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Abstract

The notion of syntax splitting was initially introduced by
Parikh for belief sets, and one key observation is that every
belief set has a unique finest syntax splitting, i.e., a syntax
splitting that refines every other syntax splitting of that belief
set. Later, the notion of syntax splitting was extended to rank-
ing functions and total preorders on worlds (TPOs), which
are two common models for belief states in the context of
iterated belief revision. In this paper, we prove that ranking
functions also have unique finest syntax splittings, i.e., every
ranking function has a syntax splitting that refines all other
syntax splittings of that ranking function. Using this, we can
show that the syntax splittings of a ranking function κ are
exactly the coarsenings of the finest splitting of κ. For TPOs
we show that, in contrast to ranking functions, the coarsening
of a syntax splitting of a TPO ⪯ is not necessarily a syntax
splitting of ⪯. Despite that we can prove that every TPO has
a unique finest syntax splitting that refines all other syntax
splittings of that TPO.

1 Introduction
The notion of syntax splitting was first introduced in (Parikh
1999) for belief sets. For a given belief set K over a signa-
ture Σ, a syntax splitting of K is a partition S of Σ, such
that the information in K can be expressed as conjunction of
independent formulas that each use only atoms from one of
the sub-signatures in S. A belief set having a syntax splitting
means that the belief set is made up of independent informa-
tion over different parts of the signature. Syntax splittings are
useful properties of a belief set as they indicate that different
parts of the belief set can be processed independently of each
other. Syntax splittings has been found to be beneficial espe-
cially in the presence of belief change (Peppas et al. 2015;
Kern-Isberner and Brewka 2017; Haldimann, Kern-Isberner,
and Beierle 2020). One result in (Parikh 1999) is that every
belief base has a unique finest syntax splitting, that refines all
other syntax splittings of that belief base. As the coarsening
of a syntax splitting is again a syntax splitting, the set of
syntax splittings of a belief set K can be described as the set
of all coarsenings of the finest splitting of K.

To handle not only propositional, but also conditional be-
liefs, the belief state of an agent (also called epistemic state)
can be represented by more expressive frameworks like rank-
ing functions (Spohn 1988) and total preorders on worlds

(TPOs) (Katsuno and Mendelzon 1992; Darwiche and Pearl
1997). In (Kern-Isberner and Brewka 2017), the notion of
syntax splitting was extended to ranking functions and TPOs,
and corresponding syntax splitting postulates for the revision
of ranking functions and TPOs were introduced.

In this paper we show that ranking functions also have
finest syntax splittings. Analogously to belief sets, every
ranking function κ has a unique finest syntax splitting that
refines all other syntax splittings of κ. The coarsening of
a syntax splitting of κ is again a syntax splitting. Thus,
for ranking functions, we can describe the set of all syntax
splittings of a ranking function κ as the set of all coarsenings
of κ’s finest syntax splitting. However, for TPOs on worlds,
this does not work. There are examples where the coarsening
of a syntax splitting of a TPO ⪯ is not a syntax splitting for
⪯. Nevertheless, we can show that every TPO ⪯ has a finest
syntax splitting, that refines every other splitting of ⪯.

Among other things, the existence of finest splittings is
beneficial for situations that exploit syntax splittings. For be-
lief changes it is in some cases sufficient to focus on the finest
splitting as many splitting properties carry over to coarser
splittings automatically. In belief change or in nonmonotonic
reasoning, focussing on finest splittings yields the maximal
benefit of applying splitting techniques, e.g., (Parikh 1999;
Kern-Isberner and Brewka 2017; Haldimann, Kern-Isberner,
and Beierle 2020; Kern-Isberner, Beierle, and Brewka 2020).

In summary, the main contributions of this paper are show-
ing that every ranking function has a unique finest syntax
splitting, and that every TPO has a unique finest syntax split-
ting despite the observation that not every coarsening of a
syntax splitting of a TPO is again a syntax splitting.

In Sec. 2 we present the background on ranking functions
and TPOs, and in Sec. 3 we recall the definitions of syntax
splittings. In Sec. 4 we show that ranking functions have
finest syntax splittings, and in Sec. 5 we show that TPOs
have finest syntax splittings before concluding in Sec. 6.

