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Abstract

This paper addresses the challenge of generating safety-
critical scenarios with multiple adversarial vehicles for test-
ing autonomous vehicles. Such scenarios must be plausible
and collision-avoidable while resulting in a collision with the
vehicle-under-test. However, the tremendous number of sce-
narios and the low ratio of plausible scenarios makes previous
methods squander primary resources on implausible scenar-
ios, degenerating their efficiency. We propose a two-stage
framework called the ASP-based Avoidable Collision Sce-
nario Testbench (A2CoST) to overcome this obstacle and im-
prove efficiency. In the former stage, we apply Answer Set
Programming (ASP) for generating plausible logical scenar-
ios. In the latter stage, we use a search algorithm to refine
logical scenarios into safety-critical concrete scenarios. We
also compute collision-free trajectories in these concrete sce-
narios while the vehicle-under-test fails to avoid the collision.
We empirically show the A2CoST significantly decreases
the time consumption for simple scenarios while still effec-
tively generating complex critical scenarios. The comparison
with real-world traffic data further demonstrates the value of
A2CoST in generating plausible scenarios. The source codes
of our method and the baselines are opened at https://github.
com/Autonomous-Driving-Safety-Project/AACoST.

1 Introduction
Autonomous Vehicle Safety Assessment (AVSA), as one of
the critical autonomous driving technology, is a validation
system to ensure the safety of autonomous vehicles (AVs).
Validating the safety of these vehicles requires more than
275 million failure-free miles of testing to demonstrate that
their failure rate is lower than that of human drivers with a
95% confidence level (Kalra and Paddock 2016). However,
most of the existing safety validation methods used in in-
dustry and literature are insufficient as they only test AV sys-
tems in a finite number of fixed scenarios (Hauer, Pretschner,
and Holzmüller 2020).

To shorten the testing process and identify defects before
deploying the AVs on the road, researchers have explored
generating safety-critical scenarios in simulators. For ex-
ample, Beglerovic, Stolz, and Horn (2017); Gangopadhyay
et al. (2019); Koschi et al. (2019); and Calò et al. (2020)
use search-based algorithms to generate collision scenarios,
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Figure 1: The framework of ASP-based Avoidable Collision Sce-
nario Testbench (A2CoST).

and Koren et al. (2018); Chen et al. (2021); and Kuutti, Fal-
lah, and Bowden (2020) employee Reinforcement Learning
(RL) based methods to perform adversarial attacks in com-
plex scenarios. However, search-based methods cannot han-
dle complex scenarios due to the enormous search space in-
volved, and RL-based algorithms often generate implausible
scenarios which introduce inefficiency in preventing adver-
sarial vehicles from colliding with each other. Note that,
finding collision scenarios is more like a search problem
rather than control, while RL algorithms intend to obtain a
control policy.

From the above observations, the critical point is the
tremendous number of scenarios and the low ratio of plau-
sible scenarios. To address this problem, we propose a two-
stage framework, the ASP-based Avoidable Collision Sce-
nario Testbench (A2CoST), as shown in Fig. 1. As defined
by Menzel, Bagschik, and Maurer (2018), we call a param-
eterized scenario with the range of parameters as logical
scenario, and those scenarios with fixed parameters as con-
crete scenario. We firstly apply Answer Set Programming
(ASP) (Brewka, Eiter, and Truszczyński 2011) to generate
logical scenarios that contain possible traffic environments
around the vehicle-under-test (VUT) and the maneuvers of
multiple adversarial vehicles (vehicles other than the VUT).
ASP is a non-monotonic logic programming language that
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(a) A collision scenario

(b) Collision-free remedy of (a)

Figure 2: A critical scenario generated by A2CoST with 5 adver-
sarial vehicles. (a) shows that the VUT (driven by IDM (Treiber,
Hennecke, and Helbing 2000) and MOBIL (Kesting, Treiber, and
Helbing 2007)) causes a collision in the scenario. (b) shows that
the scenario is collision-avoidable while the VUT follows the given
trajectory. The thin lines indicate the vehicles’ trajectories.

can encode various driving rules, motion models, and con-
straints of vehicles effectively. Then, we apply a search al-
gorithm to refine them into several concrete scenarios. These
concrete scenarios are required to be: (i) plausible, i.e., ad-
versarial vehicles behave normally following real-world be-
havioral regularities; (ii) critical, i.e., the VUT collides with
another vehicle; and (iii) collision-avoidable, i.e., there are
deliverable trajectories for the VUT to avoid collisions.

