
Explainable Clustering with CREAM

Federico Sabbatini1 , Roberta Calegari2
1Department of Pure and Applied Sciences (DiSPeA), University of Urbino

2Department of Computer Science and Engineering (DISI), University of Bologna
f.sabbatini1@campus.uniurb.it, roberta.calegari@unibo.it

Abstract

This paper proposes CREAM, a new explainable cluster-
ing technique based on decision tree induction, providing
human-interpretable clusters by performing hypercubic ap-
proximations of the input feature space. CREAM may also
be applied to data sets describing classification and regres-
sion tasks, given that the algorithm discriminates amongst in-
put and output features. We also present ORCHID, an au-
tomated tuning procedure to select the optimum CREAM
parameters. Experiments demonstrating the effectiveness of
CREAM in clustering, classification, and regression tasks are
reported here, in comparison with other state-of-the-art tech-
niques used as benchmarks.

1 Introduction
Supervised classification and regression as well as unsu-
pervised clustering are amongst the core machine learning
(ML) predictive techniques adopted in real-world, daily ap-
plications. Optimising these methods, and consequently in-
creasing their algorithmic complexity, allows users to ob-
tain impressive results, but at the expense of human inter-
pretability and related explainability1. That is why ML mod-
els are often named black boxes (BBs) or opaque models,
conversely to transparent models. The common trade-off
between predictive performance and readability is often a
hindering factor when BB models are required in critical
applications involving, for instance, human health, wealth,
freedom, and safety since it is crucial for human users
to understand the rationale behind ML predictions. The
increasing demand for transparency (European Commis-
sion, Directorate-General for Communications Networks,
and Technology 2019; European Commission 2021) is re-
flected in a lack of trust for BB-based systems and in the
consequent adoption of inspectable alternatives, possibly not
capable of as much predictive power.

1It is worth emphasising that symbolic knowledge-extraction
methods enable interpretability, which involves understanding an
artificial intelligence model’s internal workings. Explainability
provides understandable justifications for the model’s outputs,
bridging complexity and human comprehension. Interpretability
acts as a fundamental precursor to explainability by providing the
necessary understanding to generate transparent explanations for
the model’s decisions and predictions

In the field of clustering several interpretable approaches
have been proposed in substitution of classical, opaque
techniques (Dasgupta et al. 2020; Moshkovitz et al. 2020;
Manduchi et al. 2021; Chen and Güttel 2022, to mention
some recent examples).

In this paper we present CREAM, a novel interpretable
clustering technique based on tree induction and hypercubic
approximation of clusters. It is inspired by ExACT (Sab-
batini and Calegari 2023), since they share a common hi-
erarchical nature and they both take advantage of Gaussian
mixture models (GMMs) and DBSCAN (Ester et al. 1996),
but CREAM is able to outperform its predecessor thanks to
different splitting criteria when performing the hypercubic
approximation of the input feature space. More in detail,
CREAM is not bounded to an underlying unbalanced tree
and therefore it produces more accurate output knowledge
having refined rules. Our contribution is relevant for two
different reasons. First, CREAM proved to be a valid clus-
tering tool, for the benefit of the currently slim category of
interpretable clustering techniques. Second, for its design, it
is perfectly suitable to replace BB classifiers and regressors
in order to possibly enhance the human readability of the
predictions they provide. The paper also presents ORCHID,
a tuning algorithm to select the best values to provide as
CREAM parameters. Accordingly, in Section 2 background
information is provided. In Section 3 the CREAM and
ORCHID algorithms are presented and in Section 4 exper-
iments to assess the effectiveness of CREAM are reported.
Conclusions are drawn in Section 5.

2 Related Works
2.1 Traditional Clustering
Several clustering techniques are currently present in the lit-
erature, each one with its own peculiarities, usually bound to
the clusters’ properties, such as shape or density. As a con-
sequence, there are no optimum algorithms showing better
predictive performance over all the others in any possible
applicative scenario. Amongst the most performing tech-
niques there are GMMs (Murphy 2012), DBSCAN (Ester
et al. 1996; Ling 1972) and DBSCAN++ (Jang and Jiang
2019), OPTICS (Ankerst et al. 1999), BIRCH (Zhang, Ra-
makrishnan, and Livny 1996), k-means (Lloyd 1982), Mean
shift (Cheng 1995) and spectral clustering (Shi and Malik

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

593

2000; Yu and Shi 2003). In the following paragraphs, we
analyse in detail only the traditional clustering techniques
constituting the core of CREAM.

Gaussian Mixture Models GMMs proved to be flexible
and powerful solutions to perform clustering. GMMs are
based on the assumption that the data set points’ gener-
ation follows the mixture of a finite number of Gaussian
distributions. The goal of GMMs is to determine the pa-
rameters of these distributions. Given that these models
are probabilistic and that each GMM prediction is associ-
ated with a probability score, also soft clustering is enabled.
W.r.t. other algorithms, for instance, k-means, GMMs are
not bounded to spherical clusters and thus they are preferred
for general applications. The number of Gaussian compo-
nents adopted during the GMM training is the most impor-
tant hyper-parameter to be tuned and it heavily impacts the
overall predictive performance of the clustering. Automated
tuning of this parameter is possible through the Bayes infor-
mation criterion (BIC), by training several GMM instances
with different component amounts, calculating the corre-
sponding BIC score for each instance, and finally picking
the one associated with the lowest BIC score value.

DBSCAN A different approach is considered by DB-
SCAN (Density-Based Spatial Clustering of Applications
with Noise), a procedure able to identify arbitrarily-shaped
clusters of data through a density criterion. In this case, a
user-defined parameter (ε) defining the maximum allowed
intra-cluster distance should be provided. ε is strictly task-
dependent. Being a pivotal parameter for the DBSCAN per-
formance, automated tuning procedures have been proposed
to determine ε without user efforts (Rahmah and Sitanggang
2016). DBSCAN is also a suitable tool to remove outliers
from clusters identified by other algorithms.

