
Fuzzy Truth, Fuzzy Support
and Fuzzy Information States

for Inquisitive Semantics
Vı́t Punčochář
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Abstract

In logic, the meaning of a sentence is usually reduced to its
truth conditions. However, this makes sense only for declar-
ative sentences. In order to model also the meaning of ques-
tions, inquisitive semantics replaces the truth-conditional ap-
proach relating sentences to possible worlds with a support-
conditional approach that relates sentences to information
states. The standard framework of inquisitive semantics is
based on a crisp notion of an information state, defined as a
set of possible worlds, and a crisp relation of informational
support. This paper introduces and studies two refinements
of the standard framework. The first refinement takes into ac-
count fuzzy information states (defined as fuzzy sets of pos-
sible worlds) and the second one introduces a notion of fuzzy
informational support. The main result of this paper shows
that in the resulting framework that fuzzifies inquisitive se-
mantics in two different directions we obtain an abstract and
very general version of a principle known from the basic in-
quisitive semantics as Truth-Support Bridge.

1 Introduction
A vast number of mathematical frameworks proposed in
the logical literature are explicitly intended to represent es-
sential aspects of information. One can distinguish two
widespread types of approaches to the logical representation
of information. The first one can be called concrete and the
second one abstract.

The concrete approach is related to the theory of semantic
information developed by Carnap and Bar-Hillel (1964). In
its modern formulation it is based on the notion of a possi-
ble world which has been a prevailing tool in formal seman-
tics at least since the work of Kripke (1959) and Hintikka
(1962). A possible world can be viewed as a complete total-
ity of facts. Every sentence of a fixed language is supposed
to be true or false in a given world. A body of information
is modelled as a set of possible worlds, those worlds that
are compatible with the information. For this reason, the
concrete approach is by van Benthem and Martinez (2008)
called Information as Range. This notion of information is
used for a semantic representation of knowledge and belief
in epistemic logic (Fagin et al. 1995), including its dynamic
extensions (van Ditmarsch, van der Hoek, and Kooi 2007;
van Benthem 2011), and in belief revision theory (Hansson
1999). As we will see, information states, defined in this

way, also play a central role in inquisitive semantics (Cia-
rdelli, Roelofsen, and Groenendijk 2019) which allows us to
model the meaning of questions.

The concrete approach to the logical modelling of infor-
mation is very clear and useful. It allows one to reduce some
complicated relations among sentences (e.g. entailment) to
somewhat more perspicuous set-theoretic relations (e.g. in-
clusion). On the other hand, it is evident that the scope of
application of this approach is significantly limited. It is inti-
mately connected with classical logic with all its well-known
problems and limitations.

More abstract frameworks that go beyond the concrete
approach to overcome its weaknesses are related to the de-
velopment of various relational semantics for non-classical
logics such as intuitionistic logic, relevant logic and other
substructural logics (Kripke 1965; Urquhart 1972; Ander-
son and Belnap 1975; Anderson, Belnap, and Dunn 1992;
Wansing 1993; Mares 1997; Dunn and Hardegree 2001;
Punčochář 2017; Leitgeb 2019). Semantic frameworks for
such logical systems are often based on mathematical mod-
els that are interpreted as consisting of information states
with respect to which sentences are evaluated. In contrast to
the states of the concrete approach, these abstract states are
primitive entities, they have no internal structure but they are
related one to another by some external structure, for exam-
ple by informational ordering determining when one state is
informationally stronger than another one, which goes back
to (Kripke 1965), or by an algebraic operation that allows
one to combine two (abstractly conceived) pieces of infor-
mation into a new piece of information, which goes back to
(Urquhart 1972).

There is a big discrepancy between the concrete and the
abstract logical approach to information. On the one hand,
the concrete approach gives us a very clear picture of what
an information state is but it is based on strong idealizations
which significantly restrict its scope of application. On the
other hand, the abstract approach helps us to overcome some
of these limitations but it often provides only a very unclear
account of what exactly the information states in an abstract
semantic framework represent.

In this paper we employ a framework that overcomes
some limitations of classical logic, while staying within the
boundaries of the concrete approach. In particular, we refine
the usual concrete approach in a way that allows us to ad-
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dress phenomena related to vagueness. A notion of a fuzzy
information state, defined as a fuzzy set of possible worlds,
is introduced and applied in a context of inquisitive seman-
tics to model the meaning of questions involving vague vo-
cabulary. We consider two versions of inquisitive semantics
based on fuzzy information states. The first one defines a
crisp notion of support of a formula by a fuzzy informa-
tion state. The second one fuzzyfies inquisitive semantics
in another direction and introduces a fuzzy notion of infor-
mational support. In both these modifications we formulate
and prove a general version of a principle known from the
standard inquisitive semantics as Truth-Support Bridge for
declarative sentences, and describe some general key fea-
tures of all propositions, involving the inquisitive ones.

2 Inquisitive Semantics
We start with the language L of propositional logic gener-
ated from a set of atomic formulas At and the contradiction
constant ⊥ by the binary connectives ∧ and →. Anticipat-
ing that we will be later concerned with t-norm based fuzzy
logics, we can define disjunction and negation in this way:
ϕ ∨ ψ =def ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) and
¬ϕ =def ϕ → ⊥. Extending L with the additional binary
connective

>

results in the language L

>

. We adopt the con-
vention that the Greek letters α, β will range over

>

-free for-
mulas and the letters ϕ,ψ over formulas possibly involving>

. The primitive operators of the language L are interpreted
in the usual manner as conjunction (∧) and implication (→),
and the defined symbols as declarative disjunction (∨) and
negation (¬). The connective

>

is called inquisitive disjunc-
tion and it is viewed as an operator that allows us to form a
disjunctive question. So, α

>

β is interpreted as the ques-
tion whether α or β, in contrast to α∨β which has the usual
meaning as the statement that α or β. Given this reading, the
formulas of the language L, i.e. the

>

-free formulas of L

>

,
may be called declarative. We also define: ?ϕ = ϕ

> ¬ϕ.
For a declarative α, the formula ?α can be interpreted as the
polar question whether α.
Definition 1. A c-model (a shorthand for “crisp model”) is
a pairM = 〈W,V 〉, where W is a non-empty set (of pos-
sible worlds) and V is a c-valuation (crisp valuation), i.e.
a function assigning to each atomic formula an information
c-state (crisp information state) defined as a subset of W .

