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Abstract

Although there has been significant interest in applying ma-
chine learning techniques to structured data, the expressivity
(i.e., a description of what can be learned) of such techniques
is still poorly understood. In this paper, we study data trans-
formations based on graph neural networks (GNNs). First,
we note that the choice of how a dataset is encoded into a nu-
meric form processable by a GNN can obscure the character-
isation of a model’s expressivity, and we argue that a canoni-
cal encoding provides an appropriate basis. Second, we study
the expressivity of monotonic max-sum GNNs, which cover a
subclass of GNNs with max and sum aggregation functions.
We show that, for each such GNN, one can compute a Data-
log program such that applying the GNN to any dataset pro-
duces the same facts as a single round of application of the
program’s rules to the dataset. Monotonic max-sum GNNs
can sum an unbounded number of feature vectors which can
result in arbitrarily large feature values, whereas rule appli-
cation requires only a bounded number of constants. Hence,
our result shows that the unbounded summation of monotonic
max-sum GNNs does not increase their expressive power.
Third, we sharpen our result to the subclass of monotonic
max GNNs, which use only the max aggregation function,
and identify a corresponding class of Datalog programs.

1 Introduction
Data management tasks such as query answering or logical
reasoning can be abstractly seen as transforming an input
dataset into an output dataset. A key aspect of such trans-
formations is their expressivity, which is often established
by identifying a logic-based language that realises the same
class of transformations. For example, core aspects of the
SQL and SPARQL query languages have been characterised
using fragments of first-order logic (Abiteboul, Hull, and
Vianu 1995; Pérez, Arenas, and Gutierrez 2009), and logical
deduction over RDF datasets has been described using the
rule-based language Datalog (Motik et al. 2012). Such cor-
respondences enable rigorous understanding and compari-
son of different data management languages.

Recently, there has been an increasing interest in apply-
ing machine learning techniques to data management tasks.
A key benefit is that the desired transformation between
datasets can be induced from examples, rather than speci-
fied explicitly. Many models have been proposed for this
purpose, such as recurrent (Hölldobler, Kalinke, and Störr

1999), fibring (Bader, d’Avila Garcez, and Hitzler 2005),
and feed-forward networks (Bader et al. 2007), architec-
tures that simulate forward (Dong et al. 2019; Campero et
al. 2018) and backward chaining (Rocktäschel and Riedel
2017), and architectures for rule learning (Yang, Yang, and
Cohen 2017; Sadeghian et al. 2019). Graph neural networks
(GNNs) have proved particularly popular since they can ex-
press graph transformations and have been widely applied
to link prediction and node classification tasks in structured
datasets (Schlichtkrull et al. 2018; Pflueger, Tena Cucala,
and Kostylev 2022; Liu et al. 2021; Ioannidis, Marques,
and Giannakis 2019; Qu, Bengio, and Tang 2019; Yang,
Cohen, and Salakhutdinov 2016; Kipf and Welling 2017;
Zhang and Chen 2018; Teru, Denis, and Hamilton 2020).

Characterising the expressivity of ML models for data
management has thus steadily gained importance, and com-
putational logic provides a well-established methodology:
we can describe conditions under which ML-induced mod-
els become equivalent to logical formalisms in the sense
that applying the ML model to an arbitrary dataset produces
the same result as applying a specific logical formula. In
a pioneering study, Barceló et al. (2020) showed that each
GNN-induced transformation expressible in first-order logic
is equivalent to a concept query of the ALCQ description
logic (Baader et al. 2007)—a popular KR formalism. Huang
et al. (2023) proved an analogous result for a class of GNNs
with a dedicated vertex and colour. Morris et al. (2019)
showed that GNNs can express certain types of graph iso-
morphism tests. Sourek, Zelezný, and Kuzelka (2021) char-
acterised the expressivity of GNNs using a hybrid language
where each Datalog rule is annotated with a tensor. Tena Cu-
cala et al. (2022) characterised the expressivity of monotonic
GNNs (MGNNs), which use the max aggregation function
and require all weights in the matrices to be nonnegative, in
terms of a class of Datalog programs. Finally, Tena Cucala,
Cuenca Grau, and Motik (2022) characterised the expressiv-
ity of the Neural-LP model of rule learning.

In this paper, we take a next step in the study of the ex-
pressivity of GNN-based transformations of structured data.
A key technical challenge can be summarised as follows.
GNNs typically use summation to aggregate feature vectors
of all vertices adjacent to a given vertex in the input graph.
The number of adjacent vertices in the input is unbounded
(i.e., there is no a priori limit on the number of neighbours
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a vertex can have), and so the summation result can be un-
bounded as well; hence, it appears that arbitrarily many ver-
tices can influence whether a fact is derived. This seems fun-
damentally different to reasoning in fragments of first-order
logic such as Datalog: the number of constants that need to
be jointly considered in an application of a Datalog rule is
determined by the number of rule variables, and not by the
structure of the input dataset. Thus, at first glance, one might
expect GNNs with summation to be fundamentally different
from Datalog rules. To shed light on this issue, we present
several novel contributions.

In Section 3 we focus on a key obstacle: to apply a GNN
to a dataset, the latter must be encoded as a graph where
each vertex is assigned a numeric feature vector; but then,
the expressivity of the transformation inevitably depends on
the details of the encoding, which obscures the contribution
of the GNN itself. To overcome this, we adopt a canoni-
cal encoding, variants of which have already been consid-
ered by Schlichtkrull et al. (2018), Barceló et al. (2020), and
Pflueger, Tena Cucala, and Kostylev (2022). We define a
GNN to be equivalent to a Datalog program if applying the
GNN to any dataset while using the canonical encoding pro-
duces the same facts as applying the program’s rules to the
dataset once (i.e., without fixpoint iteration). Finally, we
observe that noncanonical encodings by Tena Cucala et al.
(2022), Morris et al. (2019), or Liu et al. (2021) can be de-
scribed using well-known extensions of Datalog, and so the
expressivity of transformations based on such encodings can
be characterised by composing all relevant programs.

In Section 4 we present our main technical contribution.
First, we introduce a class of monotonic max-sum GNNs.
Similarly to the MGNNs by Tena Cucala et al. (2022),
monotonic max-sum GNNs require matrix weights to be be
nonnegative; however, they allow for the max or sum ag-
gregation functions in each network layer, and they place
certain restrictions on the activation and classification func-
tions (ReLU and threshold functions are allowed). Tena
Cucala et al. (2022) showed that the performance of such
GNNs with just max aggregation on tasks such as knowl-
edge graph completion is on a par with that of other recent
approaches. Hence, monotonic max-sum GNNs are prac-
tically relevant, but they also allow their predictions to be
explained using logical proofs. Second, we prove that each
monotonic max-sum GNN is equivalent to a Datalog pro-
gram of a certain shape possibly containing inequalities in
rule bodies. Strictly speaking, such a program can be recur-
sive in the sense that the same predicate can occur in both
rule bodies and heads; however, our notion of equivalence
does not involve fixpoint iteration (i.e., the program’s rules
are applied just once). Thus, monotonic max-sum GNNs
can derive facts with predicates from the input, but they can-
not express true recursive properties such as reachability;
moreover, the ability to produce unbounded feature values
does not lead to a fundamental increase in expressivity. Our
equivalence proof is quite different from the analogous re-
sult for MGNNs: when aggregation is limited to just max,
the value of each feature of a vertex clearly depends on only
a fixed number of neighbours of the vertex. Third, we prove
that the equivalent Datalog program can be computed from

the GNN itself. This result is interesting because it requires
enumerating potentially infinite sets of real-valued candidate
feature values in a way that guarantees termination. This
provides a starting point for future development of practical
techniques for extracting Datalog programs from monotonic
max-sum GNNs.

