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Abstract

Confronting the past can be hard. This is true even in Linear
Temporal Logic (LTL), interpreted on either infinite or finite
traces, when faced with the problem of transforming a tempo-
rally future formula into an equivalent one that contains past
temporal modalities only. To our knowledge, the best among
the available pastification procedures for full LTL, as well as
for expressive enough fragments of it (that is, containing at
least one temporal modality other than tomorrow), are triply
exponential in the size of the input. In this paper, we focus on
the fragment of LTL that features the tomorrow and eventu-
ally modalities, and provide a singly exponential pastification
algorithm for it. The transformation is based on a normalisa-
tion procedure that requires a non-trivial complexity analysis,
and on the subsequent generation of a pure past formula from
suitably-defined dependency tree structures. Moreover, lever-
aging its purely syntactic nature, we present an implementa-
tion of our procedure in a temporal satisfiability checking tool
that deals with both future and past modalities.

1 Introduction
In this paper, we focus on the fragment of Linear Tempo-
ral Logic (LTL) (Pnueli 1977) that features tomorrow and
eventually modalities, and provide a singly exponential al-
gorithm that transforms its formulas into pure past ones.
This “past rewriting” of temporal formulas proved itself to
be quite useful in fundamental tasks like reactive synthesis.

LTL extends propositional logic with future temporal
modalities to reason over infinite linear structures based on
the order of the natural numbers, called traces. Together
with its extension with past modalities (LTL+P) (Licht-
enstein, Pnueli, and Zuck 1985) and its finite variant
(LTLf ) that interprets formulas over finite traces (De Gia-
como and Vardi 2013), it proved itself to be essential in
fields like automated reasoning, formal verification, and
knowledge representation. A notable fragment of LTL is
coSafetyLTL (Chang, Manna, and Pnueli 1992; Cimatti et
al. 2022; Artale et al. 2023), syntactically defined as the
fragment of LTL in negation normal form whose temporal
operators are all existential, i.e., tomorrow (X) and until (U).

The pure past fragment of LTL+P (Lichtenstein, Pnueli,
and Zuck 1985; De Giacomo et al. 2021), on which we fo-
cus, is defined as the subset of formulas of LTL+P devoid
of future modalities and is denoted by pLTL. Its formulas

are naturally interpreted at the end of finite traces, i.e., ini-
tial segments of the natural numbers. pLTL has received a
renewed attention in the last years, due to its important the-
oretical and algorithmic properties.

First, it has been shown that pLTL is expressively equiv-
alent to LTLf (Lichtenstein, Pnueli, and Zuck 1985). In
addition, pLTL is tightly related to cosafety fragments of
LTL (Chang, Manna, and Pnueli 1992), that is, fragments
on infinite traces for which a finite prefix of a trace suffices
to establish whether the whole trace is a model of a formula,
thus having a strong connection with finite trace semantics.
Indeed, consider the logic F(pLTL), defined as the set of for-
mulas of type F(α) where F is the eventually operator and α
is a pLTL formula (Chang, Manna, and Pnueli 1992). For-
mulas of this type have the ability to hook a future time point
of the trace with F, and then to constrain the prefix up to that
point by means of the pLTL formula. It turns out that such
formulas are a canonical form for coSafetyLTL.

From an automata-theoretic viewpoint, pLTL formu-
las enjoy a compilation into deterministic finite automata
(DFAs) of singly exponential size (De Giacomo et al. 2021;
Cimatti et al. 2021), a result that cannot be achieved for full
LTLf . Interestingly, this compilation for pLTL can actually
be performed in a fully symbolic fashion, i.e., by means of
Boolean formulas only (Cimatti et al. 2021; Geatti, Mon-
tali, and Rivkin 2022). Finally, it has been recently proved
that the reactive synthesis problem (Pnueli and Rosner 1989)
of pLTL specification is EXPTIME-complete (Artale et al.
2023), in contrast to the 2EXPTIME-completeness of the
same problem for LTL and LTLf (Rosner 1992; De Giacomo
and Vardi 2015). Similar results have been obtained for
monitoring and planning problems (De Giacomo et al. 2022;
De Giacomo, Favorito, and Fuggitti 2022).

Motivated by the above-summarized promising results on
pure past fragments, a recent trend has focused on the study
of algorithms for transforming fragments of coSafetyLTL
and LTLf into equivalent ones of, respectively, F(pLTL) and
pLTL. This transformation is known as pastification. Simple
planning patterns, which always correspond to LTLf formu-
las with only at most two nested temporal operators, e.g., the
ones of DECLARE (Geatti, Montali, and Rivkin 2022), or
the trajectory constraints of PDDL (De Giacomo, Favorito,
and Fuggitti 2022), can be easily pastified into formulas of
polynomial size with respect to the starting one. The same
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holds for the fragment of LTL with only tomorrow as tem-
poral operator (LTL[X]) (Maler, Nickovic, and Pnueli 2005;
Maler, Nickovic, and Pnueli 2007).

Nevertheless, devising an efficient algorithm for the pas-
tification of arbitrary coSafetyLTL and LTLf formulas is a
challenging task. In fact, the complexity picture is radically
different for the general case. The best known algorithms
for the pastification of coSafetyLTL and LTLf produce a
pure past formula of triply exponential size (De Giacomo
et al. 2021), where the exponential blowups derive, respec-
tively, from: (i) the transformation into a nondeterministic
finite automaton (NFA); (ii) its determinization into a DFA;
(iii) the application of the Krohn-Rhodes Cascaded Decom-
position (Maler and Pnueli 1990), and the consequent trans-
lation into a formula of pLTL. This transformation is im-
practical: after more than 60 years, to the best of our knowl-
edge, there is only one implementation of the Krohn-Rhodes
Cascaded Decomposition1and no implementation of the pas-
tification algorithm for coSafetyLTL and LTLf . Last but not
least, other than the one for LTL[X], there are no ad hoc pas-
tification algorithms for natural fragments of coSafetyLTL
or LTLf , thus forcing one to use the triply exponential algo-
rithm for the general case.

