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Abstract

The paper deals with the topic of realizability in abstract argu-
mentation. More precisely, we consider the most basic kind of
labellings, so-called conflict-free labellings. The understand-
ing of these labellings is essential as any mature labelling-
based semantics selects its output among these labellings. We
show how to decide whether a given set of labellings is the
conflict-free outcome of a certain Dungean framework. To
this end we introduce several new criteria like L-tightness,
reject-witness and reject-compositionality. These properties
play a decisive role in the central characterization theorem.
Moreover, we present a construction method, showing how to
realize a conflict-free realizable labelling-set. Finally, we study
the representational freedom in case of such labellings. This
leads to a uniqueness result for a certain sub-class and a sur-
prising connection to strong equivalence in case of extension-
based semantics.

1 Introduction
Consider a logical formalism L together with its semantics σ.
Depending on the application in mind, it might be inter-
esting to know which set of interpretations I are actually
expressible in L. More formally, how to determine whether
I ∈ {σ(T ) | T is a L-theory}. For instance, in case of
propositional logic any finite set of two-valued interpret-
ations is realizable. Differently, in case of normal logic
programs under stable model semantics we have that any
finite candidate set is realizable if and only if it forms a
⊆-antichain (Eiter et al. 2013). One major application of
realizability issues are dynamic evolvements like in case of
belief revision (Alchourrón, Gärdenfors, and Makinson 1985;
Delgrande, Peppas, and Woltran 2013). Here, we are typic-
ally faced with the problem of modifying a given L-theory T ,
s.t. the revised version S of it satisfies σ(S) = I for some de-
sired set I . Now, before trying to do this revision in a certain
minimal way it is essential to know whether I is realizable
at all, i.e. I ∈ {σ(T ) | T is a L-theory}.

The first formal treatment of realizability in formal ar-
gumentation (Atkinson et al. 2017) was given in (Dunne et
al. 2013). They considered the leading abstract formalism,
so-called argumentation frameworks (Dung 1995). They
provided locally verifiable necessary as well as sufficient
properties for realizability w.r.t. extension-based semantics.
In this paper we begin to complement the existing study

by shifting the focus to the more involved labelling-based
semantics (Baroni, Caminada, and Giacomin 2018). In a
nutshell, we present an in-depth study for the building blocks
of any mature semantics, so-called conflict-free labellings.

2 Formal Preliminaries
2.1 Argumentation Frameworks and Semantics
An argumentation framework (AF) is a pair F = (A,R)
where A (set of arguments) is a subset of a fixed infinite
background set U . Moreover, R (set of attacks) is a subset of
A×A (Dung 1995). The set of all finite AFs is denoted by F .
An extension-based semantics Eσ : F → 22

U
assigns to each

AF F = (A,R) a set of sets of arguments with Eσ(F ) ⊆ 2A.
Each one of them, a so-called σ-extension, is considered to
be acceptable with respect to F . The most basic requirement
underlying almost any semantics is conflict-freeness.
Definition 1. Given F = (A,R). A set E ⊆ A is conflict-
free (E ∈ Ecf (F )) if there are no a, b ∈ E, s.t. (a, b) ∈ R.

A labelling-based semantics Lσ : F → 2(2
U)

3

assigns
to any AF F = (A,R) a set of triples of sets of arguments
denoted by Lσ(F ) ⊆

(
2A

)3
. Each one of them, a so-called

σ-labelling of F , is a triple L = (I,O, U) indicating that
arguments in I,O or U are considered to be accepted (in),
rejected (out) or undecided with respect to F . We further
assume I ∩O = I ∩U = O ∩U = ∅ (pairwise disjointness)
and I ∪O ∪U = A (covering). We use LI to refer to the first
component of the labelling L, analogously for LO and LU.
We proceed with the central notion of conflict-free labellings
(Caminada 2011; Arieli 2012).
Definition 2. A labelling L of F = (A,R) is called conflict-
free (L ∈ Lcf (F )) whenever:

1. If a, b ∈ LI, then (a, b) /∈ R, and (no internal conflicts)
2. If a ∈ LO, then there is an b ∈ LI with (b, a) ∈ R.

(reason for rejection)
Example 1. Consider the following illustrating AF F and
its associated conflict-free sets/labellings.

a

b

cF : d
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• Ecf (F ) = {{a}, {b}, {c}, {d}, {a, d}, {b, d}, ∅}
• Lcf (F ) = {({a}, {b}, {c, d}), ({a}, ∅, {b, c, d}),

