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Abstract

We show that assumption-based argumentation frameworks,
based on contrapositive logics and partially-ordered prefer-
ence functions, provide a solid platform for argumentation-
based representation and reasoning. Two useful properties of
the preference functions are identified (selectivity and max-
lower-boundedness), and extended forms of attacks relations
are supported (∃- and ∀-attacks), which assure several desir-
able properties and a variety of reasoning modes.

1 Introduction
Argumentation is a useful approach for modeling defea-
sible reasoning with many fruitful applications (see, e.g.,
(Thimm and Garcı́a 2010; Kok et al. 2012; Young, Mod-
gil, and Rodrigues 2016)). Assumption-based argumenta-
tion (ABA, (Bondarenko et al. 1997)) is a central approach
in argumentation-based reasoning (Toni 2014; Čyras et al.
2018). In (Heyninck and Arieli 2020; Arieli and Heyninck
2021) it is shown that simple contrapositive ABA frame-
works, a class of ABA frameworks (ABFs, for short) in-
duced by logics that preserve the rule of contraposition and
whose contrary operator is represented by a negation opera-
tor, are particularly suitable for reasoning in the presence of
conflicting arguments and counterarguments.

So far, simple contrapositive ABFs were assumed to be
either non-prioritized (Heyninck and Arieli 2020), or based
on linear preference orders among the assumptions (Arieli
and Heyninck 2021). However, in many settings, assuming
a total order greatly limits the realistic modelling capabilities
of a formal system, e.g., when agents do not know the actual
preferences of each assumption or since different sources of
information have different preferences over the assumptions.
This is illustrated in the following example:
Example 1. Suppose that one wants to compare reviews of
hotels in a certain city, not only by their final scores, but by
taking into account several considerations, such as location,
price, quality of service, etc. In this case, tuples of values are
compared (for example, one hotel may be preferred over the
other if more than half of its components are superior in the
respective tuples), and hence the comparison is not strictly
linear. We shall return to this in Examples 4, 5, and 9 below.

The present work takes simple contrapositive ABFs one
step forwards and shows that the incorporation of partial

orders for making preferences among arguments consider-
ably extends the expressive power of such frameworks while
preserving much of their properties shown in earlier works.
Thus, for instance, we introduce several criteria for compar-
ing sets of arguments, the elements of which are not nec-
essarily mutually comparable with respect to the preference
relations, and consider a new property of the preference set-
ting (‘selecting’ setting, which requires that the aggregated
value assigned to a set of values is one of these values), un-
der which the set of the stable or preferred extensions of
the ABF coincide with the preferred maximally consistent
subsets of the set of assumptions. Together with another
property (‘max-lower-boundedness’, which requires that the
aggregated value assigned to a set of values is bounded by
these values), further rationality postulates are guaranteed in
this setting.

It is important to note that partially-ordered preference re-
lations in ABFs have already been considered in the litera-
ture, most notably in ABA+ systems (Čyras and Toni 2016;
Čyras 2017). However, the latter is adequate only for the
weakest link principle for comparing arguments (taking into
consideration the least preferred assumptions of an argu-
ment), while we do not confine ourselves to a particular
preference setting. Moreover, as the deducibility relation is
closed under contraposition, we are able to assure some ra-
tionality postulates (like tolerance, see Section 5.2), which
are not necessarily satisfied in other prioritized ABFs (such
as ABA+, see a discussion in (Čyras 2017)). Finally, the in-
corporation of partial orders allows us to consider new forms
of attacks relations (∃-attacks and ∀-attacks), which are not
supported by strict preferences (Arieli and Heyninck 2021).
This enables some new types of reasoning which were not
available previously.

2 Preliminaries
This section contains some background material. Further
details can be found in (Heyninck and Arieli 2020; Arieli
and Heyninck 2021).

In what follows we shall denote by L an arbitrary propo-
sitional language. Atomic formulas in L are denoted by
p, q, r, compound formulas are denoted by ψ, ϕ, σ, and sets
of formulas in L are denoted by Γ, ∆, Θ (possibly primed
or indexed). The powerset of L is denoted by ℘(L).
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A logic is a pair L = ⟨L,⊢⟩, where L is a propositional
language containing at least a negation ¬, conjunction ∧,
disjunction ∨, implication ⊃, and the falsity constant F, with
their usual definitions, and where ⊢ is a consequence relation
for L, that is, a binary relation between sets of formulas and
formulas in L, satisfying the following conditions: (i) if ψ ∈
Γ then Γ ⊢ ψ (Reflexivity), (ii) if Γ ⊢ ψ and Γ ⊆ Γ′ then
Γ′ ⊢ ψ (Monotonicity), and (iii) if Γ ⊢ ψ and Γ′, ψ ⊢ ϕ then
Γ,Γ′ ⊢ ϕ (Transitivity). We also assume, as usual, that the
logic is closed under substitutions and it is nontrivial (i.e.,
there are Γ ̸= ∅ and ψ such that Γ ̸⊢ ψ).

We say that ψ is ⊢-tautological if ⊢ ψ, and that Γ is ⊢-
consistent if Γ ̸⊢ F. When Γ is finite we denote by

∧
Γ

(respectively, by
∨
Γ), the conjunction (respectively, the dis-

junction) of all the formulas in Γ.
The following family of assumption-based argumentation

frameworks (Bondarenko et al. 1997) is shown in (Heyninck
and Arieli 2020) to be a useful setting for argumentative rea-
soning.

Definition 1. An assumption-based framework (ABF) is a
tuple ABF = ⟨L,Γ, Ab,∼⟩, where:
• L = ⟨L,⊢⟩ is a (propositional) logic,
• Γ (the strict assumptions) and Ab (the candidate or de-
feasible assumptions) are distinct sets of L-formulas, where
the former is assumed to be ⊢-consistent and the latter is as-
sumed to be nonempty,
• ∼ : Ab → ℘(L) is a contrariness operator, assigning a fi-
nite set of L-formulas to every defeasible assumption in Ab,
such that for every consistent and non-tautological formula
ψ ∈ Ab \ {F} it holds that ψ ̸⊢

∧
∼ψ and

∧
∼ψ ̸⊢ ψ.

A simple contrapositive ABF is an assumption-based
framework ⟨L,Γ, Ab,∼⟩ such that:
• L is explosive: for every L-formula ψ, the set {ψ,¬ψ} is
⊢-inconsistent (thus ψ,¬ψ ⊢ φ for every φ),
• L is contrapositive: it holds that ⊢ ¬F, and for every
nonempty Γ and ψ, we have that Γ ⊢ ¬ψ iff either ψ = F or
for every φ ∈ Γ it holds that Γ \ {φ}, ψ ⊢ ¬φ,1
• for every formula ψ it holds that ∼ψ = {¬ψ}.

In (Arieli and Heyninck 2021), simple contrapositive
ABFs are augmented with preferences among the defeasi-
ble assumptions. Intuitively, smaller values indicate higher
preferences.