To showcase the effectiveness of A2CoST in producing
plausible scenarios, this study examines the acceleration
and lateral velocity distributions of vehicles in the gener-
ated scenarios. The comparison is made against the NGSIM
dataset (U.S. Department of Transportation Federal High-
way Administration 2016), which is comprised of vehicle
trajectories recorded on the U.S. I-80 freeway. To mea-
sure the dissimilarity between the dataset and generated
scenarios, the Wasserstein distance (Vallender 1974) is uti-
lized. The findings indicate that the scenarios generated by
A2CoST are more closely aligned with real-world scenarios
compared to the baselines.

As illustrated in Fig. 2, we also investigate a lightweight
simulator, Lightweight Automobile Simulator based on
OpenSCENARIO (LASS), to evaluate and visualize various
scenarios generated by A2CoST. Notice that both the log-
ical scenarios from the first stage of A2CoST and the con-
crete scenarios from the second stage can be converted to
corresponding OpenSCENARIO1 files. Then LASS reads
such an OpenSCENARIO file to generate an OpenAI Gym-
like simulation environment, which can be used not only
to evaluate the scenario but also to implement an RL-based
method for collision scenario generation. LASS uses a sim-
plified physics model, sacrificing some simulation accuracy
for faster processing speed, which is suitable for early vali-
dation of autonomous driving planning algorithms. For end-
to-end autonomous driving systems, we have also developed
an alternative high-precision distributed simulation frame-
work based on CARLA. The LASS simulator and the dis-
tributed simulation framework will be released after accep-

1https://www.asam.net/standards/detail/openscenario/

tance.
In summary, the main contributions of this paper are:

1. We propose an effective two-stage framework, A2CoST,
for the critical scenario generation problem. The for-
mer stage provides a formalization of plausible scenar-
ios, which can rule out many invalid scenarios. The lat-
ter stage uses two search processes to refine these plau-
sible scenarios to identify whether they are critical and
collision-avoidable, respectively.

2. We develop a lightweight simulator, LASS, that allows
customizing a simulation environment by an OpenSCE-
NARIO file and supports OpenAI Gym’s API for RL
training. A distributed simulation framework is developed
alternatively to meet the needs of end-to-end and high-
precision simulation.

3. Our comprehensive experiments show that A2CoST can
generate plausible, critical, collision-avoidable scenarios
effectively compared with previous methods.

2 Related Work
2.1 Scenario Description Language
The scenario-based approaches are widely applied to the
algorithm development of automated vehicles. A typical
scenario-based approach often requires recording and restor-
ing scenarios, which gives birth to various traffic scenario
description languages. Depending on the level of abstrac-
tion and presentation ability, the scenarios can be classified
into functional scenarios, logical scenarios, and concrete
scenarios (Menzel, Bagschik, and Maurer 2018).

Scenic (Fremont et al. 2020) is a logical scenario de-
scription language based on Python. However, specifying
dynamic scenarios in Scenic is elaborate, especially when
the entities have complex actions. Paracosm (Majumdar et
al. 2019) describes logical scenarios by parameters. Exter-
nal controllers can be imported to depict dynamic details.
Geoscenario (Queiroz, Berger, and Czarnecki 2019) is a
domain-specific language used to describe concrete scenar-
ios. Waypoints, maneuvers, and triggers are used to depict
the behavior of the entities in a scenario. OpenSCENARIO
is a widely used concrete and logical scenario description
language. Similar to Geoscenario, it describes dynamical
contents with parameterized maneuvers and triggers. Open-
SCENARIO is also compatible with OpenDRIVE2, a widely
used road network description language, and is supported by
multiple simulators. Thus, we choose OpenSCENARIO to
represent the logical and concrete scenarios in our method.

