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Abstract

The principle of maximum entropy (MaxEnt principle) con-
stitutes a valuable methodology for probabilistic common-
sense reasoning by adding missing information to probabilis-
tic conditional belief bases in an information theoretically op-
timal way. In this paper, we integrate linear arithmetic con-
straints over the integers and reals into propositional proba-
bilistic conditionals in order to be able to formalize uncer-
tain beliefs about arithmetic expressions. The satisfiability of
(sets of) constraints is decided modulo theory such that prob-
abilistic reasoning stays finite although the constraints range
over infinite domains. Therewith, we provide a novel exten-
sion of the MaxEnt principle to beliefs about infinite domains.

1 Introduction
Probability theory constitutes one of the most powerful and
widely used frameworks for quantitative uncertain reason-
ing. Probabilistic conditionals of the form (B|A)[ξ] with
the meaning “if A holds, then B follows with probabil-
ity ξ” are a concise means to make beliefs explicit, and
inductive reasoning methodologies like probabilistic net-
works or the principle of maximum entropy (MaxEnt prin-
ciple, (Paris 1994)) provide convenient methods for answer-
ing queries. This paper focuses on the MaxEnt principle
as a most appropriate form of probabilistic commonsense
reasoning (Paris 1998) which endows the reasoner with a
nonmonotonic inference relation that allows for drawing in-
ferences from probabilistic conditional belief bases. By ful-
filling the paradigm of informational economy (Gärdenfors
1988), reasoning at maximum entropy adds as little infor-
mation as possible and, thus, is as cautious as possible.

While MaxEnt reasoning wrt. finite domains is under-
stood quite well, it is an open question how to extend the
MaxEnt principle to beliefs about infinite domains. The
naı̈ve approach of considering probabilistic conditionals
which are defined over a first-order language with infinitely
many constants runs into the fundamental problem that
there is no uniform distribution on countably infinite sam-
ple spaces. Therefore, common approaches to MaxEnt rea-
soning wrt. infinite domains consider limit processes (Bar-
nett and Paris 2008; Paris and Rad 2010; Thimm and Kern-
Isberner 2012) or come up with a sophisticated compara-
tive notion of maximality (Landes and Williamson 2015;
Williamson 2008) without a generally accepted policy so far.

In this paper, we integrate (linear arithmetic) constraints
over the integers and reals into propositional probabilistic
conditionals in order to be able to formalize uncertain beliefs
about arithmetic expressions. Therewith, we subtly open the
door for beliefs about infinite domains, both countably in-
finite (Z) and uncountably infinite (R). We give a running
example for this paper which is about uncertain beliefs that
involve such constraints.
Example 1. A shareholder wonders if the company in which
she holds shares will pay a dividend at the end of the year.
She believes with a probability of 0.8 that this is the case if
the company makes high profit, i.e., if the income exceeds
the expenses by more than $ 1, 000, 000. So far, the com-
pany has produced an income of $ 10, 000, 000. There are
further payments pending, but it is unclear whether they will
be executed this year. The expenses are unlikely to exceed
$ 12, 000, 000 as the main investments have already been fi-
nalized. Thus, with a probability of 0.9 the expenses will
stay below the threshold of $ 12, 000, 000.

For instance, in Ex. 1 the condition that “the income ex-
ceeds the expenses by more than $ 1, 000, 000” is formaliz-
able by the constraint xinc − yexp > 1, 000, 000.

The satisfiability of constraints within conditionals is
tested modulo theory (known as SMT, (Barrett et al. 2021))
such that the conditional language remains finite and no con-
ceptual adaption of the MaxEnt principle has to be made.
Our approach is in line with (de Salvo Braz et al. 2016)
where probabilistic inferences modulo theory were intro-
duced before. Novel here is the combination with the Max-
Ent principle. A major part of the paper deals with the in-
fluence of the syntactic representation of constraints on rea-
soning which is also not a subject in (de Salvo Braz et al.
2016). By aggregating possible worlds with the same con-
ditional structure (Kern-Isberner 2004), we come up with a
notion of aggregated MaxEnt models which is independent
of the syntactic representation of constraints.

The rest of the paper is organized as follows. First, we
recall some preliminaries on probabilistic conditional rea-
soning in general and on MaxEnt reasoning in particular be-
fore we briefly discuss the theory of linear arithmetic. After
that, we introduce a propositional logic of linear arithmetic
constraints and use this logic to define probabilistic condi-
tionals with constraint representatives. Thereafter, we show
how MaxEnt reasoning based on such conditionals works
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and how it can be made independent of the syntactic repre-
sentation of constraints. Eventually, we discuss related work
and conclude with an outlook.

2 Preliminaries
We consider a propositional language L(Σ) which is de-
fined over a finite signature Σ. Elements in Σ are called
atoms. Formulas in L(Σ) are either atoms or compounded
formulas of the form A ∧ B (conjunction), A ∨ B (disjunc-
tion), or ¬A (negation) where A and B are formulas. A
literal is either an atom or its negation. The semantics of for-
mulas is given by interpretations I ∈ Int(Σ) which assign
a truth value from {0, 1} to formulas as usual. To shorten
expressions, we abbreviate conjunctions A ∧ B with AB,
negations ¬A with A, and tautologies A ∨A with ⊤.

Probabilistic conditionals (B|A)[ξ] consisting of formu-
las A,B ∈ L(Σ) and a probability ξ ∈ [0, 1] formalize un-
certain statements of the form: “If A holds, then B follows
with probability ξ.” With PCL(Σ) we denote the set of all
conditionals over Σ. A finite set of conditionals is called be-
lief base. The semantics of conditionals is given by probabil-
ity distributions over possible worlds. Here, possible worlds
are in a one-to-one correspondence with interpretations and
written as conjunctions of those literals which hold in the
respective interpretation. That is, a possible world is a com-
plete conjunction of literals in which every atom from Σ oc-
curs once, either positive or negated. The set of all possible
worlds is denoted with Ω(Σ). For ω ∈ Ω(Σ) and Σ′ ⊆ Σ,

ω|Σ′ =
∧

a∈Σ′ : ω|=a
a ∧

∧
a∈Σ′ : ω|=a

a

is the marginalization of ω on Σ′.
A probability distribution P : Ω(Σ) → [0, 1] which as-

signs a probability to each possible world in Ω(Σ) is a prob-
abilistic model of a conditional (B|A)[ξ], written

P |= (B|A)[ξ], if P(A) > 0 and P(B|A) = ξ,

whereby the probability of a formula A is the sum of the
probabilities of its models, P(A) =

∑
ω∈Ω(Σ): ω|=A P(ω),

and P(B|A) = P(AB) · P(A)−1 is the conditional proba-
bility of B given A. Further, P is a probabilistic model of a
belief base R if P models every conditional in R. If a belief
base R has a model, then R is called consistent.

