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Abstract

Knowledge graphs represent real-world entities and their re-
lations in a semantically-rich structure supported by ontolo-
gies. Exploring this data with machine learning methods of-
ten relies on knowledge graph embeddings, which produce
latent representations of entities that preserve structural and
local graph neighbourhood properties, but sacrifice explain-
ability. However, in tasks such as link or relation prediction,
understanding which specific features better explain a relation
is crucial to support complex or critical applications.
We propose SEEK, a novel approach for explainable repre-
sentations to support relation prediction in knowledge graphs.
It is based on identifying relevant shared semantic aspects
(i.e., subgraphs) between entities and learning representations
for each subgraph, producing a multi-faceted and explainable
representation.
We evaluate SEEK on two real-world highly complex rela-
tion prediction tasks: protein-protein interaction prediction
and gene-disease association prediction. Our extensive anal-
ysis using established benchmarks demonstrates that SEEK
achieves significantly better performance than standard learn-
ing representation methods while identifying both sufficient
and necessary explanations based on shared semantic aspects.

1 Introduction
Knowledge Graphs (KGs) (Ehrlinger and Wöß 2016) are a
representation of factual information about entities in the
real world and how they relate to each other, having been
widely used to support various applications including ma-
chine learning (ML) (Hogan et al. 2021). Particularly, in sci-
entific domains, KGs have become highly relevant because
they allow for the description and linking of information
about entities based on ontologies (Staab and Studer 2010),
allowing the description of complex natural phenomena that
are not easily captured in mathematical form (Nicholson and
Greene 2020).

In recent years, KG embedding methods (Wang et al.
2017) have become increasingly popular to bridge the gap
between the complex representations a KG affords and the
vectorial representations most ML methods take as input,
since they map KGs into low-dimensional spaces preserv-
ing syntactic and structural properties. KG embeddings are
popularly employed in link prediction via a scoring func-
tion or as features for supervised learning (Portisch, Heist,

and Paulheim 2022). However, this represents a significant
trade-off: KG embeddings sacrifice the full and rich inter-
pretability offered by KGs, especially when structured by
rich ontologies, for the more simple to process latent repre-
sentations (Palmonari and Minervini 2020). The effective-
ness and usefulness of KG embeddings approach hinges on
the crucial assumption that KG embeddings serve as seman-
tically meaningful representations of the underlying entities.
To validate such an assumption, KG embedding methods
would need to be explainable (i.e., they would need to afford
a human-understandable description of the logic, behavior
or factors that influence the representation learning process),
but in the vast majority of cases they are not. This is a
fundamental requirement to ensure the scientific validity of
KG embeddings, or any artificial intelligence (AI) method,
as a tool that can be used to uncover new knowledge, help
understand the mechanisms underlying natural phenomena,
and distinguish meaningful predictions from spurious corre-
lations (Barredo Arrieta et al. 2020).

In this work, we focus specifically on the problem of pre-
dicting a relation between KG entities that is not defined in
the KG. Predicting relations such as protein-protein interac-
tions (PPI) or gene-disease associations (GDA) by explor-
ing KGs and ontologies has been the focus of extensive re-
search in the biomedical domain. Both algorithmic (Zhang
and Tang 2016; Hoehndorf, Schofield, and Gkoutos 2011;
Asif et al. 2018) and ML approaches (Kulmanov et al.
2021) have been employed to achieve this with success, with
KG embeddings particularly excelling at the task (Chen,
Wang, and Hu 2019; Ieremie, Ewing, and Niranjan 2022;
Alshahrani et al. 2017). However, understanding the nature
of these relations requires discerning which aspects of the
KG have the most influence on a prediction. This empowers
users not only in assessing the reliability of the model itself
but also in potentially elucidating the phenomena underlying
the relation. For example, if we were to explain the interac-
tion between the proteins Protransforming growth factor α
and Disks large homolog 2, generating an explanation based
on the fact that they both perform the very specific function
MAPK cascade, we would likely increase trust as well as
highlight a relevant aspect for interaction. In contrast, a very
general explanation, such as the fact that both proteins are
present in the plasma membrane would contribute to neither.

We propose SEEK (Shared Explainable Embeddings for
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Knowledge graphs), a novel method for generating explain-
able KG embeddings that represent entity pairs for relation
prediction. The intuition behind this is that an entity pair
can be represented by combining embeddings that repre-
sent each of their shared semantic aspects, rather than sim-
ply combining their respective embeddings. This technique
explores the rich semantics of the ontology to identify the
shared semantic aspects between related entities based on
computing their disjoint common ancestors. Then, these
pair embeddings are used to train a supervised ML model for
relation prediction. SEEK is fundamentally different from
link prediction methods since it produces representations of
pairs of entities based on shared semantic aspects, whereas
link prediction methods rely on learning representations of
individual KG entities and apply a scoring function to esti-
mate the likelihood of triples.

Given a prediction, our method explains it by computing
the importance of each shared semantic aspect in identify-
ing it. Inspired by (Watson et al. 2021; Rossi et al. 2022a)
we consider that an explanation includes two complemen-
tary views: the set of semantic aspects that, if absent from
an entity pair, would render the model incapable of gener-
ating that prediction (i.e., necessary explanations); the set
of semantic aspects that, if shared by any entity pair, would
prompt the model to produce that prediction (sufficient ex-
planations). Since SEEK explains specific predictions rather
than the global mechanism of the model, it consequently
falls under the category of local post-hoc explanation meth-
ods as proposed by (Guidotti et al. 2018).

