
Foundations for Projecting Away the Irrelevant in ASP Programs

Zeynep G. Saribatur , Stefan Woltran
Institute of Logic and Computation, TU Wien
{zeynep.saribatur, stefan.woltran}@tuwien.ac.at

Abstract

Simplification of logic programs under the answer set seman-
tics has been studied from the very beginning of the field. One
natural simplification is the removal of atoms that are deemed
irrelevant. While equivalence-preserving rewritings are well
understood and incorporated in state-of-the-art systems, more
careful rewritings in the realm of strong or uniform equiva-
lence have received considerably less attention. This might
be due to the fact that these equivalence notions rely on com-
parisons with respect to context programs that remain the
same for both the original and the simplified program. In
this work, we pursue the idea that the atoms considered irrel-
evant are disregarded accordingly in the context programs of
the simplification, and propose novel equivalence notions for
this purpose. We provide necessary and sufficient conditions
for these kinds of simplifiability of programs, and show that
such simplifications, if possible, can actually be achieved by
just projecting the atoms from the programs themselves. We
furthermore provide complexity results for the problems of
deciding simplifiability and equivalence testing.

1 Introduction
The desire to get rid of irrelevant details/rules that over-
complicate an ASP program and its evaluation moti-
vated many works over the years on simplification of
ASP programs while preserving their semantics, such as
equivalence-based rewriting (Gebser et al. 2008; Pearce
2004), partial evaluation (Brass and Dix 1997; Janhunen et
al. 2006) and forgetting (see (Leite 2017) for a recent sur-
vey). In all of these works (apart from forgetting), even
though the program gets simplified, the overall signature
would remain the same, allowing for different forms of
equivalence of the original program and the simplified pro-
gram to be investigated.

The equivalence of logic programs is determined by
means of the answer set semantics (Gelfond and Lifschitz
1991): a program P is equivalent to a program Q if
AS (P) = AS (Q), where AS (·) denotes the collection of
answer sets of a program. Strong equivalence (Lifschitz,
Pearce, and Valverde 2001) is a much stricter condition over
the two programs: P and Q are strongly equivalent if, for
any setR of rules, the programs P ∪R andQ∪R are equiv-
alent, i.e., if

AS (P ∪R) = AS (Q ∪R). (1)

This notion makes it possible to simplify a part of a logic
program without looking at the rest of it: if a subprogram
P of Π is strongly equivalent to a simpler program Q, then
P can be replaced by Q without changing the answer sets
of Π. The works (Osorio, Navarro, and Arrazola 2002;
Turner 2003; Eiter et al. 2004; Pearce 2004) show ways
of transforming programs by ensuring that the property
holds. There are also more liberal notions of equivalence,
such as uniform equivalence (Maher 1986; Sagiv 1987;
Eiter and Fink 2003) where R is restricted to a set of facts,
and relativised versions of strong and uniform equivalence
(Woltran 2004) that are defined for the case of having the
newly added rules or facts, R, in a specific language. In
addition, (Eiter, Tompits, and Woltran 2005) also addresses
equivalence under projection of answer sets. Note that all
these equivalence notions consider the sameR on both sides
of Equation (1) thus leaving the signature of the potentially
simplified program Q untouched.1 However truly capturing
the irrelevance in programs requires to remove those details
even from the signature, so that they are no longer taken into
account, while ensuring that the semantics of the original
program P is preserved w.r.t. the modified signature.

The grounders for ASP solvers already conduct such sim-
plifications by, for example, recursively eliminating facts. If
the programs get extended, the simplification is reapplied.
One can in fact project away all the facts from these simpli-
fied programs and the overall vocabulary, while still ensur-
ing that the original semantics is preserved under projection.
Though the theory behind this is not known. Furthermore,
not all possible such simplifications can be detected by the
grounders, especially when there is a guess involved among
the atoms that could in fact be projected away. Moving to-
wards applications, we are motivated by the following ex-
ample, which currently cannot be captured by the represen-
tations existing in the literature of equivalence. Consider the
Blocksworld planning problem where the goal is to pile up
the blocks from a given initial layout. Now also consider
the case that the blocks are colored and they can be of dif-
ferent colors in different initial states, Ii. However, if colors
are not of relevance to the computation of the plan, then one

1Only (Pearce and Valverde 2004) considers a setting where the
programs are formulated in different languages, but each language
needs to be bijectively interpretable into the other.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

614

would expect to remove the details about the colors from the
planning domain description and still obtain the same plans.
Since Ii’s are described through sets of facts, the desired re-
lation hints at uniform equivalence. However, the signature
also gets modified, due to removing the details regarding
colors, also from the initial states Ii.

The research on forgetting (Gonçalves, Knorr, and Leite
2016a; Delgrande 2017) is actually closer to our interest,
since there for a program P the aim is to construct a pro-
gram f(P, V) by applying an operator f on P to forget
the atoms in V from the vocabulary, so that the result-
ing program is over V (i.e., the universe of atoms without
V). Among the many properties that have been investi-
gated in the forgetting literature, the notion of Strong Per-
sistence (SP) requires the correspondence between answer
sets of the result of forgetting and those of the original pro-
gram be preserved in the presence of any additional set of
rules not containing the atoms to be forgotten, shown as
AS (f(P, V) ∪ R) = AS (P ∪ R)|V , where the vocabulary
of R is restricted to V . Uniform Persistence (UP) accord-
ingly considers R to be a set of facts. Such a restriction over
the vocabulary of the added set of rules/facts prevents these
notions from truly capturing the forgetting of atoms, since it
avoids possible interferences between the rules in R and the
rules in P containing the atoms to be forgotten.

While all the notions discussed above thus have in com-
mon that the context does not respect the considered simpli-
fication, we are interested here in equivalence-like notions
that compare a program P over U with a potential simplifi-
cation Q over U \A, in short A, in the sense that

AS (P ∪R)|A = AS (Q ∪R∗|A) (2)
holds for all R. In particular, we introduce the notions of
• uniform A simplification where R is a set of facts and
R∗|A amounts to R ∩A; and

• strongA simplification whereR is a set of rules andR∗|A
amounts to the rules from A.2

The intuition behind this notion is to not lose the informa-
tion on interactions between P and R when simplifying. It
is not surprising that for given P and A the existence of a
strong or uniform A simplification is not guaranteed. We
thus establish criteria for simplifiability, and in case they are
fulfilled, characterizations for deciding (2) in a way that is
similar to what SE- and UE-models do for the respective
equivalence notions. Such a Q can be seen as an abstrac-
tion of P , relating to the works (Saribatur and Eiter 2021;
Saribatur, Eiter, and Schüller 2021), where the aim is to con-
struct an abstract program Q (with a reduced signature ac-
cording to some mapping) from P so that the answer sets of
P are over-approximated in Q, i.e., any answer set in P can
be mapped to some answer set in Q. Q is considered to be
a faithful abstraction if it does not have any spurious answer
sets. However, we are interested in those Q’s which could
replace P while fully preserving its semantics w.r.t. the map-
ping, here considered as projection, especially when there
are newly added rules or facts which also get abstracted.

2As we shall discuss later, we will restrict R here to programs
where each rule is either given over U \A or A.

Our main contributions are thus as follows
• We define notions of simplifications of programs over

projected vocabularies satisfying the strong and uniform
equivalence in such a setting.

• We provide necessary and sufficient conditions for test-
ing whether a program can have strong (resp. uniform)
A-simplifications, for a setA of atoms. We also give char-
acterizations of strong (resp. uniform) A-simplifications,
which do not require an explicit enumeration of the con-
text programs R.

• We show that for strong (resp. uniform) A-simplifiable
programs, simply removing the atoms in A from the rules
achieves the desired simplifications.

• We provide complexity results for the problems of decid-
ing simplifiability and equivalence testing; some of them
turn out to be hard for the third level of the polynomial
hierarchy.