Consistent belief bases usually have infinitely many prob-
abilistic models. For reasoning tasks such as drawing infer-
ences, it is useful to select a unique model among them as
calling for inferences that hold in all models often leads to
only little and uninformative new information (Wilhelm et
al. 2022). From a commonsense perspective, the maximum
entropy (MaxEnt) model MER of a consistent belief base R
is the preferable model (Paris 1998). The basic idea of the
underlying MaxEnt principle is to determine the undefined
probabilities while adding as little information as possible.
Technically, MER is the unique model of R which maxi-
mizes the entropy H(P) = −

∑
ω∈Ω(Σ) P(ω) · logP(ω),

i.e., which is given by

MER = arg max
P|=R

H(P),

where the convention 0 · log 0 = 0 applies.
For consistent belief bases R and conditionals (B|A)[ξ],

the MaxEnt principle yields the nonmonotonic relation

R |∼ME (B|A)[ξ] if MER |= (B|A)[ξ] (1)

which satisfies the properties Direct Inference (DI) and Triv-
ial Vacuity (TV),
• if (B|A)[ξ] ∈ R, then R |∼ME (B|A)[ξ], (DI)
• if R = ∅, then R |∼ME (B|A)[1] only if A |= B, (TV)
and, hence, is an inductive inference relation according to
(Kern-Isberner, Beierle, and Brewka 2020).

The goal of this paper is to integrate linear arithmetic
constraints into conditional MaxEnt reasoning. With linear
arithmetic constraints, or constraints for short, we refer to
mathematical expressions of the form

a1 · x1 + . . .+ am · xm ▷◁ a0,

where m ∈ N>0, the xi’s are numeric variables, the ai’s are
constants from Z or R, and where ▷◁ ∈ {<,≤,=, ̸=,≥, >}
(cf. (Barrett et al. 2021)). Depending on whether the vari-
ables and constants range over the integers or reals, we
refer to the arithmetic of such constraints with linear in-
teger arithmetic (LIA) or linear real arithmetic (LRA).
Note that albeit both arithmetics are defined over infinite do-
mains they are decidable. More precisely, the satisfiability
of any finite set of constraints from LRA can be decided
in polynomial time (Karmarkar 1984) whereas the satisfi-
ability of LIA-constraints is NP-complete (Papadimitriou
1981). The arithmetic LIA is also known as Presburger
arithmetic (Presburger 1929).

3 Logic of Linear Arithmetic Constraints
As preparatory work for integrating (linear arithmetic) con-
straints into conditionals, we define a propositional lan-
guage of constraints. For this, let LA = LIA ∪ LRA
be the set of constraints from either LIA or LRA. Obvi-
ously, LA is decidable just as LIA and LRA. With Sol(C)
we denote the set of the common solutions of any set of con-
straints C ⊆ LA. Further, for each constraint c ∈ LA we
introduce a fresh symbol ac and subsume all these symbols
within the (uncountably infinite) set ΣLA. We call ac the
constraint representative of c.
Definition 1 (Propositional Language of Constraints). Let
Σf

LA ⊂ ΣLA be a finite set of constraint representatives.
We call the propositional language L(Σf

LA) in which the
constraint representatives from Σf

LA play the role of atoms
the propositional language of constraints over Σf

LA.

Formulas in L(Σf
LA) and their interpretations are defined

as usual in propositional logic. However, if L(Σf
LA) shall be

coherent with LA, we have to have a closer look at the se-
mantics of formulas in L(Σf

LA) because the constraint rep-
resentatives in Σf

LA are not independent when understood
as constraints in LA in general. Instead, the satisfiability of
these constraints can depend on each other. In particular, for
each constraint

a1 · x1 + . . .+ am · xm ▷◁ a0
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in LA, there is a complementary constraint

a1 · x1 + . . .+ am · xm ϕ(▷◁) a0

where ϕ maps < to ≥, ≤ to >, = to ̸=, and vice versa. We
denote the complement of a constraint c ∈ LA with ĉ. Obvi-
ously, the solution sets of a constraint c and its complement ĉ
are disjoint and, hence, Sol({c, ĉ}) = ∅. Contrary to that, if
ac, aĉ ∈ Σf

LA, then there is an interpretation I ∈ Int(Σf
LA)

with I(ac) = 1 and I(aĉ) = 1 which states that ac and aĉ
hold at the same time. In order to exclude such “improper”
interpretations, we introduce a notion of coherency between
L(Σf

LA) and LA on the level of interpretations.

Definition 2 (Coherent Interpretation). Let Σf
LA be a finite

set of constraint representatives, and for I ∈ Int(Σf
LA) let

CS(I) = {c ∈ LA | ∃ac ∈ Σf
LA : I(ac) = 1}

∪ {ĉ ∈ LA | ∃ac ∈ Σf
LA : I(ac) = 0} (2)

be the translation of the interpretation I into the correspond-
ing set of constraints (“constraint set”) from LA. We call I
coherent if CS(I) is satisfiable and denote with Intc(Σ

f
LA)

the set of all coherent interpretations over Σf
LA.

Coherent interpretations respect LA in that they are not
self-contradictory when understood as constraint sets. That
is, Sol(CS(I)) ̸= ∅ holds iff I ∈ Intc(Σ

f
LA). In particu-

lar, there is no coherent interpretation I ∈ Intc(Σ
f
LA) with

I(ac) = I(aĉ) = 1 (or with I(ac) = I(aĉ) = 0) because
Sol({c, ĉ}) = ∅. As a consequence, ¬ac ≡ aĉ holds if logi-
cal equivalence is defined wrt. coherent interpretations only.

We call
vconf(I) = Sol(CS(I))

the set of the variable configurations which are admissible
in I ∈ Intc(Σ

f
LA). Coherent interpretations have at least one

admissible variable configuration. With

vconf(A) =
⋃

I∈Intc(Σ
f
LA) : I|=A

vconf(I)

we generalize the notion of admissible variable configura-
tions to formulas A ∈ L(Σf

LA).
Example 2. We refer to Ex. 1 and consider the constraints

p : x− y > 1, 000, 000

r : x = 10, 000, 000

o : x > 10, 000, 000

e : y ≤ 12, 000, 000

where p stands for high profit (“The income x exceeds the
expenses y by more than $ 1, 000, 000.”), r for received in-
come (“The received income is $ 10, 000, 000.”), o for in-
come with outstanding payments (“The income with out-
standing payments is higher than $ 10, 000, 000.”), and e
for maximal expenses (“The expenses are not higher than
$ 12, 000, 000.”). For simplicity, the numeric variables x
(income) and y (expenses) are assumed to be non-negative
integers. The corresponding constraint representatives are

Σf,ex
LA = {ap, ar, ao, ae}.