({b}, {c}, {a, d}), ({b}, ∅, {a, c, d}),
({c}, {a}, {b, d}), ({c}, ∅, {a, b, d}),
({d}, {c}, {a, b}), ({d}, ∅, {a, b, c}),
({a, d}, {b, c}, ∅), ({a, d}, {c}, {b}),
({a, d}, {b}, {c}), ({a, d}, ∅, {b, c}),
({b, d}, {c}, {a}), ({b, d}, ∅, {a, c}),
(∅, ∅, {a, b, c, d})}

We observe that there is not necessarily a match between
the numbers of conflict-free sets and conflict-free labellings.
However, both notions are intimately connected via the fol-
lowing relations (Baroni, Caminada, and Giacomin 2018).
Proposition 1. Given F = (A,R) and E ⊆ A, we use EL

as shorthand for (E,E+, A \ (E ∪ E+)).1

1. If E ∈ Ecf (F ), then EL ∈ Lcf (F ), and
2. If L ∈ Lcf (F ), then LI ∈ Ecf (F ).

2.2 Realizability in Abstract Argumentation
The first formal treatment of expressibility issues in abstract
argumentation was given in (Dunne et al. 2013). They con-
sidered extension-based semantics and provided simple cri-
teria deciding whether a certain set can be the semantical
outcome of a Dungean AF. In the following we introduce the
central notions of realizability and signature. In a nutshell, a
set X is realizable w.r.t. σ, if there is an AF F such that its
set of σ-extensions/σ-labellings coincides with X. Collecting
all realizable sets defines the concept of a σ-signature.

Definition 3. Given a semantics σ : F → 2(2
U)

n

. A set X ⊆(
2U

)n
is σ-realizable if there is an AF F ∈ F , s.t. σ(F ) = X.

The σ-signature is defined as Σσ = {σ(F ) | F ∈ F}.

Extension-based Semantics We proceed with further nota-
tion as well as the central notions of downward-closedness
and tightness (Dunne et al. 2015).
Definition 4. A finite S ⊆ 2U is called extension-set. We use
ArgsS =

⋃
S∈S S, PairsS = {(a, b) | ∃S ∈ S : {a, b} ⊆ S}

and dcl(S) = {S′ ⊆ S | S ∈ S} (downward-closure of S).
The following example illustrates the introduced concepts.

Example 2. Let S = {{a, d}, {b, d}, {c}}.
We have: ArgsS = {a, b, c, d}, PairsS =
{(a, a), (b, b), (c, c), (d, d), (a, d), (d, a), (b, d), (d, b)}, and
dcl(S) = {∅, {a}, {b}, {c}, {d}, {a, d}, {b, d}}.
Definition 5. Given an extension-set S. S is downward-
closed if S = dcl(S). It is called tight whenever: for all
S ∈ S and a ∈ ArgsS we have: if S ∪ {a} /∈ S, then there
exists an s ∈ S such that (a, s) /∈ PairsS.
Example 3 (Example 2 cont.). S is not downward-closed
as dcl(S) ̸= S. However, S is tight. To exemplify consider
S = {b, d}. First, in case of x ∈ {b, d} we have nothing to
show as S ∪ {x} = S ∈ S. Secondly, for y ∈ {a, c} we have
S ∪ {y} /∈ S and find b ∈ S with (y, b) /∈ PairsS.

1E+ is the range of E defined as {b | (a, b) ∈ R, a ∈ E}.

Consider the central characterization (Dunne et al. 2013).
Theorem 2. Given an extension-set S, then

S ∈ ΣEcf
⇔ S is tight, non-empty and downward-closed.

Labelling-based Semantics We start with some notational
shorthands. Moreover, we extend the notion of an extension-
set to labelling-based semantics, a so-called labelling-set.

Definition 6. Given a finite set L ⊆
(
2U

)3
, we set

Args(L) =
⋃

L∈L
(
LI ∪ LO ∪ LU

)
and use LI , LO and LU

to denote
{
LI | L ∈ L

}
,
{
LO | L ∈ L

}
or

{
LU | L ∈ L

}
,

respectively. Moreover, we say that L is a labelling-set if
1. LI

1 ∪LO
1 ∪LU

1 = LI
2 ∪LO

2 ∪LU
2 for any L1, L2 ∈ L and,

(same arguments)
2. LI

1 ∩ LO
1 = LI

1 ∩ LU
1 = LO

1 ∩ LU
1 = ∅ for each L1 ∈ L.

(disjointness)
Finally, for a fixed set of arguments E ⊆ U we use
• LI=E = {L | L ∈ L, LI = E}, and (corr. labellings)
• LO

I=E = {LO | L ∈ L, LI = E}. (corr. out-labels)
Let us illustrate the introduced concepts.