Definition 2. A linearly ordered prioritized assumption-
based framework (a linear pABF, for short) is a pair pABF =
⟨ABF,P⟩, where ABF is a simple contrapositive ABF and
P = ⟨g, f⟩ is a linear priority (or preference) setting, where:
• g : Ab→ N is a total function on Ab, called linear alloca-
tion function. We denote g(∆) = {g(δ) | δ ∈ ∆}.
• f is a numeric aggregation function, i.e.: a total function
that maps multisets of non-negative natural numbers into a
non-negative real number, such that ∀x ∈ N f({x}) = x.
We also assume that an aggregation function is ⊆-coherent
in its values, namely, it is either non-decreasing with respect
to the subset relation (f(X ′) ≤ f(X) wheneverX ′ ⊆ X) or

1Classical logic, intuitionistic logic, and standard modal logics
are all explosive and contrapositive.

non-increasing with respect to the subset relation (f(X ′) ≥
f(X) whenever X ′ ⊆ X).

Intuitively, g(ϕ) represents the strength of the assumption
ϕ, where lower numbers indicate higher strengths. Aggrega-
tion functions then give a method to assign a single strength
value to a set of assumptions on the basis of the strengths of
the composite members.

Attacks in pABFs are defined by preferred counter defea-
sible information:
Definition 3. Let pABF = ⟨ABF,P⟩ be a linear pABF with
ABF = ⟨L,Γ, Ab,∼⟩, P = ⟨g, f⟩, ∆,Θ ⊆ Ab, andψ ∈ Ab.
•∆ attacks ψ (w.r.t. Γ) iff Γ,∆ ⊢ ¬ψ. We say that ∆ attacks
Θ if ∆ attacks some ψ ∈ Θ.
• If ∆ attacks ψ, the P-attacking value of ∆ on ψ is:

valf,g(∆, ψ) = min{f(g(∆′)) | ∆′ is a ⊆-minimal
subset of ∆ that attacks ψ}.

•∆ linearly p-attacks ψ iff ∆ attacks ψ and valf,g(∆, ψ) ≤
f(g(ψ)). We say that ∆ linearly p-attacks Θ if ∆ linearly
p-attacks some ψ ∈ Θ.

Thus, a set of assumptions ∆ linearly p-attacks an as-
sumption ψ if ∆ implies the contrary of ψ and the aggre-
gated value valf,g(∆, ψ) is at least as strong as the value of
the attacked assumption f(g(ψ)).
Example 2. Let L = CL (classical logic), Γ = ∅, Ab =
{p,¬p, q}, and ∼ψ = {¬ψ} for every ψ ∈ Ab. An attack
diagram for this ABF is shown in Figure 1a.2 Note that since
in classical logic inconsistent sets of premises imply any
conclusion, the classically inconsistent set {p,¬p, q} attacks
all the other sets in the diagram. (For instance, {p,¬p, q} at-
tacks {q}, since p,¬p, q ⊢ ¬q). 3

{}{q}{p,¬p, q}
{p}

{¬p}

{p, q}

{¬p, q}

(a) All the attacks (no preferences)

{}{q}{p,¬p, q}
{p}

{¬p}

{p, q}

{¬p, q}

(b) Only the linear p-attacks

Figure 1: Diagrams for Example 2

Consider now the pABF that is obtained from this ABF,
together with the allocation function g(p) = 1, g(¬p) = 2,

2By Note 1 below, we include in the diagram only closed sets
(i.e., only subsets ∆ ⊆ Ab such that ∆ = Ab ∩ Cn⊢(Γ ∪∆) (see
Definition 4). Thus, the set {p,¬p} is omitted from the diagram.

3Notice furthermore that the emptyset does not attack {p,¬p},
as ∅ ̸⊢ p or ∅ ̸⊢ ¬p: the attacks used in assumption-based ar-
gumentation are pointed in the sense that the contrary of a single
assumption needs to be derived for an attack to take place.
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g(q) = 3, and the aggregation f = max. The diagram of
the linear p-attack of the pABF is shown in Figure 1b.

The last definition gives rise to the following adaptation
to pABFs of the usual Dung-style semantics (Dung 1995)
for abstract argumentation frameworks.

Definition 4. Let pABF = ⟨ABF,P⟩ with ABF =
⟨L,Γ, Ab,∼⟩, and let ∆ ⊆ Ab. We denote Cn⊢(Θ) = {ψ |
Θ ⊢ ψ}. Then:
• ∆ is closed iff ∆ = Ab ∩ Cn⊢(Γ ∪∆).
• ∆ is conflict-free iff there is no ∆′ ⊆ ∆ that linearly p-
attacks some ψ ∈ ∆.
• ∆ is naive iff it is closed and maximally conflict-free.
•∆ defends ∆′ ⊆ Ab iff for every closed set Θ that linearly
p-attacks ∆′ there is ∆′′ ⊆ ∆ that linearly p-attacks Θ.
• ∆ is admissible iff it is closed, conflict-free, and defends
every ∆′ ⊆ ∆.
• ∆ is complete iff it is admissible and contains every
∆′ ⊆ Ab that it defends.
• ∆ is well-founded iff ∆ =

⋂
{Θ ⊆ Ab | Θ is complete}.

• ∆ is grounded iff it is ⊆-minimally complete.
• ∆ is preferred iff it is ⊆-maximally admissible.
• ∆ is stable iff it is closed, conflict-free, and linearly p-
attacks all ψ ∈ Ab \∆.

Note 1. As shown in (Heyninck and Arieli 2020; Arieli and
Heyninck 2021), for (linearly ordered) simple contrapositive
ABFs the closure requirement in Definition 4 is redundant.
We shall therefore disregard it in what follows (see also Sec-
tion 4.2).

The sets of the complete, naive, grounded, well-founded,
preferred, and stable extensions of pABF are respec-
tively denoted by Cmp(pABF), Naive(pABF), Grd(pABF),
WF(pABF), Prf(pABF) and Stb(pABF). We denote by
Sem(pABF) any of these sets.

The entailment relations that are induced from a pABF
(with respect to a certain semantics) are defined as follows:

Definition 5. For pABF = ⟨ABF,P⟩ and Sem ∈ {Naive,
Cmp,WF,Grd,Prf, Stb}, we denote:

• pABF |∼ ∩
Semψ iff Γ,∆ ⊢ ψ for every ∆ ∈ Sem(pABF).

• pABF |∼ ∪
Semψ iff Γ,∆ ⊢ ψ for some ∆ ∈ Sem(pABF).

Example 3. Consider again the ABF in Example 2, where
L = CL, Γ = ∅ and Ab = {p,¬p, q} (see also Fig-
ure 1a). Here, Naive(ABF) = Prf(ABF) = Stb(ABF) =
{{p, q}, {¬p, q}},4 thus ABF |∼ ∗

Sem q for every ∗ ∈ {∪,∩}
and every Sem ∈ {Naive,Prf, Stb}. Also, Grd(ABF) =
WF(ABF) = {∅}, since there are no unattacked arguments.
Thus, when all the assumptions have the same priority, we
have that for ∗ ∈ {∪,∩} and Sem ∈ {Grd,WF} it holds that
ABF |∼ ∗

Sem ψ only if ψ is a classical tautology.
When preferences are incorporated as in Example 2, we

have that Cmp(pABF) = Grd(pABF) = WF(pABF) =
Prf(pABF) = Stb(pABF) = {{p, q}}. It follows that
pABF |∼ ∗

Semp and pABF |∼ ∗
Semq for every semantics Sem ∈

{Cmp,WF,Grd,Prf, Stb} and every ∗ ∈ {∪,∩}. Note that
in case that the preference value of q is smaller than those

4{p} is not even complete, as it defends q, which is not in {p}.

of p and ¬p, the set {p,¬p, q} does not attack the sets
{q} and {p, q}, in which case the set {q} also belongs to
Cmp(pABF). In this case Grd(pABF) = WF(pABF) =
{{q}}, while Prf(pABF) = Stb(pABF) = {{p, q}}.