2.2 Critical Scenario Generation
Critical scenario generation is a problem in finding failures
of the VUT under simulated environments. This technique
allows testing the VUT as a black box or gray box, which
makes it suitable for testing complex systems.

A survey by Riedmaier et al. (2020) thoroughly ex-
amined and classified recent scenario-based safety assess-
ments of AVs. In this survey, the authors call the criti-

2https://www.asam.net/standards/detail/opendrive/
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cal scenario generation problem as simulation-based falsi-
fication. In general, several early approaches use search-
ing and optimization methods to find failures in static or
low DOF scenarios (Beglerovic, Stolz, and Horn 2017;
Gangopadhyay et al. 2019; Koschi et al. 2019). However,
these methods have limited applicability in complex sce-
narios, making them less effective. To address this is-
sue, researchers have investigated Reinforcement Learn-
ing (RL) algorithms to generate complex scenarios. An
example is Adaptive Stress Testing (Koren et al. 2018;
Koren and Kochenderfer 2019), which utilizes Monte Carlo
Tree Search and RL to generate adversarial scenarios. De-
spite their success, finding critical scenarios using RL is a
sparse reward task and requires a lot of extra interactions.
Researchers have attempted to improve data efficiency by
incorporating domain expert knowledge (Du and Driggs-
Campbell 2021), employing ensemble reinforcement learn-
ing (Chen et al. 2021), and backward algorithm (Koren,
Nassar, and Kochenderfer 2021). Other approaches such as
multimodal deep generative network (Ding et al. 2021) and
grammar-guided learning-based fuzz testing (Zhong, Kaiser,
and Ray 2022) have also been investigated.

However, existing RL-based approaches have been lim-
ited by the few adversarial agents used to expose issues in
intricately designed VUTs. The collisions between adver-
sarial agents and their lack of knowledge on how to attack
the VUT without running into themselves have made it chal-
lenging to extend these algorithms to more complex scenar-
ios. Additionally, the curse of dimensionality has led to a
complicated policy and applying tricks like hierarchical RL
is difficult due to the asynchronous high-level maneuvers of
different vehicles.

In addition, ontology-based approaches have been ap-
plied to construct a test scenario database to be utilized by
downstream tasks such as combinatorial testing (Bagschik,
Menzel, and Maurer 2018; Li, Tao, and Wotawa 2020;
Bannour, Niol, and Crisafulli 2021). It is important to note
that these methods aim to generate coarse-grained scenarios
and do not consider the VUTs, in contrast to critical scenario
generation.

2.3 Answer Set Programming and Planning
Answer Set Programming (ASP) is a logic language with
stable model semantics, thus a non-monotonic reasoning
mechanism (Gelfond and Lifschitz 1989; Brewka, Eiter, and
Truszczyński 2011). As a form of declarative programming,
ASP uses logical expressions to describe a problem instead
of the algorithm for solving it. Therefore, it is convenient to
specify constraints for dynamic systems.

An answer set for an ASP program is a set of atoms that
satisfies the stable model semantics. Intuitively, if the body
of a rule is satisfied by an answer set, then its head should
also be satisfied. Answer sets are considered solutions of an
ASP program, which can be computed by an ASP solver.

By regarding the timestep as a series of incremen-
tal atoms, the ASP can be used to solve planning prob-
lems (Subrahmanian and Zaniolo 1995). Dimopoulos,
Nebel, and Koehler (1997) have proved its efficiency, espe-
cially in solving NP-hard ones. We have seen its success in

the action planning of service robots (Chen et al. 2011), au-
tonomous driving (Kothawade et al. 2021), and multi-agent
path finding (Nguyen et al. 2017).