Finally, in Section 5 we sharpen our results to monotonic
max GNNs, which allow only for max aggregation. We
show that, analogously to MGNNs, each monotonic max
GNN is equivalent to a positive Datalog program; however,
we also present a converse result: we identify a class Data-
log programs such that, for each program in the class, there
exists an equivalent monotonic max GNN. In this way, we
obtain an exact characterisation of an interesting class of
GNN-based transformations using logical formalisms.

The proofs of all theorems are given in full in the extended
version of this paper (Tena Cucala et al. 2023).

2 Preliminaries
We next recapitulate the basics of Datalog and GNNs.
Datasets and Datalog. We fix a signature consisting of
countably infinite, disjoint sets of predicates and constants.
Each predicate is associated with a nonnegative integer arity.
We also consider a countably infinite set of variables that is
disjoint with the sets of predicates and constants.

A term is a variable or a constant. An atom is of the
form P (t1, . . . , tn) where P is a predicate of arity n and
t1, · · · , tn are terms. An inequality is an expression of the
form t1 ̸≈ t2 where t1 and t2 are terms. A literal is an atom
or an inequality. A term or a literal is ground if it is variable-
free. A fact is a ground atom and a dataset is a finite set
of facts; thus, datasets cannot contain inequalities. A con-
junction α of facts is true in a dataset D, written D |= α,
if A ∈ D for each fact A in α. A ground inequality s ̸≈ t
is true if s ̸= t; for uniformity with facts, we often write
D |= s ̸≈ t even though the truth of s ̸≈ t does not depend
on D. A (Datalog) rule is of the form (1) where n ≥ 0,
B1, . . . , Bn are body literals, and H is the head atom:

B1 ∧ · · · ∧Bn → H. (1)

A (Datalog) program is a finite set of rules. A substitution ν
is a mapping of finitely many variables to ground terms; for
α a literal, αν is the result of replacing in α each variable
x with ν(x) provided the latter is defined. Each rule r of
form (1) defines an immediate consequence operator Tr on
datasets: for D a dataset, Tr(D) is the dataset that contains
the fact Hν for each substitution ν mapping all variables
of r to terms occurring in D such that D |= Biν for each
1 ≤ i ≤ n. For P a program, TP(D) =

⋃
r∈P Tr(D).

To simplify the formal treatment, we do not make the
usual safety requirement where each variable in a rule must
occur in a body atom; in fact, the body can be empty, which
we denote by⊤. For example, rule r = ⊤ → R(x, y) is syn-
tactically valid; moreover, the definition of Tr ensures that
Tr(D) contains exactly each fact R(s, t) for all (not neces-
sarily distinct) terms s and t occurring in D.

Conjunctions α and β of literals are equal up to variable
renaming if there exists a bijective mapping ν from the set
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of all variables of α to the set of all variables of β such that
αν and β contain exactly the same conjuncts; this notion is
extended to rules in the obvious way. A set S contains a con-
junction α of literals up to variable renaming if there exists
β ∈ S such that α and β are equal up to variable renaming.

Graph Neural Networks. We use R and R+
0 for the sets of

real and nonnegative real numbers, respectively. Also, we
use N for the set of natural numbers, and N0 = N ∪ {0}.

A function σ : R→ R is monotonically increasing if
x < y implies σ(x) ≤ σ(y). Function σ is Boolean if its
range is {0, 1}. Finally, σ is unbounded if, for each y ∈ R,
there exists x ∈ R such that σ(x) > y.

A real multiset is a function S : R→ N0 that assigns to
each x ∈ R the number of occurrences S(x). Such S is fi-
nite if S(x) > 0 for finitely many x ∈ R; the cardinality of
such S is |S| =

∑
x∈R S(x); and F(R) is the set of all finite

real multisets. We often write a finite S as a list of possibly
repeated real numbers in double-braces {{ . . . }}. Finally, we
treat a set as a multiset where each element occurs just once.

We consider vectors and matrices over R and R+
0 . For v

a vector and i a natural number, (v)i is the i-th element of
v. We apply scalar functions to vectors element-wise; for
example, given n vectors v1, . . . ,vn of equal dimension,
max{v1, . . . ,vn} is the vector whose i-th element is equal
to max{(v1)i, . . . , (vn)i}.

For Col a finite set of colours and δ ∈ N a dimension,
a (Col, δ)-graph is a tuple G = ⟨V , {Ec}c∈Col, λ⟩ where V
is a finite set of vertices; for each c ∈ Col, Ec ⊆ V × V
is a set of directed edges; and labelling λ assigns to each
v ∈ V a feature vector vλ of dimension δ. Graph G is sym-
metric if ⟨v, u⟩ ∈ Ec implies ⟨u, v⟩ ∈ Ec for each c ∈ Col,
and it is Boolean if (vλ)i ∈ {0, 1} for each v ∈ V and
i ∈ {1, . . . , δ}. To improve readability, we abbreviate vλ to
just v when the labelling function is clear from the context;
analogously, we abbreviate vλℓ

to vℓ.
A (Col, δ)-graph neural network (GNN) N with L ≥ 1

layers is a tuple

⟨{Aℓ}1≤ℓ≤L, {Bc
ℓ}c∈Col and 1≤ℓ≤L,

{bℓ}1≤ℓ≤L, {aggℓ}1≤ℓ≤L, σ, cls⟩,
(2)

where, for each ℓ ∈ {1, . . . , L} and c ∈ Col, Aℓ and Bc
ℓ are

matrices over R of dimension δℓ × δℓ−1 with δ0 = δL = δ,
bℓ is a vector over R of dimension δℓ, aggℓ : F(R)→ R is
an aggregation function, σ : R→ R is an activation func-
tion, and cls : R→ {0, 1} is a classification function.

Applying (Col, δ)-GNN N to (Col, δ)-graph G induces
the sequence λ0, . . . , λL of vertex labelling functions such
that λ0 = λ and, for each ℓ ∈ {1, . . . , L} and v ∈ V , the
value of vℓ is given by

vℓ = σ
(
Aℓvℓ−1+∑
c∈Col

Bc
ℓ aggℓ

(
{{uℓ−1 | ⟨v, u⟩ ∈ Ec }}

)
+ bℓ

)
.