3 Non-Linear Preferences
We now generalize the setting in the previous section to
preferences that do not necessarily have a strict (linear) or-
der. This considerably extends the expressive power of the
ABFs, as demonstrated next.
Example 4. The following scenario resembles the motivat-
ing illustration in the introduction (Example 1). A tourist
considers two restaurants r1, r2 and a coffeehouse c, where
one restaurant at the most may be visited. This may be rep-
resented by an ABF (based, e.g., on CL) with a strict as-
sumption ¬(r1 ∧ r2) and the set {r1, r2, c} of defeasible
assumptions.

In a linear comparison, only one numerical value can be
attributed to each dining place, while in a comparison ac-
cording to a partial order ratio one can refer to a vector
of values taking into considerations several aspects, e.g.,
⟨q, p, s⟩, representing food quality, price, and service. Sup-
pose, for instance, that a website offers evaluations (on a de-
scending scale of 1 to 5, i.e., 1 is the highest value) of these
places along these three criteria. Suppose further that r1 is
evaluated by ⟨2, 3, 3⟩, the scores of r2 are ⟨4, 2, 2⟩, and the
scores of c are ⟨3, 3, 3⟩. One way to compare these vectors
is by deciding that one place is preferred (≤-smaller) over
the other iff it receives equal or higher scores in all aspects.
Then r1 is preferred over c, while r2 is ≤-incomparable with
both r1 and c.

For supporting non-linear preferences, we generalize the
definitions of Section 2:

• linear allocation functions are traded by allocation func-
tions whose values need not be linearly ordered,
• numeric aggregation functions are replaced by aggregation
functions that need not be numeric: their ranges are sets of
(partially ordered) values, rather than numbers,
• a quantitative evaluation indicator † ∈ {∃, ∀} indicates
how the aggregated sets should be collectively evaluated.
Accordingly, we trade linear p-attacks by †-p-attacks.

In the following definition, as in the linear case, v1 < v2 is
intuitively understood as a preference of v1 over v2. Thus,
v1 ≤ v2 means that v1 is ‘at least as preferred as’ v2.
Definition 6 (Definition 2 extended). Let P = ⟨V,≤⟩ be a
partial order.
• v1 ∈ V is (strictly) ∃-P-stronger than V2 ⊆ V iff there is
some v2 ∈ V2 such that v1 < v2.
• v1 ∈ V is (strictly) ∀-P-stronger than V2 ⊆ V iff for all
v2 ∈ V2 it holds that v1 < v2.
• A P-allocation function on Ab (an allocation function,
when P is known or arbitrary) is a total function g : Ab→ V.
• An aggregation function on V is a total function f :
℘(V) → ℘(V) \ ∅, where f(S) = S if S is a singleton.5
• A preference setting forAb is a quadruple P = ⟨P, g, f, †⟩,

5We shall usually identify singletons with their elements.
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where g is a P-allocation function onAb, f is an aggregation
function on {g(∆) | ∆ ⊆ Ab}, and † ∈ {∃, ∀}.

Thus, there are two ways of comparing sets of values with
a single value: by ∃-P-comparison it suffices to find a single
value in V2 weaker than v1, whereas the ∀-P-comparison
requires that every value in V2 is weaker than v1.
Example 5. In Example 4, g(r1) = ⟨4, 3, 3⟩, g(r2) =
⟨2, 4, 4⟩, and g(c) = ⟨3, 3, 3⟩ form a partial order in which
g(r1) < g(c) and the other values are incomparable. Thus,
g(r1) is ∃-stronger, but not ∀-stronger, than {g(r2), g(c)}.
Aggregation functions in this case (or for any complete
lattice) may be, e.g., the identity, the summation Σx∈S x
(whenever it is defined), the least-upper-bound lub(S), the
<-maximum max(S) = {x ∈ S | ¬∃y ∈ S such that y >
x}, the greatest lower bound glb(S), and the <-minimum
min(S) = {x ∈ S | ¬∃y ∈ S such that y < x}.
Note 2. Let P = ⟨V,≤⟩ be a partial order.
a) Clearly, for every v ∈ V and V ⊆ V, if v is ∀-P-stronger
than V , then v is ∃-P-stronger than V , but not necessarily
vice-versa (as Example 5 shows).
b) For any † ∈ {∃, ∀}, the relation “strictly †-P-stronger”
preserves the relations < on singletons: v1 < v2 iff v1 is
strictly †-P-stronger than {v2}.
c) When P is linear, the claim that v is strictly ∃-P-stronger
than V means that v < max(V ) and the claim that v is
strictly ∀-P-stronger than V means that v < min(V ).

Next, we consider some properties of preference settings,
which will later be useful in showing rationality postulates
and properties of the resulting entailment relations. We start
with reversibility.
Definition 7. Let P = ⟨P, g, f, †⟩ be a preference setting
for Ab, and ∅ ̸= ∆ ⊆ Ab, ϕ ∈ Ab.
• ϕ ≺P ∆ if f(g(ϕ)) is strictly †-P-stronger than f(g(∆)).
• P is reversible, if when ϕ ≺P ∆, there is a δ ∈ ∆ such
that δ ̸≺P ∆ ∪ {ϕ} \ {δ}.

Thus, P is reversible if, whenever ϕ is strictly †-P-
stronger than ∆, we can substitute ϕ for some δ ∈ ∆ and
end up with a set of assumptions ∆ ∪ {ϕ} \ {δ} that is not
strictly †-P-weaker than δ. It is not difficult to show that if
P = ⟨P, g, f, †⟩ is a preference setting in which P is linear,
the range of f is restricted to singletons (that is, f is of the
form ℘(V) → V, similar to Definition 2), and † ∈ {∃, ∀},
then P is reversible according to (Arieli and Heyninck 2021,
Definition 10) iff it is reversible (according to Definition 7).

We will later see that reversibility is an important con-
dition to ensure many basic rationality postulates, such as
consistency (see Proposition 1).
Example 6. As shown in (Heyninck and Arieli 2020), for
every allocation function g, the linear preference settings
⟨N, g,min⟩ and ⟨N, g,max⟩ are reversible.6 Thus, by Def-
inition 7, for every † ∈ {∃, ∀}, the preference settings
⟨N, g,min, †⟩ and ⟨N, g,max, †⟩ are reversible as well. It
is not difficult to check that this carries over to every finite
partial order P (so every set has a minimum and a maxi-
mum). For similar reasons, for every complete lattice P,

6Here N denotes the linear order over the natural numbers.

allocation function g, and † ∈ {∃, ∀}, the preference set-
tings ⟨P, g, glb, †⟩ and ⟨P, g, lub, †⟩ are reversible. Clearly,
the summation function is not reversible.