3 Method
In this section, we specify details of A2CoST, our two-stage
framework for critical scenario generation. This section is
organized as follows: Subsection 3.1 reviews the language
specifications of ASP, and Subsection 3.2 and Subsection 3.3
explain the two stages of A2CoST, respectively.

3.1 Language Specifications of ASP
To aid comprehension of the forthcoming ASP code, this
subsection briefly reviews the language specifications of
ASP. Further details can be found in the Potassco clingo doc-
ument3 (Gebser et al. 2019).

An ASP program consists of rules like:

A0 :- L1,. . .,LN.

where the head A0 is an atom like p or p(t1,...,tm),
which can be denoted by p/m. ti (1 ≤ i ≤ m) represents a
term, which can be a number, a constant leading with a low-
ercase letter, or a variable leading with an uppercase letter,
standing for all variable-free terms. The body is the conjunc-
tion of literals Lj (1 ≤ j ≤ N ) of the form A or not A,
where A is an atom. A rule can have an empty head or body,
representing a constraint or a fact, respectively. An empty
head denotes a constraint that the body can never be satis-
fied, while an empty body represents a fact that is always
true.

An atom begins with a dash “-” is called classical nega-
tion. For example, -p has the same meaning as neg p with
a constraint:

:- p, neg p.

3.2 Scenario Modeling and Generation
Here we specify the first stage of A2CoST, i.e., the formal-
ization of logical scenarios. Notice that logical scenarios
are plausible scenarios for vehicles with maneuvers. These
scenarios should adhere to real-world behavioral regulari-
ties and ensure collision-free movements. Our experimental
focus is on a straight and unidirectional freeway scene. In
the following, we detail how the problem of logical scenario
generation can be formalized as a planning problem in this
specific scene.

As illustrated in Fig. 4, given N+1 vehicles {o0, . . . , oN}
where o0 denotes the vehicle-under-test, we specify their ini-
tial longitudinal positions p(o0, 0), p(o1, 0), . . . , p(oN , 0) ∈
P, velocities v(o0, 0), v(o1, 0), . . . , v(oN , 0) ∈ V and locat-
ing lanes l(o0, 0), l(o1, 0), . . . , l(oN , 0) ∈ L, where P, V
and L are sets of valid positions, velocities, and lanes, re-
spectively. Notice that, these longitudinal positions, veloc-
ities, and locating lanes for all vehicles specify the initial
state of the scenario.

At each timestep t, a vehicle o can perform a lateral ma-
neuver mla(o, t) ∈ Mla with a duration of Tm steps to

3https://potassco.org/doc/
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change the present locating lane l(o, t) of o to the result-
ing lane l(o, t+ Tm). We use Mla to denote the set of valid
lateral maneuvers. We can also specify the changing pro-
cess l(o, t+ 1), . . . , l(o, t+ Tm) of o’s lane locations in Tm

steps, where l(o, t + i) has a slight lateral movement w.r.t.
l(o, t+ i− 1) for 1 ≤ i ≤ Tm.

Similarly, a vehicle o can also perform a longitudinal
maneuver mlo(o, t) ∈ Mlo with a duration of Tn steps
to change the present velocity v(o, t) and the present lon-
gitudinal position p(o, t) of o to the resulting velocity
v(o, t + Tn) and the position p(o, t + Tn), where Mlo de-
notes the set of valid longitudinal maneuvers. We also spec-
ify the corresponding changing process v(o, t+ 1), p(o, t+
1), . . . , v(o, t + Tn), p(o, t + Tn), where v(o, t + i) has a
slight variation w.r.t. v(o, t+ i− 1) and p(o, t+ i) is deter-
mined by the following equation (1 ≤ i ≤ Tn):

p(o, t+ i) = p(o, t+ i− 1) + v(o, t+ i− 1)∆t, (1)

where ∆t denotes the length of the timestep.
Note that, the duration Tm and Tn depend on the specific

lateral and longitudinal maneuvers, respectively.
We can set the target longitudinal positions, velocities,

and locating lanes for all vehicles to specify the goal state,
i.e., the set

{ p(oi, t), v(oi, t), l(oi, t) | p(oi, t) ∈ P, v(oi, t) ∈ V,
l(oi, t) ∈ L, 0 ≤ i ≤ N }.