In this paper, we study the pastification problem for
LTL[X,F], that is, the fragment of LTL with X and F as
temporal operators. Our main contribution is a singly ex-
ponential pastification algorithm for LTL[X,F]. The trans-
formation consists of two main steps: (i) the transforma-
tion of an LTL[X,F] formula into a suitably defined nor-
mal form, which involves the bottom-up application of a set
of equivalence-preserving rewriting rules; (ii) the construc-
tion, for any formula in normal form, of a dependency tree,
used to represent the temporal relations between subformu-
las in the scope of an F operator, and from which we can ex-
tract an F(pLTL) formula equivalent to the original one. We
show that the only step introducing an exponential blowup
is the first one, while the other is at most quadratic. Most
importantly, in constrast to the triply exponential pastifica-
tion algorithm for coSafetyLTL (or LTLf ), our algorithm is:
(i) singly exponential; (ii) purely syntactic, and thus simply
implementable. As a matter of fact, our current implemen-
tation of the algorithm in the temporal satisfiability check-
ing tool BLACK (Geatti, Gigante, and Montanari 2021) takes
less than 500 lines of code. Finally, given the duality be-
tween F and the always operator G, we also obtain a pastifi-
cation procedure from LTL[X,G] (that is, the LTL fragment
with X and G as sole temporal operators) to G(pLTL) (which
consists of pLTL formulas prefixed by a G operator) in singly
exponential space.

The paper is organized as follows. We start with Sec-
tion 2 where we briefly analyze related work. Then, in Sec-
tion 3, we provide the necessary background. Next, in Sec-
tion 4, we present the transformation into normal form to-
gether with its complexity. The definition of dependency
trees and the translation into pure past are illustrated in Sec-
tion 5. We discuss the implementation of the algorithm in
Section 6, while in Section 7 we point out some future di-

1https://github.com/gap-packages/sgpdec

rections and some open problems.

2 Related Work
Pastification techniques have first been studied for bounded
response MTL (MTL-B, for short), which is a fragment of
Metric Temporal Logic (interpreted over dense linear orders)
where the temporal operators have bounds representing their
interval of application. As an example, α U[a,b] β (for some
a, b ∈ N) restricts β to happen at least a and at most b time
units after the interpretation of the whole formula. Notice
that all bounds of MTL-B (in the previous example, a and b)
are represented in binary.

Maler, Nickovic, and Pnueli (2005; 2007) developed a
pastification algorithm for MTL-B that produces formulas
of polynomial size with respect to input ones. The procedure
exploits the fact that, for each model of an MTL-B formula
ϕ, there exists a furthermost time point d such that the sub-
sequent states cannot be constrained by ϕ in any way. The
algorithm returns a formula that (i) uses only past operators,
(ii) is polynomial in |ϕ|, and (iii) is equivalent to ϕ when
interpreted at time point d instead of at the origin.

If interpreted over discrete linear orders, and by con-
sidering all bounds represented in unary instead of binary,
MTL-B is equivalent to LTL[X], i.e., the fragment of LTL
whose temporal operators are restricted to X. The technique
of Maler, Nickovic and Pnueli can thus be used as a black-
box to obtain a polynomial size pastification for LTL[X].

3 Background
Given a set Σ of proposition letters, an LTL+P formula ϕ is
generated as follows:

ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ Boolean connectives
| Xϕ | ϕ U ϕ | ϕ R ϕ future modalities
| Yϕ | Ỹϕ | ϕ S ϕ | ϕ T ϕ past modalities

where p ∈ Σ. We use the standard shortcuts for ⊤ := p∨¬p,
⊥ := p∧¬p (for some p ∈ Σ) and other temporal operators:
Fϕ := ⊤Uϕ, Gϕ := ⊥Rϕ, Oϕ := ⊤Sϕ, and Hϕ := ⊥Tϕ. In
addition, for any n ∈ N, we inductively define the formula
Xnϕ as follows: X0ϕ := ϕ and Xn+1ϕ := XXnϕ. Ynϕ, and
Ỹnϕ are defined in a similar way. Notice that, w.l.o.g., in
the proposed definition of LTL+P, formulas are in Negation
Normal Form (NNF), that is, negation is applied to proposi-
tion letters only. The size of a formula ϕ ∈ LTL+P, denoted
by |ϕ|, is the number of subformulas of ϕ.

A pure future (resp., past) formula is an LTL+P for-
mula devoid of occurrences of past (resp., future) modali-
ties. We denote by LTL (resp., pLTL) the set of pure future
(resp., past) formulas. We denote by LTL[X], LTL[X,F], and
LTL[X,G] the set of LTL formulas with temporal modali-
ties in {X}, {X,F}, and {X,G}, respectively. Moreover, we
denote by F(pLTL) (resp., G(pLTL)) the set of LTL+P for-
mulas of the form Fα (resp., Gα), with α ∈ pLTL.

Let σ ∈ (2Σ)ω be a state sequence (also called trace or
word). The satisfaction of an LTL+P formula ϕ by σ =
σ0σ1 . . . at time 0 ≤ i < ω, denoted by σ, i |= ϕ, is defined
as follows:
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• σ, i |= p iff p ∈ σi;
• σ, i |= ¬p iff p ̸∈ σi;
• σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
• σ, i |= Xϕ iff σ, i+ 1 |= ϕ;
• σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
• σ, i |= Ỹϕ iff either i = 0 or σ, i− 1 |= ϕ;
• σ, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with i ≤ k < j;
• σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with j < k ≤ i;
• σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all j ≥ i, or there

exists k ≥ i such that σ, k |= ϕ1 and σ, j |= ϕ2 for all
i ≤ j ≤ k;

• σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or
there exists k ≤ i such that σ, k |= ϕ1 and σ, j |= ϕ2 for
all i ≥ j ≥ k.
We say that σ is a model of ϕ (written as σ |= ϕ) iff

σ, 0 |= ϕ. The language of ϕ, denoted by L(ϕ), is the set of
traces σ ∈ (2Σ)ω such that σ |= ϕ. We say that two formulas
ϕ, ψ ∈ LTL+P are equivalent, written ϕ ≡ ψ, when, for all
σ ∈ (2Σ)ω , it holds that σ is a model of ϕ if and only if σ is
a model of ψ.