The next property ensures that f(g(∆)) is a selection of
values in {f(g(δ)) | δ ∈ ∆}, i.e., f(g(∆)) does not intro-
duce ‘new’ values other than those that are assigned to the
elements in ∆.
Definition 8. A preference setting P = ⟨P, g, f, †⟩ forAb is
called selecting, if for every nonempty set ∆ ⊆ Ab it holds
that f(g(∆)) ⊆

⋃
δ∈∆ f(g(δ)).

Example 7. ⟨P, g,min, †⟩ and ⟨P, g,max, †⟩ are selecting
for every g and † ∈ {∃, ∀}.
Lemma 1. A selecting preference setting is also reversible.

Definitions 1 and 2 are now generalized as follows:
Definition 9. A prioritized assumption-based framework
(prioritized ABF, or pABF, for short) is a pair pABF =
⟨ABF,P⟩, where ABF = ⟨L,Γ, Ab,¬⟩ is a simple contra-
positive assumption-based argumentation framework and P
is a preference setting for Ab. We shall say that pABF =
⟨ABF,P⟩ is reversible or selecting, if so is P .
Definition 10 (Definition 3 extended). Let pABF =
⟨ABF,P⟩ be a prioritized ABF with P = ⟨P, g, f, †⟩,
∆,Θ ⊆ Ab, and ψ ∈ Ab.
• ∆ attacks ψ iff Γ,∆ ⊢ ¬ψ. We say that ∆ attacks Θ if ∆
attacks some ψ ∈ Θ.
• Suppose that ∆ attacks ψ . The P-attacking values of ∆
on ψ are the elements of the set

valf,g(∆, ψ) = {f(g(∆′)) | ∆′ is a ⊆-minimal subset
of ∆ that attacks ψ}.

• ∆ †-p-attacks ψ iff ∆ attacks ψ and there is a set V ∈
valf,g(∆, ψ) s.t. f(g(ψ)) is not strictly †-P-stronger than V .
We say that ∆ †-p-attacks Θ if ∆ †-p-attacks some ψ ∈ Θ.

Thus, a set ∆ †-p-attacks a formula ψ if it has a subset
∆′ that attacks ψ and ψ ̸≺P ∆′. The intuition behind †-p-
attacks is that an attack by ∆ on the assumption ψ is success-
ful if the attacking ∆ is not strictly weaker than the attacked
assumption ψ according to the preference setting P .7

Lemma 2. If ∆ ∃-p-attacks ψ then ∆ ∀-p-attacks ψ.

Example 8. Consider again Example 2, this time with V =
{a, b, c, d} in which a, b, c are <-incomparable and x < d
for every x = a, b, c, and where g(p) = a, g(¬p) = b and
g(q) = c. Now, ∆ = {p,¬p, q} attacks q, but:
1) If f(S) = lub(S), so valf,g(∆, q) = {f(g({p,¬p}))} =
{{d}}, and since d > c = f(g(q)) we have that ∆ does not
† p-attack q for any † ∈ {∀, ∃}.
2) If f(S) = min(S), so valf,g(∆, q) = {f(g({p,¬p}))} =
{{a, b}}, and c = f(g(q)) is not <-smaller than a or b.
Thus, ∆ †-p-attacks q for every † ∈ {∀, ∃}.
3) Suppose that a < c < d, and the rest is the same as in

7Notice that as attacks take place from sets of assumptions to
single assumptions, it is sufficient to have a way to compare a set
of assumptions with a single assumption (as in Definition 6), and it
is not necessary to compare two sets of assumptions.
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Item 2. Then still valf,g(∆, q) = {{a, b}}, so this time
f(g(q)) is not strictly ∀-P-stronger than valf,g(∆, q), but
it is strictly ∃-P-stronger than valf,g(∆, q). Thus, ∆ ∀-p-
attacks q but it does not ∃-p-attacks q.8

Note 3. Let † ∈ {∃, ∀}. Then ∆ †-p-attacks ψ iff the fol-
lowing set of †-p-attacking subsets of ∆ on ψ, is not empty:

†-val−1
f,g(∆, ψ) = {∆′ | ∆′ is a ⊆-minimal subset

of ∆ that attacks ψ, and ψ ̸≺P ∆′}.

Note 4. When P = N and f is a numeric aggregation func-
tion, Definitions 6 and 10 are respectively equivalent to Def-
initions 2 and 3 (since f(g(∆)) ≤ f(g(ϕ)) iff f(g(∆)) ̸>
f(g(ϕ)) for any total order ≤), thus our setting indeed gen-
eralizes the linear setting.
Lemma 3. If ∆ †-p-attacks Θ, so does any superset of ∆.

All the other definitions (including those of the semantics
and the induced entailment relations) are similar to those of
linear preferences (i.e., as in the previous section) where †-
p-attacks replace linear p-attacks.
Example 9. Let’s reconsider the prioritized ABF from Ex-
amples 4 and 5 with the setting P = ⟨P, g, f, †⟩, where f
is either min of max and † ∈ {∃, ∀}. The corresponding
attack diagram is presented in Figure 2.9

{r1, c}{r2, c}

{r1} {r2}

{c}

Figure 2: An attack diagram for Example 9

It follows that according to the grounded or the well-
founded extension, which is {c} in this case, the tourist will
visit only the coffeehouse, while according to the preferred
or the stable extensions (which are {r1, c} and {r2, c}) the
tourist will visit also (exactly) one of the restaurants. The
scores do not dictate which restaurant should be chosen, so
further considerations may be taken in this case.

To show the modularity of the framework, we conclude
with a demonstration of reasoning with a pABF that is based
on epistemic logic. Clearly, different epistemic logics can be
incorporated for different settings.
Example 10. A layman l, believing ¬p, consults with two
experts: one (e1) thinks that p∧ q while the other (e2) thinks
p ∧ ¬q. The superiority of the experts’ opinions over that of
the laymen is represented by a partial order P = ⟨V,≤⟩ in
which V = {e1, e2, l}, where e1 < l and e2 < l. We want to
realize the common belief (preceded by the modal operator
B) on the basis of this scenario. For this, we incorporate
modal operators Bx for expressing the belief of the agents
x ∈ {e1, e2, l}, and introduce strict premises by the scheme

8This also shows that the converse of Lemma 2 does not hold.
9Notice, e.g., that {r2, c} †-attacks r1 although g(r1) < g(c),

since valf,g({r2, c}, r1) = {f(g({r2})} = {⟨4, 2, 2⟩} and
g(r1) ̸< ⟨4, 2, 2⟩.

Bxψ ⊃ Bψ for each such x. This may be represented by a
KD-based10 framework pABF = ⟨ABF,P⟩, in which:

• ABF = ⟨KD,Γ, Ab,¬⟩, Γ = {Bxψ ⊃ Bψ | x ∈
{e1, e2, l}} Ab = {Be1(p ∧ q), Be2(p ∧ ¬q), Bl(¬p)},

• P = ⟨P, g, f, †⟩, g(Be1(p∧q)) = e1, g(Be2(p∧q)) = e2,
gl(Bl¬p) = l, f ∈ {min,max} and † ∈ {∀, ∃}.