Not all interpretations in Int(Σf,ex
LA ) are coherent. For exam-

ple, the constraints r and o cannot be satisfied jointly and
interpretations I ∈ Int(Σf,ex

LA ) with I(ar) = I(ao) = 1 are
not coherent. Likewise, interpretations with I(ap) = 1 but
I(ao) = I(ae) = 0 are not coherent because

Sol({p, ô, ê}) = Sol({x− y > 1, 000, 000,

x ≤ 10, 000, 000, y > 12, 000, 000}) = ∅.

The coherent interpretations (denoted as complete conjunc-
tions of the literals which are true in the interpretation) are

Intc(Σ
f,ex
LA ) = {aparaoae, aparaoae, aparaoae,

aparaoae, aparaoae, aparaoae, aparaoae,

aparaoae, aparaoae, aparaoae}.

For instance, we have

vconf(aparaoae) = {(x, y) | x = 10 · 106 ∧ y < 9 · 106}.

Focusing on coherent interpretations yields a notion of
satisfiability modulo theory (SMT, cf. (Barrett et al. 2021)).

Definition 3 (Satisfiability Modulo LA). Let Σf
LA be a

finite set of constraint representatives. A formula A in
L(Σf

LA) is satisfiable modulo LA if there is a coherent in-
terpretation I ∈ Intc(Σ

f
LA) with I(A) = 1.

The coherency of interpretations has a much bigger influ-
ence than just excluding self-contradictory interpretations as
the next proposition shows.

Proposition 1. Let Σf
LA be a finite set of constraint repre-

sentatives, and let I, J ∈ Intc(Σ
f
LA) be coherent interpreta-

tions with I ̸= J . Then, vconf(I) ∩ vconf(J) = ∅.

Proof. Because I ̸= J , there is a constraint representative
ac ∈ Σf

LA with I(ac) ̸= J(ac). Without loss of gen-
erality, we assume I(ac) = 1 and J(ac) = 0. Then,
I(ac) = 1 implies c ∈ CS(I) and vconf(I) ⊆ Sol({c}) fol-
lows. Note that the variables which are not mentioned in c
but in CS(I) are not restricted by the solutions in Sol({c})
but can be chosen freely so that vconf(I) and Sol({c})
refer to the same set of variables. On the other hand,
J(ac) = 0 implies ĉ ∈ CS(J) and vconf(J) ⊆ Sol({ĉ})
holds. Because Sol({c}) ∩ Sol({ĉ}) = ∅, we can conclude
vconf(I) ∩ vconf(J) ⊆ Sol({c}) ∩ Sol({ĉ}) = ∅.

According to Prop. 1, different coherent interpretations
have disjoint sets of admissible variable configurations. Be-
cause these sets are non-empty by the definition of co-
herency, we can directly conclude that they are distinct.
Therefore, we can say that coherent interpretations are
unique semantic entities.

Corollary 1. Let Σf
LA be a finite set of constraint represen-

tatives, and let I, J ∈ Intc(Σ
f
LA) be coherent interpreta-

tions with I ̸= J . Then, vconf(I) ̸= vconf(J).
To summarize, the benefit of treating constraint represen-

tatives as propositional atoms and focusing on coherent in-
terpretations is that we achieve the ability to build formu-
las, i.e., Boolean combinations of constraint representatives
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and test their satisfiability modulo the theory of linear arith-
metic. Considering all interpretations would undermine the
fact that the underlying constraints are not necessarily se-
mantically independent. In contrast to that, coherent inter-
pretations can be understood as possible worlds due to their
semantic uniqueness.

4 Integrating Linear Arithmetic Constraints
Into Conditionals

Now we extend conditionals from PCL(Σ) by (linear arith-
metic) constraints. For this, let Σf

LA be a finite set of con-
straint representatives. We assume that Σ∩Σf

LA = ∅ holds.
Otherwise, this can be established by renaming the atoms
in Σ. We set Σ∪ = Σ ∪̇Σf

LA and consider the propositional
language L(Σ∪) which draws on both the atoms from Σ and
the constraint representatives from Σf

LA. An interpretation
I ∈ Int(Σ∪) is coherent if the restriction of I on Σf

LA, in
symbols I|Σf

LA
, is coherent. The set of all coherent interpre-

tations over Σ∪ is denoted with Intc(Σ∪).

Definition 4 (Conditionals with Constraint Representatives).
Let Σ∪ = Σ ∪̇Σf

LA be a finite set of atoms and con-
straint representatives. A conditional with constraint rep-
resentatives is an expression of the form (B|A)[ξ] where
A,B ∈ L(Σ∪) and ξ ∈ [0, 1] is a probability. The set of all
conditionals with constraint representatives is PCL(Σ∪).

Conditionals in PCL(Σ∪) express probabilistic beliefs
about qualitative logical statements combined with state-
ments about admissible variable configurations. We use the
term belief base for finite subsets of PCL(Σ∪), too.

Example 3. The beliefs of the shareholder from Ex. 1 can
be formalized in the belief base Rex = {r1, r2, r3} with

r1 = (d|ap)[0.8], r2 = (ar ∨ ao|⊤)[1], r3 = (ae|⊤)[0.9].

The meaning of the constraint representatives ap, ar, ao,
and ae is discussed in Ex. 2. The additional atom d stands
for dividend is paid. Altogether, the signature is

Σex
∪ = Σex ∪̇Σf,ex

LA = {d} ∪̇ {ap, ar, ao, ae}.

Conditional r1 states that if the profit of the company is
high (ap), then a dividend is paid (d) with probability 0.8,
where the meaning of “high profit” is specified in the con-
straint p. Conditional r2 states that the income of the
company is $ 10, 000, 000 (ar) or higher (ao), and condi-
tional r3 states that the company’s expenses do not exceed
$ 12, 000, 000 with a probability of 0.9.

The definition of probabilistic models of belief bases
R ⊆ PCL(Σ∪) is analogous to the respective definition in
the purely propositional setting albeit we have to clarify the
notion of possible worlds. As argued in Sec. 3, especially
in Cor. 1, it is not appropriate to consider all interpretations
over Σ∪ as possible worlds but one needs to focus on coher-
ent interpretations.

Definition 5 (Possible Worlds (With Constraint Represen-
tatives)). Let Σ∪ = Σ ∪̇Σf

LA be a finite set of atoms and

constraint representatives, and let I ∈ Intc(Σ∪) be a coher-
ent interpretation. Then, the possible world wrt. I is

ωI =
∧

a∈Σ∪ : I(a)=1
a ∧

∧
a∈Σ∪ : I(a)=0

a.

We denote the set of all possible worlds over Σ∪ (which are
defined wrt. coherent interpretations) with Ωc(Σ∪) and with
CS(ωI) = CS(I|Σf

LA
) we denote the constraint set which

refers to ωI ∈ Ωc(Σ∪).
Possible worlds with constraint representatives are in a

one-to-one correspondence with coherent interpretations. If
Σf

LA = ∅, then Σ∪ = Σ holds and the interpretations in
Int(Σ∪) are trivially coherent such that Def. 5 subsumes the
standard definition of possible worlds in Ω(Σ).

