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Abstract

We study the problem of efficiently computing all (usually
infinitely many) facts which are entailed by a specification
written in linear temporal logic (LTL)—a standard formalism
for specifying and verifying properties of computations in re-
active systems. This problem can be seen as a generalisation
of the standard entailment checking, but whose output pro-
vides a much wider understanding of the system’s behaviour.
We show that in full LTL the problem can be solved in doubly
exponential time, whereas for Horn fragments of LTL, which
can be seen as temporal logic programs, the problem can be
solved in exponential or only quadratic time, depending on
the allowed temporal operators in the input formula. More-
over, we show that these bounds are optimal. We also imple-
ment and experimentally compare two techniques for solving
the problem: an automata-based algorithm for full LTL and
a materialisation-based algorithm for Horn fragments. The
obtained results suggest practical usefulness of our approach.

1 Introduction
Analysing temporal data is of increasing importance due
to a number of emerging applications such as modelling
blockchain-based smart contracts (Alharby and Van Moorsel
2017), identifying traffic anomalies (Münz and Carle 2007),
algorithmic trading (Nuti et al. 2011), and IoT applica-
tions (Lécué 2017). To capture formally the evolving be-
haviour of dynamic domains, various temporal languages
have been introduced (Vardi 2009; Abadi and Manna 1989;
Demri, Goranko, and Lange 2016), including the seminal
linear temporal logic (LTL) (Pnueli 1977) with its fragments
and modifications, see, e.g., Alur and La Torre (2004), Ar-
tale et al. (2013), Demri and Schnoebelen (2002).

LTL-based formalisms are currently commonly used in
KRR to express time-sensitive knowledge and ontologies
(Artale et al. 2021; Lutz, Wolter, and Zakharyaschev 2008;
Abadi and Manna 1989; Aguado et al. 2013; Ronca et al.
2018), as illustrated in the following simple example.

Example 1. Consider a system consisting of 3 devices
with IDs = {1, 2, 3}, all initially backed up on the same
day, but each one in some unknown mode from the set
M = {1, . . . , 10}. We express it with Formulas (1) for all
id ∈ IDs , where proposition Bckpidm being true at some day
represents the fact that the device number id is backed up on

this day in mode m. We assume that no device is simultane-
ously backed up in two different modes m and m′, as stated
by Formulas (2) for all id ∈ IDs and distinct m,m′ ∈ M ,
where G is the ‘always in the future’ LTL-operator. Modes
determine the frequency of backups, namely backups in a
mode m ∈ M are performed regularly every m days, as
stated by Formulas (3) with m iterations of the ‘next’ oper-
ator X. The system is safe on a given day if all three devices
are backed up on this day, as stated by Formulas (4), for all
m,m′,m′′ ∈M .

Bckpid1 ∨ · · · ∨Bckpid10, (1)

G
(
Bckpidm ∧Bckpidm′ → ⊥

)
, (2)

G
(
Bckpidm → XmBckpidm

)
, (3)

G
(
Bckp1m ∧Bckp2m′ ∧Bckp3m′′ → Safe

)
. (4)

The main reasoning problems considered in this setting
are checking consistency (satisfiability) of the input tempo-
ral knowledge and answering temporal queries mediated by
a temporal knowledge (formula entailment). There exist var-
ious approaches to solve these problems, including tableau
systems (Wolper 1985; Lichtenstein and Pnueli 2000),
automata-based techniques (Vardi 2005; Li et al. 2014;
Duret-Lutz et al. 2022), reductions to SAT (Geatti, Gigante,
and Montanari 2021), and rewriting to first-order logic (Ar-
tale et al. 2021; Ryzhikov, Wałęga, and Zakharyaschev
2020), which have been implemented in a plethora of rea-
soning systems. Applying these methods, for example, al-
lows an engineer working on safety requirements to check
if the knowledge in Example 1 is consistent, or whether the
system is safe on some particular, say 27th, day.

What if the engineer’s task is more general, as they need
to compute the frequency with which the system from Ex-
ample 1 is guaranteed to be safe and to determine on which
days the system may be vulnerable? In this case the en-
gineer needs a more in-depth understanding of the logical
consequences of the given temporal knowledge, which can
be provided by presenting all of the (infinitely many) tempo-
ral facts entailed by Formulas (1)–(4); note that this cannot
be obtained using standard services like consistency check-
ing or query answering. Computing all of the entailed tem-
poral facts is both conceptually and computationally chal-
lenging. Hence, instead of asking the engineer to come up
with a case-based solution, we would prefer to provide them
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Figure 1: Cumulative results from this paper

with a general system performing reasoning automatically.
We address this task by developing optimal algorithms for

computing all facts entailed by an LTL-formula. With the
reasoning procedures developed in this paper, an engineer
can effortlessly determine that the system from Example 1 is
only guaranteed to be safe on the days of the form 2520 · n,
for all n ∈ N. Hence they may want to consider taking
additional measures to increase the safety of the system.

Our contributions in this paper are as follows:

– After presenting preliminaries in Section 2, in Section 3
we define our problem formally as computing the inter-
section of all traces satisfying a given LTL-formula.

– In Section 4 we show that the problem can be solved in
doubly exponential time which is worst-case unavoidable.
We present an optimal algorithm for solving the problem
which is based on manipulating a non-deterministic Büchi
automaton corresponding to the input formula (which can
be constructed using off-the-shelf systems).

– The negative complexity result from Section 4 motivates
us to search for fragments of LTL in which our computa-
tional problem is easier. To this end, we study Horn frag-
ments of LTL that were exploited in the setting of tempo-
ral ontology-based data access (Artale et al. 2013). In par-
ticular, we focus on Horn fragments LTLG,X

horn, LTLX
horn,

and LTLG
horn which restrict temporal operators allowed

in rules to the ones listed in the upper indices; the Hasse
diagram of these fragments is depicted in Figure 1.

– In contrast to full LTL, each (satisfiable) formula φ in the
fragments we consider has a unique least model, which
can be computed via materialisation, that is, successive
applications of Horn clauses seen as ‘if-then’ rules. As
we show in Section 5, materialisation can take up to ω ·|φ|
steps in LTLG,X

horn, up to ω steps in LTLX
horn, but only up

to |φ|2 steps in LTLG
horn, as shown in Figure 1.

– In Section 6 we use the results on materialisation in
Horn fragments to show that computing all facts entailed
by LTLG,X

horn- and LTLX
horn-formulas requires exponential

time. In the case of LTLG
horn-formulas, however, the prob-

lem is tractable, in particular, it becomes solvable in time
O(|φ|4)—see Figure 1. Our algorithm for these frag-

ments is based on performing materialisation steps, where
termination is ensured by applying specific stopping con-
ditions and completeness of the construction is obtained
as a result of unfolding partial materialisations.