We show, for instance, that in this setting Be2(p ∧ ¬q)
attacks Bl(¬p): Suppose that Be2(p ∧ ¬q). By Axioms K
we have Be2(p), and by the strict assumptions we get B(p).
Now, by Axiom D we infer ¬B(¬p), and since ¬B(¬p) ⊃
¬Bl(¬p) (contraposition of one of the strict assumptions),
Modus Ponens gives ¬Bl(¬p), as required.

The †-p-attack diagram is then represented in Figure 3.

{Be1(p ∧ q)}{Be2(p ∧ ¬q)}

{Bl(¬p)}

Figure 3: An attack diagram for Example 10

This results in the following preferred (and stable) exten-
sions: {Be1(p ∧ q)} and {Be2(p ∧ ¬q)}. The well-founded
and grounded extension, on the other hand, is the emptyset
in this case. We thus conclude that, e.g., Bp is derived from
both preferred/stable extensions (accepting the consensual
part of the conflicting experts’ opinions), but it is not derived
from the grounded extension.11

4 Properties of Prioritized ABFs
4.1 Consistency of Extensions
Proposition 1. If pABF = ⟨ABF,P⟩ is reversible, it sat-
isfies the following direct consistency postulate (Caminada
and Amgoud 2007): There is no conflict-free set ∆ ⊆ Ab
such that Γ,∆ ⊢ ¬ψ for some ψ ∈ ∆.

Outline of proof. The proof is based on the next lemma:

Lemma 4. Let pABF = ⟨ABF,P⟩ be a reversible pABF
with ABF = ⟨L,Γ, Ab,¬⟩ and P = ⟨P, g, f, †⟩, and let
∆ ⊆ Ab be a conflict-free set of assumptions. If ∆ attacks
ψ then either ∆ †-p-attacks ψ or there is δ ∈ ∆ such that
∆ \ {δ} ∪ {ψ} †-p-attacks δ.

Now, suppose for a contradiction that Γ,∆ ⊢ ¬ψ for
some conflict free ∆ ⊆ Ab and ψ ∈ ∆. By Lemma 4, either
∆ †-p-attacks ψ or there is a δ ∈ ∆ such that ∆ \ {δ}∪ {ψ}
†-p-attacks δ. Since ∆ \ {δ} ∪ {ψ} ⊂ ∆, in both cases ∆
cannot be conflict-free.

Consistency now follows from Proposition 1:

10For KD and other modal logics, see, e.g., (Chellas 1980).
11Interestingly, if the assumptions were Be1p, Be1¬q, Be2p and

Be2q, the grounded extension would be different: {Be1¬q,Be2q},
but still it wouldn’t allow to infer Bp.
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Corollary 1. Let pABF = ⟨ABF,P⟩ be a reversible pABF
with ABF = ⟨L,Γ, Ab,¬⟩ and P = ⟨P, g, f, †⟩. If ∆ ⊆ Ab
is conflict-free, then Γ ∪∆ is ⊢-consistent.

Proof. If Γ∪∆ is not ⊢-consistent, then in particular Γ,∆ ⊢
¬ψ for every ψ ∈ ∆, contradicting Proposition 1.

In (Arieli and Heyninck 2021) is it shown that the re-
versibility requirement in Proposition 1 is indeed necessary,
even for numeric functions and linear preferences.

4.2 Closure of Extensions
Next, we consider the closure requirement from extensions
(see Definition 4). First, we note that as shown e.g. in (Arieli
and Heyninck 2021, Example 13), this requirement is in
general not redundant in prioritized ABFs. However, as
we show below, under the assumption that the aggregation
function is reversible, the closure requirement may be lifted.
This result generalizes similar results shown in (Heyninck
and Arieli 2020) for simple contrapositive ABFs without
priorities and in (Arieli and Heyninck 2021) for linearly-
ordered prioritized ABFs (see also Note 1).
Proposition 2. Let pABF = ⟨ABF,P⟩ be a reversible prior-
itized ABF. Then the closure requirement is redundant in the
definition of stable extensions (Definition 4): Any conflict-
free ∆ ⊆ Ab that †-p-attacks every A ∈ Ab \∆ is closed.

Proof. Suppose that ∆ †-p-attacks every ψ ∈ Ab \ ∆, yet
Γ,∆ ⊢ ϕ, where ϕ ∈ Ab\∆. Since ∆ †-p-attacks ϕ, we have
Γ,∆ ⊢ ¬ϕ. Thus, Γ,∆ ⊢ F, contradicting Corollary 1.

For a similar result concerning preferred extensions, we
need the following lemma:
Lemma 5. Let pABF = ⟨ABF,P⟩ be a selecting pABF with
P = ⟨P, g, f, †⟩, and let ∆ be a conflict-free set in Ab. Then
∆ is maximally admissible iff it †-p-attacks any ψ ∈ Ab\∆.
Proposition 3. Let pABF = ⟨ABF,P⟩ be a selecting pri-
oritized ABF. Then the closure requirement is redundant in
the definition of preferred extensions (Definition 4): Any
∆ ⊆ Ab that is conflict free and maximally admissible is
closed.

Proof. Let ∆ ⊆ Ab be conflict free and maximally admis-
sible. By Lemma 5, ∆ attacks every A ∈ Ab \ ∆. By
Proposition 2 (which holds in our case by Lemma 1), this
means that ∆ is closed.

4.3 Existence of Extensions and Their Relations
We now examine the existence of the extensions in Defini-
tion 4, and check their relations.

Grounded and well-founded extensions: By its defini-
tion, the well-founded extension is always unique. Yet, as
shown in (Arieli and Heyninck 2021), already in the lin-
ear case there may be several grounded extensions for a
prioritized ABF. It follows, then, that in prioritized ABFs
well-founded semantics and grounded semantics do not al-
ways coincide. As the next result shows, the (unique) well-
founded extension of a prioritized ABF equals to the inter-
section of all the grounded extensions:

Proposition 4. Let pABF be a prioritized ABF. Then
WF(pABF) =

⋂
Grd(pABF).

By Proposition 4 we thus have the following result:
Corollary 2. The grounded and the well-founded semantics
of pABF coincide iff pABF has a unique grounded extension.

Naive, stable, and preferred extensions: In (Heyninck
and Arieli 2020) it is shown that in non-prioritized sim-
ple contrapositive ABFs, the set of naive, preferred and
stable extensions coincide. However, as shown in (Arieli
and Heyninck 2021), when priorities are involved, this is
no longer the case and the three types of semantics may
yield different sets for the same pABF. Yet, it is also
shown in (Arieli and Heyninck 2021) that preferred and sta-
ble extensions still coincide for what is called there ‘max-
bounded’ linearly-ordered prioritized ABFs. We now recap-
ture this result for the more general case where priorities
may not be linearly ordered.
Proposition 5. The stable and the preferred extensions of a
selecting pABF coincide.

Proof. By Lemma 5, using Propositions 2, 3 and Lemma 1.