All notions from probabilistic conditional reasoning carry
over from PCL(Σ) to PCL(Σ∪) when replacing the set of
possible worlds Ω(Σ) by Ωc(Σ∪). Also the definition of
the MaxEnt model MER is the same. Note that the proba-
bility MER(ac) of a constraint representative ac reflects the
subjective probability with which the MaxEnt reasoner with
belief base R believes in the satisfaction of the constraint c.
It does not depend on a measure on admissible variable con-
figurations. In particular, it does not depend on the number
of solutions in Sol({c}).
Example 4. The MaxEnt model MERex of the belief base
Rex from Ex. 3 is shown in Tab. 1. It can be computed with
the software system Spirit (Rödder and Meyer 1996), for
instance. With regard to the MaxEnt inference relation (1),
we can infer the conditional (d|⊤)[0.63] from Rex. That is,
following the MaxEnt principle and her beliefs as formalized
in Rex, the shareholder should believe in the payout of a
dividend with probability 0.63.

In the reminder of the paper, we address the issue that
reasoning with probabilistic conditionals in PCL(Σ∪) de-
pends on the selection of the constraints which are repre-
sented in Σf

LA. First, we show how reasoning can be made
independent of this selection and, therewith, independent of
the syntactic representation of admissible variable configu-
rations. Afterwards, we discuss an extension of the MaxEnt
inference relation (1) which allows us to infer probability
bounds for constraints that are not represented in Σf

LA.

5 Becoming Independent of the Syntactic
Representation of Variable Configurations

Once a set Σ∪ = Σ ∪̇Σf
LA of atoms and constraint repre-

sentatives is fixed, MaxEnt reasoning in PCL(Σ∪) is inde-
pendent of the syntactic representation of admissible vari-
able configurations because the coherent interpretations in
Intc(Σ∪) and, thus, the possible worlds in Ωc(Σ∪) are se-
mantically unique entities which differ in their admissible
variable configurations (cf. Cor. 1). However, in LA it is
possible to determine one and the same solution set with dif-
ferent sets of constraints and, hence, the selection of the con-
straint representatives in Σf

LA is not unique. For instance, all
the constraints n · x = n with n ∈ N>0 have the same solu-
tion x = 1. As a consequence, the choice of Σf

LA can affect
the MaxEnt model of a belief base in PCL(Σ∪).
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ω verRex(ω) falRex(ω) MERex(ω) ω verRex(ω) falRex(ω) MERex(ω)

daparaoae {r1, r2, r3} ∅ 0.166 daparaoae {r2, r3} {r1} 0.042
daparaoae {r1, r2, r3} ∅ 0.166 daparaoae {r2, r3} {r1} 0.042
daparaoae {r1, r2} {r3} 0.018 daparaoae {r2} {r1, r3} 0.005
daparaoae {r1, r3} {r2} 0 daparaoae {r3} {r1, r2} 0
daparaoae {r2, r3} ∅ 0.126 daparaoae {r2, r3} ∅ 0.126

daparaoae {r2} {r3} 0.014 daparaoae {r2} {r3} 0.014
daparaoae {r2, r3} ∅ 0.126 daparaoae {r2, r3} ∅ 0.126
daparaoae {r2} {r3} 0.014 daparaoae {r2} {r3} 0.014
daparaoae {r3} {r2} 0 daparaoae {r3} {r2} 0
daparaoae ∅ {r2, r3} 0 daparaoae ∅ {r2, r3} 0

Table 1: MaxEnt model MERex of the belief base Rex from Ex. 3 as well as the conditional structures of the possible worlds in Ωc(Σ
ex
∪ ).

Example 5. In Rex from Ex. 3 the formula ar ∨ ao occurs
which states that the company’s income is equal to or higher
than $ 10, 000, 000. By replacing ar ∨ao with the constraint
representative at which refers to the constraint

t : x ≥ 10, 000, 000,

the belief base Rex can be rewritten to Rex2 = {r1, r′2, r3}
which mentions the conditional r′2 = (at|⊤)[1] instead of r2
and is based on the signature Σex2

∪ = {d} ∪̇ {ap, at, ae}.
The MaxEnt model MERex2 of Rex2 differs from MERex

not only in the number of possible worlds a probability
is assigned to (because of the modification of the signa-
ture) but also the inferences that can be drawn slightly
differ in their probabilities. For example, the conditional
r = (d|⊤)[ξ] can be MaxEnt inferred from Rex2 with a prob-
ability ξ = 0.635. With respect to Rex, the probability would
be different, namely ξ = 0.63 (cf. Ex. 4), even though r does
not mention any constraint representative.

A conceivable way of determining the set of constraint
representatives Σf

LA would be to rely on the signature in-
duced by the belief base R. However, this delegates the
responsibility of a proper selection of constraint represen-
tatives to the knowledge engineer. If this selection is purely
pragmatic and without a profound justification, one probably
would still like to become independent of it. Therefore, we
show how it is possible to completely abstract from the syn-
tactic representation of admissible variable configurations in
conditionals. The basic idea is to aggregate possible worlds
to equivalence classes and define probabilistic models wrt.
these equivalence classes. Because we define these equiv-
alence classes semantically regarding the evaluation of the
conditionals in R, reasoning based on these equivalence
classes is independent of the syntax, particularly of the se-
lection of the constraint representatives in Σf

LA. Note that
our elaborations are related to and generalize the principle
of atomicity from (Paris 1994) which states that a fragmen-
tation of atoms should not alter the inferences.
Definition 6 (Conditional Structure (Kern-Isberner 2004)).
Let Σ∪ = Σ ∪̇Σf

LA be a finite set of atoms and constraint
representatives, and let R ⊆ PCL(Σ∪) be a consistent be-
lief base. For a possible world ω ∈ Ωc(Σ∪), we define the

sets of conditionals from R which are verified (verR(ω))
resp. falsified (falR(ω)) in ω by

verR(ω) = {(B|A)[ξ] ∈ R | ω |= AB},
falR(ω) = {(B|A)[ξ] ∈ R | ω |= AB}.

The tuple σR(ω) = (verR(ω), falR(ω)) is called the condi-
tional structure of ω wrt. R.

Possible worlds with the same conditional structure eval-
uate the conditionals in R in the same way and, hence, there
is good reason for probabilistic models of R to assign them
the same probability. This principle is called conditional in-
difference and is fulfilled by the MaxEnt model MER (Kern-
Isberner 2004).
Example 6. We recall Rex from Ex. 3. The conditional
structures of the possible worlds in Ωc(Σ

ex
∪ ) wrt. Rex

are shown in Tab. 1. For instance, for ω′ = daparaoae
and ω′′ = daparaoae we have σRex(ω′) = σRex(ω′′) =
({r2, r3}, {r1}) because both ω′ and ω′′ verify r2 as well
as r3 and falsify r1. As ω′ and ω′′ have the same conditional
structure, their MaxEnt probabilities are equal.