(3)

The resultN (G) of applyingN to G is the Boolean (Col, δ)-
graph with the same vertices and edges as G, but where each
vertex v ∈ V is labelled by cls(vL).

3 Choosing an Encoding/Decoding Scheme
To realise a dataset transformation using a GNN, we must
first encode the input dataset into a graph that can be pro-
cessed by a GNN, and subsequently decode the GNN’s out-
put back into a dataset. Several encoding/decoding schemes
have been proposed in the literature, and their details differ
considerably. As a result, when characterising GNN-based
transformations of datasets using logic, it can be hard to un-
derstand which properties of the characterisation are due to
the chosen encoding/decoding scheme, and which are im-
manent to the GNN used to realise the transformation. In
this paper we consider primarily the encoding scheme that
straightforwardly converts a dataset into a graph, but we also
discuss how to take other encoding schemes into account.

3.1 Canonical Encoding/Decoding Scheme
A straightforward way to encode a dataset containing only
unary and binary facts into a Boolean (Col, δ)-graph is to
transform terms into vertices, use vertex connectivity to de-
scribe binary facts, and encode presence of unary facts in
feature vectors. Such encoding/decoding schemes, which
we call canonical, have already been widely used in the
literature with minor variations (Schlichtkrull et al. 2018;
Pflueger, Tena Cucala, and Kostylev 2022; Barceló et al.
2020). They establish a direct syntactic correspondence be-
tween datasets and coloured graphs and are thus a natural
starting point for studying the expressivity of GNNs.

We next describe one such scheme. In particular, we in-
troduce (Col, δ)-datasets, which naturally correspond to a
large class of (Col, δ)-graphs. Our definitions provide the
foundation necessary to formulate our expressivity results
in Section 4. In Section 3.2 we discuss how to combine our
expressivity results with more complex encoding schemes.
Definition 1. Let Col be a set of colours and let δ ∈ N be a
dimension. A (Col, δ)-signature contains
• a binary predicate Ec for each colour c ∈ Col, and
• a unary predicate Ui for each i ∈ {1, . . . , δ}.
A (Col, δ)-fact has a predicate from the (Col, δ)-signature,
and a (Col, δ)-dataset contains only (Col, δ)-facts.

We assume that terms occurring in datasets correspond
one-to-one to vertices of coloured graphs—that is, each term
t is paired with a unique vertex vt. This is again without
loss of generality since the result of applying a GNN to a
coloured graph does not depend on the identity of vertices,
but only on the graph structure and the feature vectors.

We are now ready to define the canonical GNN-based
transformations of (Col, δ)-datasets.
Definition 2. The canonical encoding enc(D) of a (Col, δ)-
dataset D is the Boolean (Col, δ)-graph ⟨V , {Ec}c∈Col, λ⟩
defined as follows:
• V contains the vertex vt for each term t occurring in D;
• ⟨vt, vs⟩ ∈ Ec if Ec(t, s) ∈ D for each c ∈ Col; and
• (vt)i = 1 if Ui(t) ∈ D, and (vt)i = 0 otherwise.
The canonical decoding dec(G) of a Boolean (Col, δ)-graph
G = ⟨V , {Ec}c∈Col, λ⟩ is the dataset that contains
• the fact Ec(t, s) for each ⟨vt, vs⟩ ∈ Ec and c ∈ Col, and
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• the fact Ui(t) for each vt ∈ V and i ∈ {1, . . . , δ} such
that (vt)i = 1.

Each (Col, δ)-GNNN induces the canonical transformation
TN on (Col, δ)-datasets where TN (D) = dec(N (enc(D)))
for each (Col, δ)-dataset D.

This encoding neither introduces nor omits any informa-
tion from the input dataset, so a (Col, δ)-dataset D and its
canonical encoding enc(D) straightforwardly correspond to
one another. Since datasets are directional, (Col, δ)-graphs
must be directed as well to minimise the discrepancy be-
tween the two representations. The canonical decoding is
analogous to the encoding, and the two are inverse opera-
tions on graphs that are regular as per Definition 3.
Definition 3. A (Col, δ)-graph G = ⟨V , {Ec}c∈Col, λ⟩ is
regular if G is Boolean and each vertex v ∈ V either occurs
in Ec for some c ∈ Col, or (v)i = 1 for some i ∈ {1, . . . , δ}.

Our canonical encoding produces only regular graphs,
and there is a one-to-one correspondence between (Col, δ)-
datasets and regular (Col, δ)-graphs. Our results from the
following sections can be equivalently framed as character-
ising expressivity of GNN transformations of regular graphs
in terms of Datalog programs. Graphs that are not Boolean
do not correspond to encodings of datasets, so we do not
see a natural way to view GNN transformations over such
graphs in terms of logical formalisms. Finally, a (Col, δ)-
graph G that is Boolean but not regular contains ‘isolated’
vertices that are not connected to any other vertex and are
labelled by zeros only. When such G is decoded into a
(Col, δ)-dataset, such ‘isolated’ vertices do not produce any
facts in dec(G) and thus several non-regular Boolean graphs
can produce the same (Col, δ)-dataset. Note, however, that
each ‘isolated’ zero-labelled vertex is transformed by a GNN
in the same way—that is, the vector labelling the vertex in
the GNN’s output does not depend on any other vertices but
only on the matrices of the GNN. Consequently, such ver-
tices are not interesting for our study of GNN expressivity.

We are now ready to formalise our central notion of equiv-
alence between a GNN and a Datalog program.
Definition 4. A (Col, δ)-GNN N captures a rule or a Data-
log program α if Tα(D) ⊆ TN (D) for each (Col, δ)-dataset
D. Moreover, N and α are equivalent if TN (D) = Tα(D)
for each (Col, δ)-dataset D.

The key question we address in Sections 4 and 5 is the
following: under what conditions is a given (Col, δ)-GNN
N equivalent to a Datalog program, and can this program
(at least in principle) be computed from N ?

3.2 Noncanonical Encoding/Decoding Schemes
For each (Col, δ)-dataset D, the binary facts of D and
TN (D) coincide, and so applying TN to D cannot derive
any binary facts. To overcome this limitation, more com-
plex, noncanonical encodings have been proposed (Tena Cu-
cala et al. 2022; Morris et al. 2019; Liu et al. 2021). These
introduce vertices representing combinations of several con-
stants so that facts of higher arity can be encoded in appro-
priate feature vectors, but there is no obvious canonical way
to achieve this. Expressivity results based on such encodings

are less transparent because it is not obvious which aspects
of expressivity are due to the encoding/decoding scheme and
which are immanent to the GNN itself.

We argue that noncanonical encoding/decoding schemes
can often be described by a pair of programs Penc and Pdec,
possibly expressed in a well-known extension of Datalog,
which convert an input dataset into a (Col, δ)-dataset and
vice versa. Thus, given an arbitrary dataset D, the re-
sult of applying the end-to-end transformation that uses a
GNN N and the respective encoding/decoding scheme is
TPdec

(TN (TPenc(D))). Furthermore, if N is equivalent to
a Datalog program PN , then the composition of Penc, PN ,
and Pdec characterises the end-to-end transformation. This
allows us to clearly separate the contribution of the GNN
from the contributions of the encoding and decoding.