The basic semantics for classical logic can be presented in
terms of a crisp relation of truth �, relating possible worlds
of a c-model and L-formulas, which is defined in the usual
recursive manner:

w 2 ⊥,
w � p iff w ∈ V (p), for each atomic formula p,
w � α ∧ β iff w � α and w � β,
w � α→ β iff w 2 α or w � β.

Note that this implies the usual characterization of nega-
tion and disjunction: w � ¬α iffw 2 α; w � α∨β iffw � α
or w � β.

An L-formula α is said to be truth-conditionally valid (or
tc-valid, for short) in a c-modelM = 〈W,V 〉 if w � α, for

all w ∈ W . An L-formula α is said to be a tc-consequence
(truth-conditional consequence) of a set of L-formulas ∆ if
α is tc-valid in every c-model in which each formula from
∆ is tc-valid. By this definition we obtain the usual conse-
quence relation of classical logic.

Even though standard inquisitive logic (Ciardelli and
Roelofsen 2011; Ciardelli, Roelofsen, and Groenendijk
2019; Ciardelli 2022) conservatively extends classical logic,
it is not based on this common truth-conditional seman-
tics for classical logic. The reason is that questions do not
have truth values and thus cannot be characterized in terms
of truth conditions. However, they can be characterized
in terms of informational support. One can meaningfully
ask whether a body of information resolves a given ques-
tion. Since declarative sentences can also be characterized
in terms of informational support, this notion allows us to
build a uniform framework for statements and questions.

Motivated by these considerations, inquisitive semantics
employs an information-based approach that replaces the
notion of crisp truth � that relates formulas to crisp worlds
with a relation of crisp support  that relates formulas to
crisp information states. If w and s are respectively a world
and a state of a given c-model M then w � α means that
α is true in the world w relative toM, while s  α means
that α is supported by the state s relative to M. Since, on
the informational level, a semantic clause for inquisitive dis-
junction can be formulated, the support relation is defined
for the whole language L

>

:

s  ⊥ iff s = ∅,
s  p iff s ⊆ V (p), for each atomic formula p,

s  ϕ ∧ ψ iff s  ϕ and s  ψ,

s  ϕ→ ψ iff ∀t ⊆ s, if t  ϕ, then t  ψ,

s  ϕ

>

ψ iff s  ϕ or s  ψ.

AnL

>

-formula ϕ is said to be support-conditionally valid
(or sc-valid, for short) in a c-modelM = 〈W,V 〉 ifW  ϕ.
We say that anL

>

-formula ϕ is an sc-consequence (support-
conditional consequence) of a set of L

>

-formulas ∆ if ϕ is
sc-valid in every c-model in which each formula from ∆ is
sc-valid.

If α is declarative, i.e. representing a statement, then s 
α can be read as “the body of information s implies α”. For
a question α

>

β, the intended meaning of s  α

>

β is that
“the body of information s resolves the question whether
α or β”. In this case, the semantic clause for inquisitive
disjunction says something very intuitive, namely that the
body of information s resolves the question whether α or β
if and only if s provides a direct answer to the question, i.e.
s implies α or s implies β.

Note that the syntax of L

>

allows us to embed inquisitive
disjunction arbitrarily under other operators. By this we ob-
tain some important constructions, for example conditional
questions like p →?q (i.e. if p, is q the case?). A crucial
feature of inquisitive semantics is that the support conditions
give us reasonable behaviour of the connectives also for such
complex constructions, so that the semantic clauses interact
in a desirable way.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

573



As a simple but important consequence of these defini-
tions we obtain the following principle that Ciardelli (2022)
calls Truth-Support Bridge. We add the roman numeral one
because below we will state two more abstract versions of
this principle.

Proposition 1 (Truth-Support Bridge-I). For any informa-
tion c-state s of any c-model, and for any L-formula α:

s  α if and only if w � α, for all w ∈ s.

This principle shows that, for declarative formulas, truth
and support are interdefinable. Support by s amounts to
truth in all worlds of s, and truth in w amounts to support
by {w}. This observation also makes clear that, for the lan-
guage L, tc-validity coincides with sc-validity. This imme-
diately implies that in restriction to declarative formulas the
information-based semantics determines the same logic as
the truth-conditional semantics. Hence the standard inquisi-
tive logic indeed extends conservatively classical logic.

Proposition 2. An L-formula α is an sc-consequence of a
set of L-formulas ∆ if and only if α is a tc-consequence
of ∆, i.e. if and only if α follows form ∆ in classical logic.

The Truth-Support Bridge-I also expresses a feature of
declarative sentences that distinguishes them from ques-
tions. Questions do not have truth conditions and their sup-
port cannot be in any analogous way reduced to the notion of
truth. For example, if V (p) * V (q) and V (q) * V (p) then
it holds V (p)  p

>

q (intuitively, p resolves the question
whether p or q), V (q)  p

>

q (also q resolves the ques-
tion whether p or q) but V (q) ∪ V (p) 1 p

>
q (the mere

disjunction p or q does not resolve the question whether p
or q). So, unlike in the case of declarative formulas, the set
of states supporting a question does not have to be closed
under union, which prevents us from having anything like
the Truth-Support Bridge-I for questions. For all formulas
of L

>

we can generally state the following weaker charac-
teristic properties.

