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Abstract

The behavior of iterated belief revision operators with respect
to iteration has been characterized by a set of four postulates
proposed by Darwiche and Pearl. These postulates give con-
straints on a single iteration step, and this is not enough to
forbid some pathological operators. In this paper, we propose
a generalization of these postulates to solve this issue and we
study its implications. One surprising consequence is that,
for TPO-representable operators (i.e., for operators defined
as transitions on total pre-orders on interpretations), there are
very few operators that satisfy this generalization.

1 Introduction
Belief revision aims to correct our current beliefs when reli-
able new pieces of information arrive and contradict these
beliefs. This capability to accommodate conflicting evi-
dence in our beliefs is essential if we want to build truly
autonomous robots. For instance, if we send a robot to a
new planet, we will teach the robot what we know about this
planet, including its physics. The robot will use this infor-
mation to make decisions, elaborate plans, and so on. But
if, upon arrival, the robot discovers evidence that contradicts
some of these beliefs, it must be able to modify its beliefs
accordingly.

The standard AGM (Alchourrón, Gärdenfors, Makinson)
characterization of belief revision (Alchourrón, Gärdenfors,
and Makinson 1985; Gärdenfors 1988; Katsuno and
Mendelzon 1991; Fermé and Hansson 2011) has been shown
to be the right one, as multiple representation theorems have
demonstrated that all natural constructive ways to define be-
lief revision operators satisfy all AGM postulates. Further-
more, this approach has been shown to have tight links with
other logical reasoning frameworks, such as non-monotonic
inference relations (Kraus, Lehmann, and Magidor 1990;
Lehmann and Magidor 1992; Gärdenfors 1990) or possi-
bilistic logic (Dubois, Lang, and Prade 1994; Dubois and
Prade 1991).

Capturing the core of the belief revision problem is an im-
pressive achievement, but it does not end the story. Nearly
all postulates have been criticized, and interesting new op-
erators can be defined when we remove or weaken some of
these postulates.

However, even the basic belief revision problem has re-
ceived criticism for the standard AGM characterization, as it

does not provide any rationality constraint on the iteration of
the revision process. Belief revision is inherently an iterative
process, as each new piece of information received requires
a revision of current beliefs. Many efforts were made during
the nineties to address this iteration issue.

While alternative postulates and generalized operators
have been proposed (Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010), the ap-
proach by Darwiche and Pearl (1997) is widely regarded as
providing a suitable framework for iterated belief revision.
In this approach, the agent’s epistemic state Ψ is represented
by more complex objects than simple logical theories. From
Ψ, the agent’s current beliefs,Bel(Ψ), can be extracted. Ad-
ditionally, Ψ contains information on the relative plausibility
of currently disbelieved information, which guides the iter-
ated revision process. To ensure rational behavior during
the iteration of belief revision, four additional postulates are
considered. These postulates aim to guarantee the conserva-
tion of conditional (counterfactual) information throughout
the iteration process.

The AGM postulates only consider one iteration of be-
lief revision, while the DP postulates consider two iterations
and provide conservation properties between any epistemic
states in the n+1 and n+2 iterations. It is expected that link-
ing these two consecutive steps will recursively give con-
straints on a complete sequence of any number of iterations.
While this is partly true, these constraints may not be strong
enough to completely forbid all inappropriate behaviors 1.

For instance, it has been observed in (Konieczny and Pino
Pérez 2008) that the independence of syntax expressed for
one iteration does not imply the independence of syntax for
any number of iterations. Therefore, an interesting question
is whether linking the n+1 and n+2 iterations, as done in the
DP operators, is sufficient for characterizing any number of
iterations.

In this paper, we investigate this issue and show that this
is not the case. We go one iteration further by providing
adaptations of the DP postulates when linking the n+2 and
n+3 iterations. We demonstrate that this rules out very unin-
tuitive operators and study the consequences of these postu-

1Note that an important improvement of the DP approach is the
P postulate proposed in (Jin and Thielscher 2007; Booth and Meyer
2006).
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lates for TPO-representable operators, i.e., for operators de-
fined as transitions on total pre-orders on interpretations.

These new postulates allow us to forbid operators that are
not homogeneous enough, i.e., whose behavior can change
drastically from one iteration to the next. Thus, they corre-
spond to operators that maintain a similar behavior iteration
after iteration.

To illustrate why non-homogeneous operators are prob-
lematic, let us consider the following construction on TPO-
representable operators. We will consider two well-known
operators from the literature: Nayak’s lexicographical re-
vision (Nayak 1994) ◦L, and Boutilier’s natural revision
(Boutilier 1996) ◦N . These can be argued as being the ex-
treme cases of operators allowed by DP postulates, where
natural revision is the one that minimally changes the pre-
order at each revision, and lexicographic revision is the one
that maximally changes it, resulting in a drastically different
behavior. Now, let us build a new belief revision operator
as follows: for each possible formula of the language (up
to logical equivalence), select at random ◦L or ◦N (let’s say
◦L with a probability of 0.5, and ◦N otherwise), and for any
epistemic state (TPO) Ψ, use the operator that corresponds to
its beliefs (Bel(Ψ)). We will denote this operator as ◦L/N .

This operator satisfies all DP postulates, so it is accept-
able according to the standard characterization. However,
this operator exhibits a very peculiar behavior when used in
a sequence of revisions. At each iteration, there is an equal
chance that we use lexicographic or natural revision, result-
ing in a drastically different behavior. This is not related
to the new piece of information, current beliefs, or the se-
quence of iterations. It is just determined by a random draw,
which is not appropriate. These kinds of operators will not
be allowed by our proposed postulates.

We will propose new postulates for iterated revision with
homogeneous behavior and provide the corresponding char-
acterization results. We will also examine some surprising
consequences for TPO-representable operators.

2 Preliminaries
We consider a propositional language LP built up from a
finite (and of cardinality at least 2) set of propositional vari-
ables P and the usual connectives. The set of consistent
formulae is denoted by L∗P . The symbol ⊥ (resp. >) is the
Boolean constant always false (resp. true). An interpreta-
tion (or world) is a mapping from P to {0, 1}. The set of
all worlds on LP is denoted by Ω. |= denotes logical en-
tailment, ≡ logical equivalence, and [ϕ] denotes the set of
models of the formula ϕ. Given a set of worlds E ⊆ Ω, we
denote by γS any formula such that [γS ] = S. When S is a
singleton set S = {ω}, γS is abreviated as γω .

In iterated belief change, it is standard to assume that the
current set of beliefs of an agent is represented by an epis-
temic state. An epistemic state allows one to represent the
current beliefs of the agent and some conditional informa-
tion guiding the revision process. In all generality, an epis-
temic state can be any object Ψ from which the set of beliefs
of the agent can be extracted through a mappingBel, so that
Bel(Ψ) is a propositional formula from LP . Formally:

Definition 1 (Epistemic Space). An epistemic space E is a
tuple 〈U,Bel〉, where U is a set and Bel is a mapping Bel :
U → L∗P .

A simple example is the TPO-based epistemic space:
Example 1. Let us define the TPO-based epistemic space2

The TPO-based epistemic space is the epistemic space
Etpo = 〈Utpo, Bel〉 where:
• Utpo is the set of all TPOs over the set of all worlds from

Ω;
• Bel is the mapping associating each TPO � from Utpo

with a formula ψ ∈ L∗P such that [ψ] = min(Ω,�).
A belief revision operator ◦ on an epistemic space E =
〈U,Bel〉 associates every epistemic state Ψ from U and ev-
ery consistent formula µ with a new epistemic state from U ,
denoted by Ψ ◦ µ. Thus, ◦ is a mapping ◦ : U × L∗P → U .
In the rest of the paper, when we refer to a revision oper-
ator ◦ without specifying the epistemic space on which it
is defined, we will assume that ◦ is defined on some arbi-
trary epistemic space. Furthermore, we will focus on TPO-
representable revision operators, which can be viewed as
transitions between TPOs, elements of the TPO-based epis-
temic space. For a precise definition and to see that this is
just a subclass of DP iterated revision operators, please refer
to (Schwind, Konieczny, and Pino Pérez 2022).