Note that conditional structures are defined semantically
and induce an equivalence relation on the set of possible
worlds as introduced in the following definition.
Definition 7 (Conditional Equivalence (based on (Kern-Is-
berner 2004))). Let Σ∪ = Σ ∪̇Σf

LA be a finite set of atoms
and constraint representatives, and let R ⊆ PCL(Σ∪) be
a consistent belief base. We say that two possible worlds
ω, ω′ ∈ Ωc(Σ∪) are conditionally equivalent wrt. R, in sym-
bols ω ∼R ω′, if they have the same conditional structure,
σR(ω) = σR(ω′), and they agree on Σ, i.e., ω|Σ = ω′

|Σ.
Conditionally equivalence constitutes an equivalence re-

lation between possible worlds, and we denote the respective
equivalence classes with

[ω]R = {ω′ ∈ Ωc(Σ∪) | ω′ ∼R ω}.
The set of all these equivalence classes is

Ω∼
R(Σ∪) = {[ω]R | ω ∈ Ωc(Σ∪)}.

Eventually, because σR(ω) = σR(ω′) for all ω′ ∈ [ω]R, we
may define σR([ω]R) = σR(ω) for [ω]R ∈ Ω∼

R(Σ∪).
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In Def. 7 we differentiate between atoms and constraint
representatives and aggregate possible worlds with the same
conditional structure to equivalence classes only if they
agree on the evaluation of the atoms. Therewith, we main-
tain atoms as semantic entities but merge constraint repre-
sentatives.

An equivalence class [ω′]R can be understood as the in-
terpretation I ∈ Int(Σ) of the atoms in Σ with ωI = ω′

|Σ,
together with the set of admissible variable configurations

vconf([ω′]R) =
⋃

ω∈[ω′]R
vconf(ω),

where vconf(ω) = vconf(ω|Σf
LA

). That is, equivalence
classes [ω]R, [ω′]R ∈ Ω∼

R(Σ∪) with [ω]R ̸= [ω′]R dif-
fer in their evaluation of the propositional atoms in Σ,
ω|Σ ̸= ω′

|Σ, or in their admissible variable configurations,
vconf([ω]R) ̸= vconf([ω′]R).
Example 7. We recall Rex from Ex. 3. The equivalence
classes in Ω∼

Rex(Σex
∪ ) are shown in Tab. 2. They aggre-

gate possible worlds in such a way that the two constraints
r : x = 10, 000, 000 and o : x > 10, 000, 000 are combined.
For example, we have

vconf([ω1]Rex) = Sol({p, x = 10, 000, 000, e})
∪ Sol({p, x > 10, 000, 000, e})

= Sol({p, x ≥ 10, 000, 000, e}).

The aggregation is possible because the differentiation be-
tween the constraints r and o is irrelevant for the evaluation
of the conditionals in Rex. It matches the idea of replacing
ar ∨ ao by at as proposed in Ex. 5.

Now we discuss how probabilistic reasoning in general
and MaxEnt reasoning in particular works when considering
equivalence classes of possible worlds instead of the possi-
ble worlds themselves.
Definition 8 (Aggregated (MaxEnt) Model). Let Σ∪ be a
finite set of atoms and constraint representatives, and let
R ⊆ PCL(Σ∪) be a consistent belief base. A probability
distribution P : Ω∼

R(Σ∪) → [0, 1] which assigns a probabil-
ity to each equivalence class in Ω∼

R(Σ∪) is an aggregated
model of R if, for every conditional r = (B|A)[ξ] in R,∑

[ω]R∈Ω∼
R(Σ∪) : r∈verR(ω)∪falR(ω)

P([ω]R) > 0

and ∑
[ω]R∈Ω∼

R(Σ∪) : r∈verR(ω) P([ω]R)∑
[ω]R∈Ω∼

R(Σ∪) : r∈verR(ω)∪falR(ω) P([ω]R)
= ξ.

If P is an aggregated model of R, then we write P |=∼ R.
The aggregated MaxEnt model of a consistent belief

base R is defined by

ME∼
R = arg max

P|=∼R
−

∑
[ω]R∈Ω∼

R(Σ∪)

P([ω]R) · logP([ω]R).

Note that in Def. 8 we do not take the cardinalities of the
equivalence classes into account. With the aggregation of

possible worlds to equivalence classes and the disregarding
of the cardinalities, we abstract from which and how many
constraint representatives are used to describe admissible
variable configurations. Consequently, for the aggregated
MaxEnt model, only the conditional structures of the equiv-
alence classes are relevant and not their compositions.

Proposition 2. Let Σ∪ = Σ ∪̇Σf
LA and Σ′

∪ = Σ ∪̇Σf ′

LA
be finite sets of atoms and constraint representatives, and
let R = {(Bi|Ai)[ξi] | i = 1, . . . , n} ⊆ PCL(Σ∪) and
R′ = {(B′

i|A′
i)[ξ

′
i] | i = 1, . . . ,m} ⊆ PCL(Σ′

∪) be con-
sistent belief bases. If n = m, ξi = ξ′i for i = 1, . . . , n,
and there is a bijection β : Ω∼

R(Σ∪) → Ω∼
R′(Σ′

∪) such that
σR′(β([ω]R)) = σR([ω]R) for all [ωR] ∈ Ω∼

R(Σ∪), then
ME∼

R([ω]R) = ME∼
R′(β([ω]R)).

Proof Sketch. Let R′′ = {(B1|A1)[ξ1], . . . , (Bn|An)[ξn]}
be a belief base which consists of conditionals without con-
straint representatives, i.e., R′′ ⊆ PCL(Σ). Then, the Max-
Ent model MER′′ yields a product representation which is
of the form (Kern-Isberner 2004)

MER′′(ω) = α0

∏
i=1,...,n :
ω|=AiBi

α1−ξi
i

∏
i=1,...,n :

ω|=AiBi

α−ξi
i

with effects α0, α1, . . . , αn ∈ R∞
≥0 for ω ∈ Ω(Σ). This

product representation carries over to belief bases with con-
straint representatives and the aggregated MaxEnt model.
Moreover, because |Ω∼

R(Σ∪)| = |Ω∼
R′(Σ′

∪)| and the effects
depend on the conditional structures and the probabilities
ξ1, . . . , ξn only, we have

ME∼
R([ω]R) = α0

∏
i=1,...,n :
ri∈verR(ω)

α1−ξi
i

∏
i=1,...,n :
ri∈falR(ω)

α−ξi
i

for [ω]R ∈ Ω∼
R(Σ∪) as well as

ME∼
R′([ω′]R′) = α0

∏
i=1,...,n :

ri∈verR′ (ω′)

α1−ξi
i

∏
i=1,...,n :

ri∈falR′ (ω′)

α−ξi
i

for [ω′]R′ ∈ Ω∼
R′(Σ′

∪) with the same effects. Eventually, be-
cause σR′([ω′]R′) = σR([ω]R) for [ω′]R′ = β([ω]R) and
this implies verR′(ω′) = verR(ω) and falR′(ω′) = falR(ω),
it follows that ME∼

R([ω]R) = ME∼
R′(β([ω]R)) holds.