2 Logic, Ranking Functions, and TPOs
A (propositional) signature is a finite set Σ of identifiers.
For a signature Σ, we denote the propositional language
over Σ by LΣ. Usually, we denote elements of the signatures
with lowercase letters a, b, c, . . . and formulas with uppercase
letters A,B,C, . . .. We may denote a conjunction A ∧B by
AB and a negation ¬A by A for brevity of notation. As

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

747



usual, ⊤ denotes a tautology and ⊥ an unsatisfiable formula.
The set of interpretations over a signature Σ is denoted as
ΩΣ. Interpretations are also called worlds. An interpretation
ω ∈ ΩΣ is a model of a formula A ∈ LΣ if A holds in ω. This
is denoted as ω |= A. The set of models of a formula (over a
signature Σ) is denoted as Mod Σ(A) = {ω ∈ ΩΣ | ω |= A}.
We will represent interpretations (or worlds) by complete
conjunctions, e.g., the interpretation over Σabc = {a, b, c}
that maps a and c to true and b to false is represented by
a∧¬b∧ c, or just abc. The complete conjunction assigned to
a world is unique up to the order of the literals. Thus, every
world ω ∈ ΩΣ is also a formula in LΣ.

A formula A entails a formula B, denoted by A |= B, if
Mod Σ(A) ⊆ Mod Σ(B). The deductive closure of a set of
formulas F is CnΣ(F ) = {A ∈ LΣ | F |= A}; a set of
formulas F is called deductively closed if CnΣ(F ) = F . A
deductively closed set of formulas is also called a belief set.

A ranking function, also called ordinal conditional func-
tion (OCF), is a function κ : ΩΣ → N0 such that κ−1(0) ̸= ∅;
ranking functions were first introduced (in a more general
form) by Spohn (Spohn 1988). The intuition of a ranking
function is that the rank of a world is lower if the world is
more plausible. Therefore, ranking functions can be seen
as some kind of “implausibility measure”. For a ranking
function κ and a set X of worlds, minω∈X κ(ω) denotes the
minimal rank κ(ω) among the worlds ω ∈ X; for empty
sets we define minω∈∅ κ(ω) = ∞. Ranking functions are
extended to formulas by κ(A) = minω∈Mod(A) κ(ω).

A total preorder (TPO) is a total, reflexive, and transitive
binary relation. The meaning of a TPO ⪯ on ΩΣ as model
for an epistemic state is that if ω1 ⪯ ω2 then ω1 is at least
as plausible as ω2 for ω1, ω2 ∈ ΩΣ. The strict version of a
TPO ⪯ is the relation ≺ defined by ω1 ≺ ω2 iff ω1 ⪯ ω2 and
ω2 ̸⪯ ω1. For a TPO ⪯ and a set X of worlds, min(X,⪯)
denotes the set of minimal worlds in X with respect to ⪯.
TPOs on worlds are extended to formulas A,B ∈ LΣ by
defining A ⪯ B iff there is an ω1 ∈ Mod Σ(A) such that for
every ω2 ∈ Mod Σ(B) it holds that ω1 ⪯ ω2.

Marginalization realizes focusing on certain signature ele-
ments; among other things it is essential to syntax splitting
for epistemic states.

Let κ be a ranking function over signature Σ. The marginal-
ization of κ to a sub-signature Σ′ ⊆ Σ is the ranking function
κ|Σ′ defined by κ|Σ′(ω) = κ(ω) for ω ∈ ΩΣ′ (Spohn 1988;
Beierle and Kern-Isberner 2012). Note that ω is considered
as a world over Σ′ on the left hand side and as a formula over
the larger signature Σ on the right hand side of the equation.

Let ⪯ be a TPO over signature Σ. The marginalization
of ⪯ to a sub-signature Σ′ ⊆ Σ is the TPO ⪯|Σ′ defined
by ω1 ⪯|Σ′ ω2 iff ω1 ⪯ ω2 for ω1, ω2 ∈ ΩΣ′ (Beierle and
Kern-Isberner 2012; Kern-Isberner and Brewka 2017).

Example 1. Consider the TPO ⪯ in Figure 1(a). The
marginalization ⪯|{b,c} of ⪯ is shown in Figure 1(b).

The marginalizations of OCFs and TPOs presented above
are special cases of general forgetful functors Mod(ϱ) from
Σ-models to Σ′-models given in (Beierle and Kern-Isberner
2012) where Σ′ ⊆ Σ and ϱ : Σ′ ↪→ Σ is the inclusion from
Σ′ to Σ. Informally, a forgetful functor forgets everything

⪯

abc abc̄
ab̄c
ab̄c̄ ābc ābc̄

āb̄c
āb̄c̄

(a) TPO ⪯ with the syntax
splitting S = {{a}, {b, c}}.