Let us recall the set of postulates which are expected for
such operators to have a good iterative behavior (Darwiche
and Pearl 1997):
Definition 2 (DP operator (Darwiche and Pearl 1997)). A
revision operator ◦ is a DP operator if the following proper-
ties are satisfied, for each epistemic state Ψ and all formulae
µ, µ′, α:
(R*1) Bel(Ψ ◦ µ) |= µ

(R*2) If Bel(Ψ)∧µ 6|= ⊥, then Bel(Ψ◦µ) ≡ Bel(Ψ)∧µ
(R*3) If µ 6|= ⊥, then Bel(Ψ ◦ µ) 6|= ⊥
(R*4) If µ ≡ µ′, then Bel(Ψ ◦ µ) ≡ Bel(Ψ ◦ µ′)
(R*5) Bel(Ψ ◦ µ) ∧ µ′ |= Bel(Ψ ◦ (µ ∧ µ′))
(R*6) If Bel(Ψ ◦ µ) ∧ µ′ 6|= ⊥,

then Bel(Ψ ◦ (µ ∧ µ′)) |= Bel(Ψ ◦ µ) ∧ µ′
(C1) If α |= µ, then Bel((Ψ ◦ µ) ◦ α) ≡ Bel(Ψ ◦ α)

(C2) If α |= ¬µ, then Bel((Ψ ◦ µ) ◦ α) ≡ Bel(Ψ ◦ α)

(C3) If Bel(Ψ ◦ α) |= µ, then Bel((Ψ ◦ µ) ◦ α) |= µ

(C4) If Bel(Ψ ◦ α) 6|= ¬µ, then Bel((Ψ ◦ µ) ◦ α) 6|= ¬µ

The postulates (R*1-R*6) are a direct adaptation of the
standard KM postulates to epistemic states. The remaining
four postulates, (C1-C4), add constraints w.r.t. iteration.

Darwiche and Pearl also provided a characterization of
DP operators in terms of TPOs over worlds:
Definition 3 (DP assignment). Given an epistemic space
E = 〈U,Bel〉, a mapping Ψ 7→�Ψ associating each epis-
temic state Ψ ∈ U with a TPO3 over worlds �Ψ is a DP
assignment if and only if for all worlds ω, ω′ ∈ Ω:

2TPO stands for total preorder.
3For each TPO �, ' denotes the corresponding indifference re-

lation, and ≺ the corresponding strict ordering.
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(1) If ω |= Bel(Ψ) and ω′ |= Bel(Ψ), then ω 'Ψ ω′

(2) If ω |= Bel(Ψ) and ω′ 6|= Bel(Ψ), then ω ≺Ψ ω′

(CR1) If ω |= µ and ω′ |= µ, then ω �Ψ ω′ ⇔ ω �Ψ◦µ ω
′

(CR2) If ω 6|= µ and ω′ 6|= µ, then ω �Ψ ω′ ⇔ ω �Ψ◦µ ω
′

(CR3) If ω |= µ and ω′ 6|= µ, then ω ≺Ψ ω′ ⇒ ω ≺Ψ◦µ ω
′

(CR4) If ω |= µ and ω′ 6|= µ, then ω �Ψ ω′ ⇒ ω �Ψ◦µ ω
′

Theorem 1 ((Darwiche and Pearl 1997)). An operator ◦ is
a DP operator if and only if there exists a DP assignment
Ψ 7→�Ψ such that for each epistemic state Ψ and each for-
mula µ, [Bel(Ψ ◦ µ)] = min([µ],�Ψ).

When a DP assignment exists for ◦, we will say it cor-
responds to ◦. As a matter of fact, when such assignment
exists it is unique4.

Conditions (1) and (2) above define the notion of faith-
ful assignment (Darwiche and Pearl 1997; Katsuno and
Mendelzon 1991). Conditions (CR1-CR4) correspond to the
iteration postulates (C1-C4). They impose constraints on the
TPO �Ψ◦µ: (CR1) and (CR2), the “rigidity” conditions, say
that the order between models of µ is preserved and the order
between models of ¬µ is also preserved. (CR3) and (CR4)
say that there is no worsening between the models of µ and
the models of ¬µ.

Let us now give three important instances of DP opera-
tors.
Example 2. We consider the Boutilier’s natural revision op-
erator ◦N defined over the epistemic space Etpo. This oper-
ator associates each TPO Ψ ∈ Utpo and each formula µ with
a TPO Ψ ◦N µ that satisfies min(Ψ ◦N µ) = min([µ],�Ψ)
and the following condition:
(Nat) If ω, ω′ /∈ min([µ],Ψ),

then ω �Ψ ω′ ⇔ ω �Ψ◦Nµ ω
′,

where �Ψ denotes Ψ and �Ψ◦Nµ denotes Ψ ◦N µ.
That is, Boutilier’s natural revision operator on Etpo con-

sists in selecting the set of all models of µ that are minimal
according to an input TPO, and defining this set as the first
level of the revised TPO while leaving the rest of the TPO
unchanged.
Example 3. Another example is the Nayak’s lexicographic
operator ◦L defined also in the epistemic space Etpo. It is
defined by min(Ψ ◦L µ) = min([µ],Ψ), conditions (CR1-
CR4) and:
(Lex) If ω |= µ and ω′ 6|= µ, then ω ≺Ψ◦Lµ ω

′

Lexicographic revision moves all models of µ below all
models of ¬µ, and keeps the relationships between worlds
of µ (resp. of ¬µ) unchanged.
Example 4. Another example is the Booth and Meyers’ re-
strained operator ◦R defined also in the epistemic space
Etpo. It is defined by min(Ψ ◦R µ) = min([µ],Ψ), con-
ditions (CR1-CR2) and the two following conditions:
(PR) If ω |= µ and ω′ 6|= µ,

then ω �Ψ ω′ =⇒ ω ≺Ψ◦Rµ ω
′

4That is due to the fact that if an assignment satisfies [Bel(Ψ ◦
µ)] = min([µ],�Ψ), then ω �Ψ ω′ iff ω ∈ [Ψ ◦ αω,ω′ ] (where
[αω,ω′ ] = {ω, ω′}), from which the unicity follows.
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Figure 1: Natural ◦N , lexicographic ◦L & restrained ◦R revision.

(DR) If ω |= µ, ω′ 6|= µ and ω /∈ min([µ],�Ψ), then
ω′ ≺Ψ ω =⇒ ω′ ≺Ψ◦Rµ ω

Note that (PR) is a strenghtening of both (CR3) and (CR4),
so accordingly ◦R is a DP operator.

The restrained revision operator ensures that the models
of µ that were as plausible as the models of its negation be-
fore the revision step become strictly more plausible after
the revision, but it takes care not to make more changes than
necessary (except that the minimal models of µ for Ψ are
now the minimal models of Ψ ◦R µ, as required).

Let us now illustrate how the behaviors of these three re-
vision operators differ from each other.

Example 5. Let P = {p, q, r}. Figure 1 depicts a TPO Ψ
over worlds5 , and the revised TPOs Ψ ◦N (p ⇔ ¬q), Ψ ◦L
(p⇔ ¬q) and Ψ◦R(p⇔ ¬q). We have thatBel(Ψ) ≡ p∧q,
and for the three operators, Bel(Ψ◦N (p⇔ ¬q)) ≡ p∧¬q,
but the three associated TPOs are different. Therefore, in
later iterations, their respective beliefs will differ.

These are three well-known instances of DP revision op-
erators, but there are many others (see, e.g., (Rott 2009)).

Note also that they are DP revision operators that are not
TPO-representable, i.e., that require more complex struc-
ture, such as an OCF (Ordinal Conditional Function) (Spohn
1988), for being formally defined (Schwind, Konieczny, and
Pino Pérez 2022).

3 Iteration of Iterated Postulates
So let us now propose our extended iteration postulates. The
idea is to provide conditions between the n + 2 and n +
3 iterations to ensure that the change behavior remains the
same throughout iterations and to characterize homogeneous
operators. Let us first propose an initial version that gives
rise to HDP (Homogeneous DP) operators.