2.2 Explainable Clustering
Explanation of clusters is acquiring relevance amongst re-
searchers, especially if the clustering involves critical ar-
eas such as medical or financial (Manduchi et al. 2021,
for instance). Several existing techniques induce an un-
derlying decision tree (Basak and Krishnapuram 2005;
Fraiman, Ghattas, and Svarc 2013; Bertsimas, Orfanoudaki,
and Wiberg 2018; Dasgupta et al. 2020) according to 2 dif-
ferent approaches. In the top-down approach, more com-
monly adopted, first the tree root containing the whole data
set is built, then it is recursively partitioned until some stop-
ping criteria are satisfied. The bottom-up strategy, con-
versely, tries to group together individual data set samples to
form the final clusters. All tree-based clustering techniques
perform input space partitioning via cutting hyperplanes that
are perpendicular to the most relevant input features, consid-
ering one feature per cut.

A different approach proposed by Chen et al. (2016) and
based on a rectangular input space partitioning enables a
higher human-interpretability extent given that each clus-
ter is described in terms of 2 interval inclusions. However,
the algorithm may merge existing input features into new
combined features, thus hindering explainability for the sake
of conciseness. In a recent work Chen and Güttel (2022)

presents an interpretable density-based clustering technique
named CLASSIX.

Our proposed technique differs from the existing cluster-
ing described above since human interpretability is achieved
through the description of clusters by means of hypercubic
regions obtained via the induction of a top-down decision
tree, similarly to ExACT (Sabbatini and Calegari 2023). No
composite features are created by merging the input ones,
nor these features are discarded to limit the cluster descrip-
tion to 2-dimensional, rectangular regions. In the following
paragraphs we report the details of the explainable clustering
techniques used as benchmarks for the experiments reported
in Section 4.

CLASSIX CLASSIX (name defined by the authors as
a contrived acronym of “CLustering by Aggregation with
Sorting-based Indexing” and the letter “X” for “eXplainabil-
ity”; Chen and Güttel 2022) is a fast algorithm performing
explainable clustering based on two phases. The first step
is a greedy aggregation aimed at grouping together nearby
training data points, previously sorted. Groups are then
merged into clusters in the second phase. The performance
of the technique depends on two user-defined parameters,
one defining the minimum amount of training samples in-
side each cluster and the other representing the distance be-
tween instances to be grouped together during the first phase
of the algorithm.

CLASSIX offers two ways of explaining clusters. The
former, global, reports the coordinates of the starting point
for each group identified at the end of the aggregation phase.
The other, local, enables users to understand why a single in-
stance belongs to a specific cluster or why a pair of instances
belong to the same or different clusters. This explanation is
achieved by describing the steps executed during the merg-
ing phase of the algorithm.

IMM Dasgupta et al. (2020) proposed the IMM algorithm
(IMM stands for Iterative Mistake Minimisation) with the
aim of developing an accurate and efficient interpretable
clustering algorithm based on tree induction. The induced
tree is binary and each internal node is associated with a
partition of the training data involving a single feature. To
identify k clusters the tree grows k leaves, keeping its di-
mension as small as possible. The tree induction is based on
the minimisation of the cluster’s fragmentation, intended as
the splitting of instances belonging to the same cluster into
more than one subtree.

Explanations for cluster assignments are obtained by de-
scribing each assignment via the path from the tree root to
the leaf corresponding to the selected cluster. Given the
structure of the induced tree, a clustering identifying k clus-
ters requires at most k−1 constraints to describe any assign-
ment, since k − 1 is the tree depth in the worst case.

ExACT ExACT (Sabbatini and Calegari 2023) combines
together the aggregation strategies proper of traditional clus-
tering techniques and the cluster assignment via decision
trees as done by other interpretable clustering procedures.
For this reason with ExACT it is possible to obtain explain-
able clusters by inducing a top-down decision tree over the

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

594

training data according to a strictly hierarchical strategy. In-
deed, its clusters have the peculiarity of being concentric.
The strategy adopted for the tree’s internal nodes is to use
hypercubic splits to separate whole clusters of data while
avoiding the presence of instances from multiple clusters in-
side the same hypercubic region.

Explainability is obtained by approximating each identi-
fied cluster with a hypercube. The concentric nature of the
ExACT’s hierarchical approximations enables the creation
of a global interpretable clustering in the form of a rule list,
where each cluster is simply expressed through a rule having
a single hypercube inclusion constraint, starting from the in-
nermost cluster through the outermost. The same structure
may be used to provide local explanations for single cluster-
ing assignments.

3 Explainable Clustering with CREAM
CREAM (Clustering-based Rule Extraction Advanced
Method) is a recursive algorithm performing explainable
clustering via binary decision tree induction. Trees are
built top-down and each internal node corresponds to a
hypercube-inclusion condition since each node is associated
with a hypercubic approximation of the input space region
corresponding to an identified cluster of data. To achieve
this goal, CREAM adopts GMMs to identify relevant clus-
ters within the training data and DBSCAN to remove out-
liers possibly included inside these clusters.2 Hypercube ap-
proximation is then applied to explain the refined clusters in
human-comprehensible terms. After having built the tree,
each leaf is converted into a human-interpretable rule cor-
responding to a cluster. Approximated clusters may have
the shape of hypercubes or difference cubes, i.e., regions ob-
tained by subtracting one or more hypercubes from a wider,
enclosing hypercube.

The design of CREAM ensures exhaustivity of the clus-
tering, i.e., when used to carry out predictions, each input
instance will be assigned to an identified hypercubic cluster.
Rules obtained by applying CREAM are ordered, disjoint,
and produced by recursively traversing the tree in reverse or-
der, that is by examining the tree nodes’ right subtrees first.
All approximated clusters are associated with hypercube-
inclusion constraints, since clusters having the shape of dif-
ference cubes may be expressed as inclusion in an outer hy-
percube and exclusion from one or more inner hypercubes.
Given the human interpretability extent of hypercubic re-
gions and the possibility to tune the algorithm parameters to
limit the depth of the tree induced by CREAM, it is possi-
ble to achieve explainability (Blanco-Justicia and Domingo-
Ferrer 2019).