4.4 Representation of Extensions by Preferred
Maximally Consistent Sets

Next, we represent extensions of pABFs by a generalization
of the notion of preferred subtheories (Brewka 1989).
Definition 11. Let pABF = ⟨ABF,P⟩ be a prioritized ABF,
and let ∆1 ̸= ∆2 ⊆ Ab. We denote by ∆1 ≺P ∆2 that
there is δ1 ∈ ∆1 \ ∆2 such that for every δ2 ∈ ∆2 \ ∆1,
g(δ1) < g(δ2).
Definition 12. Let pABF = ⟨ABF,P⟩ be a prioritized ABF,
where ABF = ⟨L,Γ, Ab,¬⟩ is a simple contrapositive ABF
based on a logic L = ⟨L,⊢⟩.
• ∆ ⊆ Ab is a maximally consistent set (MCS) in ABF, if
Γ ∪ ∆ is ⊢-consistent, and Γ ∪ ∆′ is not L-consistent for
every ∆ ⊊ ∆′ ⊆ Ab. The set of the maximally consistent
sets in ABF is denoted MCS(ABF).
• ∆ ⊆ Ab is a preferred (or prioritized) maximally consis-
tent set (pMCS) in pABF, if ∆ ∈ MCS(ABF) and there
is no Θ ∈ MCS(ABF) such that Θ ≺P ∆. The set of
the preferred maximally consistent sets in pABF is denoted
MCS≺P (ABF), or just MCSP(ABF).
Definition 13. A setting P = ⟨P, g, f, †⟩ is max-lower-
bounded, iff for every ∆ ̸= ∅ one of the following holds: 12

if † = ∃:
∀x ∈ max{f(g(δ)) | δ ∈ ∆} ∃y ∈ f(g(∆)) s.t. x ≤ y,
if † = ∀:
∀x ∈ max{f(g(δ)) | δ ∈ ∆} x ≤ y for every y ∈ f(g(∆)).
Proposition 6. Let pABF = ⟨ABF,P⟩ be a prioritized ABF
where P is max lower-bounded and selecting. Then ∆ is a
stable extension of pABF iff ∆ ∈ MCSP(ABF).

12Both cases in the definition are a generalization to the non-
linear case of a similar property in (Arieli and Heyninck 2021, Def-
inition 10).
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We refer to (Arieli and Heyninck 2021) for a proof of the
last proposition in the linear case. The proof of this proposi-
tion for partial orders and selecting ABFs is left out in view
of space limitations.

Example 11. Let Ab = {q1, q2, p1, p2} and Γ = {¬(q1 ∧
p2),¬(q2 ∧ p1)} where g(q1) > g(p1), g(q2) > g(p2),
f(∆) = {g(δ) | δ ∈ ∆}, and † = ∃. The stable extensions
in this case are {p1, p2}, {p1, q1}, {p2, q2}, and {q1, q2}.
These are also the elements of MCSP(ABF), as indeed the
last proposition suggests.

Note 5. Definition 11 is a generalization to partial orders of
maximally consistent sets that can be defined with respect to
Brewka’s preferred subtheories (Brewka 1989) in the linear
case:

Definition 14. Let Abi = {ψ ∈ Ab | g(ψ) = i} (1 ≤ i ≤
n) be a stratification of Ab according to a linear allocation
function g : Ab→ N (Definition 2), and let ∆,Θ ⊆ Ab. We
say that ∆ is preferred over Θ (with respect to g), denoted
∆ ⊏g Θ, iff there is an 1 ≤ i ≤ n such that Abj ∩ ∆ =
Abj∩Θ for every 1 ≤ j < i, andAbi∩∆ ⊋ Abi∩Θ. The set
MCS⊏g

(ABF) is defined in a similar way to MCS≺P (ABF),
where ⊏g replaces ≺P .

Lemma 6. Let pABF = ⟨ABF,P⟩ be a prioritized ABF
with P = ⟨N, g, f, †⟩ where g is a linear allocation function.
Then MCS⊏g

(ABF) and MCS≺P (ABF) coincide.

By Lemma 6, Proposition 6 holds also for ⊏g-preferred
maximally consistent sets in linear pABFs. This proposi-
tion thus generalizes a similar result in (Arieli and Heyn-
inck 2021). To the best of our knowledge, this is the first
argumentative characterisation of preferred maximally con-
sistent sets using non-linear preferences.

5 A Postulate-Based Study
5.1 Postulates for pABF-based Entailments
We start by checking properties of the entailment relations
that are induced by pABFs (Definition 5). The following
properties were introduced in (Kraus, Lehmann, and Magi-
dor 1990) and (Lehmann and Magidor 1992), and their for-
mulations are adjusted to our setting. Below, for some
ABF = ⟨L,Γ, Ab,¬⟩ and a formula ϕ, we let ABFϕ =
⟨L,Γ ∪ {ϕ}, Ab,¬⟩.
Definition 15. Let L = ⟨L,⊢⟩ be a logic. A relation |∼
between pABFs that are based on L and L-formulas is called
⊢-cumulative if the following conditions are satisfied:
• Cautious Reflexivity (CR):
If ψ ∈ Γ is ⊢-consistent, then ABF |∼ ψ.
• Cautious Monotonicity (CM):
If ABF |∼ ϕ and ABF |∼ ψ, then ABFϕ |∼ ψ.
• Cautious Cut (CC):
If ABF |∼ ϕ and ABFϕ |∼ ψ, then ABF |∼ ψ.
• Left Logical Equivalence (LLE):
If ϕ ⊢ ψ and ψ ⊢ ϕ, then ABFϕ |∼ ρ iff ABFψ |∼ ρ.
• Right Weakening (RW):
If ϕ ⊢ ψ and ABF |∼ ϕ, then ABF |∼ ψ.

A cumulative relation is called preferential, if it satisfies the
following condition:
• Distribution (OR):
If ABFϕ |∼ ρ and ABFψ |∼ ρ, then ABFϕ∨ψ |∼ ρ.
Proposition 7. Let pABF = ⟨ABF,P⟩ be a pABF with
ABF = ⟨L,Γ, Ab,¬⟩ where P is max lower-bounded and
selective. Then |∼ ∩

Sem is preferential for every semantics
Sem ∈ {Prf, Stb}.

Outline of proof. We first let Sem = Stb. Let |∼ = |∼ ∩
Stb.

CR holds since a premise ψ ∈ Γ cannot be attacked. CM
follows from Proposition 6 and since MCS≺P (ABF) =

MCS≺P (ABF
ϕ) when Γ,

⋂
MCS≺P (ABF) ⊢ ϕ. The proof

of CC is analogous to that of CM. LLE holds since by its
assumptions, MCS≺P (ABF

ϕ) = MCS≺P (ABF
ψ), thus by

Proposition 6 again, also Stb(ABFϕ) = Stb(ABFψ). For
RW, suppose that ABF |∼ ϕ. Then Γ,∆ ⊢ ϕ for every
∆ ∈ Stb(pABF) and thus with transitivity of ⊢ we have
that Γ,∆ ⊢ ψ for every ∆ ∈ Stb(pABF), i.e., ABF |∼ ψ.
The proof of OR is left to the reader. The case Sem = Pref
follows now from Proposition 5.