Definition 4 (Homogenous DP revision operator). A DP op-
erator ◦ is a Homogeneous DP revision operator (HDP re-
vision operator for short) if the following properties are sat-
isfied, for each epistemic state Ψ and all formulae µ, α, α1,
α2, β:

(CE1) If β |= µ, then Bel(Ψ◦µ◦α◦β) ≡ Bel(Ψ◦α◦β)

(CE2) If β |= ¬µ, thenBel(Ψ◦µ◦α◦β) ≡ Bel(Ψ◦α◦β)

5A world ω is at the same or at a lower level than a world ω′

iff ω ≤Ψ ω′. So minimal (i.e., most plausible) worlds are at the
lowest levels.
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(CE3) If Bel(Ψ◦α◦β) |= µ, then Bel(Ψ◦µ◦α◦β) |= µ

(CE4) IfBel(Ψ◦α◦β) 6|= ¬µ, thenBel(Ψ◦µ◦α◦β) 6|= ¬µ
(CE5) If α1∧β ≡ α2∧β,Bel(Ψ◦α1) |= ¬β andBel(Ψ◦

α2) |= ¬β, then Bel(Ψ ◦ α1 ◦ β) ≡ Bel(Ψ ◦ α2 ◦ β)

These postulates express rigidity and monotonicity con-
ditions in a similar vein to the DP postulates (C1-C4). The
difference is that while (C1-C4) express these conditions on
conditional beliefs, (CE1-CE4) extends them to the level of
change in conditional beliefs. Postulate (CE5) is dedicated
to the homogeneity of change. It states that a formula β
whose conjunction with two formulae α1 and α2 is identical
will have exactly the same impact (i.e., will lead to the same
beliefs) regardless of whether we revise by α1 or α2. Intu-
itively, this means that the plausibility of the formula α1 ∧β
will change identically if we revise by α1 or by α2.

It is easy to see that (CE1-CE4) strengthen (C1-C4) (un-
der a very light condition):

Proposition 1. Let ◦ be an operator that satisfies (Tau).
(Tau) Ψ ◦ > = Ψ

For each i ∈ {1, . . . , 4}, if an operator ◦ satisfies (CEi) then
it satisfies (Ci).

Proof. The proof is direct by replacing αwith> in the state-
ment of each postulate (CEi), from which we get the state-
ment of (Ci).

Let us see the corresponding conditions on the faithful
assignment.

Definition 5 (Homogeneous DP assignment). A DP assign-
ment Ψ 7→�Ψ is a Homogeneous DP assignment (HDP as-
signment for short) if and only if for each epistemic state Ψ,
all formulae µ, α, α1, α2, and all worlds ω, ω′ ∈ Ω:

(CRE1) If ω |= µ and ω′ |= µ,
then ω �Ψ◦µ◦α ω

′ ⇔ ω �Ψ◦α ω
′

(CRE2) If ω 6|= µ and ω′ 6|= µ,
then ω �Ψ◦µ◦α ω

′ ⇔ ω �Ψ◦α ω
′

(CRE3) If ω |= µ and ω′ 6|= µ,
then ω ≺Ψ◦α ω

′ ⇒ ω ≺Ψ◦µ◦α ω
′

(CRE4) If ω |= µ and ω′ 6|= µ,
then ω �Ψ◦α ω

′ ⇒ ω �Ψ◦µ◦α ω
′

(CRE5) If ω |= α1 ∧ α2, ω′ |= ¬α1 ∧ ¬α2

and ω /∈ min([α1],�Ψ) ∪min([α2],�Ψ),
then ω �Ψ◦α1

ω′ ⇔ ω �Ψ◦α2
ω′

(CRE1-CRE4) do not require a lot of explanation, since
they can be compared to the standard (CR1-CR4), and it can
be seen that we go one step further. Instead of giving con-
ditions between the current epistemic state and the one af-
ter one iteration, we give conditions between the epistemic
states after one and two iterations.

However, it is more interesting to comment on (CRE5)
since it provides another interpretation of the homogeneity
of change. (CRE5) states that for non-minimal worlds of
the new piece of information, each revision must lead to the
same increase in plausibility. In other words, regardless of
the formula used to revise the epistemic state, if ω is a model

of this formula, its (potential) increase in plausibility (rela-
tive to non-models of the formula) will be the same.

Let us now state the correspondence between the new pos-
tulates and their semantical counterparts.

Proposition 2. For each i ∈ {1, . . . , 5}, a DP revision op-
erator ◦ satisfies (CEi) if and only if its corresponding DP
assignment satisfies (CREi).

Proof. Let ◦ be a DP revision operator, Ψ 7→�Ψ be its
corresponding DP assignment. Let Ψ be an epistemic state
and µ, α, α1, α2 be formulae.

(Only if part) Let ω, ω′ be two worlds. Assume that ◦ satis-
fies (CE1), and assume that ω, ω′ |= µ. Then ω �Ψ◦µ◦α ω

′

iff ω |= Bel(Ψ ◦ µ ◦ α ◦ γ{ω,ω′}) (by Theorem 1) iff
ω |= Bel(Ψ ◦ α ◦ γ{ω,ω′}) (by (CE1)) iff ω �Ψ◦α ω′ (by
Theorem 1). So ω �Ψ◦µ◦α ω

′ ⇔ ω �Ψ◦α ω
′, thus Ψ 7→�Ψ

satisfies (CRE1).
Assume that ◦ satisfies (CE2), and assume that ω, ω′ 6|= µ.

Then ω �Ψ◦µ◦α ω′ iff ω |= Bel(Ψ ◦ µ ◦ α ◦ γ{ω,ω′}) (by
Theorem 1) iff ω |= Bel(Ψ ◦ α ◦ γ{ω,ω′}) (by (CE2)) iff
ω �Ψ◦α ω

′ (by Theorem 1). So ω �Ψ◦µ◦α ω
′ ⇔ ω �Ψ◦α

ω′, thus Ψ 7→�Ψ satisfies (CRE2).
Assume that ◦ satisfies (CE3), and assume that ω |= µ,

ω′ 6|= µ, and ω ≺Ψ◦α ω′. By Theorem 1, [Bel(Ψ ◦ α ◦
γ{ω,ω′})] = {ω}. Then by (CE3) and since Bel(Ψ ◦ α ◦
γ{ω,ω′}) |= µ, we get that Bel(Ψ ◦ µ ◦ α ◦ γ{ω,ω′}) |=
µ, which means that Bel(Ψ ◦ µ ◦ α ◦ γ{ω,ω′}) = {ω} (by
(R*1) and (R*3)), from which we get that ω ≺Ψ◦µ◦α ω

′ by
Theorem 1. We got that ω ≺Ψ◦α ω′ =⇒ ω ≺Ψ◦µ◦α ω′,
thus Ψ 7→�Ψ satisfies (CRE3).

Assume that ◦ satisfies (CE4), and assume that ω |= µ,
ω′ 6|= µ, and ω �Ψ◦α ω′. By Theorem 1, ω |= Bel(Ψ ◦
α ◦ γ{ω,ω′}), which means that Bel(Ψ ◦α ◦ γ{ω,ω′}) 6|= ¬µ.
Then by (CE4) we get that Bel(Ψ ◦ µ ◦ α ◦ γ{ω,ω′}) 6|= ¬µ,
which means that ω |= Bel(Ψ ◦µ ◦α ◦ γ{ω,ω′}) (by (R*1)),
from which we get that ω �Ψ◦µ◦α ω

′ by Theorem 1. We got
that ω �Ψ◦α ω

′ =⇒ ω �Ψ◦µ◦α ω
′, thus Ψ 7→�Ψ satisfies

(CRE4).
Assume that ◦ satisfies (CE5), and assume

that ω |= α1 ∧ α2, ω′ |= ¬α1 ∧ ¬α2 and
ω /∈ min([α1],�Ψ) ∪ min([α2],�Ψ). We directly get
that α1 ∧ γ{ω,ω′} ≡ α2 ∧ γ{ω,ω′}(≡ γω). And by
Theorem 1 we know that Bel(Ψ ◦ α1) |= ¬γ{ω,ω′}
and Bel(Ψ ◦ α2) |= ¬γ{ω,ω′}. Then ω �Ψ◦α1

ω′

iff ω |= Bel(Ψ ◦ α1 ◦ γ{ω,ω′}) (by Theorem 1) iff
ω |= Bel(Ψ ◦ α2 ◦ γ{ω,ω′}) (by (CE5)) iff ω �Ψ◦α2 ω

′ (by
Theorem 1). So ω �Ψ◦α1

ω′ ⇔ ω �Ψ◦α2
ω′, thus Ψ 7→�Ψ

satisfies (CRE5).