3.1 The Algorithm
CREAM is recursive and during its first iteration it consid-
ers the data set surrounding cube, that is the minimal cube

2Preliminary experiments proved GMMs and DBSCAN to
achieve the best results in the general case. Furthermore, both
can exploit fast and automated procedures to tune their hyper-
parameters, enabling a flexible and versatile application in tasks
that are not known a priori

Algorithm 1: CREAM pseudocode
Require: maximum depth δ
Require: predictive error threshold θ
Require: maximum amount of clusters ξ
Ensure: root node of the induced tree
1: function CREAM(D)
2: H0 ← SURROUNDINGCUBE(D)
3: N0 ← NEWNODE(H0, D)
4: nodes← {(∞, N0, 1)}
5: while nodes ̸= ∅ do
6: nodes = SPLIT(nodes)

7: return N0

8: function SURROUNDINGCUBE(D)
9: return the minimal cube enclosing all the cluster D points

10: function NEWNODE(H , D)
11: node← new Node()
12: node.cube← H
13: node.data← D
14: (node.right, node.left)← (∅, ∅)
15: return node

16: function SPLIT(nodes)
17: (error, node, depth)← POP(nodes)
18: clusters← CREATECLUSTERS(node.data)
19: eligible← CLUSTERSTOPAIRS(clusters, node)
20: if eligible = ∅ then
21: return nodes
22: (error, noder, nodel)← argmin

(e,r,l)∈eligible

{e}

23: (node.right, node.left)← (noder, nodel)
24: for all child ∈ {node.right, node.left} do
25: error ← PREDICTIVEERROR(child)
26: if (error > θ) ∧ (depth < δ) then
27: nodes← nodes ∪ {(error, child, depth + 1)}
28: return nodes

29: function POP(nodes)
30: return argmax

(e,n,d)∈nodes

{e}

31: function CREATECLUSTERS(D)
32: return at most ξ clusters containing the data of D

33: function CLUSTERSTOPAIRS(C, N)
34: pairs← ∅
35: for all cluster ∈ C do
36: datai ← cluster \ { c ∈ cluster | c is an outlier }
37: cubei ← SURROUNDINGCUBE(datai)
38: if cubei = N.cube then
39: continue
40: datao ← N.data \ datai

41: cubeo ← SURROUNDINGCUBE(datao)
42: nodei ← NEWNODE(cubei, datai)
43: nodeo ← NEWNODE(cubeo, datao)
44: error ← MEANERROR({nodei, nodeo})
45: pairs← pairs ∪ {(error, nodei, nodeo)}
46: return pairs

47: function PREDICTIVEERROR(node)
48: return average predictive error for node

49: function MEANERROR(nodes)

50: return
∑

n∈nodes

PREDICTIVEERROR(n)

|nodes|

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

595

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y
10

8

6

4

2

0

2

4

6

Z

(a) Data set.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

10

8

6

4

2

0

2

4

6

Z

(b) Approximation per-
formed by CREAM.

(c) Binary tree induced by CREAM.

Figure 1: Example of CREAM partitioning performed on an artificial data set having 4 superposing clusters.

enclosing all the available training samples. This hypercube
is associated with the CREAM tree root. Each tree node
contains a set of training instances, representing a cluster,
and an approximating region for that cluster, which may be
a hypercube or a difference cube enclosing all the node’s
training instances. Only one node is refined during a single
iteration. At each iteration CREAM partitions the node’s
hypercube into a smaller cube and a difference cube, which
become the right and left children of the root, respectively. It
is worth noticing that the difference cube represented in any
left child of the tree is given by subtracting the right sibling
from the common parent node. This implies that the right-
most leaf of the tree is always associated with a hypercube,
whereas all the left child nodes represent difference cubes.
No assumptions can be made about other right-child leaves.

The node splitting is repeated during the successive iter-
ations with the same logic, leading to the binary tree cre-
ation. The strategy adopted to split nodes is pivotal for the
presented procedure. CREAM adopts a greedy search al-
gorithm, selecting for each node the best split amongst all
the possible splits. The best split is the one resulting in two
child nodes associated with the lowest predictive errors mea-
sured on the training data. The predictive error for a split is
calculated by observing the difference between the expected
output reported for the samples in the training set (i.e., the
ground truth) and the output provided by CREAM by as-
suming that a particular split is definitive. There are no guar-
antees that this logic leads to the optimum partitioning at the
end of the tree induction since it is based on the selection
of local optima. However, during the experiments CREAM

provided competitive results w.r.t. other techniques, demon-
strating that the greedy approach is a good trade-off between
search exhaustivity and performance.

To better understand the concept of predictive error, it is
worthwhile to point out that CREAM distinguishes between
input and output features and therefore it may be applied to
classification and regression data sets. However, given the
supervised nature of CREAM, when performing clustering
the ground truth assignments should be provided to the al-
gorithm. When the expected assignments are not known a
priori, it is possible to adopt another clustering technique to
obtain them. This allows CREAM to measure the clustering
error performed at each step of the procedure. When applied
to supervised classification and regression data sets it is suf-
ficient to trivially provide CREAM with the output feature
to enable predictive performance monitoring. To carry out
predictions with CREAM also for classification and regres-
sion tasks we refer to the generalisation proposed by Sabba-
tini et al. (2022a). According to the generalisation CREAM
assigns to the clusters as output values (i) the most com-
mon labels inside the clusters for classification tasks; (ii) the
mean output values for the data inside the clusters for regres-
sion tasks with constant outputs; or (iii) a linear combination
involving input variables for other regression tasks. For the
corresponding predictive error estimation, we use the wrong
assignment rate for clustering tasks, a metric inversely pro-
portional to the accuracy score for classification tasks (e.g.,
1 − accuracy), and the mean absolute error for regression
tasks.

In Figure 1 an example of partitioning provided by

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

596

CREAM on an artificial regression data set having 3
real-valued features is depicted. Figures 1a and 1b re-
port the training data set and the approximation obtained
with CREAM, respectively. The binary tree produced by
CREAM is shown in Figure 1c.

The CREAM pseudocode and related details are reported
in Algorithm 1. The steps performed during the execution of
CREAM can be summarised as follows:

1. find the surrounding hypercube for the training data set to
build the tree root;

2. set the root as current node;

3. apply GMM clustering to the current node data to auto-
matically determine the number of contained clusters and
the clusters themselves;

4. apply DBSCAN to the identified clusters for outlier re-
moval, since sparse data would produce too big hyper-
cubes in the next step;

5. find the minimal surrounding hypercubes for the data be-
longing to each cluster, obtaining hypercubic approxima-
tions of the clusters;

6. find the difference cube for each approximating hyper-
cube, given by subtracting the approximating cube from
the current node’s cube, and create pairs of associated
cubes;

7. calculate the average predictive error for each pair, select
the one having the smallest average error and set it as the
best pair;

8. assign the best approximating cube (and the contained
training instances) to the current node’s right child and
the best difference cube (and corresponding data) to the
current node’s left child;

9. repeat from step 3 for every child of the current node hav-
ing predictive error larger than the user-defined threshold
θ until the maximum tree depth δ is reached.