Proposition 3. In any c-model and for any L

>

-formula ϕ:

(a) ∅  ϕ (empty-state property),
(b) if s  ϕ and t ⊆ s then t � ϕ (persistence property).

It will be useful to observe that due to Proposition 3-b, i.e.
the persistence property, the semantic clause for implication
could be equivalently reformulated in this way:

s  ϕ→ ψ iff ∀t ⊆W , if t  ϕ then s ∩ t  ψ.

We finish this section by formulating another crucial prop-
erty of basic inquisitive semantics related to the traditional
methodology that reduces questions to sets of possible an-
swers. Let us assign to every L

>

-formula ϕ a finite set of
L-formulas R(ϕ) in accordance with the following recur-
sive clauses:

• R(⊥) = {⊥},R(p) = {p}, for each atomic formula p,

• R(ϕ ∧ ψ) = {α ∧ β | α ∈ R(ϕ), β ∈ R(ψ)},
• R(ϕ→ψ) = {

∧
α∈R(ϕ)(α→f(α)) | f : R(ϕ)→R(ψ)},

• R(ϕ

>

ψ) = R(ϕ) ∪R(ψ).

The formulas in R(ϕ) are called “resolutions of ϕ”. Note
that for any

>

-free α, R(α) = {α}. If ϕ represents a ques-
tion, the setR(ϕ) contains more than one formula, and, intu-
itively, the formulas inR(ϕ) form an exhaustive set of direct
answers to ϕ. Resolutions of ϕ are semantically related to ϕ
in the following way (see, e.g., Ciardelli 2022).

Proposition 4. Let ϕ be an L

>

-formula,M a c-model, and
s a c-state inM. IfR(ϕ) = {α1, . . . , αn} then

s  ϕ inM if and only if s  α1

>

. . .

>

αn inM.

So, each L

>

-formula represents either a statement, or a
question with finite set of direct answers. For example, we
obtain R(p →?q) = {p → q, p → ¬q}, and so the formula
p →?q (representing the conditional question if p, is q the
case?) represents a question with two direct answers p→ q
and p→ ¬q.

3 Fuzzy Truth
Truth is not always a crisp, binary matter. Vagueness is ubiq-
uitous in language and it leads to the phenomenon of graded
truth. For example, the truth value of such a vague claim
like, e.g., that a particular person is rich, might be difficult
to determine. Nevertheless, it seems clear that such claim is
more true for some people than for other. There are various
strategies of modelling the phenomenon of vagueness (see
for example (Sorensen 2022), for an overview). I will focus
on the approach known as fuzzy logic in the form developed
by Petr Hájek (1998).

We introduce the semantics of fuzzy logic in analogy with
our presentation of the truth-conditional semantics for clas-
sical logic. Given a set of possible worlds W , an informa-
tion c-state s inW is a subset ofW . Each such subset can be
represented by its characteristic function gs : W → {0, 1},
such that gs(w) = 1 if w ∈ s, and gs(w) = 0 if w /∈ s. The
notion of a subset of W can be generalized by replacing the
set {0, 1} with the closed real interval [0, 1]. Any function
g : W → [0, 1] is called a fuzzy subset of W . The value
g(w), for a given world w, represents the degree to which w
belongs to g. The symbols ∅f and Wf will denote the fuzzy
sets corresponding respectively to the empty set and to the
full set W . So, ∅f constantly assigns 0 and Wf constantly
assigns 1 to the worlds ofW . Fuzzy subset relationv, fuzzy
intersection u and fuzzy union t are defined as follows:

s v t iff s(w) ≤ t(w), for all w ∈W,

(s u t)(w) = min{s(w), t(w)},
(s t t)(w) = max{s(w), t(w)}.

Note that if we restrict ourselves just to the crisp values 0
and 1 and the crisp subsets are identified with their charac-
teristic functions then the usual subset relation, intersection
and union can be defined in the same way.

Definition 2. An f-model (fuzzy model) is a pair M =
〈W,V 〉, where W is a non-empty set (of possible worlds)
and V is an f-valuation (fuzzy valuation), i.e. a function as-
signing to each atomic formula an information f-state (fuzzy
information state) defined as a fuzzy subset of W .
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w1 w2 w3

the culprit is tall 0.7 0.8 0.5
the culprit is smart 0.5 0.9 0.6
the culprit knew well the victim 0.8 0.2 0.5

Table 1: An example illustrating graded states

Let us illustrate the notion of a fuzzy information state
with the following simple example. Assume that a crime
was committed and there are three suspects. Given this con-
text assume that W consists of three relevant scenarios. In
each of these scenarios one of the suspects committed the
crime. Let an agent’s information state be formed by the
vague information that the culprit is tall, smart and knew
well the victim. In each world the components of the infor-
mation are evaluated as in Table 1. The worlds are more or
less compatible with the information that is available to the
agent (that the culprit is tall, smart and knew well the vic-
tim). The agent’s information state is represented by a func-
tion that assigns to each world from W the degree to which
it is compatible with the information that is available to the
agent. It is not completely clear how this degree should be
calculated in our example. The t-norms defined below can
be viewed as alternative well-behaving strategies of calculat-
ing such a number. For example, one reasonable approach
seems to be taking the minimum value. According to this
strategy, the first world is compatible with the available in-
formation to the degree 0.5, the second world to the degree
0.2 and the third one to the degree 0.5. Then the agent’s
information state can be identified with the corresponding
function: w1 7→ 0.5, w2 7→ 0.2, w3 7→ 0.5.

Definition 3. A continuous t-norm is a continuous, commu-
tative, associative and monotone binary function ∗ on the
interval [0, 1] such that 1 ∗ x = x and 0 ∗ x = 0, for each x
from [0, 1].