We can also specify a set C of constraints to find preferred
solutions. These constraints can be specified by longitudinal
positions, velocities, and locating lanes of corresponding ve-
hicles in ASP. The constraint set C also defines the collision
rules of the vehicles. These rules ensure the scenarios are
valid without collisions thus excluding a great number of in-
valid scenarios.

Based on the above initial state, the definitions of lateral
and longitudinal maneuvers, the target state, and constraints,
we can specify a planning problem in ASP. The ASP solver
can compute its solution that contains a sequence of lateral
and longitudinal maneuvers for each vehicle, such that the
goal state is achieved at the last time and all constraints
are satisfied. Given a compatible initial configuration and
a reachable goal condition, it is guaranteed that at least one
solution exists.

The primary role of the goal state is to avoid generating
unsolvable scenarios, as illustrated in Fig. 3. The vehicle o0
will be replaced by the VUT during the next stage. By spec-
ifying a goal for the vehicle o0 (e.g., requiring all the other
vehicles to be located behind it), an achievable trajectory
will be planned for it, ensuring there are no unpreventable
collisions in the generated scenarios. It is also convenient to
customize the generated scenarios by adding more require-
ments to the goal.

We use ASP to encode the planning problem. For exam-
ple, a maneuver accelerating by 1m/s in one timestep can
be described as follows:

h(speed(Car, Spd+1), t) :-
occurs(accelerate, Car, t-1),
is_car(Car),

Figure 3: An unsolvable scenario: the VUT is surrounded.

is_speed(Spd),
h(speed(Car, Spd), t-1).

-h(during_longitudinal_maneuver(Car),t):-
occurs(accelerate, Car, t-1),
is_car(Car).

Where the atom h/2 stands for “hold”, which means that
the property is true at the timestep. The position update rule
corresponds to Equ. (1) is:

h(position(Car, Pos+Spd), t) :-
is_car(Car),
is_position(Pos),
is_position(Pos+Spd),
is_speed(Spd),
h(speed(Car, Spd), t-1),
h(position(Car, Pos), t-1).

More examples and explanations of encoding can be
found in our demo code4.

We use Potassco clingo (Gebser et al. 2019), a state-of-
the-art ASP solver, to compute answer sets of the program.
Each answer set specifies a logical scenario and can be trans-
lated into an OpenSCENARIO file. The maneuver sequence
for every vehicle is determined in a logical scenario. How-
ever, the parameters of each maneuver (e.g., start time, dura-
tion, acceleration) can vary in a narrow range, thus leading
to various detailed concrete scenarios.

3.3 Critical Scenario Searching
After the first stage, we obtain a group of plausible logi-
cal scenarios under the given initial Configuration and goal.
Here we specify the second stage of A2CoST, i.e., two
search phases that refine generated logical scenarios into
concrete scenarios and identify whether they are critical
and collision-avoidable, respectively. In the case of colli-
sion scenario generation applications, the second stage com-
mences by randomly selecting a logical scenario. However,
for comprehensive testing of the VUT, all logical scenarios
need to be tested during the second stage.

As we show in Alg. 1, the first phase describes the search
process for parameters of macro-maneuvers that result in a
collision happening on the VUT, i.e., critical scenarios, and
the second phase describes the search process for finding a
collision-free trajectory for the VUT, i.e., collision-free rem-
edy.