– In Section 7 we present a prototype implementation of
the algorithms from Sections 4 and 6. We perform
experiments for full LTL and Horn fragments on ran-
domly generated formulas. Materialisation-based ap-
proach vastly outperforms the automata-based approach,
suggesting practical usefulness of the former.

2 Preliminaries
Linear Temporal Logic. Formulas of LTL (Pnueli 1977)
are generated by the following grammar, where p is a propo-
sition from a countable set PROP:

φ ::= p | ¬φ | φ ∨ φ | Xφ | φUφ.

We use standard abbreviations such as ⊤ := p ∨ ¬p, for an
arbitrary p ∈ PROP, ⊥ := ¬⊤, φ ∧ ψ := ¬(¬φ ∨ ¬ψ),
φ→ ψ := ¬φ ∨ ψ, φ↔ ψ := (φ→ ψ) ∧ (ψ → φ), Fφ :=
⊤Uφ, Gφ := ¬F¬φ, and Xkφ for φ preceded with k ∈ N
operators X, where φ and ψ are any formulas. The signature,
PROP(φ), of a formula φ is the set of all propositions in φ.
The size of φ, written |φ|, is the number of symbols in φ.

Formulas of LTL are interpreted over (infinite) traces
σ ∈ (2PROP)ω; we also exploit finite traces σ ∈ (2PROP)∗

(we will always explicitly mention their finiteness) and de-
note their lengths by |σ|. Satisfaction of a formula φ at a
time point i ∈ N of an infinite trace σ, denoted by σ, i |= φ,
is defined below, where σ(i) is the ith element of σ:

σ, i |= p iff p ∈ σ(i)
σ, i |= ¬φ iff σ, i ̸|= φ

σ, i |= φ1 ∨ φ2 iff σ, i |= φ1 or σ, i |= φ2

σ, i |= Xφ iff σ, i+ 1 |= φ

σ, i |= φ1Uφ2 iff σ, j |= φ2 for some j ≥ i and
σ, k |= φ1 for all k with i ≤ k < j

A formula φ is satisfied by a trace σ if σ, 0 |= φ and φ is sat-
isfiable if it is satisfied by some trace. A formula φ entails
a formula ψ if σ, 0 |= φ implies σ, 0 |= ψ, for each trace σ.
For σ = a0a1 · · · and any i, j ∈ N, we let σ(i) = ai and
σ[i, j] := aiai+1 · · · aj . A trace σ is contained in a trace
σ′, written as σ ⊆ σ′, if σ(i) ⊆ σ′(i) for each i ∈ N.
The intersection

⋂
Tr and the union

⋃
Tr of traces from

a set Tr are traces such that
⋂
Tr(i) =

⋂
σ∈Tr σ(i) and⋃

Tr(i) =
⋃
σ∈Tr σ(i) for each i ∈ N.

Büchi Automata. A (non-deterministic) Büchi automaton
(NBA) is a tuple A = (Q,Σ, δ, q0,F), where Q is a finite
set of states, Σ is a finite alphabet, δ : Q×Σ→ 2Q is a tran-
sition function, q0 ∈ Q is an initial state, and F ⊆ Q is a set
of final states. An NBAA accepts an ω-word a0a1 · · · ∈ Σω

if there is a sequence q0, q1, . . . ∈ Qω of states, called an
accepting run, such that qi+1 ∈ δ(qi, ai) for each i ∈ N
and some state in F occurs infinitely often in q0, q1, . . . The
language of A is the set L(A) of all ω-words accepted by

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

680



A; checking emptiness of L(A) is NL-complete (Vardi and
Wolper 1994). For each LTL-formula φ there is an NBA
Aφ accepting exactly those infinite traces which satisfy φ;
the size of such Aφ (i.e., the number of its states) is expo-
nentially large in the size of φ (Vardi and Wolper 1994).

Horn Fragment of LTL. Following the approach of Ar-
tale et al. (2013)1 we define Horn fragments of LTL by ex-
ploiting the clausal form of LTL-formulas, which was in-
spired by the separated normal form by Fisher (1991). To
this end, we let a temporal atom be given by the following
grammar, where p ∈ PROP:

λ ::= ⊥ | p | Xλ | Gλ | λUλ.

An LTL-formula in clausal form is given by the grammar:

φ ::= Xkp | G(¬λ1∨· · ·∨¬λn∨λn+1∨· · ·∨λn+m) | φ∧φ,

where n,m are positive integers, k ∈ N, whereas λ and
all λi are temporal atoms. Similar normal forms have been
shown to preserve satisfiability of formulas (Artale et al.
2013; Fisher 1991); it is however not hard to see that they
also preserve entailment, as we show below.
Proposition 2. Each LTL-formula φ can be transformed in
logarithmic space into φ′ in clausal form, such that φ and
φ′ entail the same LTL-formulas over the signature of φ.

Proof sketch. The transformation ‘renames’ subformulas ψ
of φ to fresh propositions of the form aψ and introduces
clauses which guarantee that each ψ and the corresponding
aψ hold at the same time points. For example φ = p∨Xq is
transformed into φ′ = aφ ∧ G(aφ ↔ ap ∨ aXq) ∧ G(aXq ↔
Xaq) ∧ G(ap ↔ p) ∧ G(aq ↔ q), where an equiva-
lence such as in G(aφ ↔ ap ∨ aXq) is an abbreviation of
G(¬aφ ∨ ap ∨ aXq) ∧ G(¬ap ∨ aφ) ∧ G(¬aXq ∨ aφ).

Observe that a translation in the opposite direction to the
one from Proposition 2 can be obtained by simply applying
abbreviations from the beginning of this section, so that ⊥,
∧, and G are eliminated from a formula in clausal form.

A formula is Horn when it is in clausal form with m = 1.
Such a formula can be seen as:
– a set of facts of the form Xkp, called a dataset, D, and
– a set of rules of the form G(¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1),

called a program, Π.
We let |D| and |Π| be the number of symbols in D and Π,
respectively. Moreover, following the convention of logic
programming, we will write a rule, r, as

λn+1 ← λ1 ∧ · · · ∧ λn,

where λ1∧· · ·∧λn is the body of r, in symbols body(r), with
each λi, for i ≤ n, being its body atom, and λn+1 is its head.
If the head of r mentions ⊥, we call r a ⊥-rule. Similarly
to Artale et al. (2013), we will pay special attention to Horn

1In contrast to Artale et al. (2013), however, we use the stan-
dard syntax of LTL with no past operators, we adapt the standard
semantics of LTL which is over N and not over Z, and we exploit
the ‘reflexive’ rather than ‘irreflexive’ semantics of U and G.

formulas which allow only for G and X among temporal op-
erators in rules, or only for X, or only for G. The correspond-
ing classes: LTLG,X

horn, LTLX
horn, and LTLG

horn form a Hasse
diagram depicted in Figure 1; note that these restrictions in-
fluence programs only, so the definition of datasets remains
the same. It is also worth noting that there exist a number
of other, yet similar, definitions of Horn temporal formulas
in the literature (Chen and Lin 1993; Orgun and Ma 2005;
Gabbay 1987; Abadi and Manna 1989).