Tena Cucala et al. (2022) recently presented a dataset trans-
formation based on a class of monotonic GNNs (MGNNs).
Their approach is applicable to a dataset D that uses unary
predicates A1, . . . , Aϵ and binary predicates Rϵ+1, . . . , Rδ ,
and D is encoded into a symmetric (Col, δ)-graph over the
set of colours Col = {c1, c2, c3, c4}. The encoding intro-
duces a vertex va for each constant a in D as well as ver-
tices va,b and vb,a for each pair of constants a, b occurring
together in a binary fact in D. Predicates are assigned fixed
positions in vectors so that the value of a component of a
vector labelling a vertex indicates the presence or absence of
a specific fact in D. For example, if Ai(a) ∈ D, then (va)i
is set to 1; analogously, if Rj(a, b) ̸∈ D but a and b occur
in D in a binary fact, then (va,b)j is set to 0. Moreover, the
edges of the coloured graph indicate different types of ‘con-
nections’ between constants; for example, vertices va and
va,b are connected by an edge of colour c1 to indicate that
constant a occurs first in the constant pair (a, b). A variant
of this approach was also proposed by Liu et al. (2021) in
the context of knowledge graph completion.

We next show how to capture this encoding using rules.
Note that the encoder introduces vertices of the form va,b
for pairs of constants a and b, so the encoding program Penc

requires value invention. This can be conveniently realised
using functional terms. For example, we can represent ver-
tex va,b using term g(a, b), and we can represent each vertex
of the form va using a term f(a) for uniformity. Apply-
ing the encoding program Penc to a dataset thus produces a
(Col, δ)-dataset with functional terms, which should be pro-
cessed by the GNN as if they were constants; for example,
the canonical encoding should transform g(a, b) into vertex
vg(a,b). Based on this idea, the encoding program Penc con-
tains rule (4) instantiated for each i ∈ {1, . . . , ϵ}, and rules
(5)–(13) instantiated for each j ∈ {ϵ+ 1, . . . , δ}.

Ai(x)→ Ui(f(x)) (4)
Rj(x, y)→ Uj(g(x, y)) (5)
Rj(x, y)→ Ec1(f(x), g(x, y)) (6)
Rj(x, y)→ Ec1(g(x, y), f(x)) (7)
Rj(x, y)→ Ec2(f(y), g(x, y)) (8)
Rj(x, y)→ Ec2(g(x, y), f(y)) (9)
Rj(x, y)→ Ec3(g(x, y), g(y, x)) (10)
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Rj(x, y)→ Ec3(g(y, x), g(x, y)) (11)
Rj(x, y)→ Ec4(f(x), f(y)) (12)
Rj(x, y)→ Ec4(f(y), f(x)) (13)

Rules (4) and (5) ensure that all unary and binary facts in
the input dataset are encoded as facts of the form Ui(f(a))
and Uj(g(a, b)); thus, when these are further transformed
into a (Col, δ)-graph, the vectors labelling vertices vf(a)
and vg(a,b) encode all input facts of the form Ai(a) and
Rj(a, b) for i ∈ {1, . . . , ϵ} and j ∈ {ϵ+ 1, . . . , δ}. In addi-
tion, rules (6)–(13) encode the adjacency relationships be-
tween terms: colour c1 connects terms g(a, b) and f(a),
colour c2 connects g(a, b) and f(b), colour c3 connects
g(a, b) and g(b, a), and colour c4 connects terms f(a) and
f(b) provided that a and b occur jointly in a binary fact.

Program Pdec capturing the decoder contains rule (14) in-
stantiated for each i ∈ {1, . . . , ϵ}, as well as rule (15) instan-
tiated for each j ∈ {ϵ+ 1, . . . , δ}.

Ui(f(x))→ Ai(x) (14)
Uj(g(x, y))→ Rj(x, y) (15)

Intuitively, these rules just ‘read off’ the facts from the labels
of vertices such as vf(a) and vg(a,b). The composition of
these three programs is a (function-free) Datalog program.

It is straightforward to show that, for each dataset D, the
graph obtained by applying the encoder by Tena Cucala et
al. (2022) is isomorphic to the graph obtained by applying
the canonical encoding from Definition 2 to TPenc(D) and
thus program Penc correctly captures their encoder.

A limitation of this encoding is that the transformation’s
output can contain a fact of the form R(a, b) only if the input
dataset contains a fact of the form S(a, b) or S(b, a). Intu-
itively, the presence of S(a, b) or S(b, a) in the input ensures
that the resulting (Col, δ)-graph contains a vertex vg(a,b) for
representing binary facts of the form R(a, b). An obvious
way to overcome this limitation is to introduce terms g(a, b)
for all constants a and b occurring in the input, without re-
quiring a and b to occur jointly in a binary fact. While this
increases the expressivity of the end-to-end transformation,
the increase is due to the encoding step, rather than the GNN.
Our framework makes this point clear. For example, we
can extend Penc with rules such as (16)–(19) and so on for
all other combinations of unary and binary predicates and
colours. The chaining of Penc, PN , and Pdec can now cap-
ture different transformations even if PN remains the same.

Ai(x) ∧Aj(y)→ Ec1(f(x), g(x, y)) (16)
Ai(x) ∧Aj(y)→ Ec1(g(x, y), f(x)) (17)

Ri(x, z) ∧Aj(y)→ Ec1(g(x, y), f(x)) (18)
Ri(z, x) ∧Aj(y)→ Ec1(g(x, y), f(x)) (19)

Morris et al. (2019) introduced k-GNNs and showed them
to be more expressive than standard GNNs. The input to a
k-GNN is a symmetric (Col, δ1)-graph G1 without self-loops
where Col contains a single colour c and, for each vertex v of
G1, (v)i = 1 for exactly one 1 ≤ i ≤ δ1. To apply a k-GNN
to G1, the latter is transformed into another (Col, δ2)-graph
G2 that contains one vertex for each set of k distinct vertices
of G1, and then a standard (Col, δ2)-GNN is applied to G2.

We next show that the transformation of G1 into G2 can
be captured by a program Penc that transforms a (Col, δ1)-
dataset over unary predicates A1, . . . , Aδ1 and a binary pred-
icate R into a (Col, δ2)-dataset. Thus, the increase in expres-
sivity of k-GNNs does not come from the GNN model itself,
but rather from the encoding implicit in their approach. For
readability, we make several simplifying assumptions. First,
while Morris et al. (2019) consider sets of k distinct vertices
in order to ensure practical scalability, we consider k-tuples
instead and limit our presentation to just k = 2. Second, we
consider just the local neighbourhood approach to connect-
ing vertices in G2. Finally, our encoding requires extending
Datalog not only with function symbols, but also with strat-
ified negation-as-failure not (Dantsin et al. 2001).

Program Penc consists of rules (20)–(23) instantiated for
all i, j, k, ℓ ∈ {1, . . . , δ1}.