Here we formally define a logical scenario as a quintu-
ple S = {O,Mla,Mlo,Θ,Φ}, where O = {o0, . . . , oN} is
the set of all vehicles, Mla and Mlo are sets of sequences

4https://github.com/Autonomous-Driving-Safety-Project/ASP-
GEN-demo
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Algorithm 1: Critical Scenario Searching
Data: logical scenario S , vehicle-under-test oVUT ,

gradient-free optimizer O
Result: critical concrete scenario sc for VUT,

collision-free remedy scenario sr
// Phase 1

1 S∗ ←replace vehicle o0 in S by oVUT ;
2 construct a concrete scenario s(θ) ∈ S∗ with random

parameters θ ∈ Θ;
3 do
4 run s(θ) in simulator and get the minimal

distance d(s(θ)) between the VUT and the
adversarial vehicles;

5 update θ with O by minimize d(s(θ));
6 while d(s(θ)) > 0;
7 sc ← s(θ);
// Phase 2

8 do
9 construct a concrete scenario s(θ, φ) ∈ S with

random parameters φ ∈ Φ for o0’s maneuvers;
10 while s(θ, φ) has collision;
11 sr ← s(θ, φ);

of lateral and longitudinal maneuvers of each vehicle, re-
spectively. Θ denotes the domain of maneuver parameters
of adversarial vehicles {o1, . . . , oN}, and Φ denotes the do-
main of maneuver parameters of o0. In the first phase of our
method, we replace the vehicle o0 in the logical scenario S
with the VUT and evaluate the scenario in a simulator to
measure the collision risk of the VUT with the adversarial
vehicles. Due to the gap between the simulator and opti-
mization objective, we use a gradient-free optimization algo-
rithm like stochastic hill-climbing or pattern search (Hooke
and Jeeves 1961), to maximize the collision risk. Moreover,
there will still come up with a collision among adversarial
vehicles occasionally after the first phase. We address the
problem by restarting the search progress with other ran-
domly initialed values.

Note that we do not determine whether the VUT is
responsible for the collisions. Liability determination is
a complex issue that goes beyond technical considera-
tions. To circumvent this issue, we require that collisions
be avoidable, which is in line with the well-known RSS
model (Shalev-Shwartz, Shammah, and Shashua 2017).

Thus, in the second phase, we aim to find a collision-free
trajectory for the VUT by using the planned maneuver se-
quence of vehicle o0 in the logical scenario. We randomly
assign parameters to o0’s maneuvers while keeping the be-
havior of the adversarial vehicles fixed until a collision-
free remedy scenario is found, which proves that the col-
lision found in the first phase is avoidable. Note that this
is straightforward as the logical scenarios generated in the
former stage are designed to be collision-free.

Algo. Param. Value Description

IDM

v0 25m/s desired velocity
a 3m/s2 maximum acceleration
δ 4 exponent
s0 1m minimum spacing
T 1.5s desired time headway

b 1.6m/s2
comfortable braking
deceleration

MOBIL
bsafe 4m/s2 safe limit
p 0.2 politeness factor
∆ath 0.5m/s2 lane-changing threshold

PID
kp 0.2 proportional gain
ki 0 integral gain
kd 20 derivative gain

Table 1: Hyper-parameters of the VUT’s algorithms

4 Experiment
We conduct an evaluation of the effectiveness of A2CoST in
the LASS simulator. To assess the performance of A2CoST,
we compare it with two other algorithms: an RL-based
method proposed in (Chen et al. 2021) and a random search
algorithm. We measure the performance of each algorithm
in terms of the time taken to identify the first collision in the
simulation. To ensure the reliability of our results, we run
each algorithm five times with different random seeds (i.e.,
10, 20, 30, 40, and 50). The experiments are conducted us-
ing scenarios involving three adversarial vehicles, each with
initial states as shown in Fig. 4.

4.1 Experiment Configurations
Vehicle-Under-Test In our experiments, the VUT is con-
trolled by the Intelligent Driver Model (IDM) (Treiber, Hen-
necke, and Helbing 2000) and the MOBIL lane-changing
algorithm (Kesting, Treiber, and Helbing 2007). A PID
controller is used to generate low-level lateral actions. The
hyper-parameters of the VUT’s algorithms are shown in Ta-
ble 1.

Baselines As there are limited open-source implementa-
tions and details on the domain knowledge used in some ex-
isting methods, a direct comparison of our results with most
of those previous works is infeasible. Therefore, we estab-
lish an RL-based method proposed in (Chen et al. 2021) and
a random search method as our baselines for comparison
purposes.