Finally, given a set L of formulas in LTL+P, a set of for-
mulas L′ either in F(pLTL) or in G(pLTL), and k ∈ N, a
pastification from L into L′ of k-exponential size is an algo-
rithm that, for any ϕ ∈ L, returns a formula ψ ∈ L′, such
that ϕ ≡ ψ and

|ψ| ∈

O(|ϕ|)

22
··
·2︸ ︷︷ ︸

k times

It is known that there exists a pastification from LTL[X]
into F(pLTL) of 0-exponential size (Cimatti et al. 2021).
Moreover, it follows from the results in (De Giacomo et al.
2021) that there exists a pastification from coSafetyLTL into
F(pLTL) of 3-exponential size.

4 Transformation into Normal Form
In this section, we illustrate the first step of our pastification
procedure. We define a normal form for LTL[X,F] and we
give a translation, based on the bottom-up application of a
set of rewriting rules, from LTL[X,F] into normal form. By
means of a dedicated complexity analysis, we also show that
the translation produces a formula of singly exponential size
with respect to the original one, in the worst case.

4.1 The Normal Form of LTL[X,F]
We start with defining the normal form of LTL[X,F], de-
noted as nfLTL[X,F], and the logic LTL[F,∧], on which the
normal form is based.
Definition 1 (The logic LTL[F,∧]). Let ψ be a pLTL for-
mula. The logic LTL[F,∧] is the set of formulas ϕ generated
by the following grammar:

ϕ := ψ | ϕ1 ∧ ϕ2 | Fϕ

Algorithm 1 Algorithm NF

1: procedure NF(ϕ)
2: if ϕ ∈ pLTL then
3: return ϕ
4: else if ϕ = Xh(ψ) then
5: Xk

∨c
i=1 ψi := NF(ψ)

6: return Xh+k
∨c
i=1 ψi

7: else if ϕ = F(ψ) then
8: Xk

∨c
i=1 ψi := NF(ψ)

9: return Xk
∨c
i=1 Fψi ▷ Rules R2, R5

10: else if ϕ =
∨c
i=1(ψi) then

11: Xki
∨di
j=1 ψi,j := NF(ψi) for each 1 ≤ i ≤ c

12: return Xkm
∨c
i=1

∨di
j=1 PUSH Y(Ykm−kiψi,j)

13: where km := max{ki}ci=1 ▷ Rule R1

14: else if ψ =
∧c
i=1(ψi) then

15: Xki
∨di
j=1 ψi,j := NF(ψi) for each 1 ≤ i ≤ c

16: Xkm
∧c
i=1

∨di
j=1 γi,j := Xkm

∧c
i=1

∨di
j=1

17: PUSH Y(Ykm−kiψi,j)
18: where km := max{ki}ci=1 ▷ Rule R1

19: return Xkm
∨
S∈A

∧
γ∈S γ ▷ Rule R6

20: else
21: unreachable code
22: end if
23: end procedure

Definition 2 (The normal form of LTL[X,F]). The normal
form of LTL[X,F], denoted with nfLTL[X,F], is the set of
formulas of type Xk

∨c
i=1 ϕi, for some k, c ∈ N, such that

ϕi ∈ LTL[F,∧] for any 1 ≤ i ≤ c.
In the general case, a formula of LTL[X,F] contains some

uncertainty both on which eventualities have to happen and
on when an eventuality has to be realized. Take for exam-
ple the formula F(

∧c
i=1(pi → Fqi)), for some c ∈ N: we

don’t know, a priori, neither which of the qi are going to
be fulfilled nor the order between the qi. The normal form
nfLTL[X,F] has been designed to move at top-level the un-
certainty about which eventualities have to happen (this cor-
responds to the initial set of disjunctions). All formulas ϕi
have thus only an uncertainty about when an eventuality is
going to be fulfilled.

4.2 From LTL[X,F] to nfLTL[X,F]
We propose a transformation of LTL[X,F] into nfLTL[X,F]
based on the following steps:

1. Pulling out all the tomorrow operators to top-level; this is
done by the following rewriting rules:

R1. Xiϕ1 ⊗ Xjϕ2 ⇝

{
Xi(ϕ1 ⊗ Yi−jϕ2) if i > j

Xj(Yj−iϕ1 ⊗ ϕ2) otherwise
R2. FXiϕ1 ⇝ XiFϕ1

for any i, j ∈ N and any ⊗ ∈ {∧,∨}.
2. Pushing in all the yesterday modalities in such a way that

no F operator appears in the scope of a Y operator; this is
done by the following rewriting rules:
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Algorithm 2 Algorithm PUSH Y

1: procedure PUSH Y(ϕ)
2: if ϕ ∈ pLTL then
3: return ϕ
4: else if ϕ = YkF(ϕ1) then
5: return F(PUSH Y(Ykϕ1)) ▷ Rule R4

6: else if ϕ = Yk
∨c
i=1 ϕi then

7: return
∨c
i=1 PUSH Y(Ykϕi) ▷ Rule R3

8: else if ϕ = Yk
∧c
i=1 ϕi then

9: return
∧c
i=1 PUSH Y(Ykϕi) ▷ Rule R3

10: else
11: unreachable code
12: end if
13: end procedure

R3: Yi(ϕ1 ⊗ ϕ2)⇝ Yiϕ1 ⊗ Yiϕ2
R4: YiFϕ1 ⇝ FYiϕ1

for any i ∈ N and any ⊗ ∈ {∧,∨}.
3. Pulling out all disjunctions in such a way that, for all sub-

formulas ψ of type ϕ1∨ϕ2, either ψ is not in the scope of
any F operator or both ϕ1 and ϕ2 contain no F modalities;
this is done by the following rewriting rules:
R5: F(

∨c
i=1 ϕi)⇝

∨c
i=1 Fϕi

R6:
∧c
i=1

∨di
j=1 ϕi,j ⇝

∨
S∈A

∧
ψ∈S ψ

for some c, d1, . . . , dm ∈ N, where, for any 1 ≤ i ≤ c,
Ci = {ϕi,1, . . . , ϕi,di} and A := {{ψ1, . . . , ψm} | ψi ∈
Ci, ∀1 ≤ i ≤ di}. Rule R6 corresponds to the transfor-
mation into disjunctive normal form (DNF).
The previous rewriting rules are arranged into Algo-

rithm 1, which implements the transformation of LTL[X,F]
into normal form: it applies rules R1, R2, R5, and R6 in a
bottom-up fashion, and calls Algorithm 2 for the top-down
application of rules R3 and R4. Since the rewriting steps
lead to equivalent formulas, we obtain the following (the
proof is straightforward and thus omitted).
Lemma 1. For any formula ϕ ∈ LTL[X,F], Algorithm 1
returns a formula ϕ′ such that ϕ′ ≡ ϕ and ϕ′ ∈ nfLTL[X,F].

