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Abstract

We analyse Semantic Segmentation Neural Networks running
on an autonomous aircraft to estimate its pose during land-
ing. We show that automated reasoning techniques from neu-
ral network verification can be used to analyse the conditions
under which the networks can operate safely, thus providing
enhanced assurance guarantees on the behaviour of the over-
all pose estimation systems.

1 Introduction
Over the years the area of knowledge representation and
reasoning has achieved a stream of deep theoretical results
relevant to Machine Learning (ML), including, but not lim-
ited to, description logics and ontologies (de Sousa Ribeiro
and Leite 2021), argumentation (Potyka 2021), belief revi-
sion (Coste-Marquis and Marquis 2021) and beyond. In the
context of automated reasoning, the formal verification of
ML-based systems has emerged as an area of interest. Ver-
ification can help assess the safety of these systems before
deployment, thereby mitigating the possibilities of AI caus-
ing harm. Considerable work has recently been devoted to
the problem of formally verifying that an AI system realised
by neural networks meets a given specification, e.g. robust-
ness to input perturbations and adversarial attacks (Bak et
al. 2020; Ehlers 2017; Balunovic et al. 2019; Botoeva et
al. 2020; Bunel et al. 2020; Cheng, Nuhrenberg, and Ruess
2017; Dvijotham et al. 2018; Henriksen and Lomuscio 2020;
Henriksen and Lomuscio 2021; Henriksen et al. 2021; Katz
et al. 2017; Katz et al. 2019; Kouvaros and Lomuscio 2021;
Guidotti, Pulina, and Tacchella 2021; Singh et al. 2019;
Tjeng, Xiao, and Tedrake 2019; Tjandraatmadja et al. 2020;
Tran et al. 2020; Wang et al. 2018a; Wang et al. 2021).
While much progress has been made over the past five years,
two key problems remain. Firstly, very few applications
of industrial relevance have been tackled by the resulting
methods and tools; secondly, large neural networks, such as
those used in applications, are seldom formally analysed. In
this paper we make a contribution towards both challenges.
Firstly, we extend present methods and tools to deal with
a complex neural system of millions of tunable parameters;
secondly, we tailor verification methods to a novel applica-
tion of industrial relevance, i.e. semantic key point detection

for aircraft pose estimation in the context of an airplane au-
toland system, as described in the following.

Accurate ego-pose estimation is a central building block
for the successful development of fully autonomous avia-
tion systems. Indeed, for an autonomous system to oper-
ate safely, a sense of local awareness is required to effec-
tively navigate and adapt to the surrounding environment.
Various solutions for pose estimation have been developed
based on, e.g. GPS technology, Inertial Navigation Systems
or laser sensors (Cadena et al. 2016). Among these, vision-
based approaches stand out for being particularly accurate
and versatile, but also affordable. A prominent example is
the Perspective-n-Point method (Fischler and Bolles 1981),
which estimates the pose of a calibrated camera (tightly at-
tached to the autonomous system) leveraging point corre-
spondences between 3D coordinates of real world points and
their 2D projections on an image.

A key requirement for Perspective-n-Point (PnP) methods
to produce satisfactory results is the precise identification of
3D-to-2D point correspondences. While 3D points typically
correspond to objects of known coordinates, the same does
not hold for their 2D projections, which need to be identified
from the image. This step is of crucial importance as PnP is
sensitive to spurious correspondences, which may result in
poor pose estimates.

In this paper we consider an ML-powered PnP system
where U-Nets (Ronneberger, Fischer, and Brox 2015), a spe-
cial class of Semantic Segmentation Networks (SSNNs), are
used to identify the 2D coordinates of key 3D points within
an image. The prototypical system, developed by Boeing, is
used to estimate the 6 Degrees of Freedom (DOF) pose of
an autonomous aircraft and plays an important role during
landing.

Clearly, the safety-critical nature of the application re-
quires that U-Nets satisfy stringent safety requirements.
However, neural networks are known to be susceptible to
adversarial attacks (Goodfellow, Shlens, and Szegedy 2014;
Szegedy et al. 2014) which may disrupt operations if unde-
tected (Kouvaros et al. 2021). This may have catastrophic
consequences in aviation, where human lives are at stake.

In this paper we consider the verification of an industrial-
scale U-Net for PnP designed and trained by Boeing. The
technical contributions of the paper are as follows.
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• Firstly, and differently from previous work, U-Nets oper-
ate on large input/output spaces, which dramatically in-
creases the computational requirements of verification.
Additionally, U-Nets feature complex layers, presently
not supported by other techniques. We overcome these
by extending VENUS (Kouvaros and Lomuscio 2021), a
complete verifier based on constrained optimisation and
symbolic interval arithmetic (Zhang et al. 2018), to fully
support U-Nets and enable their verification.