Example 4. Let L = {({a, d}, {b}, {c}), ({b, d}, {a, c}, ∅),
({b, d}, {a}, {c})}. We observe that L is indeed a labelling-
set as all triples refer to the same arguments, namely a, b, c, d,
and for any triple we have that each argument occurs in one
of the three sets only. We obtain the following sets:
• LI = {{a, d}, {b, d}}, LO = {{b}, {a, c}, {a}} and
LU = {{c}, ∅},

• LO
I={a,d} = {{b}} and LO

I={b,d} = {{a, c}, {a}}, and

• LI={a,d} = {({a, d}, {b}, {c})} and LI={b,d} =
{({b, d}, {a, c}, ∅), ({b, d}, {a}, {c})}.

3 Conflict-free Labellings
3.1 L-tightness and Rejection Properties
The presence of characterization theorems for extension-
based semantics is of little help in characterizing the cor-
responding labelling-based version. This is due to the fact
that the latter provides one with strictly more information.
First of all, they are more restrictive as they assign a status
to any argument. Consequently, the possible number of real-
izing frameworks is limited from the start. Secondly, they
are more fine-grained as they explicitly distinguish two non-
acceptance cases, namely rejected and undecided.

In this section we introduce three new properties relev-
ant for characterizing conflict-free labellings. We start with
so-called L-tightness. A labelling-set L is L-tight if: First,
greatest out-labels exist and secondly, the union of two in-
labels I1, I2 is an in-label too if and only if the greatest out-
label regarding I1 does not share elements with I2 and vice
versa. Intuitively, L-tightness fulfills a similar purpose for
labellings as tightness for extensions since it gives a reason
why certain sets are not in-labels.
Definition 7. A labelling-set L is called L-tight, if

1. for each E ∈ LI : LO
I=E possesses a ⊆-greatest element.

(Notation: We use LO

I=E for the ⊆-greatest element and
LI=E for the associated labelling.)
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2. for all I1, I2 ∈ LI we have:
I1 ∪ I2 ∈ LI ⇔ (LO

I=I1 ∩ I2) ∪ (LO

I=I2 ∩ I1) = ∅.
Example 5 (Example 1 cont.). First note, that ⊆-
greatest elements do not exist in general witnessed by
{({a}, {b}, {c}), ({a}, {c}, {b})}. Let us verify the L-
tightness of the labelling-set L = Lcf (F ). We have:

• LI = Ecf (F ) = {{a}, {b}, {c}, {d}, {a, d}, {b, d}, ∅}.
• For each E ∈ LI we have a ⊆-greatest element in LO

I=E:

LO

I={a} = {b}, LO

I={b} = {c}, LO

I={c} = {a}, LO

I={d} =

{c}, LO

I={a,d} = {b, c}, LO

I={b,d} = {c} and LO

I=∅ = ∅.
• For the second item of L-tightness we have to consider each

possible pairing of in-labels. We consider two pairings
only and leave the remaining combinations for the reader.

1. Consider I1 = {a} and I2 = {d}.
We have I1 ∪ I2 = {a, d} ∈ LI and moreover, LO

I=I1 ∩
I2 = {b} ∩ {d} = ∅ = {c} ∩ {a} = LO

I=I2 ∩ I1.
2. Consider I1 = {a} and I2 = {b}.

We have I1 ∪ I2 = {a, b} /∈ LI and the corresponding
non-emptiness of the union witnessed by LO

I=I1 ∩ I2 =
{b} ∩ {b} = {b} ̸= ∅.

The second property is called reject-compositionality. In
a nutshell, a labelling-set L is reject-compositional, if the
out-labelled arguments for a given in-labelled set E can be
found in the union of out-labels of single arguments in E.
Definition 8. A labelling-set L is called reject-compositional,
if for each E ∈ LI , we have:⋃

LO
I=E =

⋃
a∈E

⋃
LO
I={a}.

In case of L-tight labelling-sets the equation can be re-
placed with the more convenient LO

I=E =
⋃
a∈E

LO

I={a}.