4.3 Analysis of the Complexity of Algorithm 1
Algorithm 1 deserves a dedicated complexity analysis of the
size of the resulting formula. Clearly, at each iteration, the
size of the output formula is dominated by the application
of rule R6, which corresponds to computing the DNF of a
formula. It follows that the worst case for Algorithm 1 is
when the input formula ϕ has the following form:

F(

cl∧
il=1

dl∨
jl=1

. . .F(

c2∧
i2=1

d2∨
j2=1

F(

c1∧
i1=1

d1∨
j1=1

ϕi1,j1,...,il,jl)) . . . )

for some l ∈ N and some c1, d1, . . . , cl, dl ∈ N, where
ϕi1,j1,...,il,jl is a literal, for each i1, j1, . . . , il, jl ∈ N.

First, we show that l, that is the number of alternations
in ϕ, is logarithmic in the size of ϕ. Let n = |ϕ| and let ε
be the smallest among c1, . . . , cl, d1, . . . , dl. We have that:
n ∈ Ω(c1 ·d1 ·. . .·cl ·dl), so n ≥ ε2·l. Thus, l ∈ logε(O(n)).

Algorithm 1, applied to the formula ϕ of above, executes
rules R5-R6 exactly l times. It is worth writing the size
of the output formula for each of the l executions of rules
R5-R6. In the first execution of rules R5-R6, the algorithm
performs the following transformations, respectively (we in-
dicate with grey boxes those portions of the formula that
change at each step):

F(

cl∧
il=1

dl∨
jl=1

. . .F(

c2∧
i2=1

d2∨
j2=1

F(

c1∧
i1=1

d1∨
j1=1

ϕi1,j1,...,il,jl) . . . ))

F(

cl∧
il=1

dl∨
jl=1

. . .F(

c2∧
i2=1

d2∨
j2=1

F(

(d1)
c1∨

i1=1

c1∧
j1=1

ψ1
i1,j1,...,il,jl)) . . . ))

F(

cl∧
il=1

dl∨
jl=1

. . .F(

c2∧
i2=1

d2+(d1)
c1∨

j2=1

F (

c1∧
j1=1

ψ1
j1,...,il,jl)) . . . )

for some literals ψ1
i1,j1,...,il,jl

and ψ1
j1,...,il,jl

, for any
i1, j1, . . . , il, jl in their respective range. In the second exe-
cution of rules R5-R6, the algorithm performs the following
transformations, respectively:

F(

cl∧
il=1

dl∨
jl=1

. . .F(

c2∧
i2=1

d2+(d1)
c1∨

j2=1

F(

c1∧
j1=1

ψ1
j1,i2,j2,...,il,jl)) . . . )

F(

cl∧
il=1

dl∨
jl=1

. . . F(

(d2+(d1)
c1 )c2∨

i2=1

c2∧
j2=1

F(

c1∧
j1=1

ψ2
j1,i2,j2,...,il,jl)) . . . )

F(

cl∧
il=1

dl∨
jl=1

. . .

d3+(d2+(d1)
c1 )c2∨

i3=1

F (

c2∧
j2=1

F(

c1∧
j1=1

ψ2
j1,j2,...,il,jl)) . . . )

for some literals ψ1
j1,i2,j2...,il,jl

and ψ2
j1,j2,...,il,jl

, for any
j1, i2, j2, . . . , il, jl in their respective range. In the last exe-
cution of rules R5-R6, the algorithm performs the following
transformations, respectively:

F(

cl∧
il=1

dl+(dl−1+(···+(d1)
c1 )...)

cl−1∨
jl=1

. . .F(

c1∧
j1=1

ψl−1
j1,...,il,jl

) . . . ))

F(

(dl+(···+(d1)
c1 )...)cl∨

il=1

cl∧
jl=1

. . .F(

c1∧
j1=1

ψl
j1,...,il,jl) . . . ))

(dl+(···+(d1)
c1 )...)cl∨

il=1

F (

cl∧
jl=1

. . .F(

c1∧
j1=1

ψl
j1,...,il,jl) . . . ))

for some literals ψl−1
j1,...,il,jl

and ψlj1,...,il,jl , for any
j1, i2, j2, . . . , il, jl in their respective range.

We now estimate the size of the last formula. Let d
be the greatest among {di}li=1. The function dl + (· · · +
(d1)

c1)...)cl is less than (d + (. . . + (d)c1)...)cl , and in turn
less than (d · (. . . · (d)c1)...)cl , obtained by replacing sums
with multiplications. It follows that the size of the formula
resulting from the last execution of rules R5-R6 is less then:

(d)
l·

l∏
i=1

ci
·
l∏
i=1

ci
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Let c be the greatest among {ci}li=1. Since c is a constant,
l ∈ logε(O(n)), and logε(O(n)) = logc(O(n))

logc(ε)
, we have that

l ∈ logc(O(n)), and therefore:

l∏
i=1

ci ≤
l∏
i=1

c = cl ∈ clogc(O(n)) ∈ O(n)

Since d (which is the greatest among {di}li=1) is a constant,
we have that:

(d)
l·

l∏
i=1

ci
·
l∏
i=1

ci ≤ (d)logc(O(n))·O(n) · O(n) ≤ (d)O(n2).

Therefore, in the worst case, the size of the formula result-
ing from the application the rules R5-R6 is at most singly
exponential in the size of the starting formula.

5 Transformation into F(pLTL)
In this section, we present the second main step required
by our pastification technique. We first define dependency
trees, which are labelled trees used to represent the tempo-
ral interplay between “eventualities” (i.e., subformulas in the
scope of an F operator) in an LTL[F,∧] formula. Then, com-
bining both the translation in normal form presented in the
previous section, and the machinery provided by the depen-
dency trees, we show how to construct a translation of an
nfLTL[X,F] formula into F(pLTL).

