Additionally, we use (oj0, o
j
1)

ᵀ to denote the output of model
Mj . We set Pc to be an FFNN with k + 3 layers, where:
• The input layer of Pc is of size m
• The layer i ∈ {1, . . . , k − 1} of Pc uses ReLU activation

function and is parameterised by the matrix Wi and bias
vector Bi obtained as:

W1 =

 W 1
1

...
Wn

1

 Wi =

 W 1
i · · · 0

...
. . .

...
0 · · · Wn

i

 Bi =

 B1
i

...
Bn

i


• Layer k is of size 2n and uses identity activation func-

tion, layers k + 1 and k + 2 are of size 2n and use ReLU
activation function, and final layer is of size n+ 1.
• The weights Wk+1 ∈ R2n × R2n is the block diagonal

matrix:

Wk+1 =

 A · · · 0
...

. . .
...

0 · · · A

 where A =

[
a0 a1

−a0 −a1

]
,

for ac = 1, a1−c = −1, while Bk+1 is a zero vector.
• The weights Wk+2 ∈ R2n × R2n is the block diagonal

matrix:

Wk+2 =

 D · · · 0
...

. . .
...

0 · · · D

 where D =

[
−1 0
1 1

]
,

and Bk+2 = (1, 0, 1, 0, . . . , 1, 0)ᵀ.
• The weights Wk+3 ∈ Rn+1 × R2n is the matrix:

Wk+3 =


− 1

n
0 − 1

n
0 · · · − 1

n
0

0 1 0 · · ·
0 0 0 1 0 · · ·

· · ·
0 · · · 0 1

 ,
and Bk+3 = (1, 0, · · · , 0)ᵀ.

Next, we show that finding a robust CFX x′ across a set
of models reduces to finding an input for which (P1) holds
and vice versa.
Lemma 1. Let M be a set of homogeneous FFNNs consis-
tent for a factual input x ∈ Rm, classified as c ∈ {0, 1} by
M, and x′ ∈ Rm such that d(x, x′) ≤ δ. Then (P1) holds
iff x′ is a robust counterfactual for x across M.

M1

Mn

x′

o10

on0

o11

on1

z1

z1f

zn

znf

y1

y1f

yn

ynf

v

u1

un

k k + 1 k + 2 k + 3

.. . ..
. .. . .. .

... ...
a0

a1

−a0

−a1

a0

a1

−a0

−a1

−1

−1

1

1

1

1

−1
n

−
1

n

1

1

+1

+1

+1

Figure 1: Product network Pc.

Proof. Let x ∈ Rm be classified as c ∈ {0, 1} by M. Let
x′ ∈ Rm such that d(x, x′) ≤ δ.

(⇒) Since (P2) follows from (P1), we have thatM(x′) =
1 − c for eachM ∈M. In conjunction with d(x, x′) ≤ δ,
we obtain that x′ is a CFX for x, δ,M for eachM ∈ M.
Hence, x′ is a robust counterfactual for x across M.

(⇐) Let x′ be a robust counterfactual for x across M.
ThenM(x′) = 1− c for eachM∈M. By construction of
Pc, from (P2) we obtain (P1).

Lemma 1 is a strong result that enables us to generate ro-
bust explanations by using existing off-the-shelf approaches
for verification of reachability properties for FFNNs. We
can now prove our main result, which shows that determin-
ing the existence of a robust counterfactual is NP-complete.
Theorem 1. The problem of existence of a robust explana-
tion for sets of homogeneous FFNNs is NP-complete.

Proof. The lower bound follows from the lower bound for
the existence of a CFX for a single model, which in turn can
be obtained by a reduction from the complement of the local
robustness property for ReLU FFNNs (Katz et al. 2017).

As for the upper bound, let M be a set of models con-
sistent for x ∈ Rm, and let c be the class of x in M.
By Lemma 1 it follows that there exists a robust explana-
tion x′ for x across M iff d(x, x′) ≤ δ and Pc(x

′) = 0.
Since checking the latter is NP-complete and the product
networkPc is linear in the size of M, the result follows.

Finally, we relax the requirement of homogeneity and ex-
tend the above upper bound to sets of arbitrary models rep-
resenting piecewise linear functions. For such sets of mod-
els we can realise a product construction as a MILP, e.g.,
following the approach of (Akintunde et al. 2020). We can
then reduce checking existence of a robust explanation to the
MILP feasibility problem known to be NP-complete, which
gives our last result.
Theorem 2. The problem of existence of a robust explana-
tion for sets of piecewise-linear models is NP-complete.