2 Background
We use the traditional representation of a rule r as the form
A1 ∨ · · · ∨ Al ← Al+1, . . . , Am,not Am+1, . . . , not An,

where Ai (1 ≤ i ≤ n, 0 ≤ l ≤ m ≤ n) are atoms
from a first-order language, and not is default negation.
We also write r as H(r) ← B(r) or H(r) ← B+(r),
not B−(r). We call H(r) = {A1, . . . , Al} the head of
r, B+(r) = {Al+1, . . . , Am} the positive body of r and
B−(r) = {Am+1, . . . , An} the negative body of r. If
H(r) = ∅, then r is a constraint. r is a (non-disjunctive) fact
if B(r) = ∅ and card(H(r)) ≤ 1; for H(r) = ∅, we oc-
casionally write ⊥. A rule r is normal, if card(H(r)) ≤ 1,
and positive if B−(r) = ∅. A disjunctive logic program
(DLP) is a finite set of rules. In the rest of the paper, we fo-
cus on propositional programs over a set of atoms from the
universe U . Programs with variables reduce to their ground
versions as usual. Unless stated otherwise the term program
refers to a (propositional) DLP.

Let I ⊆ U be an intepretation. The GL-reduct of a pro-
gram P w.r.t. I is given by P I = {H(r) ← B+(r) |
r ∈ P,B−(r) ∩ I = ∅}. An interpretation I is a model
of a program P (in symbols I |= P) if, for each r ∈ P ,
(H(r) ∪ B−(r)) ∩ I 6= ∅ or B+(r) 6⊆ I; I is an answer
set, if it is a minimal model of P I . We denote the set of all
answer sets by AS (P). Two programs P1, P2 are equivalent
if AS (P1) = AS (P2), strongly equivalent (SE), denoted by
P1 ≡ P2, if AS (P1 ∪ R) = AS (P2 ∪ R) for every R over
U , and uniformly equivalent (UE), denoted by P1 ≡u P2 if
AS (P1 ∪R) = AS (P2 ∪R) for any set of facts R over U .

An SE-interpretation is a pair 〈X,Y 〉 such that X ⊆
Y ⊆ U ; it is total if X = Y and non-total otherwise. An
SE-interpretation 〈X,Y 〉 is an SE-model of a program P if
Y |= P and X |= PY . An SE-model 〈X,Y 〉 of P is called
UE-model of P if X = Y or there is no SE-model 〈X ′, Y 〉
with X ⊂ X ′ ⊂ Y . We denote by SEV (P) (resp. UEV)
the set of all SE-models (UE-models) of P over the set of
atoms V ⊆ U . If V = U , we drop the superscript for
simplicity. Note that a set Y of atoms is an answer set of
P if 〈Y, Y 〉 ∈ SE (P) and no non-total 〈X,Y 〉 ∈ SE (P)

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

615

exists. Two programs P1 and P2 are strongly equivalent
iff SE (P1) = SE (P2) (Turner 2001); they are uniformly
equivalent iff UE (P1) = UE (P2) (Eiter and Fink 2003).

For a set S ⊆ U of atoms, S|A denotes the projection to
the atoms in A and S is a shorthand for U \ S. We also use
the notion on pairs, i.e. 〈X,Y 〉|A = 〈X|A, Y|A〉 and on sets
of objects, i.e. S|A = {S|A | S ∈ S}.

Finally, the following property on the DLPs will be useful
for our results.
Proposition 1 ((Eiter et al. 2013)). For each DLP P , it holds
that for all 〈X,Y 〉, 〈Z,Z〉 ∈ SE (P) such thatX ⊆ Y ⊆ Z,
〈X,Z〉 ∈ SE (P).

3 Simplifications and Simplifiability
In this section, we introduce the notions for the simplifica-
tion of programs by removing atoms from their vocabulary,
while preserving the desired UE and SE-like semantics.3 We
show the necessary and sufficient conditions for simplifiabil-
ity and the characterizations for the simplifications.

3.1 Uniform Simplification
We begin with introducing a notion to capture the motivat-
ing example by lifting the existing uniform equivalence no-
tion to consider a Q with a smaller vocabulary. Due to the
programs P and Q being of different vocabularies “equiva-
lence” can no longer hold between them, since the symmetry
condition of equivalence cannot be satisfied. For this, we de-
fine Q to be a simplification of P w.r.t. removal of a set of
atoms, while preserving the semantics of P in the spirit of
uniform equivalence.
Definition 1. Given A ⊆ U and a program P (over U),
program Q (over A = U \ A) is a uniform A-simplification
of P if for any set F of facts over U , we have

AS(P ∪ F)|A = AS(Q ∪ F|A). (3)

We say that P is uniform A-simplifiable if there exists a pro-
gram Q such that (3) holds.

Note that in the left-hand side of the equation we project
on the level of answer sets, while on the right-hand side any
Q∪F|A is already given over A and thus has all answer sets
being subsets of A.
Example 1. Let program P consist of rules

a← c,not b. b.

Since the body of the first rule can never be satisfied due to
the existence of the fact b, the answer sets of P ∪F for any F
relies only on the fact b. Due to this, the use of c to obtain a
in an answer set cannot occur, which makes it an irrelevant
detail. Thus, a program Q over signature {a, b} consisting
only of the fact {b.} would be a {c}-simplification of P .

Not every program might have a uniform A-
simplification. We can see this from investigating the
undesired case that prevents a program P from being
uniform A-simplifiable, which comes from the following.

3“Simplification” does not necessarily mean smaller programs.
Though as we shall show later, smaller programs can be obtained.

Proposition 2. If there is a uniform A-simplification of P ,
then P satisfies the condition

∀Y ∀Z, Y ∈ AS (P ∪ Z), ∀Z ′, Z ′|A = Z|A

∃Y ′, Y ′|A = Y|A, Y
′ ∈ AS (P ∪ Z ′) (4)

The intuition comes from the fact that for any added
facts Z we need to ensure that there is a correspondence
among the answer sets of P ∪ Z (projected onto remaining
atoms) and the answer sets obtained from the uniform A-
simplification combined with Z|A. Such a correspondence
cannot occur if P has a mismatch of answer sets for differ-
ent Z’s that agree on the projected atoms. So for any Y and
Z where Y ∈ AS (P ∪ Z) it cannot be the case that there
exists some Z ′ (that agrees on the remaining atoms with Z),
where there is no answer set Y ′ of P ∪ Z ′, which agrees on
the remaining atoms with Y .

Example 2. Let program P consist of rules

a← not b. b← not a.

Say we consider removing the atom b from the vocabu-
lary. However observe that AS(P ∪ ∅) = {{a}, {b}} while
{a}, {a, b} /∈ AS(P ∪ {b}).

Using this knowledge, one can obtain necessary condi-
tions for uniform A-simplifiability.

Proposition 3. If there is a uniform A-simplification of P ,
then P satisfies the following:

∆u1
: For each 〈X,Y 〉∈SE (P) withX ⊂Y andX|A=Y|A,

there exists Y ′⊇X , Y ′|A=Y|A, such that 〈Y ′, Y ′〉 ∈ SE (P)

and for each M with X ⊆M ⊂Y ′, 〈M,Y ′〉 /∈ SE (P).
∆u2 : For each X,Y with X ⊂ Y , 〈Y, Y 〉 ∈ SE (P), such
that for each M with X ⊆ M ⊂ Y , 〈M,Y 〉 /∈ SE (P),
and for each X ′ with X|A = X ′|A, there exists 〈Y ′, Y ′〉 ∈
SE (P) with Y ′|A = Y|A such that X ′ ⊆ Y ′ and for each
M ′ with X ′ ⊆M ′ ⊂ Y ′, 〈M ′, Y ′〉 /∈ SE (P).

∆u3
: 〈Y, Y 〉∈SE (P) implies 〈Y ∪A, Y ∪A〉 ∈SE (P).

Proof. Let Q be a uniform A-simplification of P .
∆u1 : Assume that for some 〈X,Y 〉 ∈ SE (P) no such Y ′

exists. We have Y ∈AS (P∪Y) and thus Y|A ∈AS(Q∪Y|A).
Now consider P ∪ X . Then we have Y|A ∈AS(Q ∪ X|A)

(recall X|A =Y|A). However by our assumption we cannot
find a Y ′ ∈AS(P ∪X) such that Y ′|A =Y which contradicts
Proposition 2.

∆u2
: Assume that for some X,Y,X ′ as given in the con-

dition, no such Y ′ exists. So for all 〈Y ′, Y ′〉 ∈ SE (P) ei-
ther (1) X ′ * Y ′ or (2) for some M ’ with X ′ ⊆ M ′ ⊂ Y ′,
〈M ′, Y 〉 ∈ SE (P). We have 〈Y, Y 〉 ∈ AS (P ∪ X), and
thus Y|A ∈ AS(Q ∪X|A). However by our assumption we
cannot find a Y ′ ∈ AS(P ∪ X ′) such that Y ′|A = Y|A and
X|A = X ′|A which contradicts Proposition 2.