3.2 Parameters Required by CREAM
Users adopting CREAM have to provide 3 parameters to it.

θ The error threshold θ calibrates the predictive perfor-
mance of our explainable clustering technique, given that
nodes associated with predictive errors larger than the
threshold are further partitioned with additional iterations.
The value of θ strictly depends on the peculiarities of the
data at hand. According to the CREAM design, when ap-
plied to clustering data sets the rate of wrong assignments
is adopted as predictive error and therefore θ represents an
upper-bound. Analogously, if the algorithm is applied to a
classification task θ has to be defined as a predictive error
threshold. This means that cubes having an associated error
larger than the threshold are further partitioned. Finally, for
regression tasks, the θ parameter represents an upper-bound
for the mean absolute error measured for a tree node.

δ The maximum depth δ regulates the overall human
readability of the clustering provided by CREAM, since
enabling the induction of deep trees may result in large

amounts of clusters. Setting δ = d lets CREAM identify-
ing at most 2d clusters. There is a trade-off between a small
number of clusters, corresponding to high human readabil-
ity, and the capability of achieving good predictive perfor-
mance. Larger amounts of smaller clusters tend to have bet-
ter predictive performances than smaller amounts of larger
clusters, that in turn are easier to be interpreted by humans.

ξ The third user-defined parameter required by CREAM
(cf. step 3 of the algorithm) is ξ, representing the maximum
amount of clusters identifiable via GMMs. ξ is an upper-
bound value, given that the optimum amount of clusters is
automatically selected during the algorithm execution via
BIC score evaluations. We recommend that users provide
ξ values greater or equal to the expected number of clusters,
to avoid a wrong clustering. We point out here that the ε pa-
rameter required by DBSCAN (cf. step 4 of the algorithm)
is automatically set according to methods found in the lit-
erature (Rahmah and Sitanggang 2016) and therefore it has
not to be provided and tuned by users.

3.3 Automated Parameter Tuning
Tuning the parameters required by CREAM is a pivotal task
heavily impacting the overall clustering performances, de-
spite being challenging and tedious for human users. To
avoid time-expensive manual tuning and to help users in the
selection of the CREAM parameters, we developed the OR-
CHID (OptimiseR for Clustering via HIerarchical Decom-
position) automated procedure. We stress here that the ξ
parameter of CREAM has a negligible impact on the over-
all clustering performance if its value is kept larger than the
actual amount of clusters to identify. For such a reason OR-
CHID only focuses on the tuning of θ and δ parameters.

The tuning procedure considers the design of CREAM
to make some assumptions, following the same strategy
adopted in the PEDRO optimiser (Sabbatini and Calegari
2022) for the GridEx and GridREx algorithms (Sabbatini,
Ciatto, and Omicini 2021). Given that CREAM is a general-
purpose algorithm applicable to clustering, classification
and regression tasks, ORCHID accepts a training data set
including both input features and expected outputs. The
predictions are not compared with the expected outputs on
the basis of classical clustering scores, since these cannot
be applied to continuous values: ORCHID adopts typical
classification and regression scoring metrics instead. OR-
CHID finds the optimum values for the δ and θ parame-
ters by comparing several instances of CREAM only differ-
ing for a single parameter. Comparisons are based on ad-
hoc metrics considering two indices. One is the predictive
loss of CREAM applied to the provided training data set.
The other is the human-readability loss associated with the
same CREAM instance. The predictive loss, representing
the error of the CREAM’s predictions w.r.t. the expected
outputs, may be expressed as the mean absolute error (for
regression data sets) or as the percentage of wrong clus-
ter assignments/classifications (otherwise). The readability
loss may be expressed as the number of clusters identified
by CREAM, assuming that human readability is hindered
by large amounts of clusters. An ideal CREAM instance

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

597

Algorithm 2: ORCHID pseudocode
Require: maximum depth ∆, default = 10
Require: predictive/readability loss trade-off Φ, default 0.1
Require: maximum predictive loss increase pmax, default = 1.2
Require: minimum rule loss rmin, default = 0.9
Require: patience value patience0, default = 5
Ensure: optimum values for the CREAM parameters
1: function ORCHID(D)
2: Π← ∅ ▷ set of all configurations
3: π′ ← undefined ▷ last configuration
4: δ ← 1 ▷ depth parameter
5: while δ < ∆ do
6: Π′ ← THRESHOLDSEARCH(D, δ)
7: π ← SELECTBEST(Π′)
8: Π← Π ∪Π′

9: imp← GAIN(π, π′, “depth”)
10: if (|Π| > 1) ∧ (imp < 1.2) then return Π

11: δ ← δ + 1
12: π′ ← π
13: return Π

14: function SELECTBEST(Π)
15: return the best configuration π ∈ Π, considering Φ

16: function GAIN(π1, π2, criterion)
17: return an evaluation of π1 w.r.t. π2 according to criterion

18: function THRESHOLDSEARCH(D, δ)
19: step← undefined ▷ step to update θ
20: p0 ← undefined ▷ initial predictive loss
21: π′ ← undefined ▷ last configuration
22: Π← ∅ ▷ set of all configurations
23: θ ← 1.0 ▷ threshold parameter
24: patience← patience0 ▷ residual patience
25: while patience > 0 do
26: C ← CREAM(D, δ, θ)
27: π ← EVALUATE(C,D)
28: Π← Π ∪ {(π, δ, θ)}
29: if |Π| = 1 then
30: π′ ← π
31: p0 ← π.p
32: θ ← π.p

20

33: step← 0.75π.p
patience0

34: continue
35: if (π.r = 1)∨ (π.p = 0.0)∨ (π.p > p0 ·pmax) then
36: return Π
37: imp← GAIN(π, π′, “threshold”)
38: if (imp ≤ 1) ∨ (π.r > ⌈π′.r · rmin⌉) then
39: patience← patience− 1

40: π′ ← π
41: θ ← θ + step

return Π

42: function EVALUATE(C, D)
43: π ← INIT()
44: π.p← PREDICTIVELOSS(C,D)
45: π.r ← amount of clusters identified by C
46: return π

47: function PREDICTIVELOSS(C, D)
48: return the predictive loss of C applied to the data in D

49: function INIT()
50: return an object with p and r fields

should have both losses as small as possible. It is worth-
while to point out that the losses are intertwined. Given that
CREAM is aware of the cluster labels, it is able to fragment
clusters into disjoint input space hypercubic partitions with-
out considering them as actually different clusters, for the
sake of predictive performance. However, this is a hinder-
ing factor from the human-readability standpoint. In other
words, spreading the samples of an expected cluster over
multiple hypercubic regions may lead to better predictive
accuracy, but surely hinders the readability of the overall
clustering. Vice versa, limiting the number of clusters may
induce larger predictive errors due to the hypercubic approx-
imation strategy. Given all these considerations, large values
for δ worsen the readability loss and enhance the predictive
loss, as well as small values for θ.