We evaluate the effectiveness of SEEK in two differ-
ent tasks, PPI prediction and GDA prediction. Predicting
PPI is a crucial task in molecular biology (Li et al. 2021;
Hu et al. 2021), and several KG embedding-based meth-
ods have been employed to tackle it (Kulmanov et al. 2019;
Smaili, Gao, and Hoehndorf 2019; Kulmanov et al. 2021;
Kulmanov et al. 2019; Xiong et al. 2022). Due to the
high costs and challenges involved in experimentally deter-
mining PPI, computational methods can be used to iden-
tify protein pairs that are likely to interact, which are sub-
sequently validated through experimental assays rendering
the process more efficient. Likewise, predicting the rela-
tion between genes and diseases is essential to understand
disease mechanisms and identifying potential biomarkers or
therapeutic targets (Eilbeck, Quinlan, and Yandell 2017).
Once again, computational approaches to identify the most
promising associations to be further validated are commonly
employed, with recent approaches applying KG embedding
methods (Alshahrani et al. 2017; Smaili, Gao, and Hoehn-
dorf 2019; Nunes, Sousa, and Pesquita 2021). However,
opaque methods such as KG embeddings are unable to
provide explanations behind each prediction. Explanatory
mechanisms can elucidate the potential mechanisms behind
the predicted relation, which can be helpful to determine
the type of experimental procedure that should be applied to
confirm the precited relation but also to identify data biases
that can result in misclassification and should be grounds to
discard the candidate pair. Our extensive experiments show
that our method produces useful explanations besides im-
proving performance over state-of-the-art embedding meth-

ods.
The main contributions of this chapter are the following:

• We propose SEEK, a novel method for generating ex-
plainable KG embeddings that represent entity pairs for
relation prediction.

• We develop extensions of popular KG embedding meth-
ods implementing SEEK.

• We design explanation methods that quantify the impor-
tance of specific KG semantic aspects for specific relation
predictions.

• We report extensive experimental results demonstrating
that SEEK is able to produce effective explanations for re-
lation prediction as well as generally improving predictive
performance on multiple models and biomedical datasets.

2 Problem Overview
We define a KG as a labeled directed graph KG = (V,E,R)
where V is the set of vertices that represent entities, R is the
set of relations and E is the set of edges that connect vertices
through relations. Our particular focus is on ontology-rich
KGs with ontologies defined using Web Ontology Language
(OWL) (Grau et al. 2008) since biomedical ontologies are
typically developed in OWL or have an OWL version. These
are frequently found in scientific fields like biomedicine. In
these KGs, ontologies are typically used to describe indi-
vidual instances, while the instances themselves are usually
flat with no connections between them. Consequently, there
will be two types of vertices in the KG: those that corre-
spond to individual entities and those that correspond to on-
tology classes, as well as two types of edges: those that re-
late ontology classes to each other, and those that link in-
dividuals to the classes that describe them. For example,
using OWL 2 whose constructs correspond to SROIQ(D),
we can indicate that a protein P carries out a function F
described in the Gene Ontology (GO) by declaring the ax-
iom P ⊑ ∃hasFunction.F . KG embedding methods are
then able to learn representations of biomedical entities by
exploring the links that connect an entity to the ontology
classes that describe it, as well as the structure of the ontol-
ogy itself.

Our objective is to learn a relation between two KG en-
tities, a pair, when the relation itself is not explicitly de-
fined in the KG, using embeddings as inputs for a su-
pervised ML algorithm. This is a fundamentally distinct
task from link prediction, where the training set relations
are part of the KG. To tackle this relation prediction task,
common approaches typically employ three steps: (1) gen-
erate embeddings for each entity in the KG; (2) aggre-
gate the embeddings of each entity in a pair into a sin-
gle representation; (3) use these aggregated representations
as input to a supervised learning algorithm to learn a re-
lation prediction model (Sousa, Silva, and Pesquita 2021;
Celebi et al. 2019). This generates non-explainable predic-
tions since KG embeddings are, of course, non-explainable,
as each dimension does not represent any particular mean-
ing, which poses a serious limitation to the use of KG em-
beddings in a scientific setting.
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Moreover, this particular formulation results in two over-
simplifications, which may limit its effectiveness and useful-
ness. Firstly, it relies on the aggregation of individual em-
beddings to represent a pair of entities, instead of directly
learning an embedding that represents the pair. One should
clarify that simply representing the pair as yet another en-
tity on the KG would not be a viable solution, as it would
limit the applicability of the approach to pairs seen at rep-
resentation learning time and thus fail to generalize to novel
pairs. Secondly, it focuses on creating an overall represen-
tation of each entity, rather than capturing the different se-
mantic aspects that may contribute to the relation we aim
to predict. In large KGs, it is not uncommon for entities
to be described according to multiple semantic aspects, but
only a few may be relevant for the prediction of a particu-
lar relation. In a previous study (Sousa, Silva, and Pesquita
2020), it was demonstrated that not all branches of the GO
are equally important for predicting PPIs.