∆u3
: Assume for 〈Y, Y 〉 ∈ SE (P) this is not the case.

Then AS(P ∪ (Y ∪A)) = ∅ while Y ∈ AS(P ∪ Y).

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

616

Example 3 (Ex. 2 ctd). The SE-models of P are 〈a, a〉,
〈b, b〉, 〈∅, ab〉, 〈a, ab〉, 〈b, ab〉, 〈ab, ab〉.4 Now observe that
for 〈a, a〉 ∈ SE (P) andX = ∅, forX ′ = {b} (X ′|A = X|A)
we look at 〈ab, ab〉 ∈ SE (P). But 〈b, ab〉 ∈ SE (P), thus
∆u2 is not satisfied.

For program P in Example 2, we can see that b is actually
not an irrelevant atom that could be removed, since the truth
value of a depends on the truth value of b.
Example 4 (Ex. 1 (ctd)). We have SE (P) =
{〈b, b〉, 〈b, ab〉, 〈ab, ab〉, 〈b, bc〉, 〈bc, bc〉, 〈b, abc〉, 〈ab, abc〉,
〈bc, abc〉, 〈abc, abc〉}. For ∆u1 , the only relevant non-total
model is 〈b, bc〉 ∈SE (P), and with 〈b, b〉 ∈SE (P) the con-
dition is satisfied. For ∆u2 , let’s look at 〈b, b〉 and X = ∅,
since 〈∅, b〉 /∈ SE (P). For X ′ = c, 〈c, bc〉 /∈ SE (P). Now
let’s look at 〈ab, ab〉 and X = a, since 〈a, ab〉 /∈ SE (P).
For X ′ = ac, 〈ac, abc〉 /∈ SE (P). Thus ∆u2

is satisfied. It
is easy to see that ∆u3

is also satisfied.
Let us have a final, slightly more involved, example to il-

lustrate the functioning of ∆u1
and ∆u2

. Later in Section 5,
we use similar structures for a complexity result regarding
uniform simplifiability.
Example 5. Consider a program P with the SE-models

〈abc, abc〉 〈abd, abd〉 〈abcd, abcd〉
〈abc, abcd〉 〈abd, abcd〉 〈∅, abcd〉
〈a, abc〉 〈a, abcd〉

and the set A = {a, b, c, d}; therefore for all 〈X,Y 〉 ∈
SE (P), X|A = Y|A. Moreover, ∆u3 is satisfied, due to the
presence of 〈abcd, abcd〉.

We first argue that P satisfies ∆u1 and ∆u2 . We start with
∆u1 . To this end, we need for each 〈X,Y 〉 ∈ SE (P) with
X ⊂ Y an Y ′, such that 〈Y ′, Y ′〉 ∈ SE (P) and for each
M of the form X ⊆ M ⊂ Y ′, 〈M,Y ′〉 /∈ SE (P). For
X = abc we can use Y ′ = abc (likewise for X = abd, use
Y ′ = abd). For X = a and X = ∅, we can use Y ′ = abd
(but not Y ′ = abc). Let us turn to ∆u2

. Since we have, e.g.
〈bcd, abcd〉 /∈ SE (P) we have to check the particular con-
dition of ∆u2

for each X ′ ⊆ abcd. For the total SE-models
〈X ′, X ′〉 ∈ SE (P) this clearly holds. For all X ′ ⊂ abd,
we have 〈X ′, abd〉 /∈ SE (P), and 〈abd, abd〉 ∈ SE (P).
Likewise, for all X ′ with cd ⊆ X ′ ⊂ abcd, we have
〈X ′, abcd〉 /∈ SE (P) and 〈abcd, abcd〉 ∈ SE (P). Finally,
for all X ′ with c ⊆ X ′ ⊂ abc, we have 〈X ′, abc〉 /∈ SE (P)
and 〈abc, abc〉 ∈ SE (P). All cases are thus covered.

Let us now change P to P ′ such that the following two
additional SE-models are present:

〈b, abd〉 〈b, abcd〉
∆u1

and ∆u2
are now violated and it can be checked that

the pair 〈∅, Y 〉 becomes the problematic SE-model. In fact,
for ∆u1

the “path” to 〈abd, abd〉 becomes blocked, while for
X ′= b we still would have that for allM withX ′⊆M⊂ abc,
〈M,Y ′〉 /∈ SE (P). For ∆u2 , the same reasoning applies.

By using the property on DLPs from Proposition 1, we
can obtain a further condition of uniform A-simplifiability.

4We occasionally use strings to denote sets for SE-models.

Proposition 4. Let P satisfy ∆u2 . If 〈X,Y 〉 ∈ UE (P) with
X|A ⊂ Y|A and X ∩A=Y ∩A, then for all 〈Y ′, Y ′〉 ∈
SE (P) with Y ′|A =Y|A, 〈X|A ∪ (Y ′ ∩A), Y ′〉 ∈ UE (P).

Proof. Assume for 〈X,Y 〉 ∈ UE (P) there exists some
〈Y ′, Y ′〉 ∈ SE (P) with Y ′|A = Y|A such that 〈X|A ∪ (Y ′ ∩
A), Y ′〉 /∈ UE (P). So either (1) 〈X|A ∪ (Y ′ ∩ A), Y ′〉 /∈
SE (P) or (2) there exists some X ′ ⊃ X|A ∪ (Y ′ ∩ A)

such that 〈X ′, Y ′〉 ∈ UE (P). For case (1), if there is
some X ′ ⊃ X|A ∪ (Y ′ ∩ A) such that 〈X ′, Y ′〉 ∈ UE (P)

we apply step (2). So consider 〈X ′, Y ′〉 /∈ SE (P) for all
X ′ ⊃ X|A ∪ (Y ′ ∩ A). By ∆u2

, we need to ensure that for
all X ′′s with X ′′|A = X|A there is some 〈Y ′′, Y ′′〉 such that
for all M , X ′′ ⊆ M ⊂ Y , 〈M,Y ′′〉 /∈ SE (P). So also for
X , we need to find such a Y ′′ 6= Y while X ⊆ Y ′′. Since
Y ′′|A = Y|A, Y ′′ and Y can only differ on atoms from A. But
then sinceX∩A = Y ∩A, Y ′′∩A ⊃ Y ∩A should hold, thus
Y ′′ ⊃ Y , which brings us to a contradiction with Proposi-
tion 1. For case (2), if there is some 〈X ′, Y ′〉 ∈ UE (P)
with X ′ ⊃ X|A ∪ (Y ′ ∩A) then it also satisfies X ′|A ⊂ Y

′
|A

and X ′ ∩ A = Y ′ ∩ A. Then we can apply the same rea-
soning for X ′ and consider the two cases. By doing this
recursively, eventually case (2) will not be applicable. Thus
a contradiction through case (1) will be achieved.

We now define A-UE models, that project those UE-
models of importance for uniform A-simplification.
Definition 2. Given a program P over U and A ⊆ U , the
A-UE-models of P are given by

UEA(P) = {〈X|A, Y|A〉 |(X,Y) ∈ UE (P) and

X ∩A = Y ∩A}

The aim with A-UE models is to collect the projection of
all the total models and those non-total UE-models which
differ on the projection but agree on the removed atoms, i.e.,
X|A ⊂ Y|A and X ∩ A = Y ∩ A. We observe that UE
models of any uniform A-simplification, if exists, need to
adhere with the A-UE models of P .
Proposition 5. If Q is a uniform A-simplification for P ,
then it satisfies

UEA(P) = UEA(Q) (5)

Proof. By Proposition 3, P satisfies ∆u2 . First assume
〈X,Y 〉 ∈UEA(P) but 〈X,Y 〉 /∈ UEA(Q). If X = Y ,
this means there is 〈Y ∪ A′, Y ∪ A′〉 ∈ SE (P) for some
A′ ⊆ A. Thus (Y ∪ A′) ∈ AS(P ∪ (Y ∪ A′)), while
Y /∈ AS(Q ∪ Y), contradicting the assumption of Q be-
ing a uniform A-simplification of P . If X ⊂ Y , this
means there is 〈X ∪ A′, Y ∪ A′〉 ∈ UE (P), but either
(1) there exists 〈M,Y 〉 ∈ UEA(Q) such that M ⊃ X , or
(2) 〈X,Y 〉 /∈ SEA(Q). For case (1), consider M ∪ A′;
Y ∪A′ ∈ AS(P ∪ (M ∪A′)) while Y /∈ AS(Q∪M) which
is a contradiction. For case (2), if some 〈M,Y 〉 ∈ UEA(Q)
forM ⊃ X we apply case (1). Assume there is no 〈M,Y 〉 ∈

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

617

SEA(Q) such that M ⊃ X . Then Y ∈ AS(Q ∪ X). By
Proposition 4 we know that for any 〈Y ′, Y ′〉 ∈ SE (P) such
that Y ′|A = Y we have 〈X ∪ (Y ′ ∩A), Y ′〉 ∈ UE (P). Thus
there is no Y ′ ∈ AS(P ∪ (X ∪ A′)) for any A′ ⊆ A with
Y ′|A = Y which is again a contradiction.