The strategy adopted by ORCHID to highlight the best
parameter values is to consider a small worsening in the pre-
dictive (resp. readability) loss balanced by a large enough
enhancement in the readability (resp. predictive) loss. The
trade-off between them is defined by the user and should be
set according to the data set peculiarities.

Since the parameters analysed by ORCHID are real-
valued, it is not possible to perform an exhaustive search
inside the parameter space. Conversely, ORCHID explores
it looking for local optima to highlight promising value con-
figurations. At the end of the search, all the candidate
configurations are compared according to 3 different crite-
ria, providing to the user the parameter values associated
with the CREAM instances achieving smaller predictive
loss, smaller readability loss, and the best trade-off between
the two. By representing with p and r the predictive and
readability losses, respectively, and with Φ the user-defined
trade-off between them, the following scoring function is
adopted to evaluate an instance of CREAM:

score = p · ⌈2 r Φ⌉ . (1)

The best CREAM instance is the one having the lowest
score.

In order to run ORCHID, a set of parameters should be
provided by the users: (i) a maximum search depth ∆;
(ii) a trade-off between readability and predictive losses Φ;
(iii) a maximum predictive loss increase emax; (iv) a min-
imum readability loss decrease rmin; (v) a patience value
patience0. The ∆ parameter is the maximum depth used
for CREAM during the execution of ORCHID. Φ is used
to associate a numeric score with the CREAM instances,
according to Equation (1). emax is the maximum allowed
worsening in the predictive loss, expressed as the percent-
age of the initial predictive loss, used to trigger an early in-
terruption of the parameter exploration along not promising
directions. Analogously, rmin is the minimum required en-
hancement in the readability loss. Finally, the patience value
is adopted to enable ORCHID exiting local sub-optimum
parameter space regions. Despite the number of parameters
required by ORCHID, our experiments show that the proce-
dure is able to give the optimum values for CREAM even
with the default parameters, without any user effort.

Early interruptions are also triggered when ORCHID
highlights absolutely optimum CREAM configurations, i.e.,

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

598

D
S1

Ground truth
Spectral

Clustering Ward BIRCH
Gaussian
Mixture CLASSIX IMM ExACT CREAM

D
S2

D
S3

D
S4

Iri
s

W
in

e

Figure 2: Comparison between CREAM and other state-of-the-art traditional and explainable clustering techniques applied to synthetic and
real-world data sets.

with no predictive or readability losses, or when there is no
gain between successive search iterations. Search iterations
may refer to the depth or threshold parameters and corre-
sponding improvements are calculated as follows:

δ-gain(π1, π2) =

((
1− πp

2

πp
1

)0.1

· ⌈π
r
2 · Φ⌉

⌈πr
1 · Φ⌉

)−1

, (2)

θ-gain(π1, π2) = 1− πr
2

πr
1

+
πp
1

πp
2

, (3)

where π1 and π2 are compact representations of the p and r
losses corresponding to a pair of CREAM instances.

The parameter space search performed by ORCHID to
find the optimum parameters for CREAM is reported in Al-
gorithm 2. The procedure starts by evaluating CREAM in-
stances having maximum depth equal to 1. During the depth
search ORCHID iteratively analyses instances with grow-
ing depth values, up to ∆ or until an early interruption is
triggered (i.e., no gain is detected by augmenting the depth;
cf. Equation (2)). For each depth value, several thresholds
are tested through a threshold search, starting with θ = 1.0
and adapting it on the basis of the measured predictive loss.
Since this loss may be reduced by selecting threshold values
smaller than the loss itself, after the first iteration θ is set to a
twentieth of the loss.3 This value is then increased iteration

3One-twentieth of the measured loss is a reasonable starting
value since there is no need to test θ values larger than the measured
loss. Given that θ is increased during the algorithm iterations, with
this starting value it is possible to automatically perform a more
fine-grained search of θ values smaller than the measured loss

after iteration. Excepting an early stop, the threshold search
terminates when the patience expires, returning a set of can-
didate configurations. Patience is consumed only when a
new threshold value is tested with no gain (cf. Equation (3)).

As a result, for each depth value, a set of candidate con-
figurations is selected. The depth gain is calculated only by
comparing the “local” best configurations associated with
consecutive depth values. At the end of the procedure, the
“global” best configuration is selected with Equation (1)
amongst all the candidates.

4 Experiments
Experiments involving CREAM and other state-of-the-art
techniques applied to clustering, classification and regres-
sion tasks are reported here. The adopted CREAM imple-
mentation is included in the PSyKE framework4 (Sabbatini
et al. 2021; Sabbatini et al. 2022b; Sabbatini, Ciatto, and
Omicini 2022; Calegari and Sabbatini 2023).

4.1 Explainable Clustering
Being an explainable clustering technique, we first assess the
performance of CREAM to cluster labelled data. CREAM
has been applied to 6 different synthetic and real-world data
sets. In particular, 4 out of 6 are synthetic clustering data
sets taken from the Scikit-Learn Python library5 (Pedregosa
et al. 2011), whereas the remaining 2 are real-world classifi-
cation data sets, i.e., Iris (Fisher 1936) and Wine (Forina et

4Code available at https://github.com/psykei/psyke-python
5https://scikit-learn.org/stable/modules/clustering.html

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

599

https://github.com/psykei/psyke-python
https://scikit-learn.org/stable/modules/clustering.html

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

D
S1

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

D
S2

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

D
S3

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

D
S4

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

Iri
s

ARI AMI V FMI Time (s)
0.00

0.25

0.50

0.75

1.00

W
in

e

Spectral Clustering
Ward

BIRCH
Gaussian Mixture

CLASSIX
IMM

ExACT
CREAM

Figure 3: Performance assessments for the clustering algorithms
and data sets shown in Figure 2.