The problem we tackle is then two-fold: (1) to generate
latent representations that represent an entity pair directly
and (2) to generate latent representations that are amenable
to explanation and can capture the relevant semantic aspects
for relation prediction.

3 Related Work
3.1 Knowledge Graph Embeddings
KG embedding methods represent KG entities and their re-
lations in a lower-dimensional space preserving the KG se-
mantic information as much as possible. These embeddings
have been employed as features in a variety of downstream
tasks, such as link prediction, triple classification, or entity
typing. KG embeddings have been successfully employed
in a number of scientific applications, with particular suc-
cess in the life sciences (Mohamed, Nounu, and Nováček
2021; Kulmanov et al. 2021; Chen, Wang, and Hu 2019;
Ieremie, Ewing, and Niranjan 2022). There are several types
of KG embeddings, including translational models, seman-
tic matching models, or random walk-based KG embedding
approaches.

Translational methods use distance-based scoring func-
tions. TransE (Bordes et al. 2013) is a well-known approach
that assumes the vector of the head entity plus the relation
vector should be close to the vector of the tail entity if a
relation holds between two entities. However, TransE only
handles one-to-one relationships. To overcome this limita-
tion, TransH (Wang et al. 2014) introduces a unique relation-
specific hyperplane for each relationship.

Semantic matching models rely on scoring functions
based on similarity, which can represent the underlying
meaning of entities and relationships in vector spaces. An
example of such a method is DistMult (Yang et al. 2015),
which uses tensor factorization to create vector embeddings
for entities and diagonal matrices for relationships.

Random walk-based embedding techniques perform
walks in the graph to produce a corpus of sequences that
is given as input to a neural language model (Mikolov et
al. 2013) to learn a latent low-dimensional representation of
each entity within the corpus of sequences. RDF2Vec (Ris-

toski and Paulheim 2016) is used to learn embeddings over
RDF graphs.

More recently, KG embedding approaches that tailor
representations by considering specific aspects of a KG
have been proposed. EL (Kulmanov et al. 2019) and
BoxEL (Xiong et al. 2022) embeddings are geometric ap-
proaches that consider the logical structure of the ontology.
OWL2Vec* (Chen et al. 2021) is very similar to RDF2Vec,
but it was designed to learn embeddings of OWL ontologies,
which are used to represent knowledge in a more expres-
sive and formal way than RDF graphs. OPA2Vec (Smaili,
Gao, and Hoehndorf 2019) considers the lexical portion of
the KG, specifically the labels of entities, when generating
triples.

3.2 Explainable Artificial Intelligence Techniques
The scientific community has long recognized the poten-
tial of AI as a tool for scientific discovery, with ML, pat-
tern mining, and reasoning playing crucial roles in sev-
eral steps of the scientific process (Mjolsness and DeCoste
2001). Despite this, the vast majority of scientific projects
that utilize AI do not prioritize explainability (Roscher et al.
2020). In the biomedical domain, the complexity of both
the data and the natural phenomena under study empha-
sizes the importance of domain knowledge to support ex-
plainability (Holzinger et al. 2017). A knowledge-enabled
explainable AI (XAI) system includes a representation of
the domain knowledge specific to the application field. This
knowledge is explored for generating explanations that are
both comprehensible to users and contextually aware of the
mechanistic functioning of the AI system and the knowledge
it employs (Chari et al. 2020).

XAI aims to address several key objectives, including pro-
moting algorithmic fairness, detecting potential biases or is-
sues in training data, ensuring that algorithms function as
intended, and bridging the gap between the ML commu-
nity and other scientific disciplines (Gilpin et al. 2018). Ac-
cording to (Barredo Arrieta et al. 2020), XAI approaches
can be classified into two types: models that are transpar-
ent by design, such as decision trees, linear models, and ge-
netic programming models (Mei et al. 2022), or post-hoc
explainability techniques that are used to improve the in-
terpretability of models that are not transparent by design.
Post-hoc explainability techniques can be categorized as ei-
ther model-specific or model-agnostic if they are applicable
to any ML model. Post-hoc techniques may include visual
explanations, explanations by example, explanations by sim-
plification, or feature relevance explanations.

KG embeddings are not explainable, and there is no
widely accepted methodology to effectively explain the
predictions of KG embeddings (Palmonari and Minervini
2020). CRIAGE (Pezeshkpour, Tian, and Singh 2019) and
Kelpie (Rossi et al. 2022b) have made striding efforts to-
wards explaining link prediction based on KG embeddings
by identifying the fact to add into or remove from the KG
that affects the prediction for a target fact. Betz et al. (Betz,
Meilicke, and Stuckenschmidt 2022) also propose a post hoc
method that uses adversarial attacks on KG embedding mod-
els to identify triples that serve as logical explanations for
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specific predictions. These works differ fundamentally from
ours by focusing on single facts about each entity, whereas
we focus on shared aspects between entity pairs. Addition-
ally, all of these works face the computational challenge
posed by having to retrain the KG model after removing a
single fact to explain each prediction, and devise heuristic
approaches to minimize this aspect. Our approach does not
require retraining the model. Instead, we generate expla-
nations by identifying shared semantic aspects and making
predictions with the trained model. ExCut (Gad-Elrab et al.
2020) is another approach that uses KG embeddings to iden-
tify clusters of entities and then combines it with rule-mining
methods to learn interpretable labels.