(If part) Let β be a formula. Note by Theorem 1 that
[Bel(Ψ◦α◦β)] = min([β],�Ψ◦α) and [Bel(Ψ◦µ◦α◦β)] =
min([β],�Ψ◦µ◦α).

Assume that Ψ 7→�Ψ satisfies (CRE1), and that
β |= µ. By (CRE1), we get that min([β],�Ψ◦α) =
min([β],�Ψ◦µ◦α), so Bel(Ψ ◦ α ◦ β) ≡ Bel(Ψ ◦ α ◦ β).
Hence, ◦ satisfies (CE1).
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Assume that Ψ 7→�Ψ satisfies (CRE2), and that
β |= ¬µ. By (CRE2), we get that min([β],�Ψ◦α) =
min([β],�Ψ◦µ◦α), so Bel(Ψ ◦ α ◦ β) ≡ Bel(Ψ ◦ α ◦ β).
Hence, ◦ satisfies (CE2).

Assume that Ψ 7→�Ψ satisfies (CRE3), and that Bel(Ψ ◦
α ◦ β) |= µ. This means that min([β],�Ψ◦α) ⊆ [µ], so
we can write that min([β],�Ψ◦α) = min([β ∧ µ],�Ψ◦α).
Now, assume toward a contradiction that Bel(Ψ ◦ µ ◦ α ◦
β) 6|= µ. This means that there exists a world ω′ |= ¬µ such
that ω′ ∈ min([β],�Ψ◦µ◦α), which precisely means that for
every world ω ∈ [β], ω′ �Ψ◦µ◦α ω. In particular, for every
world ω ∈ [β ∧ µ], ω′ �Ψ◦µ◦α ω. From (CRE3) we get
for every world ω ∈ [β ∧ µ] that ω′ �Ψ◦α ω, so if ω′ /∈
min([β],�Ψ◦α) then ω /∈ min([β],�Ψ◦α). Yet ω′ |= ¬µ
and we saw that min([β],�Ψ◦α) = min([β ∧ µ],�Ψ◦α),
so ω′ /∈ min([β],�Ψ◦α), and thus ω /∈ min([β],�Ψ◦α),
for every world ω ∈ [β ∧ µ]. We found that for every world
ω ∈ [β∧µ], ω /∈ min([β],�Ψ◦α), which contradicts the fact
that min([β],�Ψ◦α) = min([β∧µ],�Ψ◦α). This shows that
Bel(Ψ ◦ µ ◦ α ◦ β) |= µ, thus ◦ satisfies (CE3).

Assume that Ψ 7→�Ψ satisfies (CRE4), and that Bel(Ψ ◦
α◦β) 6|= ¬µ. We need to show thatBel(Ψ◦µ◦α◦β) 6|= ¬µ.
Then let ω be a world such that ω ∈ min([β], �Ψ◦α)
∩[µ]. We have for every world ω′ |= β that ω �Ψ◦α ω

′. In
particular, for every world ω′ |= β ∧ ¬µ, ω �Ψ◦α ω′. By
(CRE4), for every world ω′ |= β ∧ ¬µ, ω �Ψ◦µ◦α ω

′. We
fall into two cases:
Case 1: ω ∈ min([β],�Ψ◦µ◦α). In this case, ω ∈ [Bel(Ψ ◦
µ ◦α ◦ β)], so since ω |= µ we directly get that Bel(Ψ ◦ µ ◦
α ◦ β) 6|= ¬µ.
Case 2: ω /∈ min([β],�Ψ◦µ◦α). In that case, let ω′′ be
a world such that ω′′ ∈ min([β],�Ψ◦µ◦α). We have that
ω′′ ≺Ψ◦µ◦α ω. Yet we have seen for every world ω′ |=
β ∧ ¬µ that ω �Ψ◦µ◦α ω

′, which means that ω′′ |= β ∧ µ.
We got that ω′′ ∈ min([β],�Ψ◦µ◦α)∩ [µ], thus Bel(Ψ ◦µ ◦
α ◦ β) 6|= ¬µ.
In both cases, we got that Bel(Ψ ◦ µ ◦ α ◦ β) 6|= ¬µ, which
shows that ◦ satisfies (CE4).

Assume that Ψ 7→�Ψ satisfies (CRE5), and that α1∧β ≡
α2 ∧ β, Bel(Ψ ◦ α1) |= ¬β and Bel(Ψ ◦ α2) |= ¬β. Let
ω, ω′ |= β. By Theorem 1 we know that ω /∈
min([α1],�Ψ)∪min([α2],�Ψ). Let us show that ω �Ψ◦α1

ω′ ⇔ ω �Ψ◦α2 ω
′. Since α1 ∧ β ≡ α2 ∧ β, we fall into

one of the following four cases: (i) ω, ω′ |= α1 ∧ α2. Then
ω �Ψ◦α1

ω′ iff ω �Ψ ω′ (by (CR1)) iff ω �Ψ◦α2
ω′ (by

(CR1)). (ii) ω, ω′ |= ¬α1∧¬α2. Then ω �Ψ◦α1
ω′ iff ω �Ψ

ω′ (by (CR2)) iff ω �Ψ◦α2
ω′ (by (CR2)). (iii) ω |= α1 ∧α2

and ω′ |= ¬α1∧¬α2. Then ω �Ψ◦α1
ω′ ⇔ ω �Ψ◦α2

ω′ (by
(CRE5)). (iv) ω |= ¬α1 ∧¬α2 and ω′ |= α1 ∧α2. This case
is identical to case (iii) above, since ω, ω′ play symmetrical
roles.

In every case we get that ω �Ψ◦α1
ω′ ⇔ ω �Ψ◦α2

ω′.
By Theorem 1, this means thatBel(Ψ◦α1) ≡ Bel(Ψ◦α2).
Hence, ◦ satisfies (CE5).

As a direct consequence, we get the following representa-
tion theorem for HDP operators:

Theorem 2. A DP revision operator ◦ is an HDP revision
operator if and only if there is a HDP assignment Ψ 7→�Ψ

such that for each epistemic state Ψ and each formula µ,
[Bel(Ψ ◦ µ)] = min([µ],�Ψ).

Let us now focus on the consequences on TPO-
representable revision operators.

First, concerning the three operators ◦L, ◦N , ◦R, only ◦L
satisfies the five postulates (CE1-CE5):

Proposition 3.
1. ◦L satisfies (CE1-CE5)
2. ◦N satisfies (CE3-CE5), but not (CE1-CE2)
3. ◦R satisfies (CE1) and (CE3-CE5), but not (CE2).

Proof Sketch. We only show that ◦N and ◦R do not satisfy
(CE2) and that ◦N does not satisfy (CE1), but the rest of the
proof is available at (Schwind, Konieczny, and Pérez 2023).
It is enough from Proposition 2 to show that their corre-
sponding assignments do not satisfy the semantic counter-
parts of (CE1) and (CE2). We do so by proving a counter-
example in each case.
• Proof that Ψ 7→�NΨ and Ψ 7→�RΨ do not satisfy (CRE2):

Let ? ∈ {N,R}. Let ω1, ω2, ω3 be three worlds, µ, α be
two formulae such that [µ] = {ω3} and [α] = {ω2, ω3},
and Ψ be any TPO where ω1 ≺?Ψ ω2 ≺?Ψ ω3. Note that
ω1, ω2 6|= µ. On the one hand, we get that ω2 ≺?Ψ◦?α ω1.
On the other hand, we get that ω3 ≺?Ψ◦?µ ω1 ≺?Ψ◦?µ ω2, and
thus ω1 ≺?Ψ◦?µ◦?α ω2. So both assignments Ψ 7→�NΨ and
Ψ 7→�RΨ do not satisfy (CRE2).
• Proof that Ψ 7→�NΨ does not satisfy (CRE1):

Let ω1, ω2, ω3 be three worlds, µ, α be two formulae such
that [µ] = {ω1, ω2} and [α] = {ω2, ω3}, and Ψ be any TPO
where ω3 ≺NΨ ω1 'Ψ ω2. Note that ω1, ω2 |= µ. On the one
hand, we get that ω1 'NΨ◦Nα ω2. On the other hand, we get
that ω1 'NΨ◦Nµ ω2 ≺NΨ◦Nµ ω3, and thus ω2 ≺NΨ◦Nµ◦Nα ω1.
So the assignment Ψ 7→�NΨ does not satisfy (CRE1).