Note 6. Another property considered in (Lehmann and
Magidor 1992), called rational monotonicity (RM), states
that if ABF |∼ϕ and ABF |̸∼¬ψ, then ABFψ |∼ϕ. In (Heyn-
inck and Arieli 2020, Example 11) it is shown that RM fails
for |∼ ∩

Prf and |∼ ∩
Stb already for non-prioritized ABFs.

5.2 Postulates for pABF-based Extensions
Next, we consider several postulates that are concerned with
the handling of preferences in prioritized ABFs and its ef-
fect on the extensions of the frameworks. The postulates be-
low are shown to hold for prioritized frameworks pABF =
⟨ABF,P⟩ with linearly-ordered preferences (see (Arieli and
Heyninck 2021) for proofs and discussions):
Empty Preferences (for Sem) : 13

If P is a degenerated preference setting (i.e., if g is a uni-
form allocation function), Sem(pABF) = Sem(ABF).

Extensions Selection (for Sem): 14

If E ∈ Sem(pABF) then E ∈ Sem(ABF).
Conflict Preservation (for Sem): 15

If E ∈ Sem(pABF) and ∆ p-attacks Θ, then either ∆ ̸⊆ E
or Θ ̸⊆ E .

Preferred Arguments (for Sem): 16

For every E ∈ Sem(pABF) it holds that Ming(Ab) =
{ψ ∈ Ab | ¬∃ ϕ ∈ Ab such that g(ϕ) < g(ψ)} ⊆ E

Brewka-Eiter (BE) Principle (for Sem): 17

If both ∆ = Λ ∪ {ϕ} ∈ Sem(ABF) and Θ = Λ ∪ {ψ} ∈
Sem(ABF) (where ϕ, ψ ̸∈ Λ), and g(ψ) < g(ϕ), then
∆ ̸∈ Sem(pABF).
13Amgoud and Vesic (2009) Brewka, Truszczynski, and Woltran

(2010).
14Šimko (2014).
15Amgoud and Vesic (2009; 2014) Modgil (2009).
16Amgoud and Vesic (2014) Čyras (2017).
17Brewka and Eiter (2000).
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Principle of Tolerance (for Sem):
If Sem(ABF) ̸= ∅ then Sem(pABF) ̸= ∅ as well.
Below, we check these postulates for partially ordered

preferences and the corresponding pABFs. We start with
empty preferences. The following proposition is similar to
the one shown in (Arieli and Heyninck 2021):
Proposition 8. Let f be an aggregation function that is in-
variant under multiple occurrences (that is, if V is a set
and V ′ is a multiset with the same elements as V , then
f(V ) = f(V ′)). Then pABF satisfies the empty preferences
postulate for every Sem.

Proof. The empty preferences postulate assumes that g is
uniform. Thus, under the condition on f , for every δ′ ∈ ∆
we have: f(g(∆)) = f({g(δ) | δ ∈ ∆}) = f(g(δ′)) =
g(δ′). Again, since g is uniform, we conclude that f(g(∆))
is the same for every ∆ ⊆ Ab. It follows that †-p-attacks co-
incide, for every † ∈ {∀, ∃}, with (standard, non-prioritized)
attacks, and so Sem(pABF) = Sem(ABF) for every seman-
tics Sem.

We now turn to extension selection:
Proposition 9. Let pABF = ⟨ABF,P⟩ be a selecting pri-
oritized ABF. Then pABF satisfies the extensions selection
postulate for Sem ∈ {Naive,Prf, Stb}.

Proof. We first show that if ∆ ⊆ Ab is conflict-free in pABF
then it is conflict-free in ABF. Suppose towards a contradic-
tion that ∆ attacks some δ ∈ ∆. This means that Γ,∆ ⊢ ¬δ.
If †-val−1

f,g(∆, ψ) ̸= ∅ then by Note 3, ∆ cannot be conflict-
free in pABF. Suppose then that †-val−1

f,g(∆, ψ) = ∅. This
means that for every minimal subset ∆′ ⊆ ∆ such that
Γ,∆′ ⊢ ¬δ, it holds that ∆′ ≻P δ. By reversibility (which,
by Lemma 1 holds since pABF is selecting), for such a sub-
set ∆′, there is a δ′ ∈ ∆′ such that ∆′ ∪ {δ} \ δ′ ̸≻P δ′,
and by contraposition, Γ,∆′ ∪ {δ} \ δ′ ⊢ ¬δ′. Thus, ∆′

p-attacks δ′ ∈ ∆′, a contradiction to the assumption that ∆
is conflict-free in pABF.

We now show that if ∆ is stable in pABF then it is stable
in ABF. We have already shown above that ∆ is conflict-
free in ABF. Now, since ∆ is stable in pABF, ∆ †-p-attacks
every ψ ∈ Ab\∆, which in particular means that Γ,∆ ⊢ ¬ψ
for every such ψ. Thus, ∆ attacks every ψ ∈ Ab \∆, and so
it is stable in ABF.

We now show that if ∆ is preferred in pABF then it is
preferred in ABF. Indeed, suppose for a contradiction that
∆ is not preferred in ABF. As is shown in (Heyninck and
Arieli 2020), ∆ is not stable as well. By the previous case,
this means that ∆ is not stable in pABF. By Proposition 5,
this implies that ∆ is not preferred in pABF, a contradiction.

It remains to show that if ∆ is naive in pABF then it is
naive in ABF. We know that ∆ is conflict-free in ABF. Sup-
pose for a contradiction that there is ∆ ⊊ ∆′ ⊆ Ab such
that ∆′ is conflict-free in ABF. Since ∆′ is not conflict-
free in pABF (due to the assumption that ∆ is naive in
pABF), there is some δ′ ∈ ∆′ such that Γ,∆′ ⊢ ¬δ′
(yet, †-val−1

f,g(∆
′, δ′) ̸= ∅). Thus ∆′ attacks δ′ in ABF, a

contradiction to the assumption that ∆′ is conflict-free (in
ABF).

Conflict preservation follows in our case from the fact
that every E ∈ Sem(pABF) is conflict-free. This prop-
erty is not so obvious in other formalisms in which attacks
are sometimes discarded due to preference over arguments
(see (Čyras 2017) for some examples).

The principle of preferred arguments cannot hold in our
setting unless Ming(Ab) is ⊢-consistent (otherwise E is not
conflict free). A sufficient condition for assuring this prin-
ciple for stable semantics in max-lower-bounded and re-
versible pABFs is given next.
Proposition 10. Let pABF be a max-lower-bounded and re-
versible pABF. If Ming(Ab) ⊆

⋂
MCSP(ABF) it satisfies

the principle of preferred arguments for stable semantics.

Proof. Let E be a stable extensions of pABF. By Propo-
sition 6, E ∈ MCSP(ABF). Now, since Ming(Ab) ⊆⋂

MCSP(pABF), we get that Ming(Ab) ⊆ E .

Note that by Proposition 6, when pABF is selecting, the
condition that Ming(Ab) ⊆

⋂
MCSP(ABF) is also neces-

sary for assuring the satisfaction of the preferred argument
postulate for stable and preferred semantics. We therefore
have the following corollary:
Corollary 3. Let pABF be a max-lower-bounded and se-
lecting pABF. Then pABF satisfies the principle of pre-
ferred arguments for the stable and preferred semantics iff
Ming(Ab) ⊆

⋂
MCSP(ABF).