4 Experimental Results
We have implemented a prototype for computing robust
CFXs for ReLU-activated FFNNs1. The implementation

1https://github.com/fraleo/kr23 model multiplicity
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n = 2 n = 3 n = 4 n = 5
no `1 lof no `1 lof no `1 lof no `1 lof

credit 50/50 0.35 0.04 50/50 0.36 0.04 50/50 0.36 0.04 50/50 0.36 0.04
diabetes 50/50 0.90 0.72 50/50 1.03 0.76 50/50 1.07 0.76 50/50 1.09 0.8

no2 41/41 0.37 1.0 29/29 0.48 1.0 22/22 0.54 1.0 22/22 0.57 1.0

Table 2: Statistics for increasing values of n and different datasets.

builds a product construction as a single program using the
MILP encoding of a neural network as a building block (Mo-
hammadi et al. 2021). This MILP computes an optimal x′
for which the classification outcomes for all models are re-
quired to flip, as per Definition 3.

We have conducted numerical experiments on com-
monly used tabular datasets: credit (Hofmann 2016), dia-
betes (Smith et al. 1988) and no2 (Vanschoren et al. 2013).
These datasets require solving binary classification tasks,
for which we train sets of neural network classifiers using
Keras (Chollet 2015). All models have two hidden layers,
each with ten nodes and ReLU activations. Experiments
were carried out on a standard PC running Ubuntu 22.04
with 16GB RAM and processor Intel(R) Core i5-4460 CPU
@ 3.20GHz. Gurobi v9.5.1 was used to solve MILP (Gu,
Rothberg, and Bixby 2020).

In the following we present two sets of experiments:

• we start by evaluating the practical applicability of our
approach and show that product construction in MILP can
effectively be used to generate optimal robust CFXs for
increasingly larger sets of models across all three datasets;

• we then focus on the credit dataset and study the scala-
bility of the MILP-based approach and report results ob-
tained while generating robust CFXs for up to 50 models.

Generating robust CFXs. For this experiment, we train
n = {2, 3, 4, 5} neural networks for each dataset. To induce
model multiplicity, we change the seed used for training thus
obtaining sets of models that (i) share the same architec-
ture, (ii) achieve similar accuracy, but (iii) differ in their in-
ternal parametrisation. The resulting accuracies, averaged
over five models are: 0.94 ± 1.4e−7, 0.72 ± 9.8e−4 and
0.52± 1.1e−3 for credit, diabetes and no2 respectively. We
note that this is the same scenario as the one presented in
Table 1, where state of the art algorithms failed to produce
entirely robust CFXs.

Table 2 summarises the results. For each dataset and
each set of models, we report (no) the number of optimal
CFXs obtained out of the number of factual inputs consid-
ered; (`1) the Manhattan distance between each CFX and the
corresponding input; (lof) the local outlier factor score (Bre-
unig et al. 2000), which measures the extent to which an
instance lies within the data manifold (+1 for inliers, -1
otherwise). We note that for the no2 dataset we were un-
able to find 50 inputs satisfying Definition 4, hence (no) in-
cludes the number of considered inputs. We average (`1)
and (lof) over the generated CFXs. Overall we can observe
that our approach was always successful at generating ro-
bust CFXs for all the datasets and values of n considered.
We observe that generating robust CFXs results in a slight

Number of models n

A
ve

ra
ge

ru
nt

im
e

(s
)

Figure 2: Computation time of a CFX robust across n models.

increase in cost (`1 distance) wrt to the single model case2;
however, this is in line with what reported in other works fo-
cusing on robustness to model changes (Dutta et al. 2022;
Jiang et al. 2023). The (lof) score tends to be high in
many cases, showing that our CFXs are well-within the data
manifold and thus more plausible. However, for the credit
dataset, the score drops considerably, suggesting that a better
strategy to generate robust CFXs for this dataset may exist.

Assessing scalability. Our earlier experiments demon-
strated that our approach is able to generate robust CFXs
for sets of moderate size without compromising the qual-
ity of the resulting CFXs. We now show that the approach
can scale to larger sets. We focus on the credit dataset and
train 50 models using the same training strategy adopted for
previous experiments. We generate 30 CFXs for sets of size
n = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}; we report the run-
time for each value of n averaged over the generated CFXs
in Figure 2. Leveraging on modern MILP solvers, our ap-
proach is able to handle large values of n efficiently, taking
approximately 12 seconds to generate a CFX for 50 mod-
els on a standard PC. Our results demonstrate the practical
applicability of our approach, despite the worst case com-
plexity discussed in the previous section.

5 Conclusions
Recent studies on model multiplicity have highlighted po-
tential concerns regarding the justifiability of CFXs. In this
paper we used relational verification as a formal framework
to reason about robustness of CFXs under model multiplic-
ity. We showed that generating CFXs that satisfy this prop-
erty is NP-complete, and proposed a MILP-based approach
to find robust CFXs for sets of up to 50 models.

This paper opens several avenues for future work. Firstly,
while our experiments only considered neural networks with
the same architecture, we plan to apply similar techniques to
wider ranges of models. Additionally, we plan to investigate
new algorithms to further improve the scalability of our ap-
proach and extend its applicability to models operating on
high-dimensional data.

2Using PROTO (Looveren and Klaise 2021) on a single model,
we obtain average `1 distances of 0.38, 0.77 and 0.20 for credit,
diabetes and no2 respectively
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