By a t-norm, we will always mean in this paper a con-
tinuous t-norm. (In fact, we could be slightly more general
and consider all left-continuous t-norms. But we will follow
the classical presentation of t-norm based fuzzy logics from
(Hájek 1998) which uses the notion of a continuous t-norm.)
The function min, assigning to any two numbers from [0, 1]
their minimum, is an example of a t-norm. Another example
is product ×, as an operation on the interval [0, 1]. Another
important t-norm is the Łukasiewicz t-norm defined as fol-
lows:

x ∗Ł y = max{0, x+ y − 1}.
Fixing a t-norm ∗ there is a unique binary residual operation
⇒∗ on [0, 1] satisfying:

x ∗ y ≤ z iff x ≤ y ⇒∗ z.

(In fact, left-continuity of a t-norm is necessary and suffi-
cient for the existence of the residual operation.) For ex-
ample, the residual of min is the function⇒min defined as
follows:

x⇒min y =

{
1 if x ≤ y
y otherwise

The residual of the Łukasiewicz t-norm ∗Ł is the function
⇒Ł defined in this way:

x⇒Ł y =

{
1 if x ≤ y
1− x+ y otherwise

If no confusion arises, we will often omit the subscript
in⇒∗. The following properties of t-norms will be needed
below. For more details, see (Hájek 1998; Cintula, Hájek,
and Noguera 2011).
Proposition 5. Let ∗ be a t-norm and ⇒ its resid-
ual. Then the following claims hold generally for all
x, x1, x2, y, y1, y2, z ∈ [0, 1]:

(a) x ∗ y ≤ min{x, y},
(b) x ≤ y iff x⇒ y = 1,
(c) (x1 ⇒ y1) ∗ (x2 ⇒ y2) ≤ (x1 ∗ x2)⇒ (y1 ∗ y2),
(d) (x⇒ y) ∗ (y ⇒ z) ≤ x⇒ z,
(e) 0⇒ x = 1,
(f) 1⇒ x = x,
(g) max{x, y} ⇒ z = min{x⇒ z, y ⇒ z},
(h) if x ≤ y then y ⇒ z ≤ x⇒ z,
(i) if x ≤ y then z ⇒ x ≤ z ⇒ y.

Different t-norms represent different ways of fusing in-
formation. As is usual in fuzzy logic, we will introduce a
new conjunction & to be able to reflect this fusion in the
object language, as a residual of implication. Negation and
disjunction are defined as before. The symbols L& and L

>

&
will respectively denote the extensions of the languages L
and L

>

with this new conjunction. Fixing a t-norm ∗ and
an f-model M we can define the fuzzy truth value of each
L&-formula α in each world w ofM. This value is denoted
as w∗(α) but we will usually omit the subscript ∗. It is cal-
culated in accordance with these recursive clauses:

w(⊥) = 0,
w(p) = V (p)(w), for each atomic formula p,
w(α ∧ β) = min{w(α), w(β)},
w(α & β) = w(α) ∗ w(β),
w(α→ ψ) = w(α)⇒ w(β).

Note that in restriction to the values 0, 1 these clauses be-
have in accordance with classical logic and thus generalize
the standard truth-conditional semantics for classical logic
introduced in the previous section. For negation and dis-
junction we obtain: w(¬α) = w(α) ⇒ 0; w(α ∨ β) =
max{w(α), w(β)}.

We say that an L&-formula α is tc∗-valid in an f-model
M, if w(α) = 1 in every world ofM, relative to the t-norm
∗. Let ∆ ∪ {α} be any set of L&-formulas. We say that α
is a tc∗-consequence of ∆ if α is tc∗-valid in every f-model
M in which all formulas from ∆ are tc∗-valid. This truth-
conditional validity and consequence relation is relative to a
given t-norm ∗. In this way, every t-norm determines a par-
ticular fuzzy logic, for example Ł determines Łukasiewicz
logic, while min determines Gödel-Dummett logic (Hájek
1998).
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In analogy to the crisp case, if we want to add ques-
tions and employ the language L

>

&, we need to move to the
support-conditional semantics, or more precisely, we need
to formulate its fuzzyfied version. Here we get to the central
topic of this paper.

4 Fuzzy Information States
Interestingly, the fuzzy version of the truth-conditional se-
mantics that we introduced in the previous section allows us
to fuzzify the support-conditional semantics in two very dif-
ferent ways that both make a very good sense. The first one
replaces the notion of an information state, with respect to
which formulas are evaluated, with the notion of a fuzzy in-
formation state. The second one replaces the crisp notion of
support with a notion of fuzzy support. In this section, we
will focus on the first approach, in the next section on the
second one.

The generalization presented in this section is based on
(Punčochář 2019), where, however, a similar framework was
presented rather too abstractly, without a clear intuitive mo-
tivation. Here, we pay more attention to how the semantics is
informally motivated. The framework presented in the next
section is new (though there are some similarities with the
approach developed in (Xie and Wu 2019) that are discussed
below). It further generalizes the semantics of this section in
a new dimension.

Recall from Definition 2 that an information f-state s in
an f-modelM = 〈W,V 〉 is a fuzzy subset of W , which we
denote as s v Wf , where Wf is the function assigning 1 to
every element of W . Note that by this maneuver the algebra
of information states is completely changed.

We can define information-based semantics relative to f-
states. For the formulation of the semantic clauses it will be
useful to define the operation ∗ also on the level of f-states:

(s ∗ t)(w) = s(w) ∗ t(w),

Now, given an f-modelMwe can define the support relation
∗ as a relation between f-states of M and L

>

&-formulas.
Again, the subscript ∗ will be omitted. The relation is de-
fined as follows:
s  ⊥ iff s = ∅f ,
s  p iff s v V (p), for each atomic formula p,
s  ϕ ∧ ψ iff s  ϕ and s  ψ,
s  ϕ & ψ iff ∃t, u vWf : t  ϕ, u  ψ and s v t ∗ u,
s  ϕ→ ψ iff ∀t vWf , if t  ϕ, then s ∗ t  ψ,
s  ϕ

>

ψ iff s  ϕ or s  ψ.
The support conditions have exactly the same shape as in

the crisp setting, except that the clause for & is newly added,
the subset relation is replaced by fuzzy subset relation, and
∩ is replaced with ∗ in the (modified) clause for implication
stated after Proposition 3.