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧
Ak(x) ∧Aℓ(z) ∧ x ̸≈ z ∧

R(y, z) ∧ y ̸≈ z → Ec(g(x, y), g(x, z))
(20)

Ai(y) ∧Aj(x) ∧ y ̸≈ x ∧
Ak(z) ∧Aℓ(x) ∧ z ̸≈ x ∧

R(y, z) ∧ y ̸≈ z → Ec(g(y, x), g(z, x))
(21)

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧ not R(x, y)
→ Ui,j,0(g(x, y))

(22)

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧R(x, y)
→ Ui,j,1(g(x, y))

(23)

Conjunctions of the form Ai(x) ∧Aj(y) ∧ x ̸≈ y in these
rules identify pairs of distinct constants a and b (correspond-
ing to the vertices of G1) in the input dataset, and, for each
such pair, g(x, y) introduces a term g(a, b) (corresponding
to a vertex of G2). Rules (20) and (21) encode the local
neighbourhood approach: terms g(a, b) and g(d, e) are con-
nected in G2 if either a = b and d ̸= e, or a ̸= b and d = e,
and additionally the two constants in the inequality are con-
nected in G1. Finally, rules (22) and (23) identify the type of
the subgraph of G1 that a and b participate in. Specifically, a
fact of the form Ui,j,0(g(a, b)) says that a and b are labelled
in G1 by Ai and Aj respectively, but they are not connected
in G1. A fact of the form Ui,j,1(g(a, b)) is analogous, but
with the difference that a and b are connected in G1.

4 GNNs with Max-Sum Aggregation
In this section, we introduce monotonic max-sum GNNs and
prove that each such GNN corresponds to a Datalog pro-
gram (possibly with inequalities in the rule bodies) that can
be computed from the GNN’s definition. Monotonic max-
sum GNNs can use the following aggregation function in all
layers, which generalises both max and sum.
Definition 5. For k ∈ N0 ∪ {∞}, a finite real multiset
S ∈ F(R), and ℓ = min (k, |S|), let

max-k-sum(S) =


0 if ℓ = 0,

ℓ∑
i=1

si
where s1, . . . , sℓ are the
ℓ largest numbers of S.

Each occurrence of a number is counted separately; for
example, max-3-sum({{ 0, 1, 1, 2, 2, 5 }}) = 9 because the
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three largest numbers in S are 5 and the two occurrences of
2. Also, max-1-sum is equivalent to max, and max-∞-sum
is equivalent to sum; hence, max-k-sum generalises both
the max and sum aggregation functions. While the ability
to sum just the k maximal elements may not be relevant in
practice, it will allow us to formalise a key technical result.
We next introduce monotonic max-sum GNNs.

Definition 6. A monotonic max-sum (Col, δ)-GNN is a
GNN of form (2) satisfying the following conditions:

• for each ℓ ∈ {1, . . . , L} and each c ∈ Col, all elements of
matrices Aℓ and Bc

ℓ are nonnegative;
• for each ℓ ∈ {1, . . . , L}, the aggregation function aggℓ is
max-kℓ-sum for some kℓ ∈ N0 ∪ {∞};

• the activation function σ is monotonically increasing and
unbounded, and the range of σ is R+

0 ; and
• the classification function cls is a step function—that is,

there exists a threshold t ∈ R such that cls(t′) = 0 for
each t′ < t, and cls(t′) = 1 for each t′ ≥ t.

Monotonic max-sum GNNs are closely related to, but
incomparable with MGNNs by Tena Cucala et al. (2022):
MGNNs do not require the activation function to be un-
bounded, but they support only the max aggregation func-
tion in all layers. While ReLU satisfies Definition 6, neither
ELU nor the sigmoid function is compatible.

In Section 4.1, we show that, in each monotonic max-
sum GNN N , one can replace each function max-kℓ-sum
where kℓ =∞ with max-Cℓ-sum for some Cℓ ∈ N0 with-
out changing the canonical transformation induced by N—
that is, to apply a GNN to a dataset, we need to consider only
a bounded number of vertices for aggregation. Number Cℓ

depends solely onN (i.e., it is independent of any dataset to
which N is applied) and is called the capacity of layer ℓ. In
Section 4.2, we use this result to show that TN is equivalent
to the immediate consequence operator of a Datalog pro-
gram PN that depends only on N . Finally, in Section 4.3,
we show that the numbers Cℓ can be computed fromN , and
hence program PN is computable. Our objective is to show
that extracting PN from N is possible in principle, but fur-
ther work is needed to devise a practical procedure.

4.1 Limiting Neighbour Aggregation
Throughout the rest of Section 4, we fix a monotonic max-
sum (Col, δ)-GNNN of form (2) and dimensions δ0, . . . , δL
as specified in Section 2, and we fix k1, . . . , kL as the num-
bers defining the aggregation functions ofN . We next show
that each kℓ =∞ can be replaced with a natural number Cℓ.
We first introduce several auxiliary definitions.

Definition 7. A (Col, ℓ)-multiset family, where 0 ≤ ℓ ≤ L,
is a mapping Y that assigns to each colour c ∈ Col a finite
multiset Yc of vectors of dimension δℓ.

For each 1 ≤ ℓ ≤ L, each 1 ≤ i ≤ δℓ, each vector x of
dimension δℓ−1, and each (Col, ℓ−1)-multiset family Y , let

Val(ℓ, i,x,Y) = (Aℓx+
∑
c∈Col

Bc
ℓ max-kℓ-sum(Yc)+bℓ)i.

Sets Xℓ,i with 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ are defined by
induction on ℓ as follows.

Algorithm 1 CAPACITY(N )

1: let αL be the threshold of cls
2: for ℓ from L down to 1 do
3: wℓ := the least non-zero element of Aℓ and all Bc

ℓ
4: ϵℓ := the least non-zero number in

⋃
i Xℓ−1,i

5: if either wℓ or ϵℓ does not exist then
6: Cℓ := Cℓ−1 := C1 := 0
7: return
8: βℓ := the least natural number such that σ(βℓ) ≥ αℓ

9: bℓ := the least element of bℓ

10: Cℓ := min(kℓ, ⌈βℓ−bℓ
wℓ·ϵℓ ⌉)

11: αℓ−1 := βℓ−bℓ
wℓ

• For each 1 ≤ i ≤ δ0, let X0,i = {0, 1}.
• For each ℓ ≥ 1 and each 1 ≤ i ≤ δℓ, set Xℓ,i is the

least set that contains σ(Val(ℓ, i,x,Y)) for each vector
x of dimension δℓ−1 such that (x)j ∈ Xℓ−1,j for each
j, and each (Col, ℓ − 1)-multiset family Y such that
(y)j ∈ Xℓ−1,j for all c ∈ Col, y ∈ Yc, and j.