Now assume 〈X,Y 〉 ∈ UEA(Q) but 〈X,Y 〉 /∈ UEA(P).
If X = Y , we have Y ∈ AS(Q ∪ Y). However 〈Y, Y 〉 /∈
UEA(P) means for anyA′ ⊆ A, 〈Y ∪A′, Y ∪A′〉 /∈ SE (P).
Thus there is no Y ∪A′ ∈ AS(P ∪(Y ∪A′)) for anyA′ ⊆ A
which contradicts the assumption of Q being a uniform A-
simplification of P . If X ⊂ Y , this means for all A′ ⊆ A
with 〈Y ∪A′, Y ∪A′〉 ∈ SE (P), 〈X∪A′, Y ∪A′〉 /∈ UE (P).
So either (1) there exists 〈X ′, Y ∪ A′〉 ∈ UE (P) such that
X ′ ⊃ X∪A′, or (2) 〈X∪A′, Y ∪A′〉 /∈ SE (P). For case (1),
for X ′|A, Y ∈ AS(Q ∪X ′|A). Since X ′∩A=Y ∩A (due to
X ′⊃X ∪A′), Proposition 4 applies, thus for any 〈Y ′, Y ′〉 ∈
SE (P) such that Y ′|A = Y , 〈X ′|A∪(Y ′∩A), Y ′〉 ∈ UE (P).
So there is no Y ′ ∈ AS(P ∪ (X ′|A ∪ A

′) for any A′ ⊆ A

with Y ′|A = Y which is a contradiction. For case (2), if
some 〈X ′, Y ∪ A′〉 ∈ UE (P) for X ′ ⊃ X ∪ A′ we apply
case (1). Assume there is no 〈X ′, Y ∪ A′〉 ∈ SE (P) such
that X ′ ⊃ X ∪ A′. Then Y ∪ A′ ∈ AS(P ∪ (X ∪ A′)) but
Y /∈ AS(Q ∪X) which is again a contradiction.

Example 6 (Ex. 1 (ctd)). Over signature {a, b}, Q
has SE-models 〈b, b〉, 〈b, ab〉, and 〈ab, ab〉, thus satisfying
UEA(P) = {〈b, b〉, 〈ab, ab〉} ∪ {〈b, ab〉} = UEA(Q).

We now show that the necessary conditions for uniform
A-simplifiability are also sufficient.
Theorem 6. If P satisfies ∆u1

,∆u2
and ∆u3

, then it has a
uniform A-simplification.

Proof. We will prove that a program Q that satisfies (5)
is a uniform A-simplification of P . Assume it is not the
case. Suppose that there exist sets of atoms F and Z such
that Z ∈ AS(P ∪ F) and Z|A /∈ AS(Q ∪ F|A). Since
Z ∈ AS(P ∪ F) we have that F ⊆ Z and moreover
Z |= P . Consequently, 〈Z,Z〉 is an SE-model of P . Since
Z|A /∈ AS(Q∪F|A), let us first assume Z|A 2 (Q∪F|A)Z|A .

Then, since (Q ∪ F|A)Z|A = QZ|A ∪ F|A and F|A ⊆ Z|A,

it follows that Z|A 2QZ|A . This implies Z|A 2Q. Thus

〈Z,Z〉 ∈ SE (P) while 〈Z|A, Z|A〉 /∈ SEA(Q), which con-

tradicts (5). It follows that Z|A |= (Q ∪ F|A)Z|A holds and

that there exists Z ′ ⊂ Z|A such that Z ′ |= (Q ∪ F|A)Z|A =

QZ|A ∪ F|A. We conclude Z|A |= Q and that 〈Z ′, Z|A〉 ∈
UEA(Q). Now consider Z1 = Z ′ ∪ (Z ∩ A). Since
Z ′ ⊂ Z|A we can infer that Z1 ⊂ Z should hold. Then
since Z1|A =Z ′ |= F|A and Z |= F , we immediately get
that Z1 |= F should hold. However since Z ∈ AS(P ∪ F),
〈Z1, Z〉 cannot be an SE-model of P (thus also cannot be a
UE-model of P). By Proposition 4 we get that then there
must be no Z2 with 〈Z2, Z2〉 ∈ SE (P) and Z2|A = Z|A,
〈Z ′ ∪ (Z2 ∩A), Z2〉 ∈ UE (P), which contradicts (5).

Suppose now that there exist a set F of atoms such that
for some Z ∈ AS(Q ∪ F|A), we have for all Z ∪ A′ for
A′ ⊆ A, Z ∪ A′ /∈ AS(P ∪ F). Since Z ∈ AS(Q ∪ F|A)

we have that F|A ⊆ Z and moreover Z |= Q. Consequently,

〈Z,Z〉 ∈ SEA(Q). So 〈Z,Z〉 ∈ UEA(P) which means for
some A′, 〈Z ∪ A′, Z ∪ A′〉 ∈ SE (P). Due to ∆u3 , 〈Z ∪
A,Z ∪A〉 ∈ SE (P), thus Z ∪A |= P ∪F . In order to have
Z∪A′ /∈ AS(P ∪F) for anyA′ ⊆ A, it should hold that for
thoseA′ with Z∪A′ |= P ∪F there exists Z1 ⊂ Z∪A′ such
that Z1 |= (P ∪F)Z∪A

′
. We conclude Z ∪A′ |= P and that

〈Z1, Z∪A′〉 ∈ UE (P). Note that Z1|A = Z is not possible.
Otherwise, since P satisfies ∆u1

, some other Z ′1 exists such
that Z ′1 ∈ AS(P ∪ F), which is against our assumption
that Z ∪ A′ /∈ AS(P ∪ F) for all A′. For Z1|A ⊂ Z, if
Z1 ∩ A ⊂ A′, then since 〈Z1 ∪ A′, Z ∪ A′〉 /∈ SE (P),
actually Z ∪A′ ∈ AS(P ∪ (Z1 ∪A′)) which is against our
assumption. So Z1 ∩ A = A′ and 〈Z1|A, Z〉 ∈ UEA(P).
However, since Z ∈ AS(Q ∪ F|A), 〈Z1|A, Z〉 cannot be in

UEA(Q) which contradicts (5).
Since it is possible to construct a DLP from a given set

of SE-models (or UE-models), cf. Section 3.1 in (Eiter et al.
2013), some Q satisfying (5) can always be found.

We can infer from Proposition 5 and Theorem 6 that (5)
is a characterization for uniform A-simplification.

Before concluding the section, note that the simplification
in Example 1 can also be achieved by grounders, since the
existence of the fact b guides the grounder to delete the first
rule. However grounders cannot detect such possible sim-
plifications when they are involved in a guess or disjunction.

Example 7. Consider the program P1 consisting of rules

x← not y. y ← not x. a← c,not x,not y.

Similar to Example 1, the body of the third rule can never be
satisfied no matter what truth values x or y have. As for the
program P2 consisting of rules

x ∨ y. a← x, c. a← y, c.

since one of x or y will be true, deriving a actually only de-
pends on whether or not c is true. In both of these programs,
the grounders do not apply simplifications, while actually x
and y can be seen as irrelevant; indeed these programs are
uniform {x, y}-simplifiable.