Before turning to an example we introduce the third new
concept. A labelling-set L is reject-witnessing if each out-
labelled argument possesses a witnessing “basic” labelling.
Definition 9. A labelling-set L is called reject-witnessing, if
for each L ∈ L we have:

∀o ∈ LO ∃i ∈ LI , s.t. ({i}, {o}, ArgsL \ {i, o}) ∈ L.
Example 6 (Example 1 cont.). Consider again L =
Lcf (F ). Regarding reject-witnessing the only non-trivial
labels are L1 = ({a, d}, {b, c}, ∅) ∈ L and L2 =
({b, d}, {c}, {a})) ∈ L. For L1 the rejections are witnessed
by ({a}, {b}, {c, d}) ∈ L and ({d}, {c}, {a, b}) ∈ L. The
latter basic labelling also serves as a witness for L2.

Now, for reject-compositionality. We have already seen
that L is L-tight (Example 5). This means, it suffices to
show LO

I=E =
⋃
a∈E

LO

I={a}. We only have to consider both

two-element sets. Let us start with E = {a, d}. We have,
LO

I={a,d} = {b, c} and the matching sets, LO

I={a} = {b} and

LO

I={d} = {c} . Finally, for E = {b, d} we get LO

I={b,d} =

{c} and, LO

I={b} = {c} and LO

I={d} = {c} as required.

Finally, we mention that none of the properties can be de-
rived from the remaining two. This means, for example, that
there are labelling-sets satisfying both rejection properties
without being L-tight.

3.2 Characterization Theorem
In the following we present the central characterization the-
orem for conflict-free labellings. It can be seen that the newly
introduced properties play a central role here. Please note
that any of the five properties can be decided by looking at
the labelling-set in question only.
Theorem 3. Given a labelling-set L, then

L ∈ ΣLcf
⇔

1. LI is downward-closed and non-empty,
2. LO

I=E is downward-closed for all E ∈ LI ,
3. L is L-tight,
4. L is reject-compositional, and
5. L is reject-witnessing.

We mention that the characterization theorem can be
presented in a more compact way since the presented set of
properties is not independent. More precisely, reject-witness
is redundant as it is implied by reject-compositionality (4.)
and requiring downward-closedness for each in-associated
out-label set (2.). Confer the subsequent proposition.
Proposition 4. Let a labelling-set L be given. If L is reject-
compositional and for each E ∈ LI , LO

I=E is downward-
closed, then L is reject-witnessing.

Let us compare the achieved characterization theorem
with the already existing one regarding conflict-free sets
(Theorem 2). In light of Proposition 1 one can see that
labelling-based cf -realizability of L requires extension-based
cf -realizability of the corresponding set of in-labelled argu-
ments.2 This means, LI has to be tight, non-empty and
downward-closed. The last two are explicitly given in The-
orem 3 (1.) and one may wonder about the “missing” tight-
ness property. This property of LI is implicit as shown next.
Proposition 5. Let L be a labelling-set. Given L-tightness
and reject-compositionality of L and downward-closedness
of LI , then LI is tight.

3.3 Standard Construction
As a matter of fact, knowing that a certain set is realizable
or not is a valuable feature. However, for many applications
it is not only of interest whether a certain set is realizable,
but also how to realize it. In the following we introduce a
standard construction witnessing the realizability of a con-
sidered labelling-set. First, regarding arguments, we simply
collect any argument occurring somewhere in a labelling.
Secondly, regarding the attack relation, we set a self-loop for
an argument a, whenever {a} does not occur as an in-labelled
set. Moreover, a attacks an other argument b, if {a} can be
found as an in-labelled set and b is contained in at least one
corresponding out-labelled set.
Definition 10. Given a labelling-set L, we define F cf

L =
(AL, RL) with AL = Args(L) and

2This relation is a general interaction between both kinds of se-
mantics. Confer (Baumann 2018, Theorem 7) for more information.
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1. ∀a ∈ AL: (a, a) ∈ RL if and only if {a} /∈ LI , and
2. ∀a, b ∈ AL: If a ̸= b, then (a, b) ∈ RL iff {a} ∈ LI and

b ∈
⋃
LO
I={a}.

Theorem 6. For any labelling-set L, we have:

L ∈ ΣLcf
⇔ L = Lcf

(
F cf
L

)
.

We emphasize two important points: First, the construction
is well-defined. This means, the AF F cf

L can be built for any
labelling-set L, even if the considered set is not cf -realizable.
Secondly, the above theorem can in a sense also be seen as an
characterization theorem. However, in contrast to Theorem 3
it requires the construction of an AF and the computation of
semantics. We proceed with an illustrating example.
Example 7. Consider the following labelling-set L with

L = {({a, b}, {c}, {d}), ({a, b}, ∅, {c, d}),
({a}, {c}, {b, d}), ({a}, ∅, {b, c, d}),
({b}, {c}, {a, d}), ({b}, ∅, {a, c, d}),
({c}, {a, d}, {b}), ({c}, {d}, {a, b}),
({c}, {a}, {b, d}), ({c}, ∅, {a, b, d}),
(∅, ∅, {a, b, c, d})}

We obtain AL = Args(L) = {a, b, c, d}. Regarding RL
we have to consider the singletons {a}, {b}, {c} and {d}.