⪯|{b,c}

bc bc̄
b̄c
b̄c̄

(b) Marginalization ⪯|{b,c} of
⪯ to {b, c}.

Figure 1: A TPO with syntax splitting and its marginalization.

about the interpretation of the symbols in Σ \ Σ′ when map-
ping a Σ-model to a Σ′-model.

The marginalization of a world ω ∈ ΩΣ to a sub-signature
Σ′ ⊆ Σ is the valuation of the variables in Σ′ as in ω and
is denoted by ω|Σ′ . E.g., the marginalization of ω = abc

to Σ′ = {b, c} is ω|Σ′ = bc. For a world ω and Σi ⊆ Σ

the marginalization ω|Σi
may be abbreviated by ωi and the

marginalization ω|Σ\Σi
by ω ̸=i if no confusion arises.

3 Syntax Splittings
An interesting feature of ranking functions and total preorders
is the existence of syntax splittings. Syntax splittings were
first introduced as a property of belief sets by Parikh.
Definition 1 (syntax splittings of belief sets (Parikh 1999)).
Let K be a belief set over Σ. A partitioning {Σ1, . . . ,Σn}
of Σ is a syntax splitting for K, if there are formulas
A1, . . . , An with K = CnΣ(A1, . . . , An) and Ai ∈ LΣi

for i = 1, . . . , n.
Informally, the meaning of a belief set having a syntax

splitting is that the belief set contains independent informa-
tion over different parts of the signature. The partition of
the signature in these parts is called a syntax splitting for the
considered belief set. Syntax splittings are useful properties
as they indicate that different parts of the belief state can be
processed independently of each other. This can be used to
formulate postulates for sensible reasoning and revision oper-
ators. Additionally, splitting belief states and processing their
parts independently can make operations computationally
more efficient. The notion of syntax splitting was extended
to other representations of epistemic states such as TPOs and
OCFs in (Kern-Isberner and Brewka 2017).
Definition 2 (syntax splitting for TPOs (Kern-Isberner and
Brewka 2017)). Let ⪯ be a TPO over a signature Σ. A
partitioning {Σ1, . . . ,Σn} of Σ is a syntax splitting for ⪯ if,
for i = 1, . . . , n,

ω ̸=i
1 = ω ̸=i

2 implies
(
ω1 ⪯ ω2 iff ωi

1 ⪯|Σi
ωi
2

)
.

This basically states that the order of two worlds that differ
only in one partition of a syntax splitting does not depend on
the actual variable assignment outside of this partition.
Example 2. Consider the TPO ⪯ in Figure 1(a). It has the
splitting S = {{a}, {b, c}}. The partitioning T = {{a, b},
{c}} is not a splitting for ⪯ since abc ⪯ abc but abc ̸⪯ abc.
Definition 3 (syntax splitting for ranking functions (Kern-Is-
berner and Brewka 2017)). Let κ be a ranking function over
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Σ. A partitioning {Σ1, . . . ,Σn} of Σ is a syntax splitting
for κ if there are ranking functions κi : Σi → N0 for
i = 1, . . . , n such that κ(ω) = κ1(ω

1) + · · · + κn(ω
n).

This is denoted as κ = κ1 ⊕ · · · ⊕ κn.

4 Finest Syntax Splittings of OCFs
Partitions, and thus also syntax splittings, can be compared
according to their fineness. Let S = {Σ1, . . . ,Σn} and
S′ = {Σ′

1, . . . ,Σ
′
m} be two partitions of the same set Σ. S′

is called a refinement of S (or equivalently, S a coarsening of
S′) iff for any Σ′

i ∈ S′ there is a Σj ∈ S such that Σ′
i ⊆ Σj .

The relation X is a refinement of Y is a partial order on
the set of partitions of Σ, i.e., it is reflexive, transitive, and
antisymmetric. Among the syntax splittings of a belief set,
we can always find a finest syntax splitting.

Proposition 1 ((Parikh 1999), Lemma 1). Let K be a belief
set over a signature Σ. There is a syntax splitting Sf =

{Σf
1 , . . . ,Σ

f
n} of K such that every other syntax splitting of

K is a coarsening of Sf .

Notably, the coarsening of a syntax splitting of a belief set
K is again a syntax splitting for K. Using this, all syntax
splittings of a belief base can be described as coarsenings of
the belief base’s finest splitting.