Materialisation. Materialisation is a procedure that can
be used for reasoning in LTLG,X

horn, LTLX
horn, and LTLG

horn
(where rules do not mention disjunctions or U in their heads,
and so, are ‘deterministic’). Given such a formula composed
of a dataset D and a program Π, materialisation consists in
successively applying the immediate consequence operator
TΠ to the least (with respect to containment) trace σD satis-
fyingD. The operator TΠ maps a trace σ to the least trace σ′

containing σ and satisfying the following property for each
r ∈ Π which is not a⊥-rule: whenever σ satisfies each body
atom of r at a time point i, then σ′ satisfies the head of
r at i; by the form of LTLG,X

horn-, LTLX
horn-, and LTLG

horn-
formulas, there exists exactly one such σ′, and so, TΠ(σ) is
well defined. Successive applications of TΠ to σD constitute
a transfinite sequence of traces TαΠ (σD) for ordinals α:

T 0
Π(σD) = σD,

Tα+1
Π (σD) = TΠ(T

α
Π (σD)), for α an ordinal,

TαΠ (σD) =
⋃
β<α

T βΠ(σD), for α a limit ordinal.

We let CΠ,D = Tω1

Π (σD), where ω1 is the first uncountable
ordinal; if CΠ,D satisfies all ⊥-rules in Π, then CΠ,D is the
least trace satisfying both Π and D (Brandt et al. 2017). We
say that materialisation of Π and D takes α steps if α is the
least ordinal such that TαΠ (σD) = CΠ,D.

Complexity of Reasoning. Satisfiability of LTL-formulas
over infinite traces (Sistla and Clarke 1985) as well as
over finite traces (De Giacomo and Vardi 2013) is PSpace-
complete. Satisfiability of Horn formulas over Z in frag-
ments similar to our LTLG,X

horn and LTLG
horn (but with past

temporal operators and over the irreflexive semantics) is
PSpace- and P-complete, respectively (Artale et al. 2013).
More recently, a number of problems in Horn temporal log-
ics have been studied for their complexity, including satisfi-
ability in interval logics (Bresolin et al. 2017; Wałęga 2023),
rewritability of ontology-mediated queries with LTL and
metric temporal logic (MTL) operators (Artale et al. 2021;
Ryzhikov, Wałęga, and Zakharyaschev 2020), as well as fact
entailment in extensions of Datalog with MTL-operators
(Wałęga et al. 2019; Wałęga et al. 2020; Wałęga et al. 2023).

3 Intersection of All Traces
The main problem we consider in this paper is to effi-
ciently compute all the atomic facts entailed by a given LTL-
formula φ. One way to address this problem is to consider
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all the traces satisfying φ and to check, for every position i,
which atoms p occur in all these traces at this position. This
would allow us to detect, for each i, all the atoms entailed by
φ at i. In other words, this approach consists in computing
the intersection of all traces satisfying φ. This intersection
is a trace itself, denoted by σφ, and defined formally below.
Definition 3. Let φ be an LTL-formula and let Trφ be the
set of all traces satisfying φ at the time point 0. We define
the intersection of all traces of φ as the trace σφ =

⋂
Trφ.

In the definition above we adapt the convention that if
Trφ = ∅, then

⋂
Trφ is the ‘full trace’ over the signature

of φ, (PROP(φ))ω . Thus, σφ is well-defined even if φ is
unsatisfiable. At the same time it is worth noting that it is
not guaranteed that σφ satisfies φ. For example if φ = Fp,
then σφ is an empty trace ∅ω , and so, σφ, 0 ̸|= φ. On the
other hand, if φ is an LTLG,X

horn-formula (which clearly also
applies to more restricted LTLX

horn- and LTLG
horn-formulas)

then, as we described in Section 2, if φ is satisfiable, it has
the unique least trace. This least trace is the intersection of
all traces of φ, and so, it coincides with σφ. Therefore, in
contrast to the general case, we obtain that σφ, 0 |= φ.

The problem we address in this paper is to efficiently com-
pute σφ. Since σφ is an infinite trace, we start by providing a
way to represent it finitely. To this end, we observe, as stated
below, that σφ needs to be an ultimately-periodic trace.
Proposition 4. For any LTL-formula φ we have σφ = uwω ,
where u and w are some finite traces.

Note that it is well known that each satisfiable LTL-
formula has an ultimately-periodic trace (this fact is heavily
exploited in LTL reasoners), but to show that σφ is also ul-
timately periodic, additional argumentation is in place. For
that purpose, we can construct a formula of S1S (monadic
second-order logic of one successor) containing

∀x(pi(x)↔ ∀X1, . . . , Xn(trφ(X1, . . . , Xn)→ x ∈ Xi)),

for each of n propositions pi in the signature of φ. It states
that for each position x, the proposition pi holds at x if and
only if pi holds at x in all traces of φ. For this, we construct
a formula trφ(X1, . . . , Xn) with set variables X1, . . . , Xn,
which expresses that φ holds at 0 when, for each proposition
pi in φ, pi holds at every position from Xi and only there.
Any S1S formula can be transformed into a Büchi automa-
ton and each Büchi automaton accepting some word accepts
an ultimately periodic word. In our case, the automaton ac-
cepts exactly one word σφ, so that σφ is ultimately periodic.

Next, we observe that since σφ is ultimately periodic,
there need to exist unique u and w with the least sum of
lengths which represent σφ. We will call such a pair (u,w)
the shortest representation of σφ as stated formally below. It
is also worth observing that the shortest representation of a
periodic word can be computed from a non-shortest one in
linear time (Crochemore and Rytter 1994).
Definition 5. For an LTL-formula φ we let the shortest rep-
resentation of σφ be the pair (u,w) of finite traces with min-
imal sum of lengths |u|+ |w| such that uwω = σφ.

Now, based on the above discussion on the form of σφ and
its representation, we are ready to formulate the main com-

putational problem considered in this paper—computing the
intersection of all traces satisfying a given LTL-formula.
Definition 6. We let the intersection of traces be the follow-
ing computational problem:
Input: an LTL-formula φ,
Output: the shortest representation (u,w) of σφ.

By the definition, the intersection of traces provides us
a complete information about entailment of all propositions
by a formula φ. Furthermore, we can use intersection of
traces to check entailment of complex formulas by simulat-
ing them with fresh propositions; for example, to determine
all the positions in which a complex formula ψ is entailed by
φ, it suffices to compute the intersection of traces for the for-
mula φ′ = φ ∧ G(pψ ↔ ψ), which simulates ψ with a fresh
proposition pψ . Then, all the positions in which pψ holds in
σφ coincide with the positions in which ψ is entailed by φ.