5.1 From Normal Form to Dependency Trees
We consider first a formula ϕ ∈ LTL[F,∧], which constitutes
the basic building block of the normal form nfLTL[X,F]. By
construction, we can assume without loss of generality that
ϕ is of the form α ∧ F(β1) ∧ · · · ∧ F(βn), for some n ∈ N,
where α ∈ pLTL (i.e., α is a pure-past formula, including
⊤) and βi ∈ LTL[F,∧], for each 1 ≤ i ≤ n.

For such a formula ϕ ∈ LTL[F,∧], we define a tree-
shaped structure, called dependency tree for ϕ, that reflects
the nesting of the F operators in ϕ. In particular, each node
of the tree represents what ϕ enforces at a certain instant,
while an edge captures the temporal connection between
what holds at a given node of the tree and the eventualities
that have to be fulfilled in its future. However, whenever a
conjunction of multiple eventualities has to be realised in the
future of a given node, the tree branches without imposing
any ordering among them.

Definition 3. Let ϕ ∈ LTL[F,∧]. The dependency tree of ϕ
is a tree T = (V,E, r, µ, ν), with:

• set of nodes V ,
• set of edges E,
• a distinguished root r ∈ V ,
• labelling functions µ : V → LTL[F,∧] and ν : V →
LTL[F,∧],

and such that V and E are the minimal sets respecting the
following conditions:

• r ∈ V and µ(r) = ϕ;

p

p

YYr

s ∨ Yq

Yq ∧ p

Figure 1: Example of dependency tree for the formula p ∧ F(p ∧
F(Yq ∧ p) ∧ F(YYr ∧ F(s ∨ Yq))). For sake of clarity, only the ν
labeling function is depicted.

• for any node v ∈ V , if µ(v) = α ∧ F(β1) ∧ · · · ∧ F(βn)
(where α ∈ pLTL, n ∈ N, and βi ∈ LTL[F,∧], for each
1 ≤ i ≤ n), then:
– ν(v) = α;
– v has n children v1, . . . , vn ∈ V such that µ(vi) = βi,

for all 1 ≤ i ≤ n.

Observe that such a dependency tree for ϕ, in the worst
case, has size at most linear in the size of ϕ. From now
on, given a dependency tree T = (V,E, r, µ, ν), we denote
with Π(T ) the set of paths from the root to a leaf of T , that
is, sequences π = ⟨π1, . . . , πn⟩, for some n ∈ N, where:
r = π1; for every 1 ≤ i ≤ n − 1, (πi, πi+1) ∈ E; and
(πn, v) ̸∈ E, for every v ∈ V .

Example 1. Figure 1 shows the dependency tree for the for-
mula ϕ := p ∧ F(p ∧ F(p ∧ Yq) ∧ F(YYr ∧ F(s ∨ Yq))).

5.2 From Dependency Trees to F(pLTL)

Consider a formula of nfLTL[X,F], which by definition is of
the following type: Xk

∨c
i=1 ϕi, for some k, c ∈ N , where

ϕi belongs to LTL[F,∧], for each 1 ≤ i ≤ c. Starting from
the dependency tree of any ϕi ∈ LTL[F,∧], our first goal is
to construct a pure past formula ψki that is equivalent to ϕi
when ϕi is interpreted exactly at time point k (which is the
case relevant to us, due to the Xk preceding

∨c
i=1 ϕi).

To illustrate the idea behind this transformation, let ϕ be
an LTL[F,∧] formula with dependency tree T . By consid-
ering separately each path of T that goes from the root to a
leaf, we can “rewrite” each branch upside-down (i.e., going
from the leaf to the root), by means of a formula that uses
only the past modalities once (O), weak yesterday (Ỹ), and
yesterday (Y), as temporal operators, and that appropriately
reverses the nesting of eventualities on that branch. Such
formulas (one for each reversed path) will coincide in the de-
scription of the “common past”, which is the portion of the
tree shared by all the branches up to the root of T . Moreover,
their conjunction guarantees that all and only those orders
imposed by the original LTL[F,∧] formula are captured.

The transformation, defined below, is parameterized with
respect to a number k ∈ N, which is supposed to repre-
sent the number of nested tomorrow operators in the original
nfLTL[X,F] formula Xk

∨c
i=1 ϕi. As an auxiliary notion, for

any k ∈ N, let atk be the formula Ỹk+1⊥∧Yk⊤. Clearly, for
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any state sequence σ and any i ∈ N, it holds that σ, i |= atk
iff i = k.
Definition 4. Let ϕ be a formula of LTL[F,∧], let T =
(V,E, r, µ, ν) be its dependency tree, and let k ∈ N. Given
a path π = ⟨π1, . . . , πn⟩ from the root to a leaf of T , we
inductively define the formula k⟨⟨ϕ⟩⟩iπ as follows, for each
1 ≤ i ≤ n:

k⟨⟨ϕ⟩⟩iπ =

{
O(ν(π1) ∧ atk) if i = 1

O(ν(πi) ∧ k⟨⟨ϕ⟩⟩i−1
π ) otherwise

In particular, the formula k⟨⟨ϕ⟩⟩nπ corresponds to the for-
mula of the whole branch π = ⟨π1, . . . , πn⟩.

For any k ∈ N, we define past(ϕ, k) as the F(pLTL) for-
mula equivalent to the LTL[F,∧] formula ϕ, when ϕ is inter-
preted at time point k. It is obtained by conjuctively relating
the pure past formulas corresponding to each branch (from
root to a leaf) of the dependency tree T of ϕ, as follows:

past(ϕ, k) = F(
∧

π∈Π(T ).
π=⟨π1,...,πn⟩

k⟨⟨ϕ⟩⟩nπ)

Example 2. Given ϕ as in Example 1, for any k ∈ N,
past(ϕ, k) is the following formula:

F
(
O((s ∨ Yq) ∧ O(YYr ∧ O(p ∧ O(p ∧ atk))))∧
O((p ∧ Yq) ∧ O(p ∧ O(p ∧ atk)))

)
Example 3. Consider the LTL[X,F] formula ϕ := F(p0 ∧
(Fq1 ∧ Fq2)). In this case, ϕ requires a time point where
p0 holds followed by a time point in which q1 holds and by
a time point in which q2 holds. The formula past(ϕ, 0) is
F(O(q1∧Op0)∧O(q2∧Op0)) and it captures all and only the
models of ϕ. For example, the trace ⟨{p0}, {q1}, {p0}, {q2}⟩
is a model of past(ϕ, 0) as well as of ϕ, since the first time
point where ϕ holds (in this case 0) suffices to satisfy ϕ.