Proposition 2 ((Parikh 1999), Remark p. 4). Let K be a
belief set over a signature Σ and S = {Σ1, . . . ,Σn} be a
syntax splitting of K. Then every coarsening of S is a syntax
splitting of K.

The following proposition is a direct consequence of
Propositions 1 and 2.

Proposition 3. Let K be a belief set over Σ. There is a
unique syntax splitting Sf = {Σf

1 , . . . ,Σ
f
n} of K such that

the coarsenings of Sf are exactly the syntax splittings of K.

Analogously to belief sets, we can show that ranking func-
tions have finest syntax splittings.

Proposition 4. Let κ be a ranking function over signature
Σ. There is a syntax splitting Sf = {Σf

1 , . . . ,Σ
f
n} of κ such

that every other syntax splitting of κ is a coarsening of Sf .

Proof. Towards a contradiction assume that there is a rank-
ing function κ over a signature Σ such that there is no syntax
splitting Sf that refines all other syntax splittings of κ. Let
S = {Σ1, . . . ,Σn} be a syntax splitting of κ such that no
refinement of S (except S itself) is a syntax splitting of κ.
We can always find such a splitting, because Σ has only
finitely many partitions and {Σ} is trivially a splitting of
every ranking function. By assumption, S cannot be a refine-
ment of every other syntax splitting of κ; therefore there is
another syntax splitting S′ = {Σ′

1, . . . ,Σ
′
m} of κ that is not

a coarsening of S.
Let IJ =

{
(i, j)

∣∣ Σi ∈ S, Σ′
j ∈ S′ with Σi ∩ Σ′

j ̸= ∅
}

.
For any (i, j) ∈ IJ let Σ∗

ij = Σi ∩ Σ′
j . Now consider the

set S∗ =
{
Σ∗

ij

∣∣ (i, j) ∈ IJ
}

. The set S∗ is a partition of Σ,
and it is a refinement of both S and S′.

Let ω0 be a world with κ(ω0) = 0. For any (i, j) ∈ IJ let
ω ̸=ij
0 ∈ ΩΣ\Σ∗

ij
be the world with the truth assignment of ω0

over Σ \ Σ∗
ij , and define κ∗

ij(ωx) = κ(ω ̸=ij
0 ωx) for worlds

ωx ∈ ΩΣij
. For (i, j) ∈ IJ the function κ∗

ij is a ranking
function over Σ∗

ij as κ∗
ij(ω

ij
0 ) = κ(ω0) = 0. We will show

that S∗ is a syntax splitting of κ with κ =
⊕

(i,j)∈IJ κij ,
contradicting the assumption that S has no refinement.

Let ω be any world. We have

κ(ω) = κ1(ω
1) + · · ·+ κn(ω

n) (1)

as S is a syntax splitting of κ. Furthermore, we have

κi(ω
i) = κi(ω

i) +
n∑

k=1; k ̸=i

κk(ω
k
0 )︸ ︷︷ ︸

=0

= κ(ωiω ̸=i
0 ). (2)

Let ωi1Σ = ωiω ̸=i
0 . Using the syntax splitting S′ we obtain

κ(ωi1Σ) = κ1(ω
1
i1Σ) + · · ·+ κm(ωm

i1Σ).

Let Ji = {j ∈ {1, . . . ,m} | Σi ∩ Σ′
j ̸= ∅} be the set of

indices j such that Σi and Σ′
j have at least one common ele-

ment. Note that Ji = {j | (i, j) ∈ IJ}. For j ∈ {1, . . . ,m}
with j /∈ Ji we have κj(ω

j
i1Σ) = κj(ω

j
0) = 0. Therefore,

κ(ωi1Σ) =
∑
j∈Ji

κj(ω
j
i1Σ). (3)

As in (2), we have

κj(ω
j
i1Σ) = κj(ω

j
i1Σ) +

n∑
l=1; l ̸=j

κl(ω
l
0) = κ(ωj

i1Σ ω ̸=j
0 ).