4 Methods
4.1 Overview
SEEK is a novel approach that generates explainable vector
representations of KG entity pairs to support relation predic-
tion tasks with minimal loss in performance. Code and on-
line tool are available at https://github.com/liseda-lab/seek.

Figure 1 shows an overview of the SEEK approach. In the
first step, the KG is transformed into an RDF graph, which
facilitates the subsequent processing. Representations for
each ontology class are then learned using a KG embedding
method. Notably, SEEK is agnostic to the specific KG em-
bedding method employed and can accommodate a broad
range of techniques.

The second step is concerned with identifying the shared
semantic aspects between the entities of the pair, which are
determined by computing the disjoint common ancestors of
all classes related to them. The identification of these se-
mantic aspects is essential for the subsequent generation of
accurate and meaningful explanations. Having identified the
relevant semantic aspects, the final representations of entity
pairs are then generated by aggregating the embeddings of
the shared semantic aspects.

In the third and final step, supervised learning methods
are employed to learn a relation prediction model taking as
input the pair embeddings. This model is then used to gen-
erate explanations by adopting a perturbation-inspired ap-
proach where the contribution of each semantic aspect to
the final prediction is assessed in terms of its sufficiency and
necessity. The necessary explanations provide insights into
the semantic aspects that are necessary for a particular deci-
sion to be made, while the sufficient explanations reveal the
aspects that are sufficient to support a particular decision.
These explanations enable a more thorough understanding
of predicted relations and which KG aspects influence it and
can be invaluable in identifying potential biases or errors.

4.2 Generating the RDF Graph and Learning
Embeddings

Ontology-rich KGs are typically defined in OWL. However,
the majority of graph processing and analysis tools require
RDF graphs. Therefore, the initial step is to convert the KG
into an RDF graph following the guidelines provided by the
W3C1. The conversion process involves transforming sim-

1https://www.w3.org/TR/owl2-mapping-to-rdf/

Figure 1: Overview of SEEK with the main steps: (i) generating
the RDF graph and learning embeddings (ii) finding shared seman-
tic aspects and generating pair representations (iii) predicting and
explaining.

ple axioms directly into RDF triples, such as subsumption
axioms or data and annotation properties associated with
an entity. Multiple triples are created for more complex
axioms involving class expressions, which usually require
blank nodes. The relations between entities and the ontol-
ogy classes describing them are usually stored in annotation
files in the biomedical domain. These annotations are pro-
cessed into object properties. After conversion, the nodes
in the RDF graph represent ontology classes or individuals,
and the edges represent named relations. Finally, we em-
ploy a KG embedding method to learn latent representations
of all the ontology classes in the KG.

4.3 Finding Shared Semantic Aspects and
Generating Pair Representations

To generate a representation for an entity pair we explore the
concept of semantic aspect (i.e., a subgraph of the KG that
captures a specific perspective of the domain). We propose
to represent a pair of KG entities by the set of semantic as-
pects they share, unfolding their relationship into different
dimensions each based on a shared aspect. We define the
shared semantic aspects as the set of disjoint common an-
cestors computed over the set of classes that describe each
entity.

Let us take two entities e1 and e2 and their set of linked
classes C1, C2. To compute the set of disjoint shared as-
pects, we first compute the disjoint common ancestors of
C1 and C2. Following (Couto and Silva 2011), we define
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Figure 2: A GO KG subgraph to represent the shared semantic as-
pects of two entities. Green classes represent the disjoint common
ancestors of proteins P1 and P2. Grey classes represent the remain-
ing common ancestors.

that a1 and a2 are disjoint common ancestors of a class c
if c ⊑ a1, c ⊑ a2, a1 ̸⊑ a2 and a2 ̸⊑ a1. We first com-
pute Ca, the set of common ancestors between the two sets
C1 and C2, and then filter this set to include only the dis-
joint common ancestors, each of which represents a shared
semantic aspect. The shared semantic aspects of two sets
only include indirect common ancestors if they do not sub-
sume other common ancestors. Considering the example in
Figure 2, the shared semantic aspects of proteins P1 and P2
correspond to calcium ion binding and cellular anatomical
entity.

To represent an entity pair we take the embeddings of each
class in the shared semantic aspects set and aggregate them
using simple operators such as the Hadamard product, the
sum, the average or the L1-norm.

4.4 Predicting and Explaining
After obtaining the vector representations, we use super-
vised ML algorithms to learn relation prediction models
and ultimately produce explanations for predicted relations.
First, we train our model using the global representation of
the pair, generated by aggregating all shared semantic aspect
embeddings. Then, for each prediction we want to explain,
we generate multiple representations that differ by the pres-
ence or absence of a semantic aspect. To understand which
semantic aspects are necessary for the prediction, we gen-
erate representations that remove each aspect in turn (see
Algorithm 1), whereas to understand which aspects are suf-
ficient for the prediction, we generate representations that
include a single aspect (see Algorithm 2). A semantic as-
pect is considered necessary for a prediction if the predicted
class changes when it is removed. Likewise, a semantic as-
pect is considered sufficient for a prediction if the predicted
class does not change when it is the only aspect considered.

We define an explanation as the set of the most relevant
shared semantic aspects identified as necessary or sufficient.