Finally, we note that the argument (via constructing an
S1S formula) for Proposition 4 implies that the intersec-
tion of traces is computable. The involved construction of
a Büchi automaton from an S1S-formula is, however, non-
elementary. In the next sections we will show how to com-
pute the intersection of traces efficiently.

4 An Optimal Algorithm for LTL
In this section, we present an optimal algorithm for com-
puting the intersection of traces of an arbitrary LTL-formula
φ. We will prove, however, that for full LTL the worst-case
complexity of the problem is doubly exponential.

Algorithm 1: Intersection of traces for LTL
Input: an LTL-formula φ
Output: the shortest representation (u,w) of σφ if φ

is satsifiable, or unsat otherwise
1 Construct an NBA Aφ = (Q,Σ, δ, q0, F ) for φ;
2 j := 0; Q0 := {q0};
3 loop
4 Qj+1 := {q′ ∈ Q | q′ ∈ δ(q, a) for some q ∈ Qj ,

a ∈ Σ, Aφ has an accepting run from q′};
5 if Qj+1 = ∅ then return unsat;
6 aj :=

⋂
{a ∈ Σ | δ(q, a) ∈ Qj+1, q ∈ Qj};

7 if Qi = Qj for some i < j then
8 (u,w) := the shortest representation of

a0 · · · ai−1(ai · · · aj−1)
ω;

9 return (u,w);
10 j := j + 1;

Algorithm 1 presents our approach. In Line 1 it constructs
an NBA Aφ accepting the infinite traces which satisfy φ
(Vardi and Wolper 1994), where each symbol a in the al-
phabet Σ = 2PROP(φ) of Aφ is a subset of propositions oc-
curring in φ. In Line 2, it initialises counter j to 0 and Q0

to the singleton containing only the initial state q0 of Aφ.
Then, each iteration of the loop in Lines 3–10: computes
the set Qj+1 of states which can be accessed from states in
Qj and from which Aφ has an accepting run (Line 4), com-
putes aj = σφ(j) (Line 6), and increments j by 1 (Line 10).
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If some Qj is empty, then φ is unsatisfiable (Line 5) and
if some Qi and Qj have the same elements (Line 7), the
trace a0 · · · ai−1(ai · · · aj−1)

ω coincides with σφ. Finally,
its shortest representation (u,w) is computed in Line 8 in
linear time (Crochemore and Rytter 1994).

Theorem 7. Algorithm 1 returns the shortest representation
of σφ, or unsat if φ is unsatisfiable; the algorithm termi-
nates in time 22

O(|φ|)
.

Proof. Note thatφ is unsatisfiable if and only ifQ1 is empty,
so we can focus on satisfiable formulas.

Let (u,w) be the output of the algorithm, so it is
computed in Line 8 as the shortest representation of
a0 · · · ai−1(ai · · · aj−1)

ω . Hence, it suffices to show that
the latter coincides with σφ. First, we show by in-
duction on k ∈ N that if q0, q1, · · · is an accepting run
of Aφ, then qk ∈ Qℓ, where ℓ = k if k < j, and
ℓ = i+ ((k − i) mod (j − i)) if k ≥ j. The base case (for
k = 0) holds trivially. For the inductive step, if k < j
then qk−1 ∈ Qk−1 so, by Line 4, qk ∈ Qk. If k ≥ j
k = i+((k− i) mod (j− i))+n · (j− i), for some n ∈ N,
and qk−1 ∈ Qℓ for ℓ = i+ ((k − 1− i) mod (j − i)). If
(k − i) mod (j − i) ̸= 0, then qk ∈ Qℓ+1. Otherwise
qk ∈ Qi, which completes the inductive step.

By the property proved above, for any σ ∈ L(Aφ) and
k < j, after reading σ[0, k], the automaton Aφ is in a state
from the setQk. Since σφ(k) =

⋂
σ∈L(Aφ) σ(k), Line 6 im-

plies that σφ(k) = ak if k < j. For k ≥ j we need to show
that σφ(k) = aℓ, where ℓ = i+ ((k − i) mod (j − i)).
This, however, follows from the fact that after reading
σ[0, k], the automaton Aφ is in a state from the set Qℓ.

For the doubly exponential bound on the runtime, we
observe that Aφ is exponentially large (Vardi and Wolper
1994), namely |Q| = O(2|φ|), so it suffices to show that
Algorithm 1 terminates in time O(2|Q|). This holds since
Qj ⊆ Q, for each Qj constructed by the algorithm (see
Line 4), and so, the if-condition from Line 7 yields termina-
tion after at most 2|Q| iterations of the main loop.

We close this section by showing that Algorithm 1 is opti-
mal, as calculating the intersection of traces for some LTL-
formulas requires doubly exponential time.

Proposition 8. There is a family of LTL-formulas φn, with
n ∈ N, such that each φn is of polynomial size in n and σφn

has the shortest representation (u,w) with |w| = 22
Ω(n)

.

Proof. We will use φn to encode a binary counter which is
initialised with any value m < 2n and counts up to 2n − 1,
then sets the counter to m and repeats such computations ad
infinitum. Formula φn will use propositions 0, 1,#, ◁ and
each of its (minimal) satisfying traces will be of the form(

binn(m) # binn(m+ 1) # · · · # binn(2
n − 1) ◁

)ω
,

where binn(m) is the encoding of m using n bits
b0b1 · · · bn−1 ∈ {0, 1}n with the least-significant bit first.

The intersection of the traces above, for all
0 ≤ m ≤ 2n − 1, is the trace (∅(n+1)·ℓ−1◁)ω , with

ℓ = lcm{1, . . . , 2n}. As lcm{1, . . . , 2n} ≥ 22
n

(Nair
1982), we get the required doubly exponential bound.

It remains to show how to encode our specific counter
with φn. To this end we let φn be the conjunction

Segmentn ∧ Invariantn ∧Endn ∧Propagatesn ∧Countern.

We start by defining Segmentn which will hold in the time
points 0, n+1, 2(n+1), . . . , corresponding to the positions
of the least significant bits b0:

Segmentn =
∧

0≤i≤n−1

Xi(0 ∨ 1) ∧ Xn(◁ ∨#).

Formula Invariantn ensures that each segment is immedi-
ately (i.e., after n+ 1 time points) followed by another one:

Invariantn = G(Segmentn → Xn+1Segmentn).

We use Endn to state that ◁ ends segments with only 1s:

Endn = G(Xn◁↔
∧

0≤i≤n−1

Xi1).

Formula Propagaten ensures that each segment ended by ◁
is followed by a segment encoding the initial value m:

Propagaten =
∧

0≤i≤n−1

∧
j∈{0,1}

(
Xij → G(◁→ Xi+1j)

)
.