We say that an L

>

&-formula ϕ is sc∗-valid in an f-model
M, if Wf  ϕ inM. Let ∆∪{ϕ} be a set of L

>

&-formulas.
We say that ϕ is an sc∗-consequence of ∆ if ϕ is sc∗-valid
in every f-modelM in which all formulas from ∆ are sc∗-
valid.

Propositions 1, 2, 3 and 4 can now be adapted to our gen-
eralized setting by which we obtain their more abstract ana-
logues: Propositions 6, 7, 8 and 9. These propositions follow
from the results in (Punčochář 2019).
Proposition 6 (Truth-Support Bridge-II). For any informa-
tion f-state s of any f-model, and for any L&-formula α:

s  α if and only if s(w) ≤ w(α), for all w ∈W .

One can observe that if we allowed for each world w only
two options, either s(w) = 0 (w is fully incompatible with
s), or s(w) = 1 (w is fully compatible with s), then Truth-
Support Bridge-II would express the same as Truth-Support
Bridge-I, namely that for declarative formulas support by s
coincides with truth in all worlds of s.

In analogy to the crisp case, Truth-Support Bridge-II im-
plies for every declarative α that α is tc∗-valid inM if and
only if α is sc∗-valid in M. It follows for every t-norm
that, in restriction to the declarative fragment, the support-
conditional semantics determines the same consequence re-
lation as the truth-conditional semantics.
Proposition 7. An L&-formula α is an sc∗-consequence of
a set of L&-formulas ∆ if and only if α is a tc∗-consequence
of ∆.

For all formulas, whether declarative or inquisitive, we
again obtain only some weaker properties, in particular the
empty-state property and the persistence property.

Proposition 8. In any f-model and for any L

>

&-formula ϕ:

(a) ∅f  ϕ (empty-state property),
(b) if s  ϕ and t v s then t � ϕ (persistence property).

We also expand the notion of resolution to the language
L

>

& in the following way. For atomic formulas and for
⊥,∧,→, > , the equations defining resolutions are the same
as in Section 2. We just need to add the equation for &:

R(ϕ & ψ) = {α & β | α ∈ R(ϕ), β ∈ R(ψ)}.

The crucial property relating a formula with its resolu-
tions is preserved.

Proposition 9. Let ϕ be anL

>

&-formula,M an f-model, and
s an f-state inM. IfR(ϕ) = {α1, . . . , αn} then

s  ϕ inM if and only if s  α1

>

. . .

>

αn inM.

This means that the relation between the declarative part
of the language and the inquisitive part remains intact by the
generalization. What have changed is just the background
logic of declarative sentences. Classical logic of statements
can be replaced in this way with any t-norm fuzzy logic.

Even though the specification of what counts as a direct
answer to a given question is the same in the crisp (classi-
cal) setting and the fuzzy setting of this section, because the
resolution conditions are the same, the change of the back-
ground logic of declarative formulas has significant impact
on the logic of questions. For example, in contrast to the
crisp inquisitive semantics, polar questions may have non-
trivial presuppositions in the fuzzy setting. Let us explain
this point more carefully.
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w1 w2 w3

s 0.3 0.4 0.9
p 0.6 0.7 0.89
q 0.2 0.3 0.1

Table 2: An example illustrating graded support

The presupposition of a question is what is assumed to be
true when one asks the question. For example, when asking
whether p or q (e.g. whether Greg is Ann’s husband or Ann’s
brother), we presuppose that either p, or q is true. More for-
mally, p ∨ q represents the presupposition of p

>

q. If p ∨ q
is assumed by mistake and someone asks the question p

>

q
that has a false presupposition, a proper reply is a denial of
the presupposition, though the negation of the presupposi-
tion does not count as a direct answer. That is exactly the
meaning of ¬(p

>

q) in crisp inquisitive semantics. It is a
statement denying the presupposition of the question p

>

q,
and thus it is equivalent to ¬(p ∨ q). This holds for both the
crisp and the fuzzy version of inquisitive semantics.

In the crisp inquisitive semantics, the polar question
whether p, i.e. ?p = p

> ¬p, has a trivial presupposition
p ∨ ¬p. In contrast, in fuzzy logics, like Łukasiewicz or
Gödel-Dummett, the principle of excluded middle does not
hold and thus the presupposition becomes non-trivial. This
corresponds to the natural language polar questions involv-
ing vague vocabulary. For example, a proper reply to the
question whether Greg is tall might be One cannot really
say, he is a borderline case.

5 Fuzzy Support
The notion of support, as we defined it in the previous sec-
tion, is crisp. Given a state s, and a formula α, it either holds
that s fully supports α, or s does not support α at all. Ac-
cording to the Truth-Support Bridge-II (Proposition 6) sup-
porting α by s means that there is no world w that would
be compatible with the state s to a degree that is bigger than
the truth value of α in w. This has the following intuitive
meaning. If there is w ∈ W such that s(w) � w(α), i.e.
w(α) < s(w), then α cannot be a part of the information that
constitutes the state s. Otherwise, the presence of α would
force the value of w in s to be smaller (in particular, smaller
or equal to w(α)). This observation is independent of the
particular strategy according to which the function repre-
senting s was calculated, provided that it was calculated in
accordance with a t-norm function. For it holds for every t-
norm function ∗ and all x, y ∈ [0, 1] that x ∗ y ≤ min{x, y}
(Proposition 5-a), so if α is “contained” in the information
constituting s then indeed s(w) cannot be bigger than w(α).