3.2 Strong Simplification
In the previous section we introduced a simplification notion
in the spirit of uniform equivalence. This brings the ques-
tion of how the notion could be generalized to capture the
spirit of strong equivalence. However an immediate gener-
alization is not easily possible, since the atomsAwould also
have to be removed from the context program R. In order
to avoid having too many assumptions on how some opera-
tor removing a set A of atoms should act on R, instead we
take a view on R similar to how the facts F behave in the
uniform simplification. There the atoms to be removed are
rule-wise separated from the atoms that remain, since they

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

618

are all facts. Thus projecting away A from F does not in-
terfere with rules that contain atoms that remain. In order to
have a similar behavior in the strong simplification setting,
we fix R to have two separate parts, one only consists of the
atoms in A and the other only consists of U \A.
Definition 3. A program R over U is called A-separated, if
R = R1∪R2 for programs R1 and R2 that are defined over
U \A and A, respectively.

Due to the A-separation, any reasonable operator that op-
erates on R to remove the atoms in A would remove part
R2 and keep R1 as it is. Thus, we can simply denote the re-
sulting program for removing atoms in A from R to be R|A.
Furthermore, as we will discuss below, we require each rule
in R to contain at least one atom in the head, thus disallow-
ing constraints of form ⊥ in the rule head.5

We now define a simplification notion for removing a set
of atoms in the spirit of strong equivalence.
Definition 4. Given A ⊆ U and a program P (over U), a
program Q (over U \A) is a strong A-simplification of P if
for any program R over U that is A-separated, we have

AS(P ∪R)|A = AS(Q ∪R|A) (6)

We say that P is strong A-simplifiable if there is a program
Q such that (6) holds.
Example 8. Let program P consist of rules

p← q, r. q. r.

The atom p will appear in the answer sets of P ∪ R for any
q, r-separated R. Thus, the program Q consisting only of
the fact {p} is a strong {q, r}-simplification of P .

In the above example, we can observe the need for dis-
allowing the use of ⊥ in R; for R = {⊥ ← q.}, P ∪ R
would have no answer sets, while R|qr = ∅ gets rid of this
triggering constraint, which makes it impossible to find a
strong simplification satisfying (6) even though by intuition
the facts q, r are expected to be removable.

Proposition 2 can be lifted to the strong case, where Z
and Z ′ in (4) are A-separated programs. Thus we see that
not every program might be strong A-simplifiable.
Example 9. Let program P consist of rules

a← p. b← q. p← not q. q ← not p.

Consider A = {p, q, a}. We have AS(P ∪ ∅) =
{{p, a}, {q, b}} but for R = {p. ; q ← p.} which is A-
separated, we get AS(P ∪ R) = {p, q, a, b}. Even though
RA = ∅, for {p, a} ∈ AS(P ∪ ∅), none of Y ’s with
YA = ∅ = {p, a}|A is an answer set of P ∪ R, thus P does
not satisfy (4) for whenZ andZ ′ areA-separated programs.

We can then obtain the necessary conditions for strong
simplifiabiliy. Moreover, the use of UEA for uniform sim-
plification, which projects the UE-models of P importance,
already hints on how to achieve the strong simplification,
which is via projecting the SE-models of P . Thus we show
below the necessary and sufficient conditions for a program
to be strong A-simplifiable.6

5Constraints can still be described using f←B,notf .
6In the rest of the paper, for full proofs see https://www.dbai.

tuwien.ac.at/user/saribat/pub/kr23 supp.pdf.

Theorem 7. There exists a strong A-simplification of P iff
P satisfies the following

∆s1 : 〈Y, Y 〉 ∈ SE (P) implies A ⊆ Y .
∆s2 : For any 〈X,Y 〉 ∈ SE (P),X|A =Y|A impliesX =Y .

∆s3 : 〈X,Y 〉 ∈ SE (P) implies 〈X∪(Y ∩A), Y 〉 ∈ SE (P).

Proof (Sketch). (⇒) Let Q be a strong A-simplification of
P , but some 〈Y, Y 〉 violates ∆s1 . Then 〈Y ∪ A, Y ∪ A〉 ∈
SE (P) needs to hold. Since otherwise we would have
AS(P ∪ (Y ∪ A)) = ∅ while Y ∈ AS(P ∪ Y). Then
by Proposition 1, 〈Y, Y ∪ A〉 ∈ SE (P) holds. Now con-
sider R = (Y ∪ A) ∪ {f ← y,not f | y /∈ Y ∪ A}
and R′ = Y ∪ {f ← y,not f | y /∈ Y ∪ A} ∪ {y ←
not y | y ∈ (Y ∪ A) \ Y }, where f is an auxiliary atom
in A. We have 〈Y ∪ A, Y ∪ A〉 ∈ AS(P ∪ R), thus
〈Y|A, Y|A〉 ∈ AS(Q∪R|A). Both R and R′ are A-separated
with R|A = R′|A, but AS(P ∪ R′) = ∅, contradicting (6).
A similar proof can be obtained for ∆s2 and ∆s3 , where
through R we target the answer set related with the violat-
ing SE-model, while another R′, that agrees on the projec-
tion with R, obtains no answer set.

(⇐) We show that a program Q satisfying SE(P)|A =

SEA(Q) is a strong A-simplification of P .

Example 10 (Ex. 9 (ctd)). For A = {p, q, a}, P
does neither satisfy ∆s1 (〈pa, pa〉 ∈ SE (P)) nor ∆s2
(〈pab, paqb〉 ∈ SE (P) with {pab}|A = {paqb}|A = {b}).
Example 11 (Ex. 8 (ctd)). ∆s1 , ∆s2 and ∆s3 are satis-
fied by the only SE-model 〈pqr, pqr〉 of P and SEA(Q) =
〈p, p〉 = SE (P)|qr

The below result together with Theorem 7 then gives the
characterization for strong simplification.

Proposition 8. If Q is a strong A-simplification for P , then
it satisfies SE(P)|A = SEA(Q).

Observe that the conditions ∆s1 ,∆s2 and ∆s3 are quite
restrictive on the SE-models of P . Satisfying all the con-
ditions can occur only when the atoms in A are semanti-
cally behaving as facts. Though on the syntactic level this
might have various representations, and might not be easily
detected, which makes these results still of value.

Example 12. Programs containing the fact {b.} or the rules
{a ← not b. ; b ← not a. ; ⊥ ← a.} are strong {b}-
simplifiable.

3.3 Properties
We begin with the familiar observation.

Proposition 9. If P is strong A-simplifiable, then it is uni-
form A-simplifiable.

This can easily be seen through the conditions; ∆s1 and
∆s2 trivially satisfies ∆u3 and ∆u1 , respectively, and by
∆s3 , we can infer that if there is some 〈X,Y 〉 with 〈Y, Y 〉 ∈
SE (P), where for each M with X ⊆ M ⊂ Y, 〈M,Y 〉 /∈
SE (P) (thus 〈X ∪ (Y ∩ A), Y 〉 /∈ SE (P)), then for all X ′
with X ′|A =X|A, 〈Y, Y 〉 satisfies the requirement for ∆u2

.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

619

https://www.dbai.tuwien.ac.at/user/saribat/pub/kr23_supp.pdf
https://www.dbai.tuwien.ac.at/user/saribat/pub/kr23_supp.pdf

We take a look at the extreme cases of removing atoms
from U . IfA = ∅, then all of ∆s1 ,∆s2 and ∆s3 are trivially
satisfied. Moreover, any SE-model of a program P satisfies
SE (P)|A = SE (P), and any non-total UE-model satisfies
X|A ⊂ Y|A and X ∩A = Y ∩A, thus UEA(P) = UE(P).

Proposition 10. The following holds.

• Any program is strong (resp. uniform) ∅-simplifiable.
• Q is strong (resp. uniform) equivalent to P iff Q is a

strong (resp. uniform) ∅-simplification of P .

Though not every program has a strong (resp. uniform)
U -simplification, e.g., some SE-model 〈Y, Y 〉 might easily
have U * Y violating ∆s1 (resp. might not imply existence
of the SE-model 〈Y ∪ U , Y ∪ U〉 violating ∆u3

).
We now show properties regarding closure under union.