Finally, we use Countern to increment the value of the bi-
nary counter in the next segment. To this end, we introduce
additional formulas Equaln,i and Incn,i with 0 ≤ i ≤ n− 1
(for definiteness we additionally let Incn,n = ⊤):

Equaln,i =
∧

i≤j≤n−1

Xi1↔ Xi+n+11,

Incn,i = (Xi0→ (Xi+n+11 ∧ Equaln,i+1)) ∧
(Xi1→ (Xi+n+10 ∧ Incn,i+1)),

Countern = G(Xn#→ Incn,0).

The size of φn is polynomial in n, as required.

In the next sections we address the negative result from
Proposition 8 by showing Horn fragments of LTL in which
computing the intersection of traces is significantly easier.

5 Materialisation in Horn Fragments
In this section, we study Horn fragments of LTL, where ma-
terialisation can be used to check satisfiability of formulas
and, as we will show in Section 6, to efficiently compute the
intersection of traces. In the first step of our study on Horn
fragments, we determine the number of steps materialisa-
tion takes before reaching a fixpoint, which is crucial for
both of the above-mentioned reasoning tasks. In particular,
we will show that materialisation in LTLG

horn, LTLX
horn, and

LTLX,G
horn, takes up to |φ|2, ω, and ω · |φ| steps, respectively.

First we show the quadratic bound for LTLG
horn-formulas;

we recall that σD is the least trace satisfying D.
Theorem 9. For every LTLG

horn-formula φ, composed of a

program Π and datasetD, we have that CΠ,D = T
|φ|2
Π (σD).
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Proof sketch. We start by dividing the time line into seg-
ments [0, k1), [k1, k1], (k1, k2), . . . , [kℓ, kℓ], (kℓ,∞), where
k1 < · · · < kℓ are all the time points in D (i.e., the num-
bers k from expressions Xkp in D). Since Π mentions only
G among temporal operators, we can show by transfinite in-
duction on ordinals α that TαΠ (σD) satisfies the same propo-
sitions in all time points belonging to the same segment and
that TαΠ (σD) does not satisfy any proposition in the segment
[0, k1). Thus each application of TΠ (before reaching CΠ,D)
derives at least one proposition in one of the ≤ 2 · |D| seg-
ments. There are at most |Π|

3 propositions that can be derived
(each proposition is derived by some rule and each rule has
at least 3 symbols), so CΠ,D = TαΠ (σD), for α = 2 · |D|· |Π|

3 ,
and therefore, α ≤ |φ|2.

Moreover, we can show that the bound from Theorem 9 is
optimal by constructing a formula for which materialisation
takes a quadratic number of steps. Indeed, consider a dataset
D consisting of X1r1 and Xiei for each i ∈ {1, . . . , k}, as
well as a program Π with rules:

p1 ← ei ∧ ri, for all i ∈ {1, . . . , k},
pi+1 ← pi, for all i ∈ {1, . . . , ℓ− 1},

Gri+1 ← pℓ ∧ ei, for all i ∈ {1, . . . , k − 1}.

Materialisation of Π and D takes k · (ℓ+ 1) steps. The first
ℓ+1 steps derive facts at 1; the first step derives p1 at 1 (using
the first rule of Π), the next ℓ − 1 steps derive p2, . . . , pℓ at
1 (the second rule), and then Gr2 is derived at 1 (the third
rule). The next ℓ+ 1 steps derive propositions at 2, and this
process repeats k times, giving a quadratic number of steps.

In the remaining part of this section we show bounds
on the number of materialisation steps for LTLX

horn and
LTLX,G

horn. For this, the following notion will be useful.

Definition 10. For an LTLG,X
horn program Π, dataset D, and

an ordinal α, we let rulesαΠ,D be the set of all rules r ∈ Π for
which there is a time point i such that TαΠ (σD), i |= body(r),
but T βΠ(σD), i ̸|= body(r) for all β < α.

Intuitively rulesαΠ,D contains all rules in Π which ‘fire’ in
step α of materialisation at some time point i, and which did
not ‘fire’ at this i in any previous step. We show next that if
α is a limit ordinal, all such rules mention G in the body.

Lemma 11. If α is a limit ordinal, then each rule in rulesαΠ,D
mentions G in the body, where Π is any LTLG,X

horn program
and D is any dataset.

Proof. Suppose towards a contradiction that there exists
r ∈ rulesαΠ,D which does not mention G in the body. Since
r ∈ rulesαΠ,D, by Definition 10 there exists i such that
TαΠ (σD), i |= body(r), but T βΠ(σD), i ̸|= body(r), for all or-
dinals β < α. As r does not mention G in the body, there is a
unique minimal (finite) datasetDr such that σDr

⊆ TαΠ (σD)
and σDr

, i |= body(r). Since α is a limit ordinal, by the
definition (see Section 2), TαΠ (σD) =

⋃
β<α T

β
Π(σD), and

so, for each Xkp ∈ Dr there is an ordinal β < α such
that T βΠ(σD) |= Xkp. Let γ be the largest among these

β, so γ < α. Moreover, as for each ordinal β we have
T βΠ(σD) ⊆ T β+1

Π (σD), we obtain that T γΠ(σD) |= Dr.
Hence, T γΠ(σD), i |= body(r), raising a contradiction.

Next, we use the above lemma to show a bound on the
number of materialisation steps in LTLX,G

horn depending on
the number k of rules which mention G in the body. Note
that LTLX

horn is a special case of LTLX,G
horn with k = 0, so

the result below provides also a bound for LTLX
horn.

Theorem 12. For every LTLG,X
horn program Π and every

dataset D, we have CΠ,D = T
ω·(k+1)
Π (σD), where k is the

number of rules in Π which mention G in their bodies.

Proof sketch. To show that CΠ,D = T
ω·(k+1)
Π (σD), it suf-

fices to prove that rulesω·(k+1)
Π,D = ∅. To this end, we will

show that for any limit ordinal α and ordinal β < α, we
have rulesαΠ,D ∩ rulesβΠ,D = ∅. This will finish the proof as,
by Lemma 11, for each limit ordinal α the set rulesαΠ,D con-
tains only rules with G in the body, and so, our result above
implies that there are at most k limit ordinals α for which
rulesαΠ,D ̸= ∅. Thus, rulesω·(k+1)

Π,D = ∅.
To show the missing part of the proof, we suppose towards

a contradiction that for some limit ordinal α and an ordinal
β < α, there is r ∈ rulesαΠ,D∩rules

β
Π,D. Since r ∈ rulesαΠ,D,

there is a time point i such that TαΠ (σD), i |= body(r) but
T βΠ(σD), i ̸|= body(r). As r ∈ rulesβΠ,D, there is also a time
point j such that T βΠ(σD), j |= body(r), and clearly i ̸= j.
Now, by the fact that T βΠ(σD) ⊆ TαΠ (σD), we can show that
there exists a unique minimal (finite) dataset Dr such that
σDr ⊆ TαΠ (σD) and σDr ∪ T

β
Π(σD), i |= body(r). Next, by

the same argument as in the proof of Lemma 11, we can use
the fact that TαΠ (σD) =

⋃
γ<α T

γ
Π(σD) to show that there

exists γ < α such that T γΠ(σD), i |= body(r). As γ < α, it
contradicts the assumption that r ∈ rulesαΠ,D.