1. RL baseline: The RL-based method is trained in the
LASS simulator with a 15-dimensional observation space
(containing the lateral coordinate of the VUT, three ad-
versarial vehicles’ relative positions to the VUT, and
the headings and velocities of all vehicles) and a 6-
dimensional action space (containing three adversarial ve-
hicles’ throttle and steering values). The reward function
is

r = −rVUT + rrule + rshaping ,
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(a) Scenario 1 (SCEN1) (b) Scenario 2 (SCEN2) (c) Scenario 3 (SCEN3)

Figure 4: Bird’s-eye views of the initial states of the three experimental scenarios. The VUT is marked in red.

SCEN1

SCEN2

SCEN3

(a) A2CoST (ours) (b) RL-based (c) Random search

Figure 5: Collision scenarios found by our framework and the baseline methods.

(a) SCEN1 (b) SCEN2 (c) SCEN3

Figure 6: Collision-free remedies for Fig. 5a found by A2CoST. Notice that the adversarial vehicles follow the same trajectories shown in
Fig. 5a.

(a) Acceleration

(b) Lateral velocity

Figure 7: Histograms of the acceleration and lateral velocity in generated scenarios and the dataset.
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Figure 8: Time consumption before finding the first collision. (Less
is better)

where

rVUT =


100, if episode ends without collision
−50, if VUT collide with the others
0.1vV UT otherwise,

and

rrule =


−50, if adversarial vehicles rear-end VUT
−500, if adversarial vehicles out of road,

or run into themselves
0 otherwise,

as well as

rshaping = −0.001min distance(oV UT , oadversarial).

The original DDPG algorithm in (Chen et al. 2021) is re-
placed by PPO (Schulman et al. 2017) for better perfor-
mance and less training time. The hyper-parameters used
for training are shown in Table 2.

2. Random search baseline: The random search baseline’s
action space is the same as the RL baseline’s. To keep the
random action unbiased, the throttle value of each adver-
sarial vehicle is sampled from a zero-expectation distribu-
tion instead of a uniform one.

Configurations of A2CoST In the first stage, the configu-
rations are:

1. Maneuvers: The allowed maneuvers and their adjustable
parameters are listed in Table 3.

2. Goal: The goal for o0 is to overtake all the other vehicles.
Besides, to encourage generating more merge maneuvers,
the target lane of o0 is set to be the leftmost lane in SCNE1
and SCEN3, and the rightmost lane in SCEN2. The other
vehicles’ goals are not specified.

3. Initial configurations are the same as those shown in
Fig. 4.

(a) Collision scenario (b) Remedy for (a)

(c) Collision scenario (d) Remedy for (c)

Figure 9: Two avoidable collision scenarios found by A2CoST on
CARLA simulator.

Parameter Value

discount factor γ 0.99
policy learning rate 10−3

value function learning rate 10−2

clip ratio 0.2
lambda for GAE 0.97
max episode length 1000
steps per epoch 5000
hidden layers [64,64]

Table 2: Hyper-parameters for training RL baseline

We generated 1000 logical scenarios for each initial con-
figuration with the timestep ∆t = 1s. In the second stage,
we employed a stochastic hill-climbing algorithm as the
gradient-free optimizer. The minimal distance between the
VUT and adversarial vehicles is used to assess the collision
risk. The maximum step size is set to be 0.5, and the batch
size is set to be 16. The logical scenario is randomly selected
each time.

4.2 Performance of A2CoST
The collision scenarios found in experiments are shown in
Fig. 5, and the time consumption in the simulator of each
algorithm is shown in Fig. 8. Additionally, the collision-free
remedies found by A2CoST are shown in Fig. 6.