Proposition 11. IfP1 andP2 are strongA-simplifiable, then
P1 ∪ P2 is strong A-simplifiable.

By making use of the property SE (P1∪P2) = SE (P1)∩
SE (P2) (Turner 2003), the above result is achieved easily.

Proposition 12. If P1 and P2 are uniform {a}-simplifiable,
then P1 ∪ P2 is uniform {a}-simplifiable.

This property holds due to the only relevant total-models
being 〈Y, Y 〉 and 〈Y ∪ {a}, Y ∪ {a}〉. It cannot be lifted
for a set A of atoms with |A| > 1, as P1 and P2 might have
total models that differ on the subsets of A while satisfying
the simplifiability conditions.

Example 13. Consider the programs P1 with rules

q ← a. a← b. a← not b.

and P2 with a and b in P1 flipped. We have SE (P1) =
{〈qa, qa〉, 〈qa, qab〉} ∪ S and SE (P2) = {〈qb, qb〉,
〈qb, qab〉} ∪ S, where S = {〈∅, qab〉, 〈q, qab〉, 〈qab, qab〉}.
Both P1 and P2 {a, b}-simplifiable, but P1∪P2 is not, since
e.g., SE (P1 ∪ P2) = S does not satisfy ∆u1

for 〈q, qab〉.

4 Projecting Away the Irrelevant
In this section we show that by projecting the atoms in A
from the given uniform (resp. strong) A-simplifiable pro-
gram achieves the desired simplification.

Definition 5. Given a rule r : H(r)← B(r), the projection
of r onto A, denoted by r|A, gives{
∅ if B−(r) ∩A 6= ∅ or H(r) ∩A 6= ∅
H(r)← B(r) \A otherwise.

The resulting program, denoted by P|A, is then
⋃

r∈P r|A.

We begin with a simple observation over the SE models
of P and their projection on A.

Lemma 13. SEA(P|A) ⊆ SE (P)|A.

Now we move on to obtaining the desired simplification.

Theorem 14. Let P be a strong A-simplifiable program.
Then P|A is a strong A-simplification of P .

Proof (Sketch). As P satisfies the necessary and sufficient
conditions, we prove that P|A is a strongA-simplification by

showing SE(P)|A =SEA(P|A). By Lemma 13, it remains

to show SE(P)|A⊆SEA(P|A) by studying the rule r∈P|A
that might prevent it. Knowing that the corresponding rule
r′ ∈ P satisfies B−(r′)∩A = ∅ and H(r′) ∩ A = ∅, with
the help of ∆s1 and ∆s2 , we reach a contradiction.

In retrospect, in Example 8, we see that Q is P|qr. As
expected, projecting away the facts from a program achieves
a simplification over the reduced vocabulary.

Proposition 15. Let P be a program and a be a fact. Then
P|a is a strong {a}-simplification of P .

The above property can be extended to a set A of facts
appearing in P , by iteratively eliminating the facts in A.

Moving on to the uniform case, the following holds.

Theorem 16. Let P be a uniform A-simplifiable program.
Then P|A is a uniform A-simplification of P .

Proof (Sketch). Knowing that P satisfies the necessary and
sufficient conditions, we prove UEA(P) =UEA(P|A).

Example 14 (Ex. 7 (ctd)). For A = {x, y}, P1|A = ∅ and
P2|A={a← c.} are uniformA-simplifications of P1 and P2.

Proposition 15 and its extension to a set A of facts also
applies for uniform simplifications. Note that grounders also
do elimination of rules where the body contains a positive
atom that does not appear in any rule head. Though if the
original program gets extended, then the elimination need to
be reconsidered, since the resulting program is actually not
a simplification in our sense.

Example 15. Grounders simplify the program P = {a ←
c, b. ; c.} to P ′ = {c.} since b does not appear in any
rule head. However this is not a uniform {b}-simplification,
since AS(P ∪ {b.}) = {c, a, b} while P ′ ∪ {} = {c}.

5 Computational Complexity
We now turn to the complexity of deciding simplifiability
and simplification testing. We assume familiarity with basic
concepts of complexity theory. For comprehensive details
we refer to (Papadimitriou 2003; Arora and Barak 2009).

Theorem 17. Let P be a program over U and A ⊆ U . De-
ciding whether P is uniform A-simplifiable is ΠP

3 -complete.

Proof. We first show ΠP
3 membership by analysing the three

conditions of Proposition 3 separately, and then show ΠP
3 -

hardness utilizing the effect we have seen in Example 5.
(∆u1) Membership: We give ΣP

3 membership for the
complementary problem: It suffices to guess an SE-
interpretation 〈X,Y 〉 and check whether 〈X,Y 〉 ∈ SE (P)
and ∀Y ′ ⊇ X with Y ′|A = Y|A such that 〈Y ′, Y ′〉 ∈ SE (P),
∃M with X ⊆M ⊂ Y ′, 〈M,Y ′〉 ∈ SE (P). Inspecting the
quantifier structure of above condition together with the fact
that SE-model checking is in P (Eiter, Fink, and Woltran
2007), yields the required membership.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

620

(∆u2) Membership: Again, we give ΣP
3 membership for

the complementary problem: It suffices to guess interpre-
tations X,Y , with X ⊂ Y and check whether 〈Y, Y 〉 ∈
SE (P), and (a) exists M with X ⊆ M ⊂ Y , 〈M,Y 〉 ∈
SE (P), or (b) exists X ′ with X|A = X ′|A, such that for all
〈Y ′, Y ′〉 ∈ SE (P) with Y ′|A = Y|A such that X ′ ⊆ Y ′ there
is an M ′ with X ′ ⊆ M ′ ⊂ Y ′, 〈M ′, Y ′〉 /∈ SE (P). Using
the fact that SE-model checking is in P , we derive that (a) is
in NP; for (b) we observe that the quantifier structure gives
a ΣP

3 procedure; together with our overall guess for X,Y , it
follows that the entire procedure remains in ΣP

3 .
(∆u3

) Membership: this condition is even easier to check;
in fact it is in coNP.

Hardness: We reduce from (3, ∃)-QSAT, and let Φ =
∃U∀V ∃Wφ with φ =

∧n
i=1(li,1 ∨ li,2 ∨ li3). W.l.o.g. we

assume that U, V,W are all non-empty and that each clause
li,1 ∨ li,2 ∨ li3 contains at least one literal over V ∪W . We
use copies of atoms, e.g., Ũ = {ũ | u ∈ U}. Given Φ,
we set A = U ∪ Ũ and construct a program PΦ over atoms
U = U ∪ Ũ ∪ V ∪ Ṽ ∪W ∪ W̃ ∪ {abcd}.

Before constructing PΦ we give its intended SE-models.
For the sake of presentation we sometimes write unions of
sets as strings, i.e. we omit the ∪-symbols. We also use the
following abbreviation for any set I of atoms over U ∪ V ∪
W : IU = (U ∩ I) ∪ (Ũ \ Ĩ); accordingly we use IV and
IW . Finally we use I+

U = IUV Ṽ WW̃abcd. Our program
will satisfy
SE (PΦ) ={〈I+

U , I
+
U 〉 | I ⊆ U}∪

{〈IU , I+
U 〉 | I ⊆ U}∪

{〈IUIVWW̃abc, I+
U 〉 | I ⊆ UV }∪

{〈IUIVWW̃abc, IUIVWW̃abc〉 | I ⊆ UV }∪

〈IUIVWW̃abd, I+
U 〉 | I ⊆ UV }∪

〈IUIVWW̃abd, IUIVWW̃abd〉 | I ⊆ UV }∪

{〈IUIVWW̃a, I+
U 〉 | I ⊆ UV }∪

{〈IUIVWW̃a, IUIVWW̃abc〉 | I ⊆ UV }∪
{〈IUIV IW b, I+

U 〉 | I ⊆ UVW |= φ}∪

{〈IUIV IW b, IUIVWW̃abd〉 | I ⊆ UVW |= φ}
Observe that independent of φ, ∆u3 is always satisfied,

due to the total models 〈I+
U , I

+
U 〉. Also note already at this

point that for each I ⊆ U , the way the atoms abcd are as-
signed follows the pattern of Example 5; however, we have
such abc/abd pairs now for each I ⊆ UV .