Intuitively, sets Xℓ,i contain all real numbers that can oc-
cur in the i-th position of a vector labelling a vertex at layer ℓ
whenN is applied to a canonical encoding of some (Col, ℓ)-
dataset. Indeed, by the base case of the definition, X0,i con-
tains all values that can be produced by the canonical en-
coding, and the inductive step considers all possible ways in
which a vector in layer ℓ can be computed from vectors in
layer ℓ−1 using propagation equation (3). In the latter case,
a (Col, ℓ)-multiset family Y represents a collection of pos-
sible neighbour vectors, and Val(ℓ, i,x,Y) is the argument
of the activation function used to compute some (vℓ)i.

Note that sets Xℓ,i are nonempty, and they can be infinite.
However, Theorem 8 shows that Xℓ,i can be enumerated as
a countable, monotonically increasing sequence of numbers.
This is important because it shows that the notion of a least
nonzero element of Xℓ,i is correctly defined. In the follow-
ing, for each α ∈ R, let X>α

ℓ,i = {α′ ∈ Xℓ,i | α′ > α}.

Theorem 8. Each setXℓ,i satisfiesXℓ,i ⊆ R+
0 , and, for each

α ∈ R, set Xℓ,i \ X>α
ℓ,i is finite.

Theorem 8 ensures that, for each α ∈ R, setX>α
ℓ,i is either

empty or it contains a smallest number strictly larger than
α. The proof uses the fact that the activation function σ is
unbounded. We are now ready to define the capacity of N .

Definition 9. The capacity of each layer ℓ of N is defined
in Algorithm 1. Moreover, the capacity of N is defined as
CN = max{C1, . . . , CL}.

Sets Xℓ,i can be infinite, so Algorithm 1 can perhaps be
better understood as inductively defining sequences of num-
bers αℓ, βℓ, Cℓ and so on. However, in Section 4.3 we show
that the smallest positive elements ofXℓ,i can in fact be com-
puted, which justifies our usage of the term ‘algorithm’.

Theorem 10 shows that, in each layer of ℓ, every kℓ that
is larger than Cℓ can be replaced by Cℓ without affecting the
result of applying N to any dataset.
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Theorem 10. Let N ′ be the (Col, δ)-GNN obtained from
N by replacing kℓ with Cℓ for each 1 ≤ ℓ ≤ L. Then,
TN (D) = TN ′(D) for each (Col, δ)-dataset D.

Theorem 10 can be intuitively understood as follows.
Let vλℓ

and vλ′
ℓ

be vectors labelling a vertex v in layer
ℓ when TN and TN ′ are applied to some D. We prove
the theorem by showing that either (vλℓ

)i = (vλ′
ℓ
)i or

(vλℓ
)i > (vλ′

ℓ
)i ≥ αℓ for each layer ℓ ≥ ℓst, where ℓst is ei-

ther the layer where Algorithm 1 performs an early return
(via line 7) or 0 if this does not happen. Indeed, assume that
cls((vλL

)i) = 1 for some v. If AL and all Bc
L contain only

zeros, or if all XL,i contain only zeros, then L = ℓst; no
neighbours of v are needed so we can set all Cℓ to 0 and the
equality above holds. Otherwise, cls is a threshold function,
so (vλL

)i ≥ αL holds for αL the threshold of cls, and so the
argument to the activation function when computing (vλL

)i
is at least βL. Moreover, (vλL

)i is produced from (vλL−1
)i

and the values of (uλL−1
)j where u ranges over the neigh-

bours of v. If we assume that (vλL−1
)i = 0 and that ϵℓ is the

least nonzero value that each u can contribute to (vλL
)i, it

suffices to have at least ⌈βℓ−bℓ
wℓ·ϵℓ ⌉ nonzero neighbours to reach

βL. Thus, we can replace kℓ with this number whenever this
number is smaller than kℓ; in contrast, if kℓ is smaller, we
need to keep kℓ so that N ′ does not derive any new con-
sequences. Finally, αL−1 is the value of (vλL−1

)i in layer
L− 1 to which we can apply analogous reasoning.

4.2 Equivalence with Datalog Programs
We next show that there exists a Datalog program PN that
is equivalent to N in the sense described in Definition 4.
Towards this goal, in Definition 11 we capture the syn-
tactic structure of the rules in PN as rules of form (25)
where φ is a tree-like formula for x. To understand the
intuition, assume that we construct from φ a graph whose
vertices are the variables in φ, and where a directed edge
from x to y is introduced for each Ec(x, y) in φ; then,
such graph must be a directed tree. Moreover, if variable
x has children y1 and y2 in this graph, then φ is allowed to
contain inequalities of the form y1 ̸≈ y2, which provide φ
with a limited capability for counting; for example, formula
Ec(x, y1) ∧ Ec(x, y2) ∧ y1 ̸≈ y2 is true precisely for those
values of x that are connected via the Ec predicate to at least
two distinct constants. We also introduce intuitive notions of
a fan-out (i.e., the number of children) and depth of a vari-
able. Tree-like formulas contain all concepts of the ALCQ
description logic (Baader et al. 2007) constructed from ⊤,
atomic concepts, and concepts of the form ≥ nR.C and
C1 ⊓ C2; however, our definition also allows for formulas
such as Ec(x, y1) ∧ Ec(x, y2) ∧ U(y1) ∧ y1 ̸≈ y2, which
do not correspond to the translation of ALCQ concepts.
Definition 11. A tree-like formula for a variable is defined
inductively as follows.
• For each variable x, formula ⊤ is tree-like for x.
• For each variable x and each unary predicate U , atom
U(x) is tree-like for x.

• For each variable x and all tree-like formulas φ1 and
φ2 for x that share no variables other than x, formula
φ1 ∧ φ2 is tree-like for x.

• For each variable x, each binary predicate Ec, and
all tree-like formulas φ1, . . . , φn for distinct variables
y1, . . . , yn where no φi contains x and no φi and φj with
i ̸= j share a variable, formula (24) is tree-like for x.

n∧
i=1

(
Ec(x, yi) ∧ φi

)
∧

∧
1≤i<j≤n

yi ̸≈ yj (24)

Let φ be a tree-like formula and let x be a variable
in φ. The fan-out of x in φ is the number of distinct
variables yi for which Ec(x, yi) is a conjunct of φ. The
depth of x is the maximal n for which there exist variables
x0, . . . , xn and predicates Ec1 , . . . , Ecn such that xn = x
and Eci(xi−1, xi) is a conjunct of φ for each 1 ≤ i ≤ n.
The depth of φ is the maximum depth of a variable in φ.

For d and f natural numbers, a tree-like formula φ is
(d, f)-tree-like if, for each variable x in φ, the depth i of x is
at most d and the fan-out of x is at most f(d− i). Moreover,
a Datalog rule is (d, f)-tree-like if it is of form (25), where
φ is a (d, f)-tree-like formula for x.

φ→ U(x) (25)

Note that φ is allowed to be ⊤ in a rule of form (25);
for example, ⊤ → U(x) is a valid (0, 0)-tree-like rule. As
explained in Section 2, when applied to a dataset D, such a
rule derives U(t) for each term t occurring in D.