• Secondly, previous verification work has mostly focused
on academic datasets and classification challenges. In-
stead, we here study a concrete industrial problem for au-
tonomous systems, firstly by considering standard local
robustness specifications (Katz et al. 2017), and then ex-
tend it to more sophisticated photometric adjustments and
a novel finer-grained analysis in the pixel space.

• Lastly, beside the technical contributions above in auto-
mated reasoning, the work enabled the discovery of areas
of fragilities in the U-Net detector, indicating areas of ro-
bustness and accuracy, but also concrete fragilities so that
they can be further mitigated before any deployment.

2 Background
We formally define the verification problem for neural net-
works and outline VENUS, a state-of-the-art neural network
verifier that we use for resolving the verification queries con-
sidered in Section 4.

U-Net. A neural network f is a directed rooted tree
with exactly one leaf node. Each i-th vertex (also called
a layer) of f , denoted f (i), is a vector-valued function on
the concatenation of the outputs of its parent nodes. That
is, f (i) : Rmi → Rnj , where mi ≜

∑
k∈P(i) nk, nj > 0,

and P(i) is the set of parent layers of f (i). Thus, a neural
network is equivalent to a function f : Rm0 → RnK , where
f (0), f (K) are the root and leaf layers, m0 and nK are the
input and output dimensions of the root and leaf layers, and
f(x) = f (K)(

⊕
i∈P(K) f

(i)(. . . f (0)(x) . . .)), where
⊕

de-
notes vector concatenation.

In this paper we focus on U-Nets (Ronneberger, Fischer,
and Brox 2015), a special type of neural networks where ev-
ery layer implements one of the following operations: (i) a
convolution; (ii) a transposed convolution; (iii) concatena-
tion; (iv) the ReLU activation function; (v) batch normali-
sation; (vi) max-pooling. We refer to (Goodfellow, Bengio,
and Courville 2016) for the formal definitions of these oper-
ations. We also restrict our attention to semantic segmenta-
tion tasks, where each element of the output of f expresses
the likelihood of an input pixel belonging to a certain class.

Verification problem. Given a neural network f , a set
X ⊆ Rm0 of possible inputs for the network, and a linear
function h : RnK → R, the verification problem is to deter-
mine whether

∀x ∈ X : h(f(x)) > 0. (1)
The local adversarial robustness instantiation of the prob-

lem is widely considered in neural network safety analyses.
It aims at ascertaining whether a network is vulnerable to

adversarial attacks, imperceptible perturbations to the in-
put that cause the network to miss-classify. More formally,
given an input x0, the local adversarial robustness problem
sets X to be a set of “similar” inputs to x0 and defines h as
h ≜ f(x)i − f(x)j for ∀x ∈ X , where i and j are the true
and adversarial classes for x0 respectively. Establishing that
condition 1 holds in this context is a proof that the network
is robust for the set of perturbations encoded in X . The lat-
ter is typically defined either as an ℓ∞ ball around the input,
i.e. X = {x : ∥x − x0∥∞ ≤ ϵ}, where ϵ is the radius of
the ball, or as a set of brightness/contrast adjustments, i.e.
X = {α □ x0 : l ≤ α ≤ u}, where l and u are the lower
and upper bounds of the adjustment and □ = + (brightness)
or □ = · (contrast). We refer to (Kouvaros and Lomuscio
2018) for a more detailed discussion.

VENUS. VENUS is a neural network verifier that im-
plements a branch-and-bound procedure to solve the veri-
fication problem (Kouvaros and Lomuscio 2021). At each
branch of the process two key steps are performed. First,
the verification problem is divided into two sub-problems
by splitting the operational semantics of a ReLU unit into
its two linear segments. Second, a lower bound of h(f(·))
is computed for each branch using symbolic interval arith-
metic methods (Zhang et al. 2018). The steps are repeated
until a user-defined threshold on the branch-and-bound tree
is reached. The sub-problems that have not been resolved up
to this point are encoded as Mixed Integer Linear Programs
and solved using the MILP-solver GUROBI (Gu, Roth-
berg, and Bixby 2020). We refer to (Botoeva et al. 2020;
Kouvaros and Lomuscio 2021) a for a more detailed exposi-
tion on VENUS.

3 Estimating Aircraft Pose from Images
In this section, we introduce the aircraft pose estimation
problem at the core of this work and describe the AI-based
pipeline developed by Boeing.