We show that Φ is true iff PΦ does not jointly satisfy ∆u1

and ∆u2
. By generalizing the reasoning from Example 5,

we can reason that Φ is true iff PΦ satisfies

(*) ∃〈X,Y 〉 ∈ SE (PΦ) with X ⊂ Y , X|A = Y|A,
∀Y ′ ⊇ X with Y ′|A = Y|A such that 〈Y ′, Y ′〉 ∈ SE (PΦ),
∃M with X ⊆M ⊂ Y ′, 〈M,Y ′〉 ∈ SE (PΦ).

Observation 1: the only candidates 〈X,Y 〉 able to vio-
late Condition (*) are those of form 〈IU , I+

U 〉. (In fact, for

X = IUIV IW b, we have Y ′ = IUIVWW̃abd, such that
no M with X ⊆ M ⊂ Y satisfies 〈M,Y ′〉 ∈ SE (PΦ);
for IUIVWW̃a, we have Y ′ = IUIVWW̃abc. For the re-
maining non-total SE-models 〈X,Y 〉, we always have total
SE-model 〈X,X〉.)

Observation 2: 〈IU , I+
U 〉 violates Condition (*) exactly if

there is J ⊆ V such that for all K ⊆ W , IJK is not a
model of φ (i.e., Φ is false under assignment I to U).

Hence, the entire condition (*) is satisfied exactly when
we find an 〈IU , I+

U 〉 that does not violate it, i.e., exactly if
Φ is true. It remains to show that given Φ we can construct
PΦ with SE (PΦ) as outlined above in polynomial-time. The
following encoding does the job:

PΦ = {b← c. a← d. b← not c. a← not d.} ∪
{c ∨ d← a, b. a← b, c. b← a, d. } ∪
{u ∨ ũ← . t← u, ũ. t̃← u, ũ. | u, t ∈ U} ∪
{v ∨ ṽ ← a. c← v, ṽ. d← v, ṽ. | v ∈ V } ∪
{w ← a. w̃ ← a. a← b, w, w̃. | w ∈W} ∪
{z ∨ z̃ ← b. a ∨ b← z. a ∨ b← z̃. | z ∈ V ∪W} ∪
{z ← a, b, c, d. z̃ ← a, b, c, d. | z ∈ V ∪W} ∪
{a← l̃i,1, l̃i,2, l̃i3 . | 1 ≤ i ≤ n}

where l̃i,j is given by atom a if li,j is ¬a and by ã if li,j is a
positive literal a.

Theorem 18. Let P be a program over U and A ⊆ U . De-
ciding whether P is strongA-simplifiable is coNP-complete.

It is easy to see that violation of any ∆si can be checked
in NP, since SE-model checking is in P . Hardness can be
shown for each ∆si separately by reducing from SAT where
the program contains a “violating” SE-model iff the formula
reduced from is satisfiable.

For the remaining results we give only upper bounds.
Trivial lower bounds are obtained by utilizing observations
from Section 3.3 where we have seen that for A = ∅, the
conditions for simplification are always satisfied and check-
ing whether Q is a strong (resp. uniform) A-simplification
of some P amounts to strong (resp. uniform) equivalence
between P and Q. We recall that checking uniform equiv-
alence is ΠP

2 -complete and deciding strong equivalence is
coNP-complete (Eiter, Fink, and Woltran 2007). We antic-
ipate that matching lower bounds can be obtained but leave
this for future work.

Theorem 19. Given A ⊆ U , P a program which is uni-
form A-simplifiable, and program Q, checking whether Q is
a uniform A-simplification of P is in ΠP

3 and ΠP
2 -hard.

Proof (Sketch). Making use of the characterising equality
(5), the key observation is that checking 〈X,Y 〉 ∈ UEA(P)
is contained in ΠP

2 which relies on the known result that UE-
model checking is in coNP (also note that testing 〈X,Y 〉 ∈
UEA(Q) amounts to UE-model checking). By that the com-
plementary problem is then shown to be in ΣP

3 by guessing
an SE-interpretation 〈X,Y 〉 and checking containment ei-
ther in UEA(P) or in UEA(Q) but not in both.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

621

By essentially the same arguments and the fact that SE-
model checking is easier we obtain our final result.
Theorem 20. Given A ⊆ U , P a program which is strong
A-simplifiable, and program Q, checking whether Q is a
strong A-simplification of P is in ΠP

2 and coNP-hard.

6 Discussion on Forgetting
We refer to (Gonçalves, Knorr, and Leite 2016a; Delgrande
2017) for recent surveys on forgetting and just shortly sum-
marize the notions needed here. Below are two of the prop-
erties considered in forgetting that are relevant for our pur-
poses, where F is a class of forgetting operators and C a
class of programs:
(SP) F satisfies Strong Persistence if, for each f ∈ F , P ∈
C and A ⊆ U , we have AS(f(P,A)∪R) = AS(P ∪R)|A
for all programs R ∈ C over A.

(UP) F satisfies Uniform Persistence if, for each f ∈ F ,
P ∈ C and A ⊆ U , we have AS(f(P,A) ∪R) = AS(P ∪
R)|A for all sets of facts R ∈ C over A.

f(P,A) denotes the result of forgetting about A from P .
Strong persistence and uniform persistence are also consid-
ered for a particular forgetting instance 〈P,A〉, for P ∈ C
and A ⊆ U , denoted by (SP)〈P,A〉 and (UP)〈P,A〉, respec-
tively (Gonçalves, Knorr, and Leite 2016b; Gonçalves et al.
2019). The following is then easy to observe, as strong (resp.
uniform) simplification notions consider R to be over U .
Proposition 21. Let f be a forgetting operator. For a pro-
gram P and a set A of atoms, if f(P,A) is a strong (resp.
uniform) A-simplification of P then f satisfies (SP)〈P,A〉
(resp. (UP)〈P,A〉).

Though the other direction might not always hold.
Example 16 (Ex. 9 (ctd)). From (Gonçalves, Knorr, and
Leite 2016b) we know that A = {p, q, a} is forgettable
from P while preserving (SP). The program below, f(P,A),
would be the result of forgetting A.

b← not not b.

Though for R = {p; q ← p}, we have AS (P ∪ R) =
{{p, q, a, b}}, while AS (f(P,A)) ∪ {}) = {{}, {b}}. Thus
f(P,A) is not a strong A-simplification of P .
Example 17 (Ex. 2 (ctd)). Applying the syntactic (UP)
achieving operator fu (Gonçalves et al. 2021) to program
P to forget {b} would give us fu(P, {b}) as

a← not not a.

Though for R = {b}, we have AS (P ∪{b}) = {{b}}, while
AS (fu(P, {b}) ∪ {}) = {{}, {a}}. Thus fu(P, {b}) is not
a uniform {b}-simplification of P .

(Gonçalves, Knorr, and Leite 2016b) introduces the fol-
lowing criterion Ω to characterize the instances for which an
operator achieving (SP)〈P,A〉 is impossible.
Definition 6. (Gonçalves, Knorr, and Leite 2016b) Let P be
a program over U and A ⊆ U . An instance 〈P,A〉 satisfies
criterion Ω if there exists Y ⊆ U \A such that the set of sets

RY
〈P,A〉 = {RY,A′

〈P,A〉 | A
′ ∈ RelY〈P,A〉}

is non-empty and has no least element, where

RY,A′

〈P,A〉 = {X \A | 〈X,Y ∪A′〉 ∈ SE (P)}

RelY〈P,A〉 = {A′ ⊆ A | 〈Y ∪A′, Y ∪A′〉 ∈ SE (P) and

@A′′ ⊂ A′ s.t. 〈Y ∪A′′, Y ∪A′〉 ∈ SE (P)}.
It is not possible to forget aboutA from P while satisfying

strong persistence exactly when 〈P,A〉 satisfies criterion Ω.
Thus from Proposition 21 we get the following.
Corollary 22. If P is a strong A-simplifiable, then 〈P,A〉
does not satisfy Ω.