S S ∈ LI?
⋃
LO
I=S RL

{a} yes {c} (a, c)
{b} yes {c} (b, c)
{c} yes {a, d} (c, a), (c, d)
{d} no ∅ (d, d)

Thus, the AF F cf
L is given as follows.

a c dbF cf
L :

3.4 Representational Freedom
In the former sections we studied whether and how a set L is
realizable. Now, we go a step further. We want to formally
describe any possible witnessing AF for L. Are there regular-
ities, similarities and is it possible to easily navigate through
the space of options? This question is strongly related to
patterns of redundancy and requires no more and no less than
a non-semantical characterization of ordinary equivalence
(Baumann 2018; Dvorák et al. 2019). The latter relation (abbr.
F ≡σG) holds for two AFs F and G if σ(F ) = σ(G).

We start with an astonishing result which does not have
any counterpart in the realm of extension-based semantics. If
starting with a self-loop free AF, then there are no syntactic
manipulations preserving ordinary equivalence.
Proposition 7. Let two AFs F and G be given. If G is
self-loop free, then: F ≡Lcf G ⇔ F = G .

This means, if the standard AF F cf
L does not possess any

self-loop, then F cf
L is the only option to cf -realize L. In

other words, in this class the realizing framework is uniquely
determined.The next natural question is: Are there represent-
ational differences in presence of self-loops?

Example 8 (Example 7 cont.). Consider the following AF G .
One may easily verify that Lcf (G) = L. Thus, F cf

L ≡Lcf G .

a c dbG :

In case of the above example we observe that the repres-
entational freedom is linked to outgoing attacks from self-
defeating arguments. The following theorem proves that this
observation holds in general. Moreover, there are no other
patterns of redundancy. We use the so-called stable kernel
(Oikarinen and Woltran 2011; Baumann 2016) to formulate
the central result in a compact way. For F = (A,R) we have
F sk = (A,R \ {(a, b) ∈ R | a ̸= b, (a, a) ∈ R}).
Theorem 8. Given two AFs F and G , we have:

F ≡Lcf G ⇔ F sk = Gsk.

3.5 Characterization Logic for Stable Semantics
Strong equivalence is of great interest in non-monotonic form-
alisms as it guarantees mutually replaceability in arbitrary
contexts (Truszczyński 2006). For example, it is known that
normal logic programs are strongly equivalent w.r.t. stable
models if and only if they are ordinarily equivalent in the lo-
gic of here-and-there (Lifschitz, Pearce, and Valverde 2001).
This means the logic of here-and-there can be seen as a char-
acterization logic as it decides strong equivalence for logic
programs (Baumann and Strass 2022). For two AFs F and G
strong equivalence is given (abbr. F ≡σ

s G) if for each AF H ,
σ(F ⊔ H ) = σ(G ⊔ H ).3 The following result shows that
conflict-free labellings play a similar role for stable exten-
sions4 as the logic of here-and-there for logic programs.
Theorem 9. Given two AFs F and G , we have:

F ≡Lcf G ⇔ F ≡Estb
s G .

4 Conclusion and Related Work
Expressibility is one central issue for knowledge representa-
tion formalisms. Regarding AFs only two papers have dealt
with labelling-based realizability. The first one considered
realizibility under projection (Dyrkolbotn 2014). This means,
it suffices to come up with an AF F , s.t. its set of labellings
restricted to the desired arguments coincide with L. The
second work deals with the standard notion of realizability
and presents a propagate-and-guess algorithm which returns
either “No” in case of non-realizability or a witnessing AF
(Linsbichler, Pührer, and Strass 2016). The mentioned papers
do not consider conflict-free labellings, nor do they provide
simple criteria for realizability. For future work we plan to
implement and extend our study to more mature semantics
such as naive, stage and stable semantics. Moreover, regard-
ing dynamic scenarios the so-called synthesis problem seems
to be highly significant (Niskanen, Wallner, and Järvisalo
2019). Rather than demanding precise realizability, we are
faced with a set of positive labels that need to be realized, and
simultaneously, a set of negative labels that must be avoided.

3The union (A,R) ⊔ (B,S) is defined as (A ∪B,R ∪ S).
4A set is stable if it is conflict-free and attacks all other argu-

ments.
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