However, intuitively, it makes sense to claim that a state s
supports p a bit more than q (in analogy to the claim that p is
a bit more true than q in a world). For example, consider the
f-model depicted in Table 2. Even though, in this f-model,
s 1 p as well as s 1 q, we would intuitively say that s
supports p more than q. Such a notion of graded support
seems to be quite natural and important. Is it possible to
define it in a systematic way? For this purpose, the following
notational convention will be useful. For any subset X of

[0, 1], let
∧
X denote the infimum and

∨
X the supremum

of X . For any f-state s and any L&-formula α

s ∗ α is a shorthand for
∧
w∈W

(s(w)⇒∗ w(α)).

Again, the subscript ∗ will usually be omitted. Recall that
it holds for every t-norm and all x, y ∈ [0, 1] that x ≤ y
iff x ⇒ y = 1 (Proposition 5-b). As a consequence of
Proposition 6, for any f-state s and any L&-formula α:

s  α iff s α = 1.

So, s  α reflects the support of α in the state s. However,
in some cases s α < 1. In such a case, s 1 α, regardless
how far is the value s α from 1. It seems that the expres-
sion s  α determines well the intuitive degree to which
α is supported by s. In general, the value of s  α is de-
pendent on the choice of the selected t-norm. As regards the
notion of graded support, Łukasiewicz t-norm seems to cap-
ture the intuition particularly well. For an illustration, con-
sider again the example from Table 2. If ∗ is the Łukasiewicz
t-norm we obtain: s ∗ p = 0.99 and s ∗ q = 0.2.

Our aim now is to capture the notion of graded or fuzzy
support that would state for any f-state s and any declarative
formula α, how much s supports α. We denote this value
as s∗[α] and we want to obtain s∗[α] = s  ∗ α (if no
confusion arises, the subscript ∗ will be omitted). This will
be our Truth-Support Bridge in this general fuzzy setting.

One can observe that the definition of s  ∗ α is remi-
niscent of the way a modal box operator is defined in fuzzy
modal logic (Bou et al. 2008; Rodriguez et al. ). There is
indeed an analogy. This is related to the fact that the clause
defining s  ∗ α is a natural generalization of support in
crisp inquisitive semantics and the semantic clause for box
in fuzzy Kripke semantics is a natural generalization of crisp
Kripke-style semantics for box. Also in the crisp setting the
characterization of support (a declarative formula α is sup-
ported by s iff α is true in all worlds of s) is analogous to
the Kripke style clause for box (a formula �α is true in w
iff α is true in all worlds accessible from w). The difference
between support of α and truth of �α is also preserved in
the generalization: support is relative to states and truth to
worlds. This difference is important because only the setting
involving states allows us to introduce inquisitive disjunc-
tion and make a distinction between inquisitive and declara-
tive propositions.

We will not define the value s[α] directly as s  α. In-
stead, we will proceed in analogy to the previous two stages
of information-based semantics in which we defined sup-
port recursively. This allowed us to include also a semantic
clause for

>

and thus determine the meaning of all formulas,
even those in which

>

was embedded under other operators.
Only after that we stated Truth-Support Bridge as a conse-
quence of the recursive definitions.

For each connective we are searching for a suitable recur-
sive clause. For instance, in the case of implication we want
to determine the value s[ϕ→ ψ] in terms of the values s[ϕ]
and s[ψ]. For an illustration, let us show that a promising
candidate, the equation

s[ϕ→ ψ] = s[ϕ]⇒ s[ψ],
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v w
s 1 0.5
p 1 0
q 0.5 0

Table 3: A counterexample to s[ϕ→ ψ] = s[ϕ] ⇒ s[ψ]

does not lead to a satisfactory solution. Consider, the f-
model specified in Table 3. Let ∗ be the Łukasiewicz t-
norm and assume that with respect to this t-norm we ob-
tained the desired results: s[p → q] = s  (p → q),
s[p] = s  p, s[q] = s  q. But now we can calculate
s[p → q] = 0.5, while s[p] ⇒ s[q] = 0.5 ⇒ 0.5 = 1, and
so s[p → q] 6= s[p] ⇒ s[q]. We need to find a different
recursive clause for implication.

It turns out that in order to obtain a well-behaving fuzzy
support we need to translate the crisp support conditions into
the language of the algebra of truth values. For example, in
the previous section we used the following support condition
for implication:

s  ϕ→ ψ iff ∀t vWf , if t  ϕ, then s ∗ t  ψ.

We can translate this equivalence into the algebraic language
of fuzzy logic, replacing the crisp support relation with a
fuzzy one, the universal quantifier with infimum, and impli-
cation with the residual of the given t-norm, obtaining this
equation:

s[ϕ→ ψ] =
∧
tvWf

(t[ϕ]⇒ s ∗ t[ψ]).

This move can also be viewed as replacing the classical met-
alanguage in which the original clause was formulated with
a fuzzy metalanguage of any given t-norm. This can be done
with each of the semantic clauses from the previous sec-
tion thus obtaining the following framework. For any fuzzy
modelM = 〈W,V 〉 and any t-norm ∗, we define fuzzy sup-
port in this way:
s[⊥] = s ⊥,
s[p] = s p, for every atomic formula p,
s[ϕ ∧ ψ] = min{s[ϕ], s[ψ]},
s[ϕ & ψ] =

∨
t,uvWf

(t[ϕ] ∗ u[ψ]∗

∗
∧
w∈W (s(w)⇒ (t ∗ u(w)))),

s[ϕ→ ψ] =
∧
tvWf

(t[ϕ]⇒ s ∗ t[ψ]),

s[ϕ

>

ψ] = max{s[ϕ], s[ψ]}.

We say that an L

>

&-formula ϕ is fsc∗-valid (fuzzy support-
conditionally valid relative to the t-norm ∗) in an f-model
M, if Wf [ϕ] = 1 in M. Let ∆ ∪ {ϕ} be any set of L

>

&-
formulas. We say that ϕ is an fsc∗-consequence of ∆ if ϕ
is fsc∗-valid in every f-modelM in which all formulas from
∆ are fsc∗-valid.