Prop. 2 proves that aggregated MaxEnt reasoning is in-
dependent of the selection of the constraint representatives
in Σf

LA as long as the selection does not influence the con-
ditional structures and, therewith, the meaning of the belief
base.
Example 8. The aggregated MaxEnt model of the belief
base Rex from Ex. 3 is shown in Tab. 2. It coincides with
the (aggregated) MaxEnt model of Rex2 (cf. Ex. 5).

A drawback of aggregated models is that they do not
provide a probability assignment to single possible worlds.
Next, we tackle this problem and extend the MaxEnt infer-
ence relation (1) such that it assigns lower and upper prob-
ability bounds to possible worlds. Our extension of (1) is
also capable of assigning probabilities to constraints which
are not represented in Σf

LA so that one is not limited to the
syntax of the belief base when formulating queries.
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[ω]Rex ω|Σex verRex([ω]Rex) falRex([ω]Rex) ME∼
Rex([ω]Rex)

[ω1]Rex = {daparaoae, daparaoae} d {r1, r2, r3} ∅ 0.325
[ω2]Rex = {daparaoae} d {r1, r2} {r3} 0.036
[ω3]Rex = {daparaoae} d {r1, r3} {r2} 0

[ω4]Rex = {daparaoae, daparaoae} d {r2, r3} ∅ 0.247
[ω5]Rex = {daparaoae, daparaoae} d {r2} {r3} 0.027
[ω6]Rex = {daparaoae} d {r3} {r2} 0
[ω7]Rex = {daparaoae} d ∅ {r2, r3} 0

[ω8]Rex = {daparaoae, daparaoae} d {r2, r3} {r1} 0.081
[ω9]Rex = {daparaoae} d {r2} {r1, r3} 0.009
[ω10]Rex = {daparaoae} d {r3} {r1, r2} 0

[ω11]Rex = {daparaoae, daparaoae} d {r2, r3} ∅ 0.247
[ω12]Rex = {daparaoae, daparaoae} d {r2} {r3} 0.027
[ω13]Rex = {daparaoae} d {r3} {r2} 0
[ω14]Rex = {daparaoae} d ∅ {r2, r3} 0

Table 2: Equivalence classes of possible worlds in Ω∼
Rex(Σex

∪ ) wrt. Rex from Ex. 3 and their aggregated MaxEnt probabilities.

6 Drawing Inferences From the Aggregated
Maximum Entropy Model

When reason based on the aggregated MaxEnt model ME∼
R

of a consistent belief base R ⊆ PCL(Σ∪), one is restricted
to ask queries their probability can be calculated from the
probability assignment to the equivalence classes of possible
worlds in Ω∼

R(Σ∪). We overcome this restriction by deriving
lower and upper bounds for the MaxEnt probabilities of arbi-
trary possible worlds which are defined wrt. the atoms in Σ

and any finite set of constraints representatives Σf ′

LA. The
lower and upper probability bounds have a similar meaning
as the beliefs and plausibilities in evidence theory (Demp-
ster 1967). Based on the probability bounds, we extend the
MaxEnt inference relation (1) to conditionals which mention
arbitrary atoms and constraint representatives. To do so, we
have to relate atoms, constraint representatives, and possible
worlds to the equivalence classes in Ω∼

R(Σ∪) which brings
us to the notions of conflict-free and refining (equivalence-
classes of) possible worlds.

Definition 9 (Conflict-free and Refining Possible World).
Let Σ∪ = Σ ∪̇Σf

LA and Σ′
∪ = Σ ∪̇Σf ′

LA be finite sets of
atoms and constraint representatives. For possible worlds
ω ∈ Ωc(Σ∪) and ω′ ∈ Ωc(Σ

′
∪) we say that

• ω is conflict-free with ω′ if ω|Σ = ω′
|Σ and

vconf(ω) ∩ vconf(ω′) ̸= ∅, (3)

• ω refines ω′ if ω|Σ = ω′
|Σ and

vconf(ω) ⊆ vconf(ω′). (4)

Note that both conditions (3) and (4) can be expressed in
terms of satisfiability. In particular, condition (4) holds iff
vconf(ω) ∩

⋃
ω′′∈Ω(Σ′

∪)\{ω′} vconf(ω
′′) = ∅.

If Σ∪ = Σ′
∪, the notions of conflict-free and refining pos-

sible worlds become trivial.

Proposition 3. Let Σ∪ be a finite set of atoms and constraint
representatives, and let ω, ω′ ∈ Ωc(Σ∪). If ω is conflict-free
with ω′ or ω refines ω′, then ω = ω′.

Proof. Without loss of generality, let Σ∪ = Σ ∪̇Σf
LA. In

both cases, if ω is conflict-free with ω′ or if ω refines ω′,
ω|Σ = ω′

|Σ holds. It remains to show that ω and ω′ agree

on Σf
LA. If ω is conflict-free with ω′, then vconf(ω) ∩

vconf(ω′) ̸= ∅. If ω refines ω′, then vconf(ω) ⊆ vconf(ω′).
In both cases, vconf(ω)∩vconf(ω′) = ∅ does not hold. With
Prop. 1 it directly follows that ω|Σf

LA
= ω′

|Σf
LA

must be true.

Altogether, ω = ω′ follows.

The notions of conflict-free and refining possible worlds
can be extended to equivalence classes of possible worlds
relative to formulas A ∈ L(Σ′

∪) where Σ′
∪ = Σ ∪̇Σf ′

LA in-
volves arbitrary constraint representatives. Because possible
worlds, atoms, and also constraint representatives can all be
understood as formulas A ∈ L(Σ′

∪), the following definition
subsumes all these cases.

Definition 10 (Conflict-free and Refining Equivalence Class
of Possible Worlds). Let Σ∪ and Σ′

∪ as in Def. 9. Further,
let R ⊆ PCL(Σ∪) be a consistent belief base. For [ω]R ∈
Ω∼

R(Σ∪) and A ∈ L(Σ′
∪) we say that

• [ω]R is conflict-free with A if there are ω′ ∈ [ω]R and
ω′′ ∈ Ωc(Σ

′
∪) with ω′′ |= A such that ω′ is conflict-free

with ω′′.
• [ω]R refines A if for all ω′ ∈ [ω]R there is ω′′ ∈ Ωc(Σ

′
∪)

with ω′′ |= A such that ω′ refines ω′′.