Feature SL SW PL PW

Setosa 4.4 – 5.8 2.3 – 4.1 1.2 – 1.9 0.1 – 0.5
Versicolor 4.9 – 6.7 2.2 – 3.2 3.0 – 5.0 1.0 – 1.8
Virginica 4.4 – 7.9 2.2 – 4.1 1.2 – 6.9 0.1 – 2.5

Table 1: Example of CREAM clustering for the Iris data set. Input
features: sepal length and width (SL and SW, resp.), petal length
and width (PL and PW, resp.). Values are expressed in cm.

al. 1988). All the adopted synthetic data sets are described
by 2 continuous input features and they have 2 or 3 clusters,
as shown in the first column of Figure 2. Both Iris and Wine
data sets have 3 possible output values. Iris has 4 continu-
ous input features, whereas Wine has 13 of them. In Figure 2
only petal length and width features are reported for the Iris
data set. For the Wine data set the reported features are al-
cohol and proline.

To assess the performance of CREAM in executing clus-
tering 4 metrics have been exploited, namely: Fowlkes-
Mallows index (FMI), adjusted rand index (ARI), V-
measure (V), and adjusted mutual score (AMI) (Fowlkes
and Mallows 1983; Hubert and Arabie 1985; Rosenberg and
Hirschberg 2007; Nguyen, Epps, and Bailey 2010, respec-
tively). The assessment is carried out by measuring these
indices for all the aforementioned data sets and then by
performing a comparison with several state-of-the-art tradi-
tional and explainable clustering techniques, evaluated via
the same metrics. The set of traditional clustering algo-
rithms is composed of spectral clustering, Ward, BIRCH and
GMMs. CLASSIX, IMM and ExACT, on the other hand, are
the explainable clustering techniques used as benchmarks.
The output clusterings of these algorithms are reported in
Figure 2. Experiments are completed by an execution time
comparison amongst all the clustering techniques.

Figure 3 reports all the metrics measured for all combina-

Iri
s

Ground truth

Setosa
Versicolor
Virginica

k-NN RF ExACT CREAM

W
in

e

1
2
3

k-NN RF ExACT CREAM
Accuracy score

0.00

0.25

0.50

0.75

1.00

Iri
s

k-NN RF ExACT CREAM
Accuracy score

0.00

0.25

0.50

0.75

1.00

W
in

e

(a) Classification case study.

CC
PP

Ground truth k-NN RF ExACT CREAM

IS
E

k-NN RF ExACT CREAM
R2 score

0.00

0.25

0.50

0.75

1.00

CC
PP

k-NN RF ExACT CREAM
R2 score

0.00

0.25

0.50

0.75

1.00

IS
E

(b) Regression case study.

Figure 4: Comparison between CREAM and state-of-the-art mod-
els applied to real-world data sets.

tions of clustering algorithms and data sets. Execution time
is reported in seconds, averaged on 100 runs. We recall here
that the ARI, AMI, V and FMI scores range in [0, 1], high-
lighting good-quality clusterings when values are close to 1,
and that they are not susceptible to renaming and permuta-
tions of the predicted cluster labels. Therefore they are not
suitable to evaluate the classification accuracy score of clus-
tering techniques applied to perform classification tasks.

Qualitative and quantitative assessments of the algo-
rithms’ performance may be carried out by observing both
Figures 2 and 3, where the superiority of CREAM, CLAS-
SIX and spectral clustering is clearly highlighted. However,
only CREAM is able to achieve a comparable or better per-
formance w.r.t. all the other techniques in all data sets, with
all the scores equal to 1 or slightly below. The main draw-
back of CREAM is its computational time since it appears

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

600

Feature AT V AP RH EP

Cluster 1 6.2 – 32.5 34.0 – 50.2 997.9 – 1026.4 35.6 – 100.1 502.5 - 2.2 AP - 0.3 AT - 0.1 V
Cluster 2 6.2 – 35.8 25.4 – 81.6 997.9 – 1026.5 25.6 – 100.1 234.7 - 1.4 AP - 0.3 AT + 0.3 RH - 0.1 V
Cluster 3 3.3 – 14.6 34.7 – 44.5 1011.3 – 1033.3 59.0 – 98.7 720.3 - 2.2 AP - 0.5 AT - 0.2 RH - 0.2 V
Cluster 4 2.3 – 35.8 25.4 – 81.6 992.9 – 1033.3 25.6 – 100.2 579.0 - 2.1 AP - 0.6 AT - 0.1 RH

Table 2: Example of CREAM clustering for the CCPP data set. Input features: ambient temperature and pressure (AT and AP, resp.), relative
humidity (RH) and exhaust vacuum (V). Output feature: net hourly electrical energy output (EP).

to be the slowest algorithm in the pool. Nonetheless, it is
able to complete its task in less than half a second.

4.2 Explainable Classification
CREAM is suitable to perform classification tasks since
it is able to provide explainable predictions when queried
with instances to be classified. In Figure 4a the results of
CREAM, ExACT and other ML opaque classifiers applied
to the Iris and Wine data sets are reported for a visual com-
parison. The BB classifiers are a k-nearest neighbours (k-
NN) model and a random forest (RF). For each combina-
tion of data sets and classifiers, the predictive performance
has been measured in terms of classification accuracy score,
representing the percentage of correct predictions w.r.t. all
the provided predictions. The measured accuracies are also
reported in Figure 4a. CREAM is able to achieve higher
accuracy than ML state-of-the-art models. Furthermore, its
outputs are interpretable and the corresponding clusters may
be expressed in a human-readable format.

As an example, we show in Table 1 the clusters obtained
via CREAM for the Iris data set, also reporting the corre-
sponding output class prediction. These results are obtained
by setting the maximum depth δ = 2, the error threshold
θ = 0.1 and the maximum amount of clusters ξ = 3. This
value for the δ parameter enables a maximum amount of 4
final clusters. Being a classification data set, θ = 0.1 means
that hypercubic regions are further split if the corresponding
accuracy score is smaller than 1− θ = 0.9. The output clus-
tering is clearly humanly interpretable, since for each one of
the 3 possible Iris classes there is an associated hypercubic
input space region described in terms of interval inclusion
constraints over the 4 input variables.