As expected, Ω is not sufficient to determine strong A-
simplifiability, since the definitions of RY,A′

〈P,A〉 and RelY〈P,A〉
are too weak for checking the simplifiability conditions. Be-
low are observations on this for conditions ∆s2 and ∆s3 .
Proposition 23. The following holds.
• For any Y ⊆ U \ A,A′⊆A, 〈Y ∪ A′, Y ∪ A′〉 ∈SE (P)

implies {A′} ∈ RelY〈P,A〉 iff P satisfies ∆s2 for A.
• For any Y ⊆ U \ A,X ⊆ U , and A′ ⊆ A, {X \ A} ∈
RY,A′

〈P,A〉 implies 〈X ∪A′, Y ∪A′〉 ∈ SE (P) iff P satisfies
∆s3 for A.
It was shown that it is always possible to forget from

stratified programs while preserving (SP), thus also (UP)
(Gonçalves et al. 2021). Investigating the properties of strat-
ified programs for our notions remains as future work.

7 Conclusion
We introduced a novel equivalence notion to capture the ir-
relevancy of atoms so that they can be disregarded from the
original program and also the context program, and that the
simplified program can reason over the reduced vocabulary
while ensuring that the semantics of the original program
is preserved w.r.t. the modified signature. We provided
the necessary and sufficient conditions for a program to be
strong/uniform simplifiable for a set of atoms, and showed
that the simplifications can actually be achieved by project-
ing away those atoms from the program.

To continue this line of research, finding ways to detect
the atoms that can be projected away would be an interest-
ing next step. The simplifiability conditions hint on such
potential atoms, and we already observed some examples of
program structures where also a set of non-fact atoms can be
simplified. We are also planning to consider the relativized
case, which restricts the alphabet of the context programs.
This would give us the ability to capture (SP)/(UP). Fur-
thermore, considering a novel notion of relativization, that
restricts the alphabet of F in uniform simplification to a set
of sets, would bring us closer to applications, such as the
planning problem we mentioned in the introduction. For ex-
ample, for the program {a← b, c ; a← b, d ; b.} when the
facts are restricted to F ∈ {{c}, {d}}, it is expected that the
program can be simplified by projecting away c and d, since
it is not of relevant which of them occur in R. Lastly, in this
work, we relied on the key property of DLPs. Investigating
conditions needed for more general but also more restricted
classes of programs remains as future work.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

622

Acknowledgments
This work has been supported by the Austrian Science Fund
(FWF) projects T-1315, P32830, and by the Vienna Science
and Technology Fund (WWTF) under grant ICT19-065. We
thank the anonymous reviewers for their valuable feedback.

References
Arora, S., and Barak, B. 2009. Computational complexity:
a modern approach. Cambridge University Press.
Brass, S., and Dix, J. 1997. Characterizations of the disjunc-
tive stable semantics by partial evaluation. Journal of Logic
Programming 32(3):207–228.
Delgrande, J. P. 2017. A knowledge level account of forget-
ting. Journal of Artificial Intelligence Research 60:1165–
1213.
Eiter, T., and Fink, M. 2003. Uniform equivalence of
logic programs under the stable model semantics. In Logic
Programming, 19th International Conference, ICLP 2003,
Mumbai, India, December 9-13, 2003, Proceedings, vol-
ume 2916 of Lecture Notes in Computer Science, 224–238.
Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004. Sim-
plifying logic programs under uniform and strong equiva-
lence. In Lifschitz, V., and Niemelä, I., eds., Logic Pro-
gramming and Nonmonotonic Reasoning, 7th International
Conference, LPNMR 2004, Fort Lauderdale, FL, USA, Jan-
uary 6-8, 2004, Proceedings, volume 2923 of Lecture Notes
in Computer Science, 87–99. Springer.
Eiter, T.; Fink, M.; Pührer, J.; Tompits, H.; and Woltran, S.
2013. Model-based recasting in answer-set programming.
Journal of Applied Non-Classical Logics 23(1-2):75–104.
Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical char-
acterizations and complexity of equivalences in answer set
programming. ACM Transactions on Computational Logic
8(3):17.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution
correspondences in answer-set programming. In Kaelbling,
L. P., and Saffiotti, A., eds., IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial In-
telligence, Edinburgh, Scotland, UK, July 30 - August 5,
2005, 97–102. Professional Book Center.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2008. Advanced preprocessing for answer set solving. In
ECAI 2008 - 18th European Conference on Artificial Intel-
ligence, Patras, Greece, July 21-25, 2008, Proceedings, vol-
ume 178 of Frontiers in Artificial Intelligence and Applica-
tions, 15–19. IOS Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3):365–385.
Gonçalves, R.; Janhunen, T.; Knorr, M.; Leite, J.; and
Woltran, S. 2019. Forgetting in modular answer set pro-
gramming. In The Thirty-Third AAAI Conference on Ar-
tificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, 2843–2850. AAAI
Press.
Gonçalves, R.; Janhunen, T.; Knorr, M.; and Leite, J. 2021.
On syntactic forgetting under uniform equivalence. In Faber,
W.; Friedrich, G.; Gebser, M.; and Morak, M., eds., Logics
in Artificial Intelligence - 17th European Conference, JELIA
2021, Virtual Event, May 17-20, 2021, Proceedings, vol-
ume 12678 of Lecture Notes in Computer Science, 297–312.
Springer.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016a. The ultimate
guide to forgetting in answer set programming. In Principles
of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016, 135–144. AAAI
Press.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t
always forget what you want: On the limits of forgetting in
answer set programming. In ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 Septem-
ber 2016, The Hague, The Netherlands - Including Pres-
tigious Applications of Artificial Intelligence (PAIS 2016),
volume 285 of Frontiers in Artificial Intelligence and Appli-
cations, 957–965. IOS Press.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding partiality and disjunctions in sta-
ble model semantics. ACM Transactions on Computational
Logic 7(1):1–37.
Leite, J. 2017. A bird’s-eye view of forgetting in answer-set
programming. In Balduccini, M., and Janhunen, T., eds.,
Logic Programming and Nonmonotonic Reasoning - 14th
International Conference, LPNMR 2017, Espoo, Finland,
July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes
in Computer Science, 10–22. Springer.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2(4):526–541.
Maher, M. J. 1986. Equivalences of logic programs. In
Shapiro, E., ed., Third International Conference on Logic
Programming, 410–424. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Osorio, M.; Navarro, J. A.; and Arrazola, J. 2002. Equiv-
alence in answer set programming. In Pettorossi, A., ed.,
Logic Based Program Synthesis and Transformation, 57–75.
Springer Berlin Heidelberg.
Papadimitriou, C. H. 2003. Computational complexity. John
Wiley and Sons Ltd.
Pearce, D., and Valverde, A. 2004. Synonymous theories
in answer set programming and equilibrium logic. In Pro-
ceedings of the 16th Eureopean Conference on Artificial In-
telligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-
27, 2004, 388–392. IOS Press.
Pearce, D. 2004. Simplifying logic programs under an-
swer set semantics. In Demoen, B., and Lifschitz, V., eds.,
Logic Programming, 20th International Conference, ICLP

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

623

2004, Saint-Malo, France, September 6-10, 2004, Proceed-
ings, volume 3132 of Lecture Notes in Computer Science,
210–224. Springer.
Sagiv, Y. 1987. Optimizing datalog programs. In Proceed-
ings of the 6th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS ’87, 349–362.
New York, NY, USA: ACM.
Saribatur, Z. G., and Eiter, T. 2021. Omission-based ab-
straction for answer set programs. Theory and Practice of
Logic Programming 21(2):145–195.
Saribatur, Z. G.; Eiter, T.; and Schüller, P. 2021. Abstraction
for non-ground answer set programs. Artificial Intelligence
300:103563.
Turner, H. 2001. Strong equivalence for logic programs
and default theories (made easy). In Logic Programming
and Nonmotonic Reasoning: 6th International Conference,
LPNMR 2001 Vienna, Austria, September 17–19, 2001 Pro-
ceedings 6, 81–92. Springer.
Turner, H. 2003. Strong equivalence made easy: nested
expressions and weight constraints. Theory and Practice of
Logic Programming 3(4–5):609–622.
Woltran, S. 2004. Characterizations for relativized no-
tions of equivalence in answer set programming. In Alferes,
J. J., and Leite, J. A., eds., Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004, Proceedings, volume 3229 of Lec-
ture Notes in Computer Science, 161–173. Springer.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

624

	Introduction
	Background
	Simplifications and Simplifiability
	Uniform Simplification
	Strong Simplification
	Properties

	Projecting Away the Irrelevant
	Computational Complexity
	Discussion on Forgetting
	Conclusion