Algorithm 1 Generation of necessary explanations
Input:the entity pair (e1, e2);
the KG embedding model K;
the relation prediction model M ;
Output: the set of disjoint shared aspects that are necessary
for explaining the prediction

1: N ← empty
2: D ← GET DISJOINT SHARED ASPECTS((e1, e2))
3: E ← GET EMBEDDINGS(K,D)
4: v ← AGGREGATE(E)
5: p← PREDICT(M, v)
6: for d ∈ D do
7: e′ ← E.delete(d)
8: v′ ← AGGREGATE(e′)
9: p′ ← PREDICT(M,v′)

10: if p ̸= p′ then
11: N.append(d)

return N

A necessary explanation is a shared semantic aspect that,
when removed from the pair representation, causes the clas-
sifier to change its prediction. A sufficient explanation is a
shared semantic aspect that, when used alone to represent a
pair, causes the classifier to maintain its prediction. A rela-
tion may be explained by multiple necessary and sufficient
explanations.

This approach is similar to how saliency XAI meth-
ods inject perturbations in the feature space to capture the
importance of features. However, it addresses a signifi-
cant challenge that perturbation or modification-based meth-
ods face, including those that aim to explain KG embed-
dings (Pezeshkpour, Tian, and Singh 2019; Rossi et al.
2022b), which is the need to relearn representations after
performing the modification to the data. SEEK avoids this
hurdle since it is based on composite representations of on-
tology classes, which are easy to modify and do not require
retraining since the ontology itself is never altered, so the
learned class embeddings remain fixed.

The final explanation can be represented as a chart where
sufficient and necessary shared semantic aspects are pre-
sented alongside their impact on the prediction. In Figure 1,
both C3 and C7 are necessary to support the prediction since,
without either of them, the prediction value changes when
compared to the prediction obtained for the global repre-
sentation. C3 is also a sufficient aspect since it can single-
handedly produce a prediction that agrees with the global
one. The explanation can be further enriched with the pre-
diction of the global approach, a prediction made with all
sufficient shared semantic aspects, and a prediction made
without any of the necessary shared semantic aspects, all
predictions including their respective likelihood.

5 Experimental Results
5.1 Experimental Setup
We evaluate SEEK on two biomedical relation prediction
tasks: predicting PPIs and predicting GDA. Both tasks are
grounded on ontology-rich KGs, where PPI employs the
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Algorithm 2 Generation of sufficient explanations
Input:the entity pair (e1, e2);
the KG embedding model K;
the relation prediction model M ;
Output: the set of disjoint shared aspects that are sufficient
for explaining the prediction

1: S ← empty
2: D ← GET DISJOINT SHARED ASPECTS((e1, e2))
3: E ← GET EMBEDDINGS(K, d)
4: v ← AGGREGATE(E)
5: p← PREDICT(M,v)
6: for d ∈ D do
7: v′ ← GET EMBEDDING(K, d)
8: p′ ← PREDICT(M,v′)
9: if p == p′ then

10: S.append(d)
return S

GO and GDA is based on the Human Phenotype Ontol-
ogy (HP). Additionally, prior studies have shown that dif-
ferent branches of these ontologies have varying impacts
on achieving precise predictions (Sousa, Silva, and Pesquita
2020).

Our work targets relation prediction tasks cast as a classi-
fication task that takes as input entity pairs and a KG back-
boned by an ontology. Ontologies are arranged in a directed
acyclic graph, where ontology classes are connected by sub-
class relations such that each class is more specific than its
ancestor. Moreover, these relationships are transitive, mean-
ing they inherit all ancestors to the root. The data used are
described in the following sections.

Protein-Protein Interaction Prediction The target re-
lations to predict are obtained from the STRING
database (Szklarczyk et al. 2020), one of the largest PPI
databases that integrate physical interactions and functional
associations between proteins from various sources. We fil-
tered the protein pairs to include only pairs that met the
following criteria: (i) each protein must be annotated with
the GO, (ii) interactions must be extracted from curated
databases or experimentally determined, and (iii) interac-
tions must have a confidence score above 0.950. The PPI
dataset contains 23571 interacting protein pairs as well as
23571 negative pairs derived from random negative sam-
pling of the same set of proteins.

PPI GDA

Ontology classes 50422 15656
Literals and blank nodes 462874 443489
Instances 6738 4523
Annotations 349500 160009
Positive Pairs 23571 8189
Negative Pairs 23571 8189

Table 1: Statistics for each task regarding classes, nodes, and
edges. Positive and negative pairs correspond to the number of
positive and negative relations.

The GO KG is used to describe proteins and is built by
integrating the GO (Consortium 2021) and protein annota-
tion data (Huntley et al. 2014). The GO defines a hier-
archy of classes that describe protein functions and their
relationships. It can be represented as a graph where
nodes are GO classes and edges define relationships be-
tween them (e.g., is a; part of ; has part; regulates;
negatively regulates and positively regulates), being
the majority is a relations. The three domains of GO (bio-
logical processes, molecular functions, and cellular compo-
nents) are represented as separate root ontology classes since
they do not share any common ancestor. A GO annotation
is a statement about the function F of a protein P , and it is
added in the KG as an assertion 〈P, hasFunction, F 〉. In
GO KG, nodes represent proteins or GO classes, and edges
represent links between GO classes or annotations. Table 1
describes the statistics about PPI data.