But let us try to identify exactly what the HDP operators
exactly are. We will introduce a condition that will be useful
in proving our results:
(Fun) If (ω �Ψ1 ω

′ ⇔ ω �Ψ2 ω
′),

then (ω �Ψ1◦α ω
′ ⇔ ω �Ψ2◦α ω

′)

This condition, denoted by (Fun) (for “Functionality”), is
a kind of relational property. It states that the only informa-
tion that is relevant to define the new relation between two
worlds is the current relation between these two worlds only.
That is, we do not compare them to other worlds.

Proposition 4. Let ◦ be a DP operator defined on the
TPO-based epistemic space. If its DP assignment satisfies
(CRE2), then it satisfies (Fun).

Proof. Let Ψ 7→�Ψ be a DP assignment, and assume that
it satisfies (CRE2). We need to show that it also satisfies
(Fun). So let Ψ1, Ψ2 be two TPOs, ω, ω′ be two worlds, and
α be a formula, and assume that ω �Ψ1 ω′ if and only if
ω �Ψ2 ω

′. We need to show that ω �Ψ1◦α ω
′ if and only if

ω �Ψ2◦α ω
′.

Let S ⊆ Ω be the set of worlds defined such that
S ∩ {ω, ω′} = ∅ and S ∪ {ω, ω′} = Ω; and let us write
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S = {ω1, . . . , ωm}. Then let σ be the sequence of com-
plete formulae σ = (γω1 , . . . , γωm). Now, for i ∈ {1, 2},
let Ψ1

i = Ψi and for each k ∈ {1, . . . ,m − 1}, let Ψk+1
i be

defined as Ψk+1
i = Ψk

i ◦ γωk
.

(Part 1) We first intend to prove that Ψm
1 = Ψm

2 . Let i ∈
{1, 2}, let us first prove that ω �Ψi

ω′ if and only if ω �Ψm
i

ω′. We do it by induction on the sequence (Ψk
i )k∈{1,...,m}.

The base case where k = 1 is trivial: since Ψi = Ψ1
i , we

have that ω �Ψi ω′ if and only if ω �Ψ1
i
ω′. Now, let

k ∈ {1, . . . ,m − 1}, and assume that ω �Ψi
ω′ if and only

if ω �Ψk
i
ω′. Since Ψk+1

i = Ψk
i ◦ γωk

by definition, and
since ω, ω′ 6|= γωk

, by (CR2), we get that ω �Ψk
i
ω′ if and

only if ω �Ψk+1
i

ω′. This shows by induction that, for each
i ∈ {1, 2},

ω �Ψi ω
′ if and only if ω �Ψm

i
ω′ (1)

Yet for each i ∈ {1, 2}, one can verify easily by construction
of Ψm

i that for each k ∈ {1, . . . ,m− 1},

ωk+1 ≺Ψm
i
ωk, (2)

and that for each k ∈ {1, . . . ,m},

ωk ≺Ψm
i
ω and ωk ≺Ψm

i
ω′ (3)

Equations 1, 2 and 3 together with our initial assumption
that ω �Ψ1 ω

′, ω �Ψ2 ω
′, fully characterize the TPOs Ψm

1
and Ψm

2 , and also show that Ψm
1 and Ψm

2 are the same TPO,
which we denote by Ψ∗.

(Part 2) Now, we intend to prove that for each i ∈ {1, 2},
ω �Ψi◦α ω′ if and only if ω �Ψ∗◦α ω′. This is done as
follows, similarly as in part 1 of this proof, by induction on
the sequence (Ψk

i )k∈{1,...,m}, but this time taking advantage
of (CRE2) instead of (CR2). The base case where k = 1
is trivial: since Ψi = Ψ1

i , we have that ω �Ψi◦α ω
′ if and

only if ω �Ψ1
i ◦α ω

′. Now, let k ∈ {1, . . . ,m− 1} ≥ 1, and
assume that ω �Ψi◦α ω

′ if and only if ω �Ψk
i ◦α ω

′. Since
Ψk+1
i = Ψk

i ◦ γωk
by definition, and since ω, ω′ 6|= γωk

, by
(CRE2), we get that ω �Ψk

i ◦α ω
′ if and only if ω �Ψk+1

i ◦α
ω′. Hence, ω �Ψk

i ◦α ω
′ if and only if ω �Ψk+1

i ◦α ω
′. This

shows by induction that, for each i ∈ {1, 2}, ω �Ψi◦α ω
′ if

and only if ω �Ψm
i ◦α ω

′. But since Ψm
1 = Ψm

2 = Ψ∗, we
can write that for each i ∈ {1, 2},

ω �Ψi◦α ω
′ if and only if ω �Ψ∗◦α ω

′ (4)

Equation 4 shows that ω �Ψ1◦α ω
′ if and only if ω �Ψ2◦α

ω′, which shows that (Fun) is satisfied.

Proposition 5. If a DP assignment satisfies (Fun), then it
satisfies (Lex).

Proof. Let Ψ 7→�Ψ be a DP assignment, and assume that it
satisfies (Fun). Assume toward a contradiction that it does
not satisfy (Lex). That is to say, there exists an epistemic
state Ψ1, two worlds ω, ω′, and a formula α such that ω′ |=
α, ω 6|= α, and ω �Ψ1◦α ω′. By (CR3), we know that
ω �Ψ1

ω′. Let S = {ω∗ |= α | ω∗ ≺Ψ1
ω′}, and let ΨS

1 be
an epistemic state such that ω1 �ΨS

1
ω2 if and only if

{
ω1 �Ψ1 ω2, if ω1, ω2 ∈ S or ω1, ω2 /∈ S (i)
>, if ω1 ∈ Ω \ S and ω2 ∈ S (ii)
⊥, otherwise (iii)

That is, ΨS
1 is any epistemic state built from Ψ1, where in

�ΨS
1

all worlds from S (i.e., all worlds strictly more plausi-
ble than ω′ in �Ψ1 ) are shifted on top of the TPO �ΨS

1
(ii),

in a strict manner (iii), while keeping from �Ψ1 all remain-
ing relationships between worlds (i). Note by construction
of ΨS

1 that ω �ΨS
1
ω′, since ω �Ψ1

ω′ and ω, ω′ /∈ S.
Since the assignment satisfies (Fun), and since ω �Ψ1 ω

′,
ω �ΨS

1
ω′, and ω �Ψ1◦α ω

′, we get that ω �ΨS
1 ◦α ω

′. Yet
by construction of ΨS

1 we have that ω′ ∈ min([α],�ΨS
1
), so

by Theorem 1, we get that ω′ ≺ΨS
1 ◦α ω, which leads to a

contradiction.

As a direct consequence of Propositions 3.1, 4 and 5, we
get that:
Theorem 3. ◦L is the only TPO-representable HDP opera-
tor.

So, there is only one HDP operator, Nayak’s lexico-
graphic revision. This provides an alternative characteriza-
tion of this operator. However, this can also be interpreted as
the fact that these conditions (CE1-CE2) are too strong. In
fact, this is the case. This can be illustrated, for instance, by
the property (Fun), which is a consequence of (CE2) and re-
quires homogeneity of the evolution of each possible world,
whatever its plausibility.

But belief revision operators impose a very special treat-
ment to minimal models (i.e., the most plausible ones) of
the new piece of information, which have to become strictly
more plausible than worlds of the negation of the new piece
of information. So, requiring this similar behavior for any
cases (even when these worlds are not the most plausi-
ble) leads to the strong change encoded by Nayak’s lexico-
graphic revision.

In fact, what we really want is not a homogeneous change
in any situation but in all situations when the world is not
among the most plausible ones. This additional condition
will lead to another class of operators.