Observe that we can replace k+1 in Theorem 12 with |φ|.
Indeed, k + 1 ≤ |φ| unless |φ| = 0, but in this border case
materialisation takes 0 steps. Note also that in LTLX

horn we
have k = 0, thus materialisation takes up to ω steps.

To show that these bounds are optimal, for any k we can
construct Π and D whose materialisation takes ω · (k + 1)
steps. Indeed, let D = {X0p,X0q1} and let Π have rules:

Xqi ← qi, for all i ∈ {1, . . . , k + 1},
qi+1 ← p ∧ Gqi, for all i ∈ {1, . . . , k}.

After ω applications of the first rule we get Gq1 at 0, allow-
ing us to apply the second rule and to get q2 at 0. This repeats
k+1 times giving rise to ω · (k+1) steps of materialisation.

We summarise the results from this sections below.
Corollary 13. Let φ be an LTLG,X

horn-formula consisting of a
program Π and a dataset D. Then, the following hold:

CΠ,D = T
ω·|φ|
Π (σD), if φ is an LTLG,X

horn-formula,

CΠ,D = TωΠ (σD), if φ is an LTLX
horn-formula,

CΠ,D = T
|φ|2
Π (σD), if φ is an LTLG

horn-formula.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

684



Our results improve the previously established bound ω1

(Brandt et al. 2017) and are crucial for our algorithm in the
next section, which optimally computes the intersection of
traces for LTLG

horn-, LTLX
horn-, and LTLG,X

horn-formulas.

6 Algorithm for Horn Fragments
We will use results from Section 5 to compute the inter-
section of traces for formulas of LTLG,X

horn (as well as of
LTLG

horn and LTLX
horn) or return unsat if the formula is un-

satisfiable. Our algorithm takes as an input a formula in nor-
mal form in which the program has only rules of the forms:

Xq ← p, Gq ← p, q ← Xp, q ← Gp, r ← p ∧ q,

for p, q ∈ PROP and r ∈ PROP ∪ {⊥}. Each LTLX,G
horn-

formula φ can be transformed in logarithmic space into a
formula φ′ in normal form such that σφ′ is a conservative
extension of σφ, so the shortest representation (u,w) of
σφ can be easily computed from the shortest representation
(u′, w′) of σφ′ . To construct φ′, we introduce rules with
fresh propositions, for example, XGq ← p ∧ q ∧ r is trans-
lated into p1 ← p∧q, p2 ← p1∧r, Xp3 ← p2, and Gq ← p3;
our construction guarantees also that φ′ is in the same class
(LTLG,X

horn, LTLG
horn, or LTLX

horn) as φ.
Given a formula φ in normal form, which consists of a

program Π and a dataset D, Algorithm 2 shows how to ef-
ficiently compute the shortest representation of σφ. In each
iteration of the main loop (Lines 1–9), the algorithm keeps
extending D. In particular, D is extended in Line 5 using
ApplyRules(Π,D) which implements a one-step-application
of TΠ to σD. If some⊥-rules ‘fires’, the input formula is un-
satisfiable, so the algorithm returns unsat in Line 4. This,
however, does not prevent from applying rules infinitely
many times. Hence we keep applying them only until D en-
joys a specific saturation property (see Definition 14), which
allows us to compute the period [i, j] of D (Line 6). Next,
in Line 7, the crucial part of the algorithm occurs, where D
and [i, j] are used to compute an additional set D∞ of for-
mulas which follow from Π and D, but which may not be
derivable in any finite number of ApplyRules applications.
After adding D∞ to D (Line 8) we may be able to derive
further formulas, and so, we repeat the main loop until D∞
is empty. Once the loop terminates, we can show that σφ co-
incides with the trace σD[0, i−1] (σD[i, j])ω , so it remains
to compute its shortest representation (Line 10).

The crucial part of the algorithm is the definition of a
(Π, kmax)-saturated set and its period, which are used to
compute D∞.
Definition 14. Let D be a set of formulas of the forms Xkp
and XkGp, let Π be a program, and let kmax be a time point.
We say that D is (Π, kmax)-saturated if there is an interval
[i, j] with kmax < i such that
– σD, i |= λ if and only if σD, j+1 |= λ, for each temporal

atom λ occurring in Π, and
– σD, k |= λ1 ∧ · · · ∧ λn → λn+1, for each k ∈ [0, j] and

each rule λn+1 ← λ1 ∧ · · · ∧ λn in Π.
We let the period of D be the interval with the least j among
[i, j]’s satisfying the properties above.

Algorithm 2: Intersection of traces for LTLG,X
horn

Input: an LTLG,X
horn-formula φ in normal form

consisting of a program Π and a dataset D
Output: the shortest representation (u,w) of σφ if φ

is satisfiable, or unsat otherwise
1 repeat
2 kmax := maximal k such that Xk occurs in D;
3 while D is not (Π, kmax)-saturated do
4 if σD, i |= body(r), for some i ∈ N and a

⊥-rule r ∈ Π then return unsat;
5 else D := ApplyRules(Π,D);
6 [i, j] := period of D;
7 D∞ := {XiGp | Gp occurs in the body of Π,

σD, k |= p for all k ∈ [i, j], and σD, i ̸|= Gp};
8 D := D ∪D∞;
9 until D∞ = ∅;

10 (u,w) := the shortest representation of
σD[0, i−1] (σD[i, j])ω;

11 return (u,w);

Note that the period in Definition 14 is uniquely defined;
indeed, if there were two distinct periods [i, j] and [i′, j] with
i < i′, then, by the first item in the definition, the same tem-
poral atoms λ from Π would be satisfied at i and i′. Hence,
[i, i′ − 1], with i′ − 1 < j, would satisfy the properties of a
period, which contradicts the minimality of j.

In the next theorems we show that Algorithm 2 is correct
and worst-case optimal. For any s ∈ {kmax, i, j,D∞}, and
any iteration ℓ ∈ N of the main loop, we will use sℓ for the
value of s at the end of the ℓth iteration. We also let Dℓb and
Dℓe be the values of D in the ℓth iteration before and after
executing the ‘while’ loop, respectively.

Theorem 15. Algorithm 2 terminates in time O(2|φ|) in
general and in time O(|φ|4) if φ is an LTLG

horn-formula.