Gene-Disease Association Prediction The target rela-
tions to predict are obtained from DisGeNET (Piñero et
al. 2019). We follow the approach in (Nunes, Sousa, and
Pesquita 2021), which excludes associations whose sources
are used to create some of the ontology annotations. More-
over, each gene and disease must have at least one HP an-
notation. This resulted in a balanced dataset with a total of
16378 gene-disease pairs.

In this experiment, we employ the HP KG comprising the
HP (Köhler et al. 2020) and HP annotation data to describe
genes and diseases. HP characterizes the phenotypic abnor-
malities in human hereditary diseases concerning five se-
mantic aspects, namely phenotypic abnormalities, mode of
inheritance, clinical course, clinical modifier and frequency.
Regarding the HP annotations, they link genes and diseases
to HP classes and are added in the KG in the same fashion
as in the PPI experiment. The statistics about GDA data are
also shown in Table 1.

Models SEEK is independent of the KG embedding
method and of the supervised ML algorithm. For our ex-
periments, we implemented five representative KG embed-
dings covering translational, semantic matching and ran-
dom walk-based methods: RDF2Vec (Ristoski and Paul-
heim 2016), OWL2Vec* (Chen et al. 2021), TransE (Bordes
et al. 2013), TransH (Wang et al. 2014) and distMult (Yang
et al. 2015). RDF2Vec and OWL2Vec* are path-based ap-
proaches adapted to RDF graphs that employ neural lan-
guage models over random walks on the graph. TransE
and TransH are translational distance embedding approaches
that exploit distance-based scoring functions. distMult is a
semantic matching approach that exploits similarity-based
scoring functions.

To generate a pair representation, we use the average as
the aggregation which ensures that the values of each dimen-
sion remain within the distribution. In the case of necessary
explanations, removing one similar semantic aspect will re-
sult in a very similar aggregated representation, revealing
that the semantic brings little novel information for the pre-
diction (since a similar semantic aspect is still considered).
In the case of sufficient explanations, semantic aspects are
evaluated independently.
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As supervised ML algorithms, we employ two ensem-
ble methods, Random Forest (RF) (Breiman 2001) and eX-
treme Gradient Boosting (XGB) (Chen and Guestrin 2016),
and a neural network-based method, Multilayer Perceptron
(MLP) (Rumelhart, Hinton, and Williams 1986).

5.2 Results and Discussion
Performance Evaluation To assess our method, we com-
pare the relation prediction performance of our pair repre-
sentations against the state-of-the-art approach of entity vec-
tor aggregation using representative KG embedding meth-
ods, supervised ML algorithms and the Hadamard opera-
tor. We do not compare SEEK to other KG embedding
explanation methods such as Kelpie or CRIAGE because
they learn embeddings that target link prediction, whereas
SEEK learns embeddings to serve as features for super-
vised ML. We evaluate the predictive performance of our
approach against our baselines for each task using 10-fold
cross-validation. For each partition, the precision (Pr), re-
call (Re) and weighted average f1-score (F1) are computed,
and we report the median of the obtained scores (Table 2)
and statistical significance of the observed differences.

The results demonstrate that SEEK outperforms the base-
line in all cases but one for PPI prediction, while achieving
similar or improved scores for GDA. Curiously, the perfor-
mance of translational methods shows a marked improve-
ment when using SEEK, likely due to the fact that these
methods struggle with learning entity representations, but
not ontology class representations.

To better understand the differences between the pair rep-
resentations obtained using the baselines and the ones ob-
tained using SEEK, we plot the RDF2Vec embeddings us-
ing t-SNE (Van der Maaten and Hinton 2008), a nonlin-
ear dimensionality reduction technique that is particularly
well-suited for visualizing high-dimensional data (Figure 3).
These plots show that our pair representations decrease the
overlap between positive and negative pairs and thus are
likely to be capturing more meaningful representations.

Effectiveness of Explanations The effectiveness of the
explanations is measured based on how predictive perfor-
mance varies under two scenarios: when pairs are repre-
sented without the necessary shared semantic aspects; when
pairs are represented by sufficient shared semantic aspects
only. Table 3 presents the results obtained for the PPI and
GDA tasks using the two best performing KG embedding
methods.

In the necessary scenario, we extract the necessary ex-
planations for all correctly predicted relations and produce
an ablated representation that does not include any of the
necessary shared semantic aspects. The performance vari-
ation, in terms of precision (Pr), recall (Re) and F1-score
(F1), is measured as the difference in predictive performance
between the global representation and the ablated represen-
tation. The more negative ∆ Pr, ∆ Re or ∆ F1 are, the more
effective are the necessary explanations.

In the sufficient scenario, we extract the sufficient expla-
nations for all incorrectly predicted relations and produce
an ablated representation that only includes the sufficient

(a) Baseline for PPI (b) SEEK for PPI

(c) Baseline for GDA (d) SEEK for GDA

Figure 3: t-SNE plots comparing SEEK to the baseline using
RDF2Vec. Positive pairs in green and negative pairs in red.

shared semantic aspects. The performance variation is also
measured as the difference in predictive performance be-
tween the global representation and the ablated representa-
tion, but in this case the performance of the global repre-
sentation is actually zero for all scores, since this is only
applied to incorrectly predicted relations. A higher ∆ value
indicates increased effectiveness.