4 hDP Revision Operators
Let us focus on two weaker variations of (CE1) and (CE2):
Definition 6 (hDP revision operator). A DP operator ◦ is a
weak homogeneous DP operators (hDP operator for short)
if it satisfies (CE3), (CE4), (CE5), and the following proper-
ties, for each epistemic state Ψ and all formulae µ, α, β:
(CE1w) If β |= µ,Bel(Ψ◦α) |= ¬β andBel(Ψ◦µ◦α) |=

¬β, then Bel(Ψ ◦ µ ◦ α ◦ β)) ≡ Bel(Ψ ◦ α ◦ β)

(CE2w) If β |= ¬µ, Bel(Ψ ◦ α) |= ¬β and Bel(Ψ ◦ µ ◦
α) |= ¬β, thenBel(Ψ◦µ◦α◦β)) ≡ Bel(Ψ◦α◦β)

In both properties, we have added the conditions Bel(Ψ ◦
α) |= ¬β and Bel(Ψ ◦ µ ◦ α) |= ¬β, which ensure that
β is not believed after revising by α and by µ. Thus, we
are talking about true counterfactual beliefs, and these two
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conditions are, like the DP conditions they come from, con-
ditions for the preservation of counterfactual beliefs.

(CE1w) and (CE2w) correspond to the following seman-
tical conditions:

Definition 7 (hDP assignment). A DP assignment Ψ 7→�Ψ

is a weak Homogeneous DP assignment (hDP assignment
for short) if and only if it satisfies conditions (CRE3),
(CRE4) and (CRE5), and for each epistemic state Ψ, all for-
mulae µ, α, and all worlds ω, ω′ ∈ Ω:

(CRE1w) If ω, ω′ |= µ and ω, ω′ /∈ min([α],�Ψ) ∪
min([α],�Ψ◦µ), then ω �Ψ◦µ◦α ω

′ ⇔ ω �Ψ◦α ω
′

(CRE2w) If ω, ω′ 6|= µ and ω, ω′ /∈ min([α],�Ψ) ∪
min([α],�Ψ◦µ), then ω �Ψ◦µ◦α ω

′ ⇔ ω �Ψ◦α ω
′

These additional conditions are maybe clearer here than in
the postulates. They state that the worlds we are interested
in when talking about preservation of their relationship are
those that are not the most plausible under α for �Ψ and
�Ψ◦µ. These most plausible worlds will have a particular
treatment imposed by the standard revision postulates, so
we want to focus on the other ones and state that they will
keep their relative relationship.

We can show that these conditions are true counterparts
of the postulates (the proof is omitted for space reasons, but
can be found at (Schwind, Konieczny, and Pérez 2023) and
is similar to the part of the proof of Proposition 2 showing
the correspondence between (CEi) and (CREi), for each i ∈
{1, 2}):
Proposition 6. For each i ∈ {1, 2}, a DP revision oper-
ator ◦ satisfies (CEiw) if and only if its corresponding DP
assignment satisfies (CREiw).

As a direct consequence, we get the following representa-
tion theorem for hDP revision operators:

Theorem 4. A DP revision operator ◦ is a hDP operator if
and only if there is a hDP assignment Ψ 7→�Ψ such that for
each epistemic state Ψ and each formula µ, [Bel(Ψ ◦ µ)] =
min([µ],�Ψ).

Let us now focus on the consequences on TPO-
representable revision operators. This time our three illus-
trative operators are member of this subclass of operators:

Proposition 7. ◦L, ◦N and ◦R are hDP operators.

Proof. Using Propositions 3 and 6 it is enough to prove that
Ψ 7→�NΨ satisfies (CRE1w) and (CRE2w), and that Ψ 7→�RΨ
satisfies (CRE1w), where the assignments Ψ 7→�NΨ and
Ψ 7→�RΨ denote the DP assignment corresponding to ◦N
and ◦R, respectively. Let Ψ be any epistemic state, µ, α be
two formulae, and ω, ω′ be two worlds.
• Proof that Ψ 7→�NΨ satisfies (CRE1w) and (CRE2w):
Assume that (a) ω, ω′ /∈ min([α],�NΨ ) and that (b)

ω, ω′ /∈ min([α],�NΨ◦Nµ):
(CRE1w) Let ω, ω′ |= µ. We need to prove that ω �NΨ◦Nα
ω′ ⇔ ω �NΨ◦Nµ◦Nα ω

′. The case when ω |= α⇔ ω′ |= α is
direct using (CR1), (CR2) and (CR4). Assume that ω |= α,
ω′ 6|= α. Then ω �NΨ◦Nα ω′ iff ω �NΨ◦N ω′ (by (a) and
(Nat)) iff ω �NΨ◦Nµ ω

′ (by (CR1)) iff ω �NΨ◦Nµ◦Nα ω
′ (by
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Ψ ◦L/N µ ◦L/N α
=Ψ ◦L µ ◦N α

Figure 2: The ◦L/N operator is not a hDP operator

(b) and (Nat)). The proof when ω 6|= α, ω′ |= α is identical
since ω and ω′ play symmetrical roles.
(CRE2w) Let ω, ω′ 6|= µ. The proof is identical to the one
for (CRE1w) above, using (CR2) instead of (CR1).
• Proof that Ψ 7→�RΨ satisfies (CRE2w):

Assume that ω, ω′ 6|= µ, that (a) ω, ω′ /∈ min([α],�RΨ) and
that (b) ω, ω′ /∈ min([α],�RΨ◦Rµ). The proof is identical
to the one of Proposition 3 showing that Ψ 7→�RΨ satisfies
(CRE1) when ω /∈ min([α],�RΨ), using (CR2) instead of
(CR1). And the proof when ω 6|= α, ω′ |= α is identical
since ω and ω′ play symmetrical roles.

Let us now also show that the ◦L/N of the introduction is
not a hDP operator.
Example 6. Let us consider the operator ◦L/N of the in-
troduction, that assigns randomly to each formula either the
operator ◦L or ◦N . And suppose that to the formula whose
models are {111, 110}, it is ◦L that has been drawn, and
to the formula whose models are {110}, it is ◦N that has
been drawn. Now consider the same epistemic state Ψ as
the one in Figure 2, and the formulae α = p ⇔ ¬q and
µ = ¬p ∨ ¬q ∨ ¬r.

As the beliefs of Ψ are the models {111, 110}, we have to
use ◦L to revise it. So we give in Figure 2 the results when
we revise Ψ by α and by µ.

When we revise by µ, the beliefs of Ψ◦L/Nµ are the model
{110}. So this epistemic state has to be revised using ◦N .
And the result is the last order on the figure.

Now consider the two interpretations ω = 110 and
ω′ = 011. We have ω |= µ, ω′ |= µ and ω, ω′ /∈
min([α],�Ψ)∪min([α],�Ψ◦µ). So by (CRE1w) we should
have ω �Ψ◦L/Nµ◦L/Nα ω′ ⇔ ω �Ψ◦L/Nα ω′. These two
worlds are highlighted in Figure 2 and one can check that
this is not the case.

Let us check if we can characterize more precisely this
class. We introduce a weakening of (Fun), where we restrict
its scope to non-minimal worlds:
(FunW) If ω, ω′ /∈ min([α],�Ψ1

) ∪min([α],�Ψ2
)

and (ω �Ψ1
ω′ ⇔ ω �Ψ2

ω′),
then (ω �Ψ1◦α ω

′ ⇔ ω �Ψ2◦α ω
′)

And we can show that:
Proposition 8. Let ◦ be a DP operator defined on the
TPO-based epistemic space. If its DP assignment satisfies
(CRE2w), then it satisfies (FunW).
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Proof. The proof is almost identical to the one of Proposi-
tion 4, by assuming the DP assignment Ψ 7→�Ψ satisfies
(CRE2w) instead of (CRE2) and by proving that it satisfies
(FunW) instead of (Fun). The only difference is that one ini-
tially assumes that the two TPOs Ψ1, Ψ2, the two worlds ω,
ω′ and the formula α are such that ω, ω′ /∈ min([α],�Ψ1

)
∪min([α],�Ψ2

). Doing so, one can easily see that all TPOs
Ψk

1 ,Ψ
k
2 (k ∈ {1, . . . ,m}) involved in the proof are such

that ω, ω′ /∈ min([α],�Ψk
1
) ∪ min([α],�Ψk

2
) and ω, ω′ /∈

min([α],�Ψk
1◦α) ∪ min([α],�Ψk

2◦α), from which we can
conclude that (FunW) is satisfied.