Now let δN = max(δ0, . . . , δL). To construct PN , we
proceed as follows: we compute f = |Col| · δN · CN , we
enumerate all (L, f)-tree-like rules (up to variable renam-
ing), and we add to PN each such rule that is captured by
N . Lemma 12 shows that this latter test can, at least in prin-
ciple, be operationalised. In particular, to test whether a rule
φ→ U(x) with n variables is captured by N , we consider
each possible dataset D obtained from the atoms of φ by
substituting the variables with up to n distinct constants, and
we check whether applyingN to D derives the analogously
instantiated rule head; if this is the case for all such D, then
the rule is captured by N . Tena Cucala et al. (2022) used
a similar test for MGNNs, but their approach was simpler
since it did not need to support inequalities. Theorem 13
then shows that program PN is indeed equivalent to N .
Lemma 12. Let r be a constant-free Datalog rule with head
H , let V be the set of variables in r, and let A be the
set of body atoms of r. Then, N captures r if and only if
Hν ∈ TN (Aν) for each substitution ν : V → S such that
Hν ∈ Tr(Aν), where S is a set of |V | distinct constants.

Theorem 13. Let PN be the Datalog program containing,
up to variable renaming, each (L, |Col| · δN · CN )-tree-like
rule captured by N , where δN = max(δ0, . . . , δL). Then,
N and PN are equivalent.

To understand this result intuitively, assume that N is ap-
plied to a dataset D. The fact that all rules of PN are cap-
tured by N clearly implies TPN (D) ⊆ TN (D). Further-
more, by equation (3), the value of (vL)i for some i is com-
puted from the values of (vL−1)i and (uL−1)j for k ≤ CL

distinct neighbours u of v per colour and position; but then,
if t and s are terms represented by v and u, respectively, the
canonical encoding ensures Ec(t, s) ∈ D for some c ∈ Col.
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Also, (uL−1)j are computed using the neighbours of u and
so on. Hence, each term w in D that can possibly influence
vL must be connected in D to t by at most L such facts, so
all relevant neighbours of t can be selected by a (d, f)-tree-
like formula. The inequalities can be used to check for the
existence of at least k distinct neighbours of t in D. Now let
D′ be the subset of D containing precisely the facts that con-
tribute to the value of (vL)i. We can unfold D′ into another
tree-like dataset D′′ that corresponds to the body of an in-
stantiated tree-like rule r. Since the elements of all Aℓ and
Bc

ℓ are nonnegative, applying N to D and D′′ derives the
same value for cls((vL)i). If this value is 1, then applying
the rule r to D produces the same fact as N . Furthermore,
by definition, N captures r and so r ∈ PN . Thus, TPN (D)
contains all facts derived by N on D.

4.3 Enumerating Sets Xℓ,i

The results we presented thus far show that program PN
exists, but it is not yet clear that PN is computable: the def-
inition of Cℓ in Algorithm 1 uses sets Xℓ,i, which can be
infinite. We next show that each Xℓ,i can be enumerated al-
gorithmically using function Next(ℓ, i, α) from Algorithm 2
as follows: for α a special symbol ▷, function Next(ℓ, i,▷)
returns the smallest element of Xℓ,i; moreover, for α ∈ R,
function Next(ℓ, i, α) returns the smallest element of X>α

ℓ,i

if X>α
ℓ,i ̸= ∅, or ◁ otherwise. For example, Next(ℓ, i, 0) re-

turns the smallest nonzero element of Xℓ,i, if one exists.
In the presentation of Algorithm 2, we use the follow-

ing notation: for x a vector, j an index, and v a real num-
ber, x[j ← v] is the vector obtained from x by replac-
ing its j-th component with v. The algorithm is based on
the observation that, since Aℓ and Bc

ℓ contain only non-
negative elements, and the activation function is monoton-
ically increasing, we can enumerate the values computed by
equation (3) in some vℓ in a monotonically increasing fash-
ion. To achieve this, the algorithm maintains a frontier F
of triples ⟨x,Y, z⟩, each describing one way to compute a
value of (vℓ)i: vector x reflects the values of (vℓ−1)i, the
(Col, ℓ − 1)-multiset family Y describes multisets Yc re-
flecting the values of (uℓ−1)i, and z is Val(ℓ, i,x,Y)—that
is, the argument to the activation function when computing
(vℓ)i. The starting point for the exploration (line 8) is pro-
vided by Start(ℓ), which returns vℓ for a vertex v with no
neighbours. To enumerate all candidate values for (vℓ)i in
an increasing order, the algorithm selects a triple in the fron-
tier with the smallest z (line 10), and considers ways to mod-
ify x or Y that increase z; each such combination is added
to the frontier (lines 14, 19, and 27). Modifications involve
replacing some component of x with the next component
(lines 12–14), choosing some y ∈ Yc for some c ∈ Col and
replacing some component of y with the next component
(lines 16–19), or expanding some Yc with an additional vec-
tor (lines 20–27). In the latter case, if Start(ℓ) contains just
zeros, then adding Start(ℓ) to Yc is not going to change the
computed value of z so the algorithm considers vectors ob-
tained by expanding Start(ℓ) in order to allow z to increase.
This process produces values of z in an increasing order and
it guarantees that σ(z) ∈ Xℓ,i. If α = ▷, the algorithm stops

Algorithm 2 Next(ℓ, i, α)

1: if ℓ = 0 then
2: if α = ▷ or α < 0 then return 0
3: else if α < 1 then return 1
4: else return ◁
5: let Y∅ be such that Yc

∅ = ∅ for each c ∈ Col
6: z := Val(ℓ, i, Start(ℓ),Y∅)
7: if α = ▷ then return σ(z)

8: F := {⟨Start(ℓ),Y∅, z⟩}
9: while F ̸= ∅ do

10: choose and remove ⟨x,Y, z⟩ in F with least z
11: if σ(z) > α then return σ(z)

12: for x′ ∈ Expand(ℓ,x) do
13: z′ := Val(ℓ, i,x′,Y)
14: if z′ > z then add ⟨x′,Y, z′⟩ to F

15: for c ∈ Col do
16: for y ∈ Yc and y′ ∈ Expand(ℓ,y) do
17: Y′ := Y and Y′c := (Y′c \ {y}) ∪ {y′}
18: z′ := Val(ℓ, i,x,Y′)
19: if z′ > z then add ⟨x,Y′, z′⟩ to F

20: if Start(ℓ) contains a nonzero then
21: V := {Start(ℓ)}
22: else
23: V := Expand(ℓ, Start(ℓ))

24: for y′ ∈ V do
25: Y′ := Y and Y′c := Y′c ∪ {y′}
26: z′ := Val(ℓ, i,x,Y′)
27: if z′ > z then add ⟨x,Y′, z′⟩ to F

28: return ◁

29: function Start(ℓ)
30: return the vector x of dimension δℓ−1 where

(x)j = Next(ℓ− 1, j,▷) for 1 ≤ j ≤ δℓ−1

31: function Expand(ℓ,v)
32: V := ∅
33: for 1 ≤ j ≤ δℓ−1 do
34: v′ := Next(ℓ− 1, j, (v)j)
35: if v′ ̸= ◁ then V := V ∪ {v[j ← v′]}
36: return V

when the first such value is produced (line 7). For α ∈ R,
Theorem 8 guarantees that set Xℓ,i \ X>α

ℓ,i is finite; since F
is extended only if the value of z increases, either F even-
tually becomes empty or σ(z) exceeds α so the algorithm
terminates (line 11 or 28). Theorem 14 captures the formal
properties of the algorithm.
Theorem 14. Algorithm 2 terminates on all inputs. More-
over, for 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ,

• Next(ℓ, i,▷) returns the smallest element of Xℓ,i, and
• for each α ∈ R, Next(ℓ, i, α) returns ◁ if X>α

ℓ,i = ∅, and
otherwise it returns the smallest element of X>α

ℓ,i .