Explanation Length The lengths of the explanations, as
measured by the number of shared semantic aspects that
compose them, are presented in Tables 4 and 5. In both
tasks, the length of necessary explanations is markedly
lower than the length of sufficient explanations, highlight-
ing that for many relations there are no necessary shared se-
mantic aspects. When comparing the shown results to the
original number of shared semantic aspects, 9.1 (± 6.5) for
PPI and 8.5 (± 11.0) for GDA, we can verify that sufficient
explanations amount to roughly 30% of shared semantic as-
pects. These sizes are congruent with the number of objects
(7 ± 2) humans are able to hold in short-term memory ac-
cording to cognitive studies (Miller 1956).

Examples of Explanations Table 6 presents explanations
for four protein pairs chosen randomly from the PPI dataset.
Each pair represents each of the four possible outcomes: a
true positive, a false positive, a true negative, and a false
negative.

The first pair in our analysis consists of paxillin2 and inte-
grin α-43. There is strong evidence for their interaction (Han
et al. 2001) since integrin α-4 binds tightly to paxillin, lead-

2https://www.uniprot.org/uniprot/P49023
3https://www.uniprot.org/uniprot/P13612
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PPI Prediction GDA Prediction

Baseline SEEK Baseline SEEK

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

RDF2Vec
XGB 0.905 0.917 0.910 0.920 0.910 0.915 0.736 0.708 0.724 0.772 0.626 0.719
RF 0.921 0.881 0.902 0.922 0.892 0.910 0.783 0.673 0.740 0.787 0.625 0.723
MLP 0.897 0.907 0.902 0.908 0.924 0.917 0.700 0.705 0.696 0.730 0.645 0.703

OWL2Vec*
XGB 0.890 0.881 0.888 0.933 0.925 0.929 0.700 0.664 0.688 0.780 0.647 0.728
RF 0.913 0.832 0.875 0.922 0.915 0.919 0.730 0.618 0.690 0.780 0.662 0.737
MLP 0.872 0.865 0.869 0.934 0.923 0.931 0.648 0.676 0.650 0.749 0.642 0.720

distMult
XGB 0.897 0.905 0.902 0.914 0.910 0.912 0.718 0.668 0.704 0.764 0.649 0.722
RF 0.904 0.860 0.884 0.910 0.897 0.905 0.745 0.636 0.706 0.766 0.637 0.716
MLP 0.894 0.894 0.896 0.881 0.895 0.888 0.731 0.681 0.715 0.768 0.589 0.698

TransE
XGB 0.642 0.613 0.638 0.914 0.912 0.913 0.526 0.509 0.524 0.755 0.650 0.721
RF 0.590 0.542 0.583 0.908 0.900 0.905 0.505 0.474 0.502 0.765 0.640 0.719
MLP 0.250 0.500 0.333 0.882 0.899 0.890 0.500 1.000 0.333 0.779 0.555 0.694

TransH
XGB 0.642 0.614 0.637 0.921 0.918 0.919 0.511 0.493 0.510 0.767 0.651 0.726
RF 0.586 0.551 0.579 0.912 0.908 0.910 0.500 0.453 0.494 0.770 0.642 0.720
MLP 0.250 0.500 0.333 0.915 0.920 0.920 0.000 0.000 0.333 0.735 0.665 0.711

Table 2: Medians of precision, recall, and weighted average f1-score (Pr, Re, F1) comparing our approach SEEK to the baseline when
coupled with different supervised ML methods for PPI and GDA prediction. SEEK performance values are underlined when improvements
are statistically significant with p-value < 0.05 for the Wilcoxon test against the baselines.

PPI Prediction GDA Prediction

RDF2Vec OWL2Vec* RDF2Vec OWL2Vec*

MLP XGB RF MLP XGB RF MLP XGB RF MLP XGB RF

w/o
necessary

∆Pr -0.157 -0.109 -0.106 -0.095 -0.099 -0.089 -0.291 -0.296 -0.326 -0.265 -0.332 -0.269
∆Re -0.137 -0.120 -0.153 -0.145 -0.131 -0.129 -0.329 -0.220 -0.277 -0.353 -0.208 -0.329
∆F1 -0.148 -0.113 -0.125 -0.117 -0.113 -0.107 -0.264 -0.225 -0.273 -0.270 -0.256 -0.260

only
sufficient

∆Pr 0.932 1.000 0.973 0.981 1.000 0.988 0.957 0.969 0.893 0.921 0.986 0.917
∆Re 0.959 1.000 0.888 0.927 1.000 0.942 0.737 0.905 0.779 0.777 0.993 0.869
∆F1 0.950 1.000 0.945 0.954 1.000 0.967 0.898 0.964 0.896 0.885 0.993 0.925

Table 3: Explanation efectiveness measured based on the precision (Pr), recall (Re) and weighted average f1-score (F1) variation for PPI and
GDA prediction.