(4)
Observe that the valuation of world ωj

i1Σ ω ̸=j
0 over Σ co-

incides with the valuation of ω over the atoms in Σi ∩ Σj ;
and that the valuation of ωj

i1Σ ω ̸=j
0 coincides with the val-

uation of ω0 over the atoms in Σ \ (Σi ∩ Σj). Therefore,
ωj
i1Σ ω ̸=j

0 = ω ̸=ij
0 ωij which implies

κ(ωj
i1Σ ω ̸=j

0 ) = κ(ω ̸=ij
0 ωij) = κ∗

ij(ω
ij). (5)

In summary, we get κ(ω)
(1)
= κ1(ω

1) + · · · +

κn(ω
n)

(2)
=

∑n
i=1 κ(ωi1Σ)

(3)
=

∑n
i=1

∑
j∈Ji

κj(ω
j
i1Σ) =∑

(i,j)∈IJ κj(ω
j
i1Σ)

(4),(5)
=

∑
(i,j)∈IJ κij(ω

ij) and therefore
κ =

⊕
(i,j)∈IJ κij .

As the coarsening of a syntax splitting of a ranking func-
tion κ is again a syntax splitting for κ, we can obtain results
similar to Propositions 2 and 3 for ranking functions: All
syntax splittings of a ranking function are coarsenings of the
ranking function’s finest splitting.
Proposition 5. Let κ be a ranking function over a signature
Σ and S = {Σ1, . . . ,Σn} be a syntax splitting of κ. Then
every coarsening of S is a syntax splitting of κ.

Proof. Let κ = κ1 ⊕ · · · ⊕ κn be a ranking function with
syntax splitting {Σ1, . . . ,Σn}. Let i, j ∈ {1, . . . , n}. Then
{Σk | k ∈ {1, . . . , n} \ {i, j}} ∪ {Σi ∪ Σj} is a syntax

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

749



⪯

abc
ābc ab̄c abc̄

ab̄c̄
ābc̄

āb̄c

āb̄c̄

Figure 2: TPO ⪯ on Σ = {a, b, c} with syntax splitting{
{a}, {b}, {c}

}
. The partitions

{
{a, b}, {c}

}
,
{
{a}, {b, c}

}
, and{

{a, c}, {b}
}

are no syntax splittings of ⪯.

splitting of κ =
n⊕

k=1
k ̸=i; k ̸=j

κk ⊕ (κi ⊕ κj). Therefore,

combining two sub-signatures in a syntax splitting of a rank-
ing function κ results in another syntax splitting for κ.

Any coarsening of S can be obtained by iteratively com-
bining sub-signatures in S. Hence, if S is a syntax splitting
of a ranking function κ then every coarsening of S is a syntax
splitting of κ.

Proposition 6. Let κ be a ranking function over Σ. There is
a unique syntax splitting Sf = {Σf

1 , . . . ,Σ
f
n} of κ such that

the coarsenings of Sf are exactly the syntax splittings of κ.

Proof. Follows directly from Propositions 4 and 5.

5 Finest Syntax Splittings of TPOs
One important difference between syntax splittings on TPOs
and syntax splittings on ranking functions is that coarsenings
of a syntax splitting of a TPO ⪯ are not necessarily syntax
splittings of ⪯.

Example 3 ((Haldimann, Beierle, and Kern-Isberner 2021;
Haldimann, Beierle, and Kern-Isberner 2023)). The TPO ⪯
displayed in Figure 2 has the syntax splitting S =

{
{a},

{b}, {c}
}

. The coarsenings
{
{a, b}, {c}

}
,
{
{a}, {b, c}

}
,

and
{
{a, c}, {b}

}
of S are no syntax splittings of ⪯.

Because coarsenings of syntax splittings of a TPO may
not be syntax splittings, the characterization of all syntax
splittings of a TPO as coarsenings of a finest syntax splitting
is not possible for TPOs. Nevertheless, we can define the
finest splitting of a TPO ⪯ to be the syntax splitting of ⪯ that
refines every other splitting of ⪯, and we can still prove that
every TPO has a finest syntax splitting.

Proposition 7. Let ⪯ be a TPO on worlds over Σ. There is
a syntax splitting Sf = {Σf

1 , . . . ,Σ
f
n} of ⪯ such that every

other syntax splitting of ⪯ is a coarsening of Sf .