4.3 Explainable Regression
We conclude the experiment section by reporting the results
of CREAM applied to regression data sets, to show its ver-
satility and potentialities. In particular, we adopted the Com-
bined Cycle Power Plant (CCPP; Tüfekci 2014) and the Is-
tanbul Stock Exchange (ISE; Akbilgic, Bozdogan, and Bal-
aban 2014) data sets. The CCPP data set is composed of
5 continuous attributes, one of which is the output feature.
The ISE data set describes a regression task with 7 continu-
ous input features plus another input feature representing a
timestamp. This latter has been neglected during the experi-
ments reported here.

Figure 4b depicts the results of CREAM and other ML
predictors applied to the CCPP and ISE data sets. For the
CCPP data set only the ambient temperature and the exhaust

vacuum input features are reported. For the ISE data set the
represented input features are the stock market return index
of the UK and the MSCI European index. The BB mod-
els are similar w.r.t. the classification experiment. Being
regression tasks, the predictive performance of the models
has been assessed via the R2 score. Corresponding mea-
surements are also reported in Figure 4b. Also in this case
CREAM is able to outperform its interpretable and opaque
counterparts since it achieves the highest scores.

To give a practical example of the CREAM capabilities
in providing explainable predictions for regression tasks, the
output of CREAM applied to the CCPP data set is resumed
in Table 2. To obtain the reported results we adopted a
CREAM instance with δ = 2, θ = 0.1 and ξ = 4. In
this case θ = 0.1 induces the refinement of hypercubic ap-
proximations having mean absolute predictive error greater
than 0.1. For regression data sets like CCPP it is possible
to obtain with CREAM also clusters having more directly
interpretable constant output values instead of linear com-
binations. Nonetheless, in our experiments we privileged
clusters with linear outputs since they proved to have bet-
ter predictive performance, even if at the expense of human
readability.

5 Conclusions
In this paper we present CREAM, a new explainable clus-
tering technique applicable to data sets described by contin-
uous input features. CREAM proved to be a very versatile
procedure equivalent or superior to other clustering tech-
niques, both traditional and interpretable. As a drawback,
it requires more computational time to be executed. The
user-defined parameters required by CREAM can be tuned
by using the automated ORCHID procedure. CREAM can
also be exploited for explainable classification and regres-
sion tasks, providing human-interpretability thanks to the
hypercubic approximation of the identified clusters. Our
experiments show its ability to provide predictions having
higher predictive performance and wider extents of human-
readability w.r.t. opaque ML state-of-the-art models. In
the future, we plan to enrich CREAM with other splitting
strategies, in order to achieve higher performance from both
the predictive and computational time standpoints.

Acknowledgments
This work has been supported by the EU ICT-48 2020
project TAILOR (No. 952215).

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

601

References
Akbilgic, O.; Bozdogan, H.; and Balaban, M. E. 2014.
A novel hybrid rbf neural networks model as a forecaster.
Statistics and Computing 24:365–375.
Ankerst, M.; Breunig, M. M.; Kriegel, H.; and Sander, J.
1999. OPTICS: ordering points to identify the clustering
structure. In Delis, A.; Faloutsos, C.; and Ghandeharizadeh,
S., eds., SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 1-3,
1999, Philadelphia, Pennsylvania, USA, 49–60. ACM Press.
Basak, J., and Krishnapuram, R. 2005. Interpretable hier-
archical clustering by constructing an unsupervised decision
tree. IEEE Trans. Knowl. Data Eng. 17(1):121–132.
Bertsimas, D.; Orfanoudaki, A.; and Wiberg, H. M.
2018. Interpretable clustering via optimal trees. CoRR
abs/1812.00539.
Blanco-Justicia, A., and Domingo-Ferrer, J. 2019. Ma-
chine learning explainability through comprehensible de-
cision trees. In International Cross-Domain Conference
for Machine Learning and Knowledge Extraction, 15–26.
Springer.
Calegari, R., and Sabbatini, F. 2023. The PSyKE technol-
ogy for trustworthy artificial intelligence. 13796:3–16. XXI
International Conference of the Italian Association for Arti-
ficial Intelligence, AIxIA 2022, Udine, Italy, November 28
– December 2, 2022, Proceedings.
Chen, X., and Güttel, S. 2022. Fast and explainable cluster-
ing based on sorting. CoRR abs/2202.01456.
Chen, J.; Chang, Y.; Hobbs, B.; Castaldi, P. J.; Cho, M. H.;
Silverman, E. K.; and Dy, J. G. 2016. Interpretable cluster-
ing via discriminative rectangle mixture model. In Bonchi,
F.; Domingo-Ferrer, J.; Baeza-Yates, R.; Zhou, Z.; and Wu,
X., eds., IEEE 16th International Conference on Data Min-
ing, ICDM 2016, December 12-15, 2016, Barcelona, Spain,
823–828. IEEE Computer Society.
Cheng, Y. 1995. Mean shift, mode seeking, and cluster-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17(8):790–799.
Dasgupta, S.; Frost, N.; Moshkovitz, M.; and Rashtchian,
C. 2020. Explainable k-means and k-medians clustering.
CoRR abs/2002.12538.
Ester, M.; Kriegel, H.; Sander, J.; and Xu, X. 1996. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Simoudis, E.; Han, J.; and
Fayyad, U. M., eds., Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD-96), Portland, Oregon, USA, 226–231. AAAI
Press.
European Commission; Directorate-General for Communi-
cations Networks, C.; and Technology. 2019. Ethics guide-
lines for trustworthy AI. Publications Office.
European Commission. 2021. AI Act – Proposal for a
regulation of the European Parliament and the Council lay-
ing down harmonised rules on Artificial Intelligence (Artifi-
cial Intelligence Act) and amending certain union legislative