Overview. We are interested in estimating the 6DOF pose
of an autonomous aircraft during landing. We use PnP to es-
timate the pose of a calibrated camera tightly mounted on
the aircraft by leveraging 3D-to-2D point correspondences
between 3D coordinates of real world points and their 2D
projections on an image captured from the aircraft. For this
case study, we use 16 key points whose 3D coordinates are
known beforehand in the world reference frame: the corners
of the runway (4), the threshold marking (4) and touchdown
markings (8) on the runway (Figure 1 (top)). As for the 2D
images, we start from high-resolution images (4000× 3096
pixels) and apply standard pre-processing techniques (down-
sampling to 112× 112 pixels and gray scale conversion) be-
fore feeding them to a U-Net trained to perform semantic
segmentation. The network has 75 layers, around 2 million
trainable parameters and around 1.6 million non-linear ele-
ments. It produces 16 semantic segmentation heatmaps cor-
responding to the 16 ground truth points. Pixel values in
each heatmap indicate the likelihood of each pixel being a
key point; thus we extract the 2D coordinates of key points
by identifying the pixel that has the highest value in each
heatmap (Figure 1 (top)). Once the 16 pairs of points have
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Figure 1: Pictorial representation of the 3D-to-2D matching prob-
lem studied in this paper. Given a 2D image of the runway, a U-Net
is used to detect 16 key points (orange dots) whose ground truth 3D
coordinates are known (top). These points are then fed to the PnP
pipeline, which uses them to estimate the 6DOF of the aircraft (bot-
tom).

been created, we use off-the-shelf PnP algorithms to draw
correspondences between 2D and 3D coordinates and derive
the 6DOF pose of the aircraft (Figure 1 (bottom)).

Safety concerns. The above pipeline heavily relies on the
U-Net to identify meaningful key points in the image. De-
spite being trained to high-accuracy, U-Nets are susceptible
to adversarial attacks that may result in erroneous estimates
of the 2D coordinates of key points, ultimately jeopardising
the pose estimate produced by PnP. In this work we argue
that automated reasoning techniques from formal verifica-
tion can be used to quantify the error that U-Nets may inject
and provide formal guarantees on their behaviour.

Challenges. The analysis of U-Nets deployed by Boeing
poses a number of challenges to state-of-the-art neural net-
work verifiers. To begin with, U-Net’s tree-like architectures
allows for skip connections between layers, which deviate
from more standard linear architectures that are most com-
monly studied in the VNN literature (Bak, Liu, and Johnson
2021). This, together with operations such as transposed
convolutions and concatenations, restricts considerably the
pool of verification tools that are able to handle U-Nets. Fi-
nally, the size of the U-Net, together with the dimension-

Figure 2: First row: Input images and key point detection (green
dots). Second row (from left to right): white noise, brightness and
contrast counterexamples.

ality of its input/output spaces, poses the biggest challenge
to the application of formal verification techniques whose
computational cost is known to increase with these two pa-
rameters (Katz et al. 2017). Indeed, the U-Nets we con-
sider here are at least an order of magnitude bigger than pre-
viously considered. For reference, (Tran et al. 2021) con-
sider SSNNs with 22 layers and operating on inputs/outputs
spaces of dimension up to 64× 84. In contrast, U-Nets con-
sidered here have 75 layers and operate on an input space
of dimension 112 × 112 and output space of dimension
20× 112× 112.

4 Experimental Evaluation
We conduct a formal analysis of the U-Net presented in the
previous section to estimate its level of fragility against ad-
versarial perturbations.

Specifications. The operational domain of the U-Net in-
evitably includes inputs reflecting the variability of the envi-
ronment, as often expressed by random noise and different
lighting conditions generating contrast and brightness trans-
formations. To define the robustness of the U-Net against
these perturbations, denote the U-Net and its i-th key point
prediction by f and key i(f(·)), assume an input image x0, a
perturbation radius ϵ > 0, and ranges [lb, ub], [lc, uc] for the
levels of brightness and contrast adjustments.

(i) White-noise robustness. For all x such that ∥x −
x0∥∞ ≤ ϵ and for all i ∈ [1, 16], we have that
key i(f(x)) = key i(f(x0)).

(ii) Brightness robustness. For all α ∈ [lb, ub] and for all
i ∈ [1, 16], we have that key i(f(x0 +α)) = key i(f(x0)).

(iii) Contrast robustness. For all α ∈ [lc, uc] and for all i ∈
[1, 16], we have that key i(f(α · x0)) = key i(f(x0)).
Informally, the specifications above require that the coor-

dinates of each key point as predicted by f on x0 are not
affected by variability in the input.