The next lemma shows that, for any ϕ ∈ LTL[F,∧] and
for any k ∈ N, the formula ϕ is equivalent to past(ϕ, k)
when ϕ is interpreted at time point k.
Lemma 2. For any k ∈ N, and for any ϕ ∈ LTL[F,∧], it
holds that Xkϕ ≡ past(ϕ, k).

Proof. Let k ∈ N. We prove that Xkϕ ≡ past(ϕ, k) by
induction on the number f of nested eventually (F) operators
in ϕ (which corresponds also to the height of the dependency
tree of ϕ).

Base case. If f = 0, then ϕ := Xkα with α ∈ pLTL (α is
a pure-past LTL+P formula). By definition, the dependency
tree of α is made of only its root r and it is such that ν(r) =
µ(r) = α. For all state sequences σ, it holds that:

σ, 0 |= Xkα⇔ σ, k |= α

⇔ ∃j ≥ 0 . ∃i ≤ j . (σ, i |= α ∧ i− k = 0)

⇔ σ, 0 |= F(O(α ∧ atk))

⇔ past(ϕ, k)

Therefore, Xkϕ ≡ past(ϕ, k).
Inductive step. If f > 0, then ϕ = α ∧ F(β1) ∧ · · · ∧

F(βm) for some m ∈ N. We prove that σ |= Xkϕ iff σ |=

past(ϕ, k), for all state sequence σ. We have that σ, 0 |=
Xk(α ∧ F(β1) ∧ · · · ∧ F(βm)) iff:

(σ, k |= α) ∧ (∃j1 ≥ k . σ, j1 |= β1) ∧ . . .
∧ (∃jm ≥ k . σ, jm |= βm)

which in turn is equivalent to:
(σ, k |= α) ∧ (∃j1 ≥ k . σj1 , 0 |= β1) ∧ . . .

∧ (∃jm ≥ k . σjm , 0 |= βm)

where σji is the state sequence corresponding to the suffix
of σ starting at ji, for all 1 ≤ i ≤ m. Since the number of
nested F in βi (for each 1 ≤ i ≤ m) is strictly smaller than
the number of nested F in ϕ, by inductive hypothesis we
have that βi ≡ past(βi, 0), for all 1 ≤ i ≤ m. Therefore:

(σ, k |= α) ∧ (∃j1 ≥ k . σj1 , 0 |= past(β1, 0)) ∧ . . .
∧ (∃jm ≥ k . σjm , 0 |= past(βm, 0))

We now focus on a generic conjunct of the formula above,
say, the one with index i, for some 1 ≤ i ≤ m. Let Tβi be
the dependency tree of βi. The height of Tβi

is at most f−1,
i.e., all paths in Π(Tβi

) are long at most f − 1. Without loss
of generality, we suppose that are all of length f − 1. By
definition of the formula past(βi, 0), we have that:

σji , 0 |= F(
∧

⟨π1,...,πf−1⟩
∈Π(Tβi

)

O(ν(πf−1) ∧ O(· · · ∧ O(ν(π1) ∧ at0))))

Thus, we can say that σji , 0 |= past(βi, 0) iff:

∃j′i ≥ 0.
∧

⟨π1,...,πf−1⟩
∈Π(Tβi

)

∃hf−1 ≤ j′i.∃hf−2 ≤ hf−1. . . . ∃h1 ≤ h2.

(σji , hf−1 |= ν(πf−1) ∧ · · · ∧ σji , h1 |= ν(π1)∧
h1 = 0)

It follows that, for any 1 ≤ i ≤ m, (σ, k |= α) ∧ (∃ji ≥ k .
σji , 0 |= past(βi, 0)) is true iff:

∃ji ≥ 0 .
∧

⟨π1,...,πf−1⟩
∈Π(Tβi

)

∃hf−1 ≤ ji . ∃hf−2 ≤ hf−1 . . . ∃h0 ≤ h1.

(σ, hf−1 |= ν(πf−1) ∧ · · · ∧ σ, h1 |= ν(π1)∧
∧ σ, h0 |= α ∧ h0 = k)

Then (σ, k |= α) ∧ (∃j1 ≥ k . σj1 , 0 |= β1) ∧ · · · ∧ (∃jm ≥
k . σjm , 0 |= βm) is true iff:

∃j1 ≥ 0.
∧

⟨π1,...,πf−1⟩
∈Π(Tβ1

)

∃hf−1 ≤ j1.∃hf−2 ≤ hf−1 . . . ∃h0 ≤ h1.

(σ, hf−1 |= ν(πf−1) ∧ · · · ∧ σ, h1 |= ν(π1)∧
∧σ, h0 |= α ∧ h0 = k)∧

∧ · · · ∧

∃jm ≥ 0.
∧

⟨π1,...,πf−1⟩
∈Π(Tβm )

∃hf−1 ≤ jm.∃hf−2 ≤ hf−1. . . . ∃h0 ≤ h1.

(σ, hf−1 |= ν(πf−1) ∧ . . . ∧ σ, h1 |= ν(π1)∧
∧σ, h0 |= α ∧ h0 = k)
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Since the variables j1, . . . , jm appear only as guards for the
quantified variable hf−1, the existential quantification on
j1, . . . , jm can be factorized, obtaining the following:

∃j ≥ 0 . (∧
⟨π1,...,πf−1⟩

∈Π(Tβ1
)

∃hf−1 ≤ j.∃hf−2 ≤ hf−1. . . . ∃h0 ≤ h1.

(σ, hf−1 |= ν(πf−1) ∧ · · · ∧ σ, h1 |= ν(π1)∧
∧ σ, h0 |= α ∧ h0 = k)∧

∧ · · · ∧∧
⟨π1,...,πf−1⟩
∈Π(Tβm )

∃hf−1 ≤ j.∃hf−2 ≤ hf−1. . . . ∃h0 ≤ h1.