Proof. The most significant component in the computation
is the number A of applications of ApplyRules (taking place
in Line 5). Each such application adds to D at least one new
formula of the form Xkp or XkGp, which did not follow from
D so far. Thus, A ≤ kf+1

max · 2|φ|, where kfmax is the value of
kmax in the final iteration f of the main loop, whereas we let
kf+1
max be the value as if it was computed after the final iter-

ation. We will show that kf+1
max = O(2|φ|). For this, we ob-

serve that kℓ+1
max ≤ kℓmax + (kℓmax + 2|φ| + 1) · 2|φ| for each

iteration ℓ, since (kℓmax + 2|φ| + 1) · 2|φ| is the maxi-
mal number of applications of ApplyRules till saturation is
reached, and each such application can increase the max-
imal number in D by at most 1. We can find a constant
c ∈ N such that, for any ℓ, we have 2|φ| + 1 ≤ c · kℓmax,
so kℓ+1

max ≤ kℓmax · (1 + 4c2kℓmax) ≤ 5(c2kℓmax)
2. Since

k1max ≤ |φ| we obtain that kf+1
max = O(|φ|f+1). It remains

to show that f = O(|φ|). In particular, f < k + 1, where
k ≤ |φ| is the number of body atoms Gp in Π which mention
distinct propositions p. This is because there can be at most
k distinct and non-empty sets D∞ in the run; otherwise we
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had XiGp ∈ Dℓ∞ and Xi
′
Gp ∈ Dℓ′∞ for some ℓ′ > ℓ and

i, i′ ∈ N. However, ℓ′ > ℓ implies i′ ≥ i, and so XiGp
entails Xi

′
Gp contradicting Xi

′
Gp ∈ Dℓ′∞ (see Line 7).

We showed an exponential bound on kℓmax, so each Dℓb
(and Dℓe) is also exponentially bounded. We observe that
each application of ApplyRules(Π,D) is polynomial in the
size of Π and current D, and so is checking saturation of D
(Line 3) and computing its period (Line 6). This allows us
to conclude that the algorithm runs in O(2|φ|) time.

If φ is an LTLG
horn-formula, there is only one iteration of

the algorithm’s main loop and, as we have shown in Corol-
lary 13, the number of ApplyRules calls in this iteration is in
O(|φ|2). Moreover, it follows from the proof of Theorem 9
that each Xkp and XkGp in D has k that occurs in the ini-
tial D1

b . Thus, there are linearly many such k’s and linearly
many rules that can be applied, so each call of ApplyRules
requires O(|φ|2) time. Each saturation check and comput-
ing the period (which are actually not needed in LTLG

horn) is
also in O(|φ|2). Thus, the overall runtime is O(|φ|4).

Theorem 16. Algorithm 2 returns the shortest representa-
tion of σφ, or unsat if φ is unsatisfiable.

Proof sketch. First, we assume that φ has no ⊥-rules, so
it is satisfiable and the algorithm returns some (u,w). We
will show that σφ = uwω . For any iteration ℓ we let σℓ be
σDℓ

e
[0, iℓ−1](σDℓ

e
[iℓ, jℓ])ω , thus uwω = σf , for f being the

final iteration. Hence, we want to show that σφ = σf .

(⊆) As φ is a satisfiable LTLX,G
horn-formula, σφ is the least

trace of φ. Hence, to prove that σφ ⊆ σf , it suffices to show
that σf is a trace of φ. By the structure of the algorithm, no
formula is ever removed from D, so σf , 0 |= D. Thus, it
remains to prove that σf , 0 |= Π, that is, for each time point
t and each rule λ3 ← λ1 ∧ λ2 in Π, if σf , t |= λ1 ∧ λ2
then σf , t |= λ3. We observe that σDf

e
satisfies this property

for all t ∈ [0, jf ], since it is (Π, kfmax)-saturated. Hence, it
suffices to show that for each t and atom λ occurring in Π
the following statements hold:

(i) if t < if , then σf , t |= λ iff σDf
e
, t |= λ, and

(ii) if t ≥ if , then σf , t |= λ iff σDf
e
, t′ |= λ, where t′ is the

unique point in [if , jf ] such that jf+1−if divides t−t′.

As φ is in normal form, each λ is of the form p, Gp, or Xp, so
we conduct a proof by cases. If λ = p, Statements (i) and (ii)
hold since σf = σDf

e
[0, if−1](σDf

e
[if , jf ])ω . If λ = Xp,

Statement (i) holds for the same reason, and so does State-
ment (ii) for t′ ̸= jf . For t′ = jf , the following are equiva-
lent: (1) σf , t |= Xp, (2) σf , t+1 |= p, (3) σDf

e
, if |= p (as

(t+1)′ = if ), (4) σDf
e
, jf+1 |= p (as [if , jf ] is the period

of Dfe ), and (5) σDf
e
, jf |= Xp. If λ = Gp, the proof is

similar, but uses the fact that Df∞ = ∅.
(⊇) Next we prove that σf ⊆ σφ. We claim that it suffices
to show that (∗) for any ℓ ≤ f if σDℓ

b
⊆ σφ, then σℓ ⊆ σφ.

Statement (∗) indeed implies that σf ⊆ σφ; since σD1
b
⊆ σφ

and, moreover, σℓ ⊆ σφ implies that σDℓ+1
b
⊆ σφ (by the

definition of Dℓ∞, which is used to construct Dℓ+1
b ), by

Statement (∗) we obtain that σDf
b
⊆ σφ and also σf ⊆ σφ.

To prove Statement (∗), we fix ℓ ≤ f and assume that
σDℓ

b
⊆ σφ. To show that σℓ ⊆ σφ, recall that σℓ is the con-

catenation of σDℓ
e
[0, iℓ−1] and (σDℓ

e
[iℓ, jℓ])ω . As σDℓ

b
⊆ σφ

and Dℓe is obtained by applying (several times) ApplyRules
to Dℓb, clearly σDℓ

e
⊆ σφ. Thus σDℓ

e
[0, iℓ−1] is contained

in σφ. To show the inclusion for the second part of σℓ, we
will prove inductively on n ∈ N that σDℓ

e
, t |= p implies

that σφ, (t+n·per) |= p, for any t ≥ iℓ (in particular for
all t ∈ [iℓ, jℓ]), and p ∈ PROP, where per is the num-
ber of points in the period [iℓ, jℓ]. The base (for n = 0)
holds as σDℓ

e
⊆ σφ. The inductive step for t = iℓ holds

by the inductive assumption and saturation of Dℓe (implying
that σDℓ

e
satisfies the same propositions at iℓ and jℓ+1). For

t > iℓ, we recall that Dℓe is obtained by applying (several
times) ApplyRules toDℓb, so we prove inductively onm ∈ N
that TmΠ (σDℓ

b
), t′ |= p′, implies that σφ, (t′+n·per) |= p′,

for all t′ > iℓ and p′ ∈ PROP. For the base (m = 0), since
t′ > kℓmax, we get σDℓ

b
, t′ |= Gp′, and so σDℓ

b
⊆ σφ implies

that σφ, (t′+n·per) |= p′. In the inductive step (m > 0) we
assume without loss of generality that Tm−1

Π (σDℓ
b
), t′ ̸|= p′,

so TmΠ (σDℓ
b
), t′ |= p′ by an application of a rule of one

of the five types occurring in the normal-form Π. We can
show that in each case the inductive assumption implies that
σφ, (t

′+n·per) |= p′, as required.
Now, we consider Algorithm 2 running on φ (consisting

of Π and D) which can have ⊥-rules and we let φ′ be ob-
tained by deleting all ⊥-rules, so σφ′ = CΠ,D.