The semantics that we just introduced is similar in some
respects to the framework from (Xie and Wu 2019). How-
ever, there are also significant differences. For example, the
semantics from (Xie and Wu 2019) uses crisp information

states but fuzzy support relation which is a combination that
is not considered in this paper because it leads to a discrep-
ancy between information states (as crisp sets) and propo-
sitions (as fuzzy sets). Moreover, fuzzy support is defined
in (Xie and Wu 2019) by different semantic clauses and dif-
ferent structures of values are used (any involutive complete
lattice instead of the interval [0, 1]). For example, a con-
sequence of such a different setting is the validity of dou-
ble negation law for atomic formulas, which is not generally
valid in our setting. It would be interesting to make a more
detailed comparison of the two approaches but we do not
have enough space for it here.

Let us discuss the intended informal interpretation of our
framework. For a declarative formula α, s[α] represents the
degree to which the information constituting s implies α.
For a question ϕ, s[ϕ] represents the degree to which the
information constituting s resolves the questionϕ. However,
one has to be careful with this interpretation. To be clear,
we can obtain a low value of both s[α] and s[¬α] even if
s is a state representing perfect knowledge of a particular
world. Such a state assigns 1 to this world and 0 to all other
worlds. However, if α represents a highly vague claim then
s supports neither α nor ¬α to a high degree.

Considering questions, there are different senses in which
a body of information may partially resolve a question. For
example, one can reduce the possibilities without specifying
completely which one is the case. The question What is the
colour of Ann’s car? is partially resolved by the reply that
it is either blue, or green. But this is not the sense of a par-
tial resolution that is captured by our model. We are here
concerned rather with phenomena that are related to vague-
ness, and with questions that involve vague vocabulary. For
an illustration, consider this question: Is Ann a cat person
or a dog person? Assume that according to the information
available to an agent, Ann is enthusiastic neither about cats
nor about dogs. But if she had to decide she would prefer
cats, which she likes significantly more than dogs. Then, ac-
cording to our model, the agent’s information state resolves
the question only to a limited degree, to the degree to which
she likes cats, or in other words, to which she is a cat per-
son. There are many examples of such questions that would
fall under the category of false dilemma fallacy because of
vagueness. Consider the following examples: Are you with
us or against us? Is the enemy weak or strong? Do you like
beer or wine? Are you an early bird or night owl?

Returning to the technical aspects of our framework, we
can now prove the main result of this paper that says that a
version of Truth-Support Bridge holds also on this general
level.

Proposition 10 (Truth-Support Bridge-III). For any t-norm
∗, any information f-state s v Wf of any f-model and any
L&-formula α:

s∗[α] = s ∗ α.

Proof. We prove this claim by induction on the

>

-free for-
mulas. The inductive basis for p and ⊥ is immediate. We
need to check the inductive steps for ∧, & and →. The in-
ductive step for ∧ is straightforward:
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s[α ∧ β] = min{s[α], s[β]}
= min{s α, s β}

=
∧
w∈W

(s(w)⇒ min{w(α), w(β)})

=
∧
w∈W

(s(w)⇒ w(α ∧ β)).

Let us consider the inductive step for &. We have to
prove:∨
t,uvWf

(t[α]∗u[β]∗
∧
w∈W

(s(w)⇒ (t∗u(w)))) = s α& β.

Let us denote the right side of this equation as r. Using the
induction hypothesis, the left side can be rewritten as

l =
∨

t,uvWf

((t α)∗ (u β)∗
∧
w∈W

(s(w)⇒ (t∗u(w))))

Take any t, u v Wf . Then, using Proposition 5-c,d, we
obtain

(t α) ∗ (u β) ∗
∧
w∈W

(s(w)⇒ (t ∗ u(w))) ≤

≤
∧
w∈W

((t(w)⇒ w(α)) ∗ (u(w)⇒ w(β))∗

∗(s(w)⇒ (t ∗ u(w)))) ≤

≤
∧
w∈W

((t∗u(w)⇒ w(α)∗w(β))∗(s(w)⇒ (t∗u(w))) ≤

≤
∧
w∈W

(s(w)⇒ (w(α) ∗ w(β))) =

=
∧
w∈W

(s(w)⇒ (w(α & β))).

It follows that l ≤ r. For the other direction take the states
t, u defined as follows: for every w ∈ W , let t(w) = w(α)
and u(w) = w(β). Then it holds:

(t α) ∗ (u β) ∗
∧
w∈W

(s(w)⇒ (t ∗ u(w))) =

= 1 ∗ 1 ∗
∧
w∈W

(s(w)⇒ (w(α) ∗ w(β))) =

=
∧
w∈W

(s(w)⇒ (w(α & β))).

It follows that r ≤ l which finishes the proof for &.
Let us consider the case of implication. We have to prove∧

tvWf

(t[α]⇒ t ∗ s[β]) = s (α→ β).

Using the induction hypothesis, the left side of this equation
boils down to

l =
∧
tvWf

((t α)⇒
∧
w∈W

(t(w)⇒ (s(w)⇒ w(β)))).

The right side can be rewritten as

r =
∧
w∈W

(w(α)⇒ (s(w)⇒ w(β))).

For every world v ∈ W there is a corresponding state tv
defined as follows: tv(v) = 1 and tv(w) = 0, for all w 6= v.
Using Proposition 5-e,f, we obtain that for every v ∈W

(tv  α)⇒
∧
w∈W

(tv(w)⇒ (s(w)⇒ w(β)))

is equal to
v(α)⇒ (s(v)⇒ v(β)).

This implies that l ≤ r. To show that also r ≤ l, fix any
t vWf and v ∈W . Note that (t(v)⇒ v(α))∗t(v) ≤ v(α).
Since t α ≤ t(v)⇒ v(α), we obtain

(t α) ∗ t(v) ≤ v(α),

which implies:

v(α)⇒ (s(v)⇒ v(β)) ≤
≤ ((t α) ∗ t(v))⇒ (s(v)⇒ v(β)).