(σ, hf−1 |= ν(πf−1) ∧ · · · ∧ σ, h1 |= ν(π1)∧
∧ σ, h0 |= α ∧ h0 = k)

)

Since, by definition, the dependency tree Tϕ of ϕ is made
of its root node whose children are the root nodes of the
dependency tree of β1, . . . , βm, we have that for each path
⟨π1, . . . , πf ⟩ in Π(Tϕ) there exists an 1 ≤ i ≤ m and a
path ⟨π′

1, . . . , π
′
f−1⟩ in Π(Tβi

) such that ν(π1) = α, and
ν(πl) = ν(π′

l−1), for each 1 < l ≤ f (the vice versa holds
as well). In other words, the paths in Π(Tϕ) are the paths
in Π(Tβi) prefixed by the root of Tϕ. Therefore, up to a
renaming of the quantified variables, we have:

∃j ≥ 0.
∧

⟨π1,...,πf ⟩
∈Π(Tϕ)

∃hf ≤ j.∃hf−1 ≤ hf . . . . ∃h1 ≤ h2.

(σ, hf |= ν(πf ) ∧ · · · ∧
∧ σ, h1 |= α ∧ h1 = k)

Thus, we showed that, if σ |= Xkϕ iff:

σ, 0 |= F(
∧

⟨π1,...,πf ⟩
∈Π(Tϕ)

O(ν(πf ) ∧ O(· · · ∧ O(ν(π1) ∧ atk))))

Then, by definition of past(·, ·), σ, 0 |= past(ϕ, k).

5.3 Analysis of the Size of past(ϕ, k)
For any ϕ ∈ LTL[F,∧] and any k ∈ N, we show that the
size of past(ϕ, k) is at most quadratic in the size of ϕ and
linear in k. In particular, we will show that |past(ϕ, k)| ∈
O(n2 + k · n), where n = |ϕ|. Let Tϕ be the dependency
tree of ϕ. By definition of past(·, ·), we have that:

|past(ϕ, k)| =
∑

π=⟨π1,...,πf ⟩
∈Π(Tϕ)

(
O(k) +

∑
1≤j≤f

(|ν(πj)|+O(1))
)

The task now is to estimate the number of paths π in Tϕ from
the root to a leaf, as well as the dimension of the labels ν(v)
of the nodes v in such paths. In order to do that, we notice
that, since any node in Tϕ is labeled by ν with a different
occurrence of a subformula of ϕ with respect to any other
node in Tϕ, this implies that:

• the number of nodes of Tϕ is less than the number of sub-
formulas of ϕ, and thus also less than the number of char-
acters of ϕ, i.e., n;

•
∑
v∈Vϕ

|ν(v)| ≤ n, where Vϕ is the set of nodes of Tϕ.

This implies that the number of paths from the root to each
leaf is less than n and that Σ1≤i≤f |ν(πi)| ≤ n, for any path
⟨π1, . . . , πf−1⟩ ∈ Π(Tϕ), having that:

|past(ϕ, k)| =
∑

π=⟨π1,...,πf ⟩
∈Π(Tϕ)

(
k +

∑
1≤j≤f

(|ν(πj)|+O(1))
)

∈ O(n2 + k · n)

5.4 Putting the Results Together
Given a formula Xk

∨c
i=1 ϕi of nfLTL[X,F], the last remain-

ing bit is to combine the translation of each ϕi ∈ LTL[F,∧],
shown in the previous part, to obtain an equivalent formula
in F(pLTL). By the distributive property of the tomor-
row and eventually modalities and by Lemma 2, for every
1 ≤ i ≤ c, we have the following equivalences:

Xk
c∨
i=1

ϕi ≡
c∨
i=1

Xkϕi ≡
c∨
i=1

past(ϕi, k) ≡ F
c∨
i=1

ψi

where past(ϕi, k) = Fψi, for some ψi ∈ pLTL. The for-
mula F

∨c
i=1 ψi is the output of our entire pastification pro-

cedure, and it clearly belongs to F(pLTL).
We now estimate the size of F

∨c
i=1 ψi. Let n =

|Xk
∨c
i=1 ϕi|, and let ni = |ϕi|, for each 1 ≤ i ≤ c. By

Section 5.3, |ψi| ∈ O((ni)
2 + k · ni). We have that:

|F
c∨
i=1

ψi| =
c∑
i=1

|ψi|+O(1)

=
c∑
i=1

O((ni)
2 + k · ni)

=
c∑
i=1

O((ni)
2) +

c∑
i=1

O(k · ni)

≤ O((

c∑
i=1

ni)
2) +O(k) ·

c∑
i=1

O(ni)

≤ O(n2) since k ≤ n and
c∑
i=1

ni ≤ n

The transformation of any LTL[X,F] formula ϕ into an
equivalent one in F(pLTL) works as follows: first, it applies
the transformation decribed in Section 4 to translate ϕ into
normal form, and then it goes from normal form to pure past
LTL as described in this section. From Lemmas 1 and 2 and
from the previous complexity analysis of all the steps, this
theorem follows.

Theorem 1. There exists a pastification from LTL[X,F] into
F(pLTL) of 1-exponential size.
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(a) Plot for the size.
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(b) Plot for the number of occurrences of temporal operators.
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(c) Plot for the number of occurrences of Boolean operators.
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(d) Plot for the depth.

Figure 2: Plots for Section 6. The x-axis is for the input formula while the y-axis is for the output formula. The orange line is the diagonal,
and the blue line interpolates the mean value among the output formulas correspoding to an input of a given size.

By dualization of the eventually operator F into the al-
ways operator G, and given the equivalence between the Xϕ
and ¬X¬ϕ, we obtain a similar result for the safety fragment
LTL[X,G].

Corollary 1. There exists a pastification from LTL[X,G]
into G(pLTL) of 1-exponential size.

We point out that the translation from dependency trees
to F(pLTL) produces formulas of type F(α) where α is a
pLTL formula in negation normal form devoid of the since
(S) operator. By duality, it follows that the pastification of
LTL[X,G] into G(pLTL) is such that the inner pLTL formula
is in negation normal form and it does not contain any trig-
ger (T) operator.

6 Implementation
We implemented the algorithm described in the previous
sections in a tool called Pastello,2 which uses the APIs of
the BLACK tool (Geatti, Gigante, and Montanari 2021) for
all kinds of manipulations of formulas. We use BLACK also
to check the equivalence between input and output formulas.
The code for the implementation took less than 500 lines of
C++ code.