The complexity of Algorithm 14 depends on the number
of recursive calls to Next, which in turn depends on the ma-
trices ofN . We leave investigating this issue to future work.
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5 Limiting Aggregation to Max
In this section we study the expressivity of monotonic max
GNNs, which follow the same restrictions as monotonic
max-sum GNNs but additionally allow only for the max
aggregation function. Theorem 16 shows that each such
GNN corresponds to a Datalog program without inequali-
ties. Consequently, monotonic max GNNs cannot count the
connections of a constant in a dataset.

Definition 15. A monotonic max (Col, δ)-GNN is a mono-
tonic max-sum GNN that uses the max-1-sum aggregation
function in all layers.

Theorem 16. For each monotonic max (Col, δ)-GNN N
with L layers, let δN = max(δ0, . . . , δL), and let PN be the
Datalog program containing up to variable renaming each
(L, |Col|·δN )-tree-like rule without inequalities captured by
N . Then, N and PN are equivalent.

Tena Cucala et al. (2022) presented a closely related char-
acterisation for MGNNs, and the main difference is that we
use the canonical encoding. The latter allows us to describe
the target Datalog class more precisely, which in turn al-
lows us to prove the converse: each Datalog program with
only tree-like rules and without inequalities is equivalent to
a monotonic max GNN.

In what follows, we fix a program P consisting of (d, f)-
tree-like rules without inequalities. Recall that the signa-
ture of P consists of unary predicates U1, . . . , Uδ and binary
predicates Ec for c ∈ Col. Now let τ1, . . . , τn be a sequence
containing up to variable renaming each (d, f)-tree-like for-
mula for variable x without inequalities ordered by increas-
ing depth—that is, for all i < j, the depth of τi is less than
or equal to the depth of τj . Each τi can be written as

τi = φi,0 ∧
mi∧
k=1

(
Eck(x, yk) ∧ φi,k

)
, (26)

where φi,0 is a conjunction of unary atoms using only vari-
able x, each φi,k with 1 ≤ k ≤ mi is a (d − 1, f)-tree-like
formula for yk, and, for all 1 ≤ k < k′ ≤ mi, formulas φi,k

and φi,k′ do not have variables in common. Note that formu-
las φi,k can be ⊤, and that colours ck need not be distinct.

We define NP as the monotonic max (Col, δ)-GNN of
form (2) satisfying the following conditions. The number of
layers is L = d+ 2, the activation function is ReLU, and the
classification function cls is the step function with threshold
1. For 1 ≤ ℓ < L, dimension δℓ is defined as the number
of formulas in the above sequence of depth at most ℓ− 1.
The elements of Aℓ, Bc

ℓ, and bℓ are defined as follows, for
c ∈ Col, 1 ≤ ℓ ≤ L, 1 ≤ i ≤ δℓ, and 1 ≤ j ≤ δℓ−1.

(Aℓ)i,j =



1 if
• ℓ = 1 and τi contains Uj(x); or
• 2 ≤ ℓ < L and
− 1 ≤ i ≤ δℓ−1 and i = j, or
− δℓ−1 < i ≤ δℓ and φi,0 = τj ; or

• ℓ = L and P contains rule
τj → Ui(x) up to variable renaming;

0 otherwise.

(Bc
ℓ)i,j =


1 if 2 ≤ ℓ < L and there exists 1 ≤ k ≤ mi

such that c = ck and φi,k and τj
are equal up to variable renaming;

0 otherwise.

(bℓ)i =


1−

δℓ−1∑
j=1

((Aℓ)i,j +
∑

c∈Col

(Bc
ℓ)i,j)

if ℓ = 1, or
1 ≤ ℓ < L and
δℓ−1 < i ≤ δℓ;

0 otherwise.

To understand the intuition behind the construction of
NP , assume thatNP is applied to a dataset D, and consider
a vector vℓ labelling in layer ℓ a vertex corresponding to
some term t of D. Then, the i-th component of vℓ is paired
with formula τi from the above enumeration, and it indicates
whether it is possible to evaluate τi over D by mapping vari-
able x to t. This is formally captured by Lemma 17. To
ensure that NP and P are equivalent, layer L of NP simply
realises a disjunction over all rules in the program.
Lemma 17. For each (Col, δ)-dataset D, layer 1 ≤ ℓ < L
of NP , position 1 ≤ i ≤ δℓ, and term t in D, and for vℓ

the labelling of the vertex corresponding to t when NP is
applied to the canonical encoding of D,
• (vℓ)i = 1 if there exists a substitution ν mapping x to t

such that D |= τiν, and
• (vℓ)i = 0 otherwise.

Note that each δℓ with 1 ≤ ℓ < L is determined by the
number of (d, f)-tree-like formulas of depth ℓ− 1, and that
δL−1 is the largest such number. We next determine an upper
bound on δL−1. By Definition 11, the fan-out of a variable
of depth i is at most f(d − i). The number of variables of
depth i is at most the number of variables of depth i−1 times
the fan-out of each variable, which is f i · d . . . (d− i+ 1)
and is bounded by f i · d!. By adding up the contribution for
each depth, there are at most fd · (d+ 1)! variables. Each
variable is labelled by one of the 2δ conjunctions of depth
zero, and each non-root variable is connected by one of
the |Col| predicates to its parent. Hence, there are at most
(|Col| · 2δ)fd·(d+1)! tree-like formulas.
Theorem 18. Program P and GNNNP are equivalent, and
moreover δL−1 ≤ (|Col| · 2δ)fd·(d+1)!.

6 Conclusion
We have shown that each monotonic max-sum GNN (i.e.,
a GNN that uses max and sum aggregation functions and
satisfies certain properties) is equivalent to a Datalog pro-
gram with inequalities in the sense that applying the GNN
or a single round of the rules of the program to any dataset
produces the same result. We have also sharpened this re-
sult to monotonic max GNNs and shown the converse: each
tree-like Datalog program without inequalities is equivalent
to a monotonic max GNN. We see many avenues for future
work. First, we aim to completely characterise monotonic
max-sum GNNs. Second, we intend to implement rule ex-
traction. Third, we shall investigate the empirical perfor-
mance of monotonic max-sum GNNs on tasks other than
link prediction, such as node classification.
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