We denote with cfR(A) the set of equivalence classes from
Ω∼

R(Σ∪) which are conflict-free with A and with rfR(A) the
set of equivalence classes which refine A.

In plain words, if [ω]R refines A, then A holds in every
possible world in [ω]R, and if [ω]R is conflict-free with A,
then A cannot be proven wrong based on the possible worlds
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in [ω]R. All remaining equivalence classes from Ω∼
R(Σ∪)

are in conflict with A. Hence, A should hold at least with
the probability of its refining equivalence classes and at most
with the probability of its conflict-free equivalence classes.
We will formalize this observation in the following. Before,
we prove that rfR(A) ⊆ cfR(A) holds such that the equiv-
alence classes in rfR(A) indeed yield a lower probability
for A than the equivalence classes in cfR(A).

Proposition 4. Let Σ∪, Σ′
∪, R, and A as in Def. 10.

1. One has rfR(A) ⊆ cfR(A).
2. If Σ∪ = Σ′

∪ = Σ, i.e., Σ∪ and Σ′
∪ are free of constraint

representatives, then

rfR(A) = cfR(A) = {{ω} | ω ∈ Ω(Σ): ω |= A}.

Proof. 1. Let [ω]R ∈ rfR(A). Then, there are ω′ ∈ [ω]R
and ω′′ ∈ Ωc(Σ

′
∪) with ω′′ |= A such that ω′ refines ω′′.

That is, ω′
|Σ = ω′′

|Σ and vconf(ω′) ⊆ vconf(ω′′) hold from
which conf(ω′) = vconf(ω′)∩ vconf(ω′′) follows. Because
of vconf(ω′) ̸= ∅ for possible worlds ω′ ∈ Ωc(Σ∪), we de-
duce vconf(ω′)∩ vconf(ω′′) ̸= ∅ and with ω′

|Σ = ω′′
|Σ it fol-

lows that ω′ is conflict-free with ω′′ which proves that [ω]R
is conflict-free with A.

2. In the absence of constraint representatives, the equiva-
lence classes in Ω∼

R(Σ∪) are unit sets because for every two
possible worlds ω, ω′ ∈ Ωc(Σ) it is ω|Σ = ω′

|Σ if and only if
ω = ω′. It directly follows that also the sets of conflict-free
and refining equivalence classes of possible worlds are unit
sets and coincide.

Now we are able to extend the MaxEnt inference rela-
tion (1) to arbitrary formulas A ∈ L(Σ′

∪) by

R |∼∼
ME A[l;u] if l =

∑
[ω]R∈rfR(A)

ME∼
R([ω]R)

and u =
∑

[ω]R∈cfR(A)

ME∼
R([ω]R).

The relation |∼∼
ME states that based on the belief base R

and according to the MaxEnt principle, A holds at least
with l and at most with u, where l is the MaxEnt proba-
bility of the equivalence classes of possible worlds which
refine A and u is the MaxEnt probability of the equivalence
classes which are conflict-free with A. If l = u, which
holds in the absence of constraint representatives, for in-
stance (cf. Prop. 4(2.)), then we write A[l] instead of A[l;u].

Example 9. We consider the aggregated MaxEnt model of
the belief base Rex from Ex. 3 as shown in Tab. 2. The share-
holder wants to investigate how likely a dividend payout is,
if the expenses do not exceed $ 13, 000, 000. Therefore, she
formulates the constraint

m : y ≤ 13, 000, 000

stating that “the expenses are at most $ 13, 000, 000.” With
respect to the new signature Σ

′ex
∪ = Σex

∪ ∪ {am}, we obtain

rf(dam) = {[ω1]Rex , [ω3]Rex , [ω4]Rex , [ω6]Rex},

basically because e : y ≤ 12, 000, 000 implies m. Further,

cf(dam) = rf(dam) ∪ {[ω2]Rex , [ω5]Rex , [ω7]Rex},

because ê : y > 12, 000, 000 and m are not in conflict. As a
consequence, we can infer

Rex |∼∼
ME (dam)[0.572, 0.635]

which means that based on Rex, it holds with a MaxEnt
probability between 0.572 and 0.635 that both the expenses
do not exceed $ 13, 000, 000 and a dividend is paid. Analo-
gously, we have

rf(dam) = {[ω8]Rex , [ω10]Rex , [ω11]Rex , [ω13]Rex},
cf(dam) = rf(dam) ∪ {[ω9]Rex , [ω12]Rex , [ω14]Rex},

and, thus, Rex |∼∼
ME (dam)[0.328, 0.364].

In order to generalize the relation |∼∼
ME to condition-

als (B|A) ∈ PCL(Σ′
∪), we exploit the lower and up-

per probability bounds of the verification and the falsifica-
tion of (B|A). Let R |∼∼

ME AB[lAB ;uAB ] and R |∼∼
ME

AB[lAB ;uAB ]. Then, we define

R |∼∼
ME (B|A)[l;u] if l =

lAB

lAB + uAB

and u =
uAB

uAB + lAB

.

Example 10. We refer to Ex. 9 and obtain

Rex |∼∼
ME (d|am)[0.611; 0.659].

That is, under the shareholder’s assumption that the com-
pany’s expenses stay less than $ 13, 000, 000 she should be-
lieve in the payout of the dividend with a probability of at
least 0.611 and at most 0.659 according to her prior beliefs
and the (aggregated) MaxEnt principle.

We finally prove that |∼∼
ME behaves well in the sense of

inductive inference relations.
Proposition 5. 1. The relation |∼∼

ME satisfies Direct Infer-
ence and Trivial Vacuity.

2. If R is a consistent belief base without constraint repre-
sentatives, i.e., R ⊆ PCL(Σ), and if A,B ∈ L(Σ), then

R |∼∼
ME (B|A)[ξ] iff R |∼ME (B|A)[ξ],

Proof. 1. Let Σ∪ = Σ ∪̇Σf
LA be a finite set of atoms and

constraint representatives, and let R ⊆ PCL(Σ∪) be a con-
sistent belief base.

Direct Inference: Let r = (B|A)[ξ] be an arbitrary condi-
tional in R. Then, AB,AB ∈ L(Σ∪) and, by the definition
of aggregated models,∑

[ω]R∈Ω∼
R(Σ∪) : r∈verR(ω) ME∼

R([ωR])∑
[ω]R∈Ω∼

R(Σ∪) : r∈verR(ω)∪falR(ω) ME∼
R([ωR])

= ξ.