We evaluated Pastello on the following set of bench-
marks. For each i ∈ {5, . . . , 50}, we randomly generated
20 formulas of LTL[X,F] of size i± 10. From now on, with
input formula we refer to one of the benchmark formulas,
and we refer to its corresponding output formula to the for-

2http://users.dimi.uniud.it/∼luca.geatti/tools/pastello.html
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mula produced by giving to Pastello the input formula.
For each input formula, we measured four different met-

rics with respects to its corresponding output formula:
(i) size, see Fig. 2a; (ii) number of occurrences of tempo-
ral operators, see Fig. 2b; (iii) number of occurrences of
Boolean operators, see Fig. 2c; (iv) depth, defined as the
maximum number of nested temporal operators, see Fig. 2d.

Before discussing the results of the experimental evalua-
tion, we describe how the plots are organized. The x-axis
(resp., y-axis) refers to the input formula (resp., output for-
mula). In all the four plots, the x-axis is in linear scale, while
the y-axis is in logarithmic scale, except for Fig. 2d in which
both axis are in linear scale. The orange lines represent the
diagonals of the plots. The blue lines, instead, are piece-
wise functions that interpolate the mean value for the output
formulas corresponding to an input formula of a given size.
The more the blue line converges (resp., diverges) from the
orange line, the more the trend of the output is polynomial
(resp., exponential) with respect to the input.

Consider Fig. 2a, which plots the size of the output for-
mula (on the y-axis, in logarithmic scale) with respect to
the size of the input formula (on the x-axis, in linear scale).
The exponential growth is quite evident from the trend of
the blue line, which diverges from the orange line (the diag-
onal). This allows us to observe that the exponential blowup
of the pastification algorithm from LTL[X,F] into F(pLTL)
is not only a matter of worst-case scenario, but, instead, is
the common trend for the majority of the cases.

We refined the previous analysis of the size of the out-
put formula by plotting the number of temporal operators
(Fig. 2b) and Boolean operators (Fig. 2c) in the output for-
mulas with respect to the input ones. Both plots show the
same exponential growth and they indicate that the expo-
nential trend in Fig. 2a is due to the growth of the number of
temporal operators as much as to the growth of the number
of Boolean operators.

Finally, the only one of the four metric that do not grow
exponentially is the depth. In fact, the depth of the output
formulas, plotted in Fig. 2d, follows a linear trend with re-
spect to the input ones. This comes with no surprise, since:
(i) during the transformation into normal form, all rewriting
rules increase the depth of the formula only by a constant
factor; (ii) for any formula ϕ in normal form, the height of
the dependency tree Tϕ is exactly the depth of ϕ; (iii) the
depth of the formula built starting from a dependency tree T
is exactly the height of T .

7 Conclusions and Open Problems
We presented a purely syntactic pastification algorithm for
LTL[X,F] formulas that produces F(pLTL) formulas of size
singly exponential with respect to the size of the input. The
algorithm is purely syntactical and thus simple to imple-
ment. As a matter of fact, we implemented it by using the
APIs of the tool BLACK, and the whole source code took less
than 500 lines.

We conclude the paper by discussing some limits of our
technique. Consider the logic coSafetyLTL, that is, LTL in
NNF with temporal modalities restricted to X, F, and U. To

p0

q1 q2

p1 p2

Figure 3: Example of a natural generalization of dependency tree
for the coSafetyLTL formula F(p0 ∧ ((p1Uq1) ∧ (p2Uq2))).

our knowledge, the best algorithms for coSafetyLTL pro-
duce a 3-exponential size pastification (De Giacomo et al.
2021). The proposed technique, based on dependency trees,
is hardly applicable to formulas of coSafetyLTL. For in-
stance, consider the coSafetyLTL formula F(p0∧((p1Uq1)∧
(p2Uq2))). One may think of a straightforward adaptation of
the techniques that enriches dependency trees with the possi-
bility of labeling both nodes and edges, corresponding to the
universal part (i.e., leftmost argument) of the until operators.
Figure 3 shows a possible (generalized) dependency tree for
the above formula. By a corresponding generalization of the
translation from dependency trees to F(pLTL) formulas, one
would obtain the formula:

F(O(q1 ∧ Y(p1 S (p1 ∧ p0))) ∧ O(q2 ∧ Y(p2 S (p2 ∧ p0))))
Unfortunately, such a formula is not equivalent to the origi-
nal one, since e.g., the trace ⟨{p0, p1}, {q1}, {p0, p2}, {q2}⟩
is a model of the F(pLTL) formula but not of the original
one. In particular, while for the LTL[X,F] case the existence
of two points where p0 holds is not a problem (see Example
3), in case of coSafetyLTL formulas we must take into ac-
count also the universal condition of the until modalities. In
the above trace, e.g., the universal condition p2 is violated at
the first and the second time points.

There are also other meaningful open questions. Find-
ing a lower bound for the complexity of the pastification of
LTL[X,F] is still an open problem. We conjecture that the
algorithm that we presented for the 1-exponential size pasti-
fication is optimal, and in particular that there exists a family
of formulas {ϕi}ωi=1 in LTL[X,F] such that, for all i ∈ N,
any formula in F(pLTL) that is equivalent to ϕi is of size
at least exponential in |ϕi|, that is, LTL[X,F] can be expo-
nentially more succinct than F(pLTL). As a matter of fact,
we conjecture that the family F(

∧n
i=1(pi ∨ Fqi)) may be a

witness of such a lower bound.
We also conjecture that there is no pastification algorithm

for coSafetyLTL that produces formulas of size less than
O(n!), where n is the size of the input formula. As a matter
of fact, we see no way to produce a pastification for the fam-
ily of formulas F(p0∧

∧n
i=1 piUqi) that does not enumerate

all possible orders over q1, . . . , qn. This also suggests us that
a singly exponential pastification procedure, as the one that
we proposed in this paper, is very unlikely for coSafetyLTL.

In view of the above remarks, we believe that the study
of the optimality of the proposed algorithm, and the related
succinctness properties of LTL[X,F] and F(pLTL), are defi-
nitely interesting lines of research.

Last but not least, devising a syntactic pastification algo-
rithm for coSafetyLTL is an important research direction.
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