We observed that the performance of the RL-based
method and random search algorithm is inconsistent and
influenced by the initial states and random seeds. On the
other hand, our proposed A2CoST framework outperforms
the baselines in various scenarios. Additionally, A2CoST
can effectively generate critical scenarios for the VUT with
up to five adversarial vehicles, a challenging task for the
baselines (see Fig. 2).
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Maneuver Parameter Range

accelerate acceleration 2.0 ∼ 4.0m/s2

duration 0.3 ∼ 3.0 s

decelerate acceleration −4.0 ∼ −2.0m/s2

duration 0.3 ∼ 3.0 s
merge left duration 1.0 ∼ 5.0 s
merge right duration 1.0 ∼ 5.0 s

Note: the start time of each maneuver can also
vary in the range of ±1.0 s.

Table 3: Allowed maneuvers and parameters

Acceleration Lateral Velocity

A2CoST 0.963 0.417
RL 4.708 1.356
Random 4.315 0.519

Table 4: Wasserstein distance between generated scenarios and the
dataset

To assess the similarity between the scenarios generated
by our proposed method and those in the real world, we
conducted statistical analysis on their acceleration and lat-
eral velocity. Specifically, we compared the results to the
NGSIM I-80 dataset, which contains trajectories of vehicles
collected on the U.S. I-80 freeway. The histograms show-
ing the distributions of acceleration and lateral velocity are
presented in Fig. 7. We further calculated the Wasserstein
distance between the distribution of these metrics in the gen-
erated scenarios and the dataset. The Wasserstein distance
is a metric that represents the distance between two distribu-
tions. It measures the minimal cost of turning one distribu-
tion into the other. Compare with the well-known KL diver-
gence, the Wasserstein distance is symmetrical and finite,
thus more suitable here. The results, presented in Table 4,
confirm that A2CoST generates the most plausible scenar-
ios.

4.3 Experiment on CARLA Simulator
To fulfill the high-precision and end-to-end simulation needs
of our proposed method, we developed a distributed simu-
lation framework based on CARLA, which can be used as
an alternative option to LASS. The framework consists of a
manager node that accepts simulation requests via the HTTP
protocol. Multiple CARLA instances can be registered to
the manager node and scheduled by it. The distributed ar-
chitecture offers two key benefits. First, it speeds up the
second stage of A2CoST by running multiple simulations
simultaneously. Second, it physically isolates A2CoST and
the autonomous driving system, which circumvents security
issues that may arise in commercial applications.

Fig. 9 shows two avoidable collision scenarios found by
A2CoST on the CARLA simulator. In this experiment, the
VUT is controlled by Learning by Cheating (Chen et al.
2020), an end-to-end autonomous driving algorithm. The
result indicates the effectiveness of A2CoST on launching

adversarial attacks on end-to-end AVs in a high-precision
simulator.

5 Conclusion
In this paper, we present A2CoST, a two-stage framework
for generating plausible, critical, and collision-avoidable
scenarios for the vehicle-under-test. Our proposed frame-
work is designed to improve efficiency by formalizing plau-
sible logical scenarios with Answer set programming in the
first stage, which enables the exclusion of invalid scenar-
ios. In the second stage, we refine the logical scenarios into
critical and collision-avoidable concrete scenarios with two
search processes. We evaluate the efficiency of A2CoST by
comparing it with two baselines and demonstrate its plausi-
bility using a dataset from the real world. To speed up the
process, we provide a lightweight simulator, and for end-to-
end and high-precision requirements, we offer an alternative
distributed simulation framework based on CARLA. As a
knowledge- and logic-based method, A2CoST offers addi-
tional interpretability and mathematical rigor compared to
learning-based methods. Therefore, it has significant poten-
tial for improving the safety of autonomous vehicles and can
pave the way for future research in this area.

However, our proposed method has some limitations that
need to be addressed. Firstly, the ASP representation we
used is not comprehensive enough to cover all possible log-
ical scenarios. This is due to the approximation involved in
describing maneuvers using ASP. While a more fine-grained
description may alleviate this issue, it is currently not fea-
sible within our current framework. Secondly, A2CoST is
not yet capable of handling urban scenarios. Our future re-
search will focus on investigating better representation that
establishes equivalence between answer sets and valid logi-
cal scenarios, and extend the method to urban scenarios.
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