If [ω]R ∈ rfR(AB), then for all ω′ ∈ [ω]R there is ω′′ ∈
Ωc(Σ∪) with ω′′ |= AB such that ω′ refines ω′′. According
to Prop. 3, ω′ = ω′′ holds. Hence, for all ω′ ∈ [ω]R it
holds that ω′ |= AB, i.e., r ∈ verR(ω′). Otherwise, if
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[ω]R ∈ Ω∼
R(Σ∪) such that there is ω′ ∈ [ω]R with r ∈

verR(ω′), then r ∈ verR(ω′) for all ω′ ∈ [ω]R because of
the definition of [ω]R. Consequently, for all ω′ ∈ [ω]R there
is ω′′ ∈ Ωc(Σ∪) with ω′ refines ω′′, namely ω′′ = ω′, and

rfR(AB) = {[ω]R | ω ∈ Ωc(Σ∪) : r ∈ verR(ω)}.
If [ω]R ∈ cfR(AB) then, there are ω′ ∈ [ω]R and ω′′ ∈

Ωc(Σ∪) with ω′′ |= AB such that ω′ is conflict-free with ω′′.
With Prop. 3, ω′ = ω′′ and, consequently, ω′ |= AB follow,
i.e., r ∈ verR(ω′). Otherwise, if [ω]R ∈ Ω∼

R(Σ∪) such
that there is ω′ ∈ [ω]R with r ∈ verR(ω′), then there is
ω′′ ∈ Ωc(Σ∪) with ω′′ |= AB such that ω′ is conflict-free
with ω′′, namely ω′′ = ω′. Hence,

cfR(AB) = {[ω]R | ω ∈ Ωc(Σ∪) : r ∈ verR(ω)}
holds, too. Analogously, we can show that

rfR(AB) = cfR(AB) =

{[ω]R | ω ∈ Ωc(Σ∪) : r ∈ falR(ω)}.
Altogether, we can MaxEnt infer from R:

R |∼∼
ME AB[lAB ;uAB ] with lAB = uAB ,

R |∼∼
ME AB[lAB ;uAB ] with lAB = uAB .

That is, the inferences hold with precise probabilities and we
obtain

uAB

uAB + lAB

=
lAB

lAB + uAB

= ξ.

Eventually, R |∼∼
ME (B|A)[ξ] follows.

Trivial Vacuity: Because R = ∅, all possible worlds ω ∈
Ωc(Σ∪) have the same conditional structure σR(ω) = (∅, ∅)
and the equivalence classes in ΩR(Σ∪) are of the form

[ω]R = {ω′ | ω′ ∈ Ωc(Σ∪) : ω
′
|Σ = ω|Σ}.

Further, we have ME∼
R([ω]R) = |Ω∼

R(Σ∪)|−1 > 0 for all
[ω]R ∈ Ω∼

R(Σ∪) because the MaxEnt model is the uniform
distribution in the absence of any beliefs. Now, let R |∼∼

ME

AB[lAB ;uAB ] and R |∼∼
ME AB[lAB ;uAB ]. Then, we have

R |∼∼
ME (B|A)[1] only if

lAB

lAB + uAB

=
uAB

uAB + lAB

= 1

which implies lAB = uAB = 0. In particular, no equiva-
lence class [ω]R ∈ Ω∼

R(Σ∪) is conflict-free with AB and,
thus, there is no possible world ω ∈ Ωc(Σ∪) which is
conflict-free with any model of AB. This, however, can only
happen if AB has no model which directly implies A |= B.

2. The equivalence
R |∼∼

ME (B|A)[ξ] iff R |∼ME (B|A)[ξ]
in PCL(Σ) directly follows from the fact that in case of
Σ∪ = Σ one has Ω∼

R(Σ) = {{ω} | ω ∈ Ω(Σ)} such that
each equivalence class [ω]R = {ω} is in one-to-one corre-
spondence with the possible world ω and Def. 8 coincides
with the standard definition of probabilistic models. Also
the notions of conflict-free and refining possible worlds be-
come trivial (cf. Prop. 4(2.)) and, thus, l = u holds for all
inferences A[l;u] drawn from R with |∼∼

ME.

Prop. 5 proves that |∼∼
ME is an inductive inference relation

(1.) and also a proper generalization of |∼ME as it coincides
with |∼ME in PCL(Σ) (2.).

7 Discussion and Related Work
Our integration of linear arithmetic constraints into prob-
abilistic conditionals combines qualitative statements in
terms of propositional formulas, mathematical calculations
in terms of arithmetic constraint sets, and uncertain be-
liefs in terms of probabilistic conditionals within a sin-
gle inference formalism. In particular, the approach al-
lows for MaxEnt inferences involving statements over in-
finite domains (Z and R) without the need to extend the
MaxEnt principle to the infinite case which turned out to
be difficult (Barnett and Paris 2008; Paris and Rad 2010;
Landes and Williamson 2015; Williamson 2008) and still
lacks a generally accepted policy.

The work in (de Salvo Braz et al. 2016) already introduces
probabilistic inferences modulo linear arithmetic. However,
in (de Salvo Braz et al. 2016) there is a fixed probability dis-
tribution given which ignores the influence of the syntactic
representation of admissible variable configurations on the
inferences. The combination of linear arithmetic and Max-
Ent reasoning as well as our subsequent investigation on be-
coming independent of the syntax is a novel contribution.

Note that our approach is not limited to the MaxEnt prin-
ciple, although we recommend to use the MaxEnt model for
reasoning. The only assumption which we have made and
which is necessary to show the irrelevance of the syntactic
representation of variable configurations is the principle of
conditional indifference which holds for the MaxEnt model
but which is not exclusive for it. Actually, it is a desirable
property of probabilistic models in general.

8 Conclusions and Future Work
In this paper, we integrated linear arithmetic constraints over
the integers and reals into probabilistic conditional belief
bases from which we inferred uncertain beliefs based on the
principle of maximum entropy (MaxEnt principle). There-
with, it was possible to express uncertain beliefs about ad-
missible configurations of numeric variables where the ad-
missibility was decided based on satisfiability tests in the
background theory of linear arithmetic. This implementa-
tion of the satisfiability modulo theory (SMT) principle into
MaxEnt reasoning allowed us to make qualitative statements
about infinite domains (Z and R) without a need to adapt the
MaxEnt model to the infinite case.

A major part of the paper was concerned about the influ-
ence of the syntactic representation of variable configura-
tions on the MaxEnt inferences. Based on the notion of con-
ditional structures, we were able to define aggregated mod-
els of belief bases as well as a generalized MaxEnt inference
relation which both are completely independent of the syn-
tactic representation of the variable configurations.

In future work, we want to further investigate the prop-
erties of the generalized MaxEnt inference relation, com-
pare our approach with alternative approaches on MaxEnt
reasoning wrt. infinite domains, and we want to apply our
approach to broader classes of conditionals like relational
probabilistic conditionals and conditionals based on De-
scription Logics. We also want to implement our approach.
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