Our solution. As mentioned in the previous section, veri-
fying U-Nets against the above properties poses a number of
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Perturbation ϵ/α #Robust #Non-robust #Timeouts

Brightness
[−5e− 5, 5e− 5] 20 0 0
[−5e− 4, 5e− 4] 18 2 0
[−5e− 2, 5e− 2] 16 4 0

Contrast
[−5e− 4, 5e− 4] 20 0 0
[−5e− 3, 5e− 3] 20 0 0
[−5e− 2, 5e− 2] 18 2 0

White noise
1e-13 20 0 0
1e-8 20 0 0
1e-3 0 8 12

Table 1: Robustness results for brightness, contrast and white noise
perturbations.

challenges to modern verification tools. Several extensions
to the neural network verifier VENUS had to be implemented
to overcome them. In particular, since VENUS had only sup-
port for fully-connected, feed-forward architectures, the ex-
tension of its different components (including bound propa-
gation and MILP-encoding methods) to arbitrary computa-
tional graphs required a complete overhaul of the tool. Ad-
ditionally, the size of the U-Net presently considered posed
challenges in the efficient execution of the bound propaga-
tion method that VENUS implements (Singh et al. 2019).
The method computes bounds for each of the units in the
network which not only help to strengthen the MILP encod-
ing of the verification problem but can also at times be used
to prove safety. To improve the efficiency of the procedure
we implemented looser and faster propagation methods, in-
cluding interval bound propagation (Wang et al. 2018c) and
symbolic bound propagation (Wang et al. 2018b), which we
synthesised in a procedure that considers first the application
of the faster methods. These are used to filter out ReLU units
that are stably operating in a linear manner when applying
the preciser methods. Effectively, this reduces the overall
floating-point operations required (Henriksen and Lomuscio
2021), thus enabling the verification of industrial scale U-
Nets as we demonstrate in the following.

Experiments. We used a machine with an Intel Core i9
10920X 3.5 GHz 12-core CPU, 128 GB RAM, equipped
with a GeForce RTX 2080 graphics card, and running Fe-
dora 35 with Linux kernel 5.19. We randomly selected 20
images from the data set and used the extended version of
VENUS to solve the robustness verification problems (i) -
(iii) with a timeout limit of three hours. We instantiated the
parameters of the white-noise, contrast and brightness per-
turbations to ranges that were found to contain the transition
points from proving robustness to identifying fragilities.

Table 1 reports the results. We observe that VENUS estab-
lished that the U-Net is robust to minor brightness changes
(α ∈ [−5e − 5, 5e − 5]) but found vulnerabilities for larger
changes (α ∈ [−5e − 2, 5e − 2]. Similar observations can
be made with respect to contrast changes. In comparison
to brightness however, the model was found to be robust
to contrast for larger ranges for α than to contrast. As for
white noise, the model was proven to be robust for very
small noise patterns (ϵ = 1e − 8) but fragile for perturba-
tions of ϵ ≥ 1e − 3. We also considered more localised
perturbations around the key points, corresponding to more

Figure 3: Robustness results for localised white noise perturbations
for neighbourhoods of different sizes.

realistic scenarios where only parts of the 2D scenes are not
clearly visible. We thus constrained the robustness verifi-
cation problems (i) - (iii) to only consider neighbourhoods
around the key points (where only the values of the pixels
in those regions are altered as opposed to the values of all
the pixels). Verification results show increased robustness
for the model. For instance, Figure 3 shows that the U-net
is robust for a 100% of the inputs for rectangular neighbour-
hoods of size 2 and perturbation radius of 0.01, but is not
robust for none of the inputs for neighbourhoods of size 64.

The existence of counter-examples produced by VENUS
identifies concrete concerns regarding the deployment of the
U-Net. Our experiments show that the U-Net is likely to
introduce errors in the PnP estimation during deployment,
given that counter-examples observed are often perceptually
indistinguishable from the original input (see Figure 2).

5 Conclusions
We considered the problem of verifying Semantic Segmen-
tation Neural Networks used by Boeing to estimate the
6DOF pose of an autonomous aircraft during landing. The
VENUS verification toolkit was extended to handle the in-
creased architectural complexity of U-Nets and was suc-
cessfully deployed to generate proofs of safety or counter-
examples to show when safety could not be guaranteed.
While scalability remains the main challenge, in this pa-
per we have shown for the first time that U-Nets of up to
two million parameters can be handled by modern verifiers.
To the best of our knowledge, this is the first study to re-
port such results, demonstrating that automated reasoning
techniques can play a crucial role in building safe and trust-
worthy AI systems. Despite the positive results reported in
this paper, challenges remain for the wider application of
KRR techniques to industry-scale neural networks. How-
ever, we highlight that should scalability become a barrier to
the safe deployment of neural network-based systems, auto-
mated reasoning and verification could be paired with more
lightweight runtime assurance methods during execution.
Initial proposals have been made within the formal verifi-
cation community (Cheng, Nührenberg, and Yasuoka 2019;
Henzinger, Lukina, and Schilling 2020); we plan to explore
the complementarities of these approaches in future work.
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