Proof. Towards a contradiction assume that there is a TPO
⪯ over a signature Σ such that there is no syntax split-
ting Sf that refines all other syntax splittings of κ. Let
S = {Σ1, . . . ,Σn} be a syntax splitting of ⪯ such that no
refinement of S (except S itself) is a syntax splitting of ⪯.
Note that S exists because Σ has only finitely many partitions
and {Σ} is trivially a splitting of every TPO. By assumption,
S cannot be a refinement for every other syntax splitting of

⪯; thus, there is another syntax splitting S′ = {Σ′
1, . . . ,Σ

′
m}

of ⪯ such that S is not a refinement of S′.
Now consider the set S∗ =

{
Σi ∩ Σ′

j

∣∣ Σi ∈ S, Σ′
j ∈

S′ with Σi ∩ Σ′
j ̸= ∅

}
. The set S∗ is a partition of Σ , and it

is a refinement of both S and S′. We will show that S∗ is a
syntax splitting of ⪯ contradicting the assumption that S has
no refining syntax splitting. To show that S∗ is a splitting of
⪯, we show that for every Σ∗

k ∈ S∗ and any ω1, ω2 ∈ ΩΣ it
holds that ω ̸=k

1 = ω ̸=k
2 implies

(
ω1 ⪯ ω2 iff ωk

1 ⪯|Σ∗
k
ωk
2

)
.

Let Σ∗
k ∈ S∗ and ω1, ω2 ∈ ΩΣ with ω ̸=k

1 = ω ̸=k
2 . By the

construction of S∗ there are Σi ∈ S and Σ′
j ∈ S′ such that

Σ∗
k = Σi ∩ Σ′

j . Because ω ̸=k
1 = ω ̸=k

2 we have that ω ̸=i
1 =

ω ̸=i
2 and ω ̸=j

1 = ω ̸=j
2 . We show that ω1 ⪯ ω2 iff ωk

1 ⪯|Σ∗
k
ωk
2

by distinguishing two cases.
Case 1: ωk

1 ⪯|Σ∗
k
ωk
2 . Let

ωk1i
1 = min({ωi

x ∈ ΩΣi
| ωi

x|Σ∗
k
= ωk

1}, ⪯|Σi
)

ωk1i
2 = ωk

2 (ωk1i
1 |Σi\Σ∗

k
).

The worlds ωk1i
1 and ωk1i

2 coincide on Σi \ Σ∗
k. The world

ωk1i
1 coincides with ωk

1 on Σ∗
k; the world ωk1i

2 coincides with
ωk
2 on Σk. Because ωk1i

1 is chosen minimally and ωk
1 ⪯|Σ∗

k

ωk
2 we have that ωk1i

1 ⪯|Σi
ωk1i
2 . Let

ωk1i1Σ
1 = ω ̸=i ωk1i

1 and ωk1i1Σ
2 = ω ̸=i ωk1i

2 .

The worlds ωk1i1Σ
1 and ωk1i1Σ

2 coincide on Σ \Σi. We have
ωk1i1Σ
1 ⪯ ωk1i1Σ

2 because ωk1i
1 ⪯|Σi

ωk1i
2 and S is a syntax

splitting of ⪯ containing Σi.
By construction the worlds ωk1i1Σ

1 and ωk1i1Σ
2 coincide

on Σ \ Σ′
j . The world ωk1i1Σ

1 coincides with ω1 on Σ′
j ; the

world ωk1i1Σ
2 coincides with ω2 on Σ′

j . Using that S′ is
a syntax splitting of ⪯ containing Σ′

j we have ω1|Σ′
j
⪯|Σ′

j

ω2|Σ′
j
. Because the worlds ω1 and ω2 coincide on Σ\Σ′

j , we
can use the syntax splitting again to show that ω1 ⪯ ω2.

Case 2: ωk
1 ̸⪯|Σk

ωk
2 , i.e., ωk

1 ≻|Σk
ωk
2 . Let

ωk1i
2 = min({ωi

x ∈ ΩΣi | ωi
x|Σ∗

k
= ωk

2}, ⪯|Σi
)

ωk1i
1 = ωk

1 (ωk1i
2 |Σi\Σ∗

k
).

Analogously to Case 1 we can show that ω1 ≻ ω2 which
is equivalent to ω1 ̸⪯ ω2.

6 Conclusions and Future Work
We showed that there is a finest syntax splitting for every
ranking function. We also showed that there is a finest syntax
splitting for every TPO on worlds, even though coarsenings
of syntax splittings of TPOs may not be syntax splittings.
Our current work includes using the results of this paper
and algorithms for finding syntax splittings (Bräuer 2022)
in nonmonotonic reasoning and belief change. Further on,
extending our results on syntax splittings to infinite signa-
tures and other belief representation settings, e.g., ranking
functions with infinite ranks, are subject to future work.
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