RDF2Vec OWL2Vec*

Avg Std Avg Std

sufficient
MLP 5.6 3.9 5.3 3.5
XGB 6.2 3.9 6.3 4.1
RF 5.6 3.7 5.9 3.7

necessary
MLP 0.4 1.1 0.3 1.0
XGB 0.4 1.1 0.3 1.0
RF 0.4 1.3 0.3 1.1

Table 4: Explanation average length (Avg) and standard deviation
(Std) for PPI prediction.

ing to increased cell migration and an altered cytoskeletal
organization that results in reduced cell spreading. Our ex-
planations identify several aspects that are necessary and/or
sufficient to explain the interaction and that strongly cor-
relate with the known evidence: focal adhesion, substrate
adhesion-dependent cell spreading, cell migration and inte-

RDF2Vev OWL2Vec*

Avg Std Avg Std

sufficient
MLP 5.6 7.1 5.5 7.8
XGB 6.0 8.3 6.0 9.4
RF 5.6 7.7 5.7 8.6

necessary
MLP 0.6 1.5 0.6 1.1
XGB 0.5 1.3 0.5 1.2
RF 0.7 1.7 0.7 1.4

Table 5: Explanation average length (Avg) and standard deviation
(Std) for GDA prediction.

grin binding.
The proteins Pulmonary surfactant-associated protein B4

and ganulocyte-macrophage colony-stimulating factor re-
ceptor subunit α5 make up the second pair. Although the

4https://www.uniprot.org/uniprot/P07988
5https://www.uniprot.org/uniprot/P15509
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Paxillin – Integrin α-4
(True positive)

Pulmonary surfactant-associated protein B – Granulocyte-macrophage colony-stimulating factor receptor subunit α
(False negative)

Proline-rich 5-like – Guanine nucleotide-binding 3-like
(True Negative)

Protransforming growth factor α – Disks large homolog 2
(False Positive)

Table 6: Explanations of PPI prediction models for four randomly selected pairs. For each pair, we provide a bar chart using different sets of
disjoint common ancestors to represent the pair. On the x-axis, each bar represents the likelihood returned by the MLP model of the predicted
class being correct. Classes are represented by colors (red for class 0 and green for class 1).

proteins share some necessary and/or sufficient semantic as-
pects, they are very general; therefore, the model does not
predict the interaction. However, according to the litera-
ture, they are likely involved in the same pulmonary dis-
ease (Trapnell, Whitsett, and Nakata 2003). Both proteins
are poorly described under the GO, which can explain why
the relation prediction model fails.

The third pair includes the proline-rich 5-like protein6 and
the guanine nucleotide-binding 3-like protein7. The model
predicts this as a negative pair, and the explanations con-
firm this, with the removal of the necessary shared semantic
aspect resulting in a positive prediction. No interaction is
known between these two proteins.

6https://www.uniprot.org/uniprot/Q6MZQ0
7https://www.uniprot.org/uniprot/Q9NVN8
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The Protransforming growth factor (TGF) α8 and the
Disks large homolog 2 (Dlg2)9 compose the last pair and
correspond to a false positive. The explanations highlight
their participation in the MAPK cascade (central signaling
pathways that regulate a wide variety of stimulated cellular
processes, including proliferation, differentiation, apoptosis
and stress response) as well as their co-location in the ba-
solateral plasma membrane. It is intriguing to note that al-
though there is no known interaction between these proteins,
there is evidence of an interaction between highly similar
proteins: TGF-β is regulated by Dlg5 and both proteins ac-
tivate the MAPK cascade (Sezaki et al. 2013). We hypothe-
size this is not in fact a true negative pair but a still unknown
PPI erroneously used as a negative example through random
negative sampling.

6 Conclusion
Existing KG embedding methods are not explainable, which
hinders their application in complex and critical domains.
This is especially challenging in relation prediction, where
understanding which KG semantic aspects are more relevant
for a relationship between two KG entities can provide in-
sightful knowledge about its mechanisms and help distin-
guish meaningful predictions from spurious correlations.

To address this challenge, we propose SEEK, a novel ap-
proach for learning and explaining representations of KG
entity pairs based on their shared semantic space for relation
prediction. Its explanatory mechanism is based on gener-
ating perturbed representations to identify the relevant se-
mantic aspects of the KG that explain a relation; and since
it does not require retraining of representations, it is particu-
larly efficient. We evaluate SEEK on protein-protein interac-
tion prediction and gene-disease association prediction, two
complex and core tasks in the biomedical domain. SEEK
clearly outperforms state-of-the-art learning representation
methods in performance, while generating explanations that
can identify critical factors driving biological phenomena.

In future work, we will conduct user studies with biomed-
ical domain experts to evaluate SEEK explanations and also
improve explanations by investigating the minimal set of
shared semantic aspects required to adequately explain a re-
lation.
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logical applications of knowledge graph embedding models.
Briefings in Bioinformatics 22(2):1679–1693.
Nicholson, D. N., and Greene, C. S. 2020. Constructing
knowledge graphs and their biomedical applications. Com-
putational and structural biotechnology journal 18:1414–
1428.
Nunes, S.; Sousa, R. T.; and Pesquita, C. 2021. Predict-
ing gene-disease associations with knowledge graph embed-
dings over multiple ontologies. In ISMB Annual Meeting -
Bio-Ontologies.
Palmonari, M., and Minervini, P. 2020. Knowledge graph
embeddings and explainable AI. Knowledge Graphs for Ex-
plainable Artificial Intelligence: Foundations, Applications
and Challenges 47:49.
Pezeshkpour, P.; Tian, Y.; and Singh, S. 2019. Investigating
robustness and interpretability of link prediction via adver-
sarial modifications. NAACL-HLT.
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