Proof. The proof for stable semantics follows from Proposi-
tion 10 and the paragraph following its proof. The result for
preferred semantics then follows from Proposition 5, since
pABF is selecting.

In (Arieli and Heyninck 2021) it is shown that BE-
principle doesn’t hold for prioritized ABFs even for linear
preference orders. However, as the next proposition shows,
for selecting max-lower-bounded pABFs this postulate does
hold for the stable and the preferred semantics.
Proposition 11. Let pABF = ⟨ABF,P⟩ be a selecting
and max-lower-bounded pABF. Then pABF satisfies the BE-
principle for the stable and preferred semantics.

Proof. Let pABF = ⟨ABF,P⟩ be as in the proposition. Let
∆,Θ ∈ Stb(ABF) and Λ ∪ {ϕ, ψ} ⊆ Ab s.t. ϕ, ψ ̸∈ Λ and
∆ = Λ ∪ {ϕ} and Θ = Λ ∪ {ψ} and g(ψ) < g(ϕ). Since
∆,Θ ∈ Stb(ABF), it is shown in (Heyninck and Arieli
2020) that ∆,Θ ∈ MCS(ABF). However, Θ ≺P ∆ (recall
Definition 11), and so ∆ ̸∈ MCS≺P (ABF). By Proposi-
tion 6, ∆ ̸∈ Stb(pABF).

The principle of tolerance for complete and preferred
semantics is clear by the fact that pABF is in particu-
lar an argumentation framework, and so Cmp(pABF) and
Prf(pABF) are not empty. This principle for stable and pre-
ferred semantics holds for selecting and max-lower-bounded
pABF by Corollary 3.18

18As noted in (Čyras 2017), when the prioritized assumption-
based framework ABA+ is concerned (see (Čyras and Toni 2016)),
the principle of tolerance does not hold for the stable semantics.
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A summary of the conditions under which the properties
and the postulates considered in this and in the previous sec-
tion are satisfied with respect to the stable semantics is given
in Table 1.

Property of the pABF Conditions on the priority setting
Extensions consistency Reversible
Closure of extensions Reversible
Stb = MCSP Selecting
|∼ ∩

Sem is preferential Selecting & Max-lower-bounded
Empty preferences Multiple-occurrences invariance19

Extension selection Selecting
Conflict preservation –
Preferred assumptions Selecting & Max-lower-bounded20

Brewka-Eiter postulate Selecting & Max-lower-bounded
Tolerance Selecting & Max-lower-bounded

Table 1: Summary of the postulates for the stable semantics

6 Related Work and Conclusion
Simple contrapositive assumption-based argumentation
frameworks provide a robust representation and reason-
ing method for handling arguments and counter-arguments
(see (Heyninck and Arieli 2020)). As shown in (Arieli and
Heyninck 2021), the enhancement with priorities of such
frameworks strengthens their expressivity and provides ad-
ditional layer to their inference process. In this paper we
have largely extended the range of priority settings that are
integrated with these frameworks for gaining more flexibil-
ity in comparing arguments and expressing the mutual rela-
tions among them, thus making them more suitable for ev-
eryday life scenarios. The incorporation of priorities that are
partially (or, more generally, non-linearly) ordered, allows
us to introduce different types of attack relations (stems on
existential or universal considerations over those priorities),
which further extend the reasoning forms supported by the
argumentation frameworks under consideration.

Non-linear preferences are very natural in many scenar-
ios, for instance when objects are compared with respect
to different aspects, as illustrated in Examples 4 and 10.
Such comparisons are ubiquitous in e.g. reviewing systems,
on-line marketplaces or content platforms involving differ-
ent agents or sources of information. Simple contrapositive
assumption-based frameworks with non-linear preferences
allow to aggregate different options while respecting con-
straints, as shown in Examples 4, 5, 9 and 10. The principle-
based study allows for the selection of the right preferential
setting for a given application context. For instance, when
aggregating different options in view of a set of constraints,
the preferred arguments principle ensures that the maximally
preferred options will be included in any selection.

The primary method of handling priorities in ABFs, used
in ABA+ frameworks (Čyras and Toni 2016; Čyras 2017),

19That is, if V is a set and V ′ is a multiset with the same ele-
ments, then f(V ) = f(V ′).

20It is also assumed that Ming(Ab) ⊆
⋂

MCSP(pABF).

is different from our approach in several ways. Perhaps
the most significant difference is in the interpretation of at-
tacks: we adopt the standard approach, taken also in re-
lated argumentation-based formalisms (like ASPIC-based
systems (Modgil and Prakken 2013; Modgil and Prakken
2014), sequent-based argumentation frameworks (Arieli,
Borg, and Straßer 2018), and dialectical argumentation
frameworks (D’Agostino and Modgil 2018a; D’Agostino
and Modgil 2018b), in which for the attack to take place
the attacking argument should be at least as preferred as the
attacked argument. In contrast, ABA+ is based on the idea
of reverse defeats: A set of assumptions ∆ reverse defeats
a set of assumptions Θ if either ∆ attacks Θ and ∆ is not
less preferred than Θ, or Θ attacks ∆ and Θ is (strictly)
less preferred than ∆. The use of reverse defeats is required
for avoiding some violations of rationality postulates such
as consistency (see (Čyras and Toni 2016) for more details).
However, in (Heyninck 2019, Chapter 7) it is shown that
such reverse defeats are actually superfluous when assum-
ing that the deducibility relation is closed under contraposi-
tion. Also, as noted in the introduction, we allow arbitrary
aggregation functions in the preference settings and so do
not confine ourselves to max-based attacks (reflecting only
the weakest link principle).

In (Kaci et al. 2021), two other variations of reverse de-
feat are presented in the context of abstract argumentation.
The first one, called Reduction 3, states that an argument a
successfully attacks an argument b, if: (1) there is an attack
between a and b, and a is not worse than b, or (2) there is an
attack between a and b and no attack between b and a. This
is clearly a generalization of reverse defeat, and again, since
we assume contrapositive logics, any attack from ∆ toψ will
give rise to an attack from a set of assumptions including ψ
to an assumption ∆. The second variation of reverse defeat
presented in (Kaci et al. 2021) is called Reduction 4 and says
that an attack from a to b is successful, if: (1) a attacks b and
a is not worse than b, or (2) b attacks a, a does not attack
b and b is worse than a, or (3) there is an attack between a
and b and no attack between b and a. Again, since we as-
sume contrapositive logics, there is no need to consider the
asymmetric cases expressed in (2) and (3).

Future work includes reformulation of pABFs under non-
explosive logics, and extensions to first-order languages, in-
cluding description logics. It might also be interesting to
extend the representation results from Section 4.4 to other
approaches to reasoning with partially ordered defeasible
information, such as those in (Junker and Brewka 1991;
Touazi, Cayrol, and Dubois 2015; Belabbes and Benferhat
2019; Belabbes, Benferhat, and Chomicki 2021).
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