Interestingly, we can generalize (FunW) to a version with
a kind of additional anonymity condition (i.e. the worlds do
not have to be the same for�Ψ1

or�Ψ2
, but just to be in the

same situations).
(FunWA) If (ω |= α ⇔ ω2 |= α), (ω′ |= α ⇔ ω3 |= α),
(ω, ω′ /∈ min([α],�Ψ1

)), (ω2, ω3 /∈ min([α],�Ψ2
)), and

(ω �Ψ1
ω′ ⇔ ω2 �Ψ2

ω3),
then (ω �Ψ1◦α ω

′ ⇔ ω2 �Ψ2◦α ω
3).

Proposition 9. A DP assignment satisfies (FunW) if and
only if it satisfies (FunWA).

Proof. The (if) part of the proof is direct by setting ω = ω2

and ω′ = ω3. Let us show the (only if) part. Let Ψ 7→�Ψ

a DP assignment satisfying (FunW), and let us show that
(FunWA) is satisfied. So let Ψ1, Ψ2 be two epistemic states,
α, β be two formulae and ω, ω′, ω2, ω3 be four worlds, such
that (i) (ω |= α⇔ ω2 |= β), (ii) (ω′ |= α⇔ ω3 |= β), (iii)
ω, ω′ /∈ min([α],�Ψ1

), and (iv) ω2, ω3 /∈ min([β],�Ψ2
).

Assume that (v) ω �Ψ1
ω′ ⇔ ω2 �Ψ2

ω3. We must prove
that ω �Ψ1◦α ω

′ ⇔ ω2 �Ψ2◦β ω
3. Let Ψ be any epistemic

state such that (vi) (ω 'Ψ ω2, ω′ 'Ψ ω3), (vii) ω �Ψ ω′ ⇔
ω �Ψ1

ω′), and (viii) ω, ω′, ω2, ω3 /∈ min([α], �Ψ)
∪min([β],�Ψ). First, from (vi) we can write that (ix) ω �Ψ

ω′ ⇔ ω2 �Ψ ω3. Second, by (i), (ii), (vi) and (CR1-CR2)
we get that (x) ω 'Ψ◦α ω2 and ω′ 'Ψ◦α ω3, Hence, by
(ix) and (x) we get that (xi) (ω �Ψ ω′ ⇔ ω �Ψ◦α ω′) ⇔
(ω2 �Ψ ω3 ⇔ ω2 �Ψ◦α ω

3). By (ix) and (xi), we get that
(xii) ω �Ψ◦α ω′ ⇔ ω2 �Ψ◦α ω3. From (iii), (vii), (viii)
and (FunW), we get that (xiii) ω �Ψ◦α ω

′ ⇔ ω �Ψ1◦α ω
′,

and so by (xii) and (xiii) we get that (xiv) ω �Ψ1◦α ω′ ⇔
ω2 �Ψ◦α ω

3. Third, by (v) and (vii) we get that (xv) ω �Ψ

ω′ ⇔ ω2 �Ψ2
ω3, by (ix) and (xv) we get that (xvi) ω2 �Ψ

ω3 ⇔ ω2 �Ψ2
ω3, and then by (iv), (viii), (xvi) and (FunW),

we get that (xvii) ω2 �Ψ◦α ω3 ⇔ ω2 �Ψ2◦α ω3. Lastly,
from (xiv) and (xvii), we get that ω �Ψ1◦α ω

′ ⇔ ω2 �Ψ2◦α
ω3. This shows that Ψ 7→�Ψ satisfies (FunWA).

Let us give a generalisation of (FunWA):
(FunWP) If (ω |= α ⇔ ω2 |= β), (ω′ |= α ⇔ ω3 |=
β), (ω, ω′ /∈ min([α],�Ψ1

), (ω2, ω3 /∈ min([β],�Ψ2
), and

(ω �Ψ1
ω′ ⇔ ω2 �Ψ2

ω3),
then (ω �Ψ1◦α ω

′ ⇔ ω2 �Ψ2◦β ω
3).

Let us now show that in fact, (FunWP) does not bring
more than (FunWA) for homogeneous operators:
Proposition 10. A DP assignment satisfies (FunWA) and
(CRE5) if and only if it satisfies (FunWP).

Proof Sketch. The (if) part of the proof is direct by setting
α = β to prove (FunWA), and by setting ω = ω2, ω′ = ω3

and Ψ1 = Ψ2 to prove (CRE5). Let us show the (only if)
part. Let Ψ 7→�Ψ be a DP assignment satisfying (FunWA)
and (CRE5). Let Ψ1, Ψ2 be two epistemic states, α, β
be two formulae, and ω, ω′, ω2, ω3 be four worlds such
that (ω |= α ⇔ ω2 |= β), (ω′ |= α ⇔ ω3 |= β),
(ω, ω′ /∈ min([α],�Ψ1

)), (ω2, ω3 /∈ min([β],�Ψ2
)), and

(ω �Ψ1
ω′ ⇔ ω2 �Ψ2

ω3). We must prove that (ω �Ψ1◦α
ω′ ⇔ ω2 �Ψ2◦β ω3). We only provide the proof in the
case when all four worlds ω, ω′, ω2, ω3 are pairwise dis-
tinct (the remainder of the proof can be found at (Schwind,
Konieczny, and Pérez 2023)). Assume first that ω, ω′ |= α.
Then, ω2, ω3 |= β. From (CR1) we get that ω �Ψ1

ω′ ⇔
ω �Ψ1◦α ω′ and ω2 �Ψ2

ω3 ⇔ ω2 �Ψ2◦β ω3. Yet
ω �Ψ1

ω′ ⇔ ω2 �Ψ2
ω3, so ω �Ψ1◦α ω

′ ⇔ ω2 �Ψ2◦β ω
3.

The case when ω, ω′ 6|= α is proved similarly by using
(CR2) instead of (CR1). So, assume now that ω |= α and
ω′ 6|= α. Then, ω2 |= β and ω3 6|= β. Since all worlds
ω, ω′, ω2, ω3 are pairwise distinct, there exists a formula γ
such that [γ] = {ω, ω2} ∪min([α],�Ψ1

) ∪min([β],�Ψ2
).

Clearly, we have that ω |= α ∧ γ, ω′ |= ¬α ∧ ¬γ,
and ω /∈ min([α],�Ψ1) ∪ min([γ],�Ψ1). So by (CRE5),
we get that (i) ω �Ψ1◦α ω′ ⇔ ω �Ψ1◦γ ω′. Like-
wise, since ω2 |= β ∧ γ, ω3 |= ¬β ∧ ¬γ, and ω2 /∈
min([β],�Ψ2

) ∪ min([γ],�Ψ2
), by (CRE5) again we get

that (ii) ω2 �Ψ2◦β ω3 ⇔ ω2 �Ψ2◦γ ω3. Lastly, since
ω, ω2 |= γ, ω′, ω3 6|= γ, ω, ω′ /∈ min([γ],�Ψ1

), ω2, ω3 /∈
min([γ],�Ψ2

) and ω �Ψ1
ω′ ⇔ ω2 �Ψ2

ω3, by (FunWA)
we get that (iii) ω �Ψ1◦γ ω

′ ⇔ ω2 �Ψ2◦γ ω
3. Hence, from

(i-iii) we get that ω �Ψ1◦α ω′ ⇔ ω2 �Ψ2◦β ω3, which
shows that Ψ 7→�Ψ satisfies (FunWP) and concludes the
proof.

And interestingly this gives us two dichotomy results on
the properties satisfied by the operators:
Lemma 1. If a DP assignment satisfies (FunWP), then it
satisfies (DR) or (Lex).