acts. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:52021PC0206.
Fisher, R. A. 1936. The use of multiple measurements in
taxonomic problems. Annals of Eugenics 7(2):179–188.
Forina, M.; Leardi, R.; Armanino, C.; Lanteri, S.; Conti,
P.; and Princi, P. 1988. Parvus: An extendable package of
programs for data exploration, classification and correlation.
Journal of Chemometrics 4(2):191–193.
Fowlkes, E. B., and Mallows, C. L. 1983. A method
for comparing two hierarchical clusterings. Journal of the
American statistical association 78(383):553–569.
Fraiman, R.; Ghattas, B.; and Svarc, M. 2013. Interpretable
clustering using unsupervised binary trees. Advances in
Data Analysis and Classification 7(2):125–145.
Hubert, L., and Arabie, P. 1985. Comparing partitions. Jour-
nal of classification 2:193–218.
Jang, J., and Jiang, H. 2019. DBSCAN++: towards fast and
scalable density clustering. In Chaudhuri, K., and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, 3019–3029. PMLR.
Ling, R. F. 1972. On the theory and construction of k-
clusters. The Computer Journal 15(4):326–332.
Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE
Trans. Inf. Theory 28(2):129–136.
Manduchi, L.; Hüser, M.; Faltys, M.; Vogt, J. E.; Rätsch,
G.; and Fortuin, V. 2021. T-DPSOM: an interpretable clus-
tering method for unsupervised learning of patient health
states. In Ghassemi, M.; Naumann, T.; and Pierson, E.,
eds., ACM CHIL ’21: ACM Conference on Health, Infer-
ence, and Learning, Virtual Event, USA, April 8-9, 2021,
236–245. ACM.
Moshkovitz, M.; Dasgupta, S.; Rashtchian, C.; and Frost,
N. 2020. Explainable k-means and k-medians clustering. In
International conference on machine learning, 7055–7065.
PMLR.
Murphy, K. P. 2012. Machine learning – A probabilistic
perspective. Adaptive computation and machine learning
series. MIT Press.
Nguyen, X. V.; Epps, J.; and Bailey, J. 2010. Informa-
tion theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance.
Journal of Machine Learning Research 11:2837–2854.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; VanderPlas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research (JMLR) 12:2825–2830.
Rahmah, N., and Sitanggang, I. S. 2016. Determination of
optimal epsilon (eps) value on DBSCAN algorithm to clus-
tering data on peatland hotspots in Sumatra. In IOP confer-
ence series: earth and environmental science, volume 31,
012012. IOP Publishing.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

602

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Rosenberg, A., and Hirschberg, J. 2007. V-Measure: A
conditional entropy-based external cluster evaluation mea-
sure. In Eisner, J., ed., EMNLP-CoNLL 2007, Proceedings
of the 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Lan-
guage Learning, June 28-30, 2007, Prague, Czech Republic,
410–420. ACL.
Sabbatini, F., and Calegari, R. 2022. Symbolic knowl-
edge extraction from opaque machine learning predictors:
GridREx & PEDRO. In Kern-Isberner, G.; Lakemeyer, G.;
and Meyer, T., eds., Proceedings of the 19th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2022, Haifa, Israel. July 31 - August 5, 2022.
Sabbatini, F., and Calegari, R. 2023. Explainable black
boxes via explainable clustering: ExACT and CREEPY.
Decision Support Systems (submitted to).
Sabbatini, F.; Ciatto, G.; Calegari, R.; and Omicini, A.
2021. On the design of PSyKE: A platform for symbolic
knowledge extraction. In Calegari, R.; Ciatto, G.; Denti, E.;
Omicini, A.; and Sartor, G., eds., WOA 2021 – 22nd Work-
shop “From Objects to Agents”, volume 2963 of CEUR
Workshop Proceedings, 29–48. Sun SITE Central Europe,
RWTH Aachen University. 22nd Workshop “From Ob-
jects to Agents” (WOA 2021), Bologna, Italy, 1–3 Septem-
ber 2021. Proceedings.
Sabbatini, F.; Ciatto, G.; Calegari, R.; and Omicini, A.
2022a. Hypercube-based methods for symbolic knowledge
extraction: Towards a unified model. In Ferrando, A., and
Mascardi, V., eds., WOA 2022 – 23rd Workshop “From Ob-
jects to Agents”, volume 3261 of CEUR Workshop Proceed-
ings. Sun SITE Central Europe, RWTH Aachen University.
48–60.
Sabbatini, F.; Ciatto, G.; Calegari, R.; and Omicini, A.
2022b. Symbolic knowledge extraction from opaque ML
predictors in PSyKE: Platform design & experiments. Intel-
ligenza Artificiale 16(1):27–48.
Sabbatini, F.; Ciatto, G.; and Omicini, A. 2021. GridEx:
An algorithm for knowledge extraction from black-box re-
gressors. In Calvaresi, D.; Najjar, A.; Winikoff, M.; and
Främling, K., eds., Explainable and Transparent AI and
Multi-Agent Systems. Third International Workshop, EX-
TRAAMAS 2021, Virtual Event, May 3–7, 2021, Revised Se-
lected Papers, volume 12688 of LNCS. Basel, Switzerland:
Springer Nature. 18–38.
Sabbatini, F.; Ciatto, G.; and Omicini, A. 2022. Seman-
tic Web-based interoperability for intelligent agents with
PSyKE. In Calvaresi, D.; Najjar, A.; Winikoff, M.; and
Främling, K., eds., Explainable and Transparent AI and
Multi-Agent Systems, volume 13283 of Lecture Notes in
Computer Science. Springer. chapter 8, 124–142.
Shi, J., and Malik, J. 2000. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(8):888–905.
Tüfekci, P. 2014. Prediction of full load electrical power
output of a base load operated combined cycle power plant
using machine learning methods. International Journal of
Electrical Power & Energy Systems 60:126–140.

Yu, S. X., and Shi, J. 2003. Multiclass spectral clustering.
In 9th IEEE International Conference on Computer Vision
(ICCV 2003), 14-17 October 2003, Nice, France, 313–319.
IEEE Computer Society.
Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. BIRCH:
an efficient data clustering method for very large databases.
In Jagadish, H. V., and Mumick, I. S., eds., Proceedings
of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Quebec, Canada, June 4-
6, 1996, 103–114. ACM Press.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

603

	Introduction
	Related Works
	Traditional Clustering
	Explainable Clustering

	Explainable Clustering with CREAM
	The Algorithm
	Parameters Required by CREAM
	Automated Parameter Tuning

	Experiments
	Explainable Clustering
	Explainable Classification
	Explainable Regression

	Conclusions