If φ is satisfiable, then CΠ,D satisfies all ⊥-rules in Π. By
the proof of Inclusion (⊇), CΠ,D |= Dℓb for each ℓ. Hence,
no⊥-rule applies to anyDℓb, and the algorithm never returns
unsat in Line 4. Thus the algorithm behaves as if it was
running on φ′, and so, it returns the shortest representation
of σφ′ . Since φ is satisfiable, we get σφ = CΠ,D = σφ′ , so
the output is also the shortest representation of σφ.

If φ is unsatisfiable, we need to show that unsat is re-
turned. Towards a contradiction suppose that some (u,w) is
returned. Thus, the same (u,w) is returned if the algorithm
runs on φ′, and so uwω = σφ′ = CΠ,D. Since φ is unsatis-
fiable, some of its ⊥-rules is not satisfied in CΠ,D. Thus, in
the last iteration the algorithm (running on φ) outputs unsat
in Line 4. This, however, contradicts the assumption that
(u,w) is returned.

We observe that LTLG,X
horn, and even LTLX

horn, allows us to
simulate a binary counter (similarly to the proof of Proposi-
tion 8), so the exponential blow-up is unavoidable. In the
next section we experimentally evaluate of our algorithms.

7 Experimental Evaluation
In this section, we will discuss the implementation of our
algorithms and their experimental evaluation.
Implementation. We implemented both of our algo-
rithms for computing the intersection of traces, namely
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Figure 2: Evaluation of our automata-based Algorithm 1 and materialisation-based Algorithm 2; Figure 2(a) compares the two implementa-
tions running on Horn formulas; Figure 2(b) displays runtimes of the materialisation-based approach on Horn formulas; Figure 2(c) shows
runtimes of the automata-based approach running on formulas from both the LTL (red crosses) and the Horn benchmarks (blue dots)

the automata-based Algorithm 1 for full LTL and the
materialisation-based Algorithm 2 designed for LTLG,X

horn.
The automata-based implementation uses the state-of-the-
art spot platform (Duret-Lutz et al. 2022) for constructing
a Büchi automata corresponding to LTL-formulas (required
in Line 1 of Algorithm 1). We wrote the implementations
in Python and made them, together with all the benchmarks
used in the experiments, available in open access.2

Benchmarks. Since computing the intersection of traces
is a new task introduced in this paper, there were no bench-
marks designed for this setting. Moreover, to the best of
our knowledge, there are no benchmarks for formulas in the
Horn forms we consider in the paper. Therefore, we ran-
domly generated formulas required for testing our imple-
mentations. Our benchmarks consist of 100 LTL-formulas
and another 100 LTLG,X

horn-formulas, as described below.
For LTL-formulas we used the random generator

randltl provided in spot (Duret-Lutz et al. 2022). We
set the parameter for the maximal number of propositions
mentioned in a formula to 5 and the parameter ‘random tree
size’, restricting the depth of the syntax tree of a formula,
to values between 150 and 250. This allowed us to generate
formulas of size varying from 1 to 461.

For LTLG,X
horn-formulas we had to implement a dedicated

generator which provides pairs consisting of a dataset and a
program. We generated such formulas randomly based on
the following parameters: the number of propositions (rang-
ing from 1 to 50), the number of facts in the dataset for each
proposition (ranging from 1 to 12), the maximal nesting of X
operator in the dataset (ranging from 0 to 22), and the num-
ber of rules in the program (ranging from 1 to 100). The
obtained formulas have size varying from 28 to 13014.
Experiments. We ran our automata-based implementation
on all of the benchmark formulas (so we used both LTL-
and LTLhornG,X -formulas), whereas the materialisation-based

2The code and all benchmarks can be obtained in open access
from https://github.com/chalwidz/LTLIntersectionOfTraces.

implementation could be ran only on the LTLhornG,X bench-
mark. We run the implementations 10 times for each for-
mula and recorded the average runtime. Times exceeding
10 seconds were considered timeouts. All experiments were
performed on a machine with an Intel® Core™ i7-8665U
CPU@1.90Ghz and 16Gb RAM under Ubuntu Linux run-
ning inside a Windows 11 Subsystem for Linux.

The obtained results are presented in Figure 2. The scat-
ter plot in Figure 2(a) shows that the materialisation-based
implementation is significantly faster on every formula and
always terminates within 0.1s, whereas the automata-based
implementation times out on around half of the formulas
(the time out often occurs already at the stage of construct-
ing the automaton). Therefore, it is highly beneficial to use
our dedicated materialisation-based implementation when-
ever the input formula falls into the Horn classes we consid-
ered. Figure 2(b) shows that the materialisation-based im-
plementation scales well in practice and does not exhibit the
exponential behaviour, which is in a sharp contrast with the
results in Figure 2(c) for the automata-based approach.

8 Conclusions and Future Work
Motivated by applications in temporal knowledge represen-
tation, we introduced the problem of computing all facts en-
tailed by an LTL-formula. We showed that the problem is
doubly exponential, but becomes significantly easier in Horn
fragments of LTL—in some cases it is tractable. We showed
two optimal algorithms solving the problem for full LTL
and its Horn fragments, respectively. We have implemented
our algorithms and evaluated their performance. The results
show a particularly good performance of the materialisation-
based approach and suggest its practical usefulness.

In future, we plan to extend our materialisation-based ap-
proach to other classes of Horn formulas (e.g., allowing for
past operators and the U operator in rule bodies). It would
also be interesting to try to apply our approach to other tem-
poral logics, for instance, to real time logics, metric temporal
logics, and temporal description logics.
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Wałęga, P. A.; Zawidzki, M.; Wang, D.; ; and Cuenca Grau,
B. 2023. Materialisation-based reasoning in datalogmtl with
bounded intervals. In Proc. of AAAI.
Wolper, P. 1985. The tableau method for temporal logic: An
overview. Log. et Anal. 119–136.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

689


	Introduction
	Preliminaries
	Intersection of All Traces
	An Optimal Algorithm for LTL
	Materialisation in Horn Fragments
	Algorithm for Horn Fragments
	Experimental Evaluation
	Conclusions and Future Work
	Appendix
	Proofs for sect::Preliminaries
	Proofs for sect::problem
	Proofs for sect::mater
	Proofs for sect::fragments