Proof. Let Ψ 7→�Ψ be a DP assignment and assume that it
does not satisfy (DR), i.e., there exists an epistemic state Ψ,
a formula α and two worlds ω, ω′ such that ω |= α, ω′ 6|= α,
ω /∈ min([α],�Ψ), ω′ ≺Ψ ω and ω �Ψ◦α ω

′.
First, let us prove that ω ≺Ψ◦α ω′. Toward a contra-

diction, assume that ω 'Ψ◦α ω′. Let Ψ′ be an epistemic
state, ω2, ω3 be two worlds such that ω2 |= α, ω3 6|= α,
ω, ω2 /∈ min([α],Ψ′) and ω3 ≺Ψ′ ω

′ ≺Ψ′ ω ≺Ψ′ ω
2. Since

ω′ ≺Ψ ω, ω′ ≺Ψ′ ω and ω 'Ψ◦α ω
′, by (FunW) we get that

(i) ω 'Ψ′◦α ω
′. Then since ω3 ≺Ψ′ ω

2 and ω′ ≺Ψ′ ω, by (i)
and (FunWA) we get that (ii) ω3 'Ψ′◦α ω

2. Yet ω ≺Ψ′ ω
2,

so by (CR1) we get that (iii) ω ≺Ψ′◦α ω
2. And ω3 ≺Ψ′ ω

′,
so by (CR2) we get that (iv) ω3 ≺Ψ′◦α ω

′. But (i-iv) contra-
dict the transitivity of �Ψ′◦α. Hence, ω ≺Ψ◦α ω

′.
We intend now to prove that ◦ satisfies (Lex), that is,

let Ψ2 be any epistemic state, β be any formula, ω2, ω3

be two worlds such that ω2 |= β and ω3 6|= β, and let
us show that ω2 ≺Ψ2◦β ω3. The proof is direct when
ω2 ∈ min([β],�Ψ2

) by Theorem 1 or when ω2 ≺Ψ2
ω3 by

(CR3), so assume that ω2 /∈ min([β],�Ψ2
) and ω3 �Ψ2

ω2.
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Then we can verify that the preconditions for (FunWP) are
satisfied, i.e., we have that ω |= α, ω′ 6|= α, ω2 |= β,
ω3 6|= β, ω, ω′ /∈ min([α],�Ψ), ω2, ω3 /∈ min([β],�Ψ2

),
ω′ �Ψ ω and ω3 �Ψ2

ω2. Then by (FunWP) and since we
have shown that ω ≺Ψ◦α ω

′, we get that ω2 ≺Ψ2◦β ω
3. This

shows that ◦ satisfies (Lex) and concludes the proof.

Lemma 2. If a DP assignment satisfies (FunWP), then it
satisfies (PR) or (Nat).

Proof. Let Ψ 7→�Ψ be a DP assignment and assume that it
does not satisfy (PR), i.e., there exists an epistemic state Ψ,
a formula α and two worlds ω, ω′ such that ω |= α, ω′ 6|= α,
ω �Ψ ω′ and ω′ �Ψ◦α ω. Let us first remark by Theorem 1
that ω /∈ min([α],�Ψ). Then, let us first show that ω 'Ψ ω′

and ω 'Ψ◦α ω
′. On the one hand, since ω �Ψ ω′, by (CR4)

we get that ω �Ψ◦α ω′, and since ω′ �Ψ◦α ω we get that
ω 'Ψ◦α ω

′. On the other hand, since ω′ �Ψ◦α ω, by (CR3)
we get ω′ �Ψ ω, and since ω �Ψ ω′ we get ω 'Ψ ω′.

Now, we want to prove that Ψ 7→�Ψ satisfies (Nat). So
let Ψ2 be an epistemic state, β be a formula and ω2, ω3 be
two worlds such that ω2, ω3 /∈ min([β],�Ψ2

). We need to
show that ω2 �Ψ2

ω3 ⇔ ω2 �Ψ2◦β ω3. The case when
ω2 |= β ⇔ ω3 |= β is direct using (CR1-CR2). So as-
sume that ω2 |= β and ω3 6|= β. If ω2 ≺Ψ2

ω3, by (CR3)
we get that ω2 ≺Ψ2◦β ω3. So assume that ω3 �Ψ2

ω2,
and let us show that ω3 �Ψ2◦β ω2. Yet we can verify
that the preconditions for (FunWP) are satisfied, i.e., we
have that ω |= α ⇔ ω2 |= β, ω′ |= α ⇔ ω3 |= β,
ω, ω′ /∈ min([α],�Ψ), ω2, ω3 /∈ min([β],�Ψ2

), ω′ �Ψ ω
and ω3 �Ψ2

ω2. Then by (FunWP) and since ω′ �Ψ◦α ω,
we get that ω3 �Ψ2◦β ω2. The remaining case is when
ω2 6|= β and ω3 |= β, which can be proved identically
to the case when ω2 |= β and ω3 6|= β by permuting ω2

and ω3, and since all preconditions for (FunWP) are also
satisfied when permuting ω and ω′. We have shown that
ω2 �Ψ2

ω3 ⇔ ω2 �Ψ2◦β ω3 in every case, which con-
cludes the proof that Ψ 7→�Ψ satisfies (Nat).

As a consequence of the previous results, we get that:
Theorem 5. ◦N , ◦L and ◦R are the only TPO-representable
hDP revision operators.

So there are only three hDP operators: Nayak’s lexico-
graphic revision ◦L, Boutilier’s natural revision ◦N , and
Booth and Meyer’s restrained revision ◦R. They are the only
choice if one wants to have an homogeneous behaviour for
TPO-representable iterated belief revision operators.

Note that these three operators are called elementary revi-
sion operators in (Chandler and Booth 2023), and they are
characterized (for TPO-representable operators) by an ax-
iom of “Independence of Irrelevant Alternatives” (IIA∗�),
inspired by a well-known axiom from social choice. So it
is interesting to obtain this class from these two different
intuitions and constructions.

5 Conclusion
We have studied the consequences of pushing one iteration
further than Darwiche and Pearl’s postulates, i.e., instead of
linking iterations n+1 and n+2, we linked iterations n+2 and

n+3. We have shown that this leads to more restricted sub-
classes of operators, which rule out non-homogeneous oper-
ators.

We do not claim that non-homogeneous operators have to
be completely forbidden since they may make sense in some
applications where the state of mind of an agent changes
during its life (depending on the sequence of iterations) and
there are some non-homogeneities at some points.

However, for many “normal” cases, this homogeneity re-
quirement seems more than natural. Thus, we wanted to
start the study of these homogeneous operators in this work.
The results were quite surprising since very few operators
satisfy these requirements: there is only one homogeneous
DP (HDP) revision operator, namely Nayak’s lexicographic
revision.

If we relax these (obviously strong) conditions of HPD
revision, we obtain hDP revision operators that could be
considered the most interesting class of this work. Even
here, we have only three operators in this class, namely
Nayak’s lexicographic revision, Boutilier’s natural revision,
and Booth and Meyer’s restrained revision. If we add the
“separation” postulate (P) (whose semantical counterpart is
denoted by (PR)), this rules out Boutilier’s natural revision,
and we have a characterization of the two remaining op-
erators. This class is restricted but very meaningful since
these three operators are the only TPO-representable opera-
tors that satisfy a property of locality (that we call function-
ality - (FunW)), which states that the relative plausibility of
two (non-minimal) worlds is only a function of these two
worlds.

Thus, the hDP postulates can be seen as very strong since
they are satisfied by only three TPO-representable revision
operators. However, we want to stress that this is caused by
the combination of these postulates and the other constraints
on revision operators, especially the special behavior that
belief revision operators impose on minimal worlds of the
new piece of information. If hDP postulates are applied to
improvement operators, it is expected that the class of cor-
responding operators will be larger. However, the extent of
this increase in the class size remains unknown and will be
a subject for future investigation.

One possible relaxation could be to study operators that
do not satisfy (CE2/CE2w). In fact this postulate has been
criticized in several works (Spohn 1988; Konieczny and
Pino Pérez 2000; Rodrigues 2005; Rodrigues, Gabbay, and
Russo 2010; Schwind and Konieczny 2020) since in some
cases it forces a stronger behaviour than expected, in partic-
ular by linking together all the information coming in one
step of revision. So studying the class of homogeneous op-
erators that do not satisfy (CE2w) seems interesting.

Another future work is related to these notions of homo-
geneity, locality, and functionality. In this work, we impose
homogeneity using a (particular) functionality condition, but
one can figure out other notions of functionality and homo-
geneity. Having a more general view of these two notions
seems to be an interesting issue.
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