From this we obtain for any any t vWf :

r ≤ (t α)⇒
∧
w∈W

(t(w)⇒ (s(w)⇒ w(β))).

It follows that r ≤ l which finishes the inductive step for
implication.

As an immediate consequence, a declarative formula is
fsc∗-valid in an f-model if and only if it is sc∗- and thus also
tc∗-valid in that model. This gives us also equivalence of the
respective consequence relations.
Proposition 11. An L&-formula α is an fsc∗-consequence
of a set of L&-formulas ∆ if and only if α is a tc∗-
consequence of ∆.

Again, the main merit of the fuzzy support-conditional
semantics is that it allowed us to incorporate also questions.
And again, questions cannot be reduced to truth in the style
of the Truth-Support Bridge. Since we do not have truth
conditions for

>

we cannot directly say that Proposition 10
does not generally hold for inquisitive formulas. Neverthe-
less we can indirectly show that in a sense this is true. Note
that it follows from Propositions 10 and 5-g that it holds for
all f-states s, t vWf and for every L&-formula α:

min{s[α], t[α]} = (s t t)[α].

This is a fuzzyfied version of the claim that, in the
information-based semantics with crisp support, declarative
formulas express propositions that are closed under union.
This does not hold for inquisitive formulas. For exam-
ple, considering the f-states s, t in the f-model in Table 4,
where one can calculate min{s[p > q], t[p > q]} = 1 and
(s t t)[p > q] = 0.

For all L

>

&-formulas we can again state only weaker prop-
erties that correspond to the empty-state property and the
persistence property.
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v w
s 1 0
t 0 1
p 1 0
q 0 1

Table 4: min{s[p > q], t[p > q]} 6= (s t t)[p > q]

Proposition 12. For every L

>

&-formula ϕ:
(a) ∅f [ϕ] = 1 (empty-set property),
(b) if s v t then t[ϕ] ≤ s[ϕ] (persistence property).

Proof. (a) We will proceed by induction. For any atomic
formula p, we have

∅f [p] =
∧
w∈W

(∅f (w)⇒ w(p)) =
∧
w∈W

(0⇒ w(p)) = 1.

The case of ⊥ is similar. As the inductive hypothesis, as-
sume ∅f [ϕ] = 1 and ∅f [ψ] = 1. Then the inductive step for
∧ is immediate: ∅f [ϕ ∧ ψ] = min{∅f [ϕ], ∅f [ψ]} = 1. For
the inductive step for &, note that

∅f [ϕ] ∗ ∅f [ψ] ∗
∧
w∈W

(∅f (w)⇒ (∅f ∗ ∅f (w)))) = 1.

It follows that ∅f [ϕ & ψ] is equal to∨
t,uvWf

(t[ϕ] ∗ u[ψ] ∗
∧
w∈W

(∅f (w)⇒ (t ∗ u(w)))) = 1.

We further obtain that ∅f [ϕ→ ψ] is equal to∧
tvWf

(t[ϕ]⇒ t ∗ ∅f [ψ]) =
∧
tvWf

(t[ϕ]⇒ 1) = 1.

Finally, ∅f [ϕ

>

ψ] = max{∅f [ϕ], ∅f [ψ]} = 1.

(b) We will again proceed by induction. Assume s v t.
Then, by Proposition 5-h, t(w) ⇒ w(p) ≤ s(w) ⇒ w(p),
for every w ∈W , and thus∧

w∈W
(t(w)⇒ w(p)) ≤

∧
w∈W

(s(w)⇒ w(p)).

That is, t[p] ≤ s[p]. The case of ⊥ is similar. As the in-
ductive hypothesis, assume that the claim holds for all states
for some formulas ϕ,ψ. In the inductive step for ∧ we can
reason as follows:
t[ϕ∧ψ] = min{t[ϕ], t[ψ]} ≤ min{s[ϕ], s[ψ]} = s[ϕ∧ψ].

The inductive step for & follows from Proposition 5-h that
implies for all f-states u1, u2:∧
w∈W

(t(w)⇒ u1 ∗ u2(w)) ≤
∧
w∈W

(s(w)⇒ u1 ∗ u2(w)).

In the inductive step for→, we can reason as follows. Take
any f-state u. By monotonicity, s v t implies s ∗ u v t ∗ u,
which, by the inductive hypothesis, implies t ∗ u[ψ] ≤ s ∗
u[ψ], and form this it follows, using Proposition 5-i, that
u[ϕ] ⇒ t ∗ u[ψ] ≤ u[ϕ] ⇒ s ∗ u[ψ]. Since this holds for
every f-state u, we obtain t[ϕ → ψ] ≤ s[ϕ → ψ]. Finally,
in the inductive step for

>

we can reason as follows:
t[ϕ

>

ψ] = max{t[ϕ], t[ψ]} ≤ max{s[ϕ], s[ψ]} = s[ϕ

>

ψ].

Setting Truth-Support Bridge
crisp states,
crisp support s  α iff ∀w ∈ s, w � α
fuzzy states,
crisp support s  α iff ∀w ∈W, s(w) ≤ w(α)

fuzzy states,
fuzzy support s[α] =

∧
w∈W (s(w)⇒ w(α))

Table 5: Truth-Support Bridge in different versions of inquisitive
semantics

Setting Propositions expressed by formulas
crisp states, downward closed crisp sets

crisp support of crisp information states
fuzzy states, downward closed crisp sets
crisp support of fuzzy information states
fuzzy states, antitone fuzzy sets

fuzzy support of fuzzy information states

Table 6: Propositions in different versions of inquisitive semantics

6 Conclusion
To sum up, we have introduced three different versions of
inquisitive semantics. The first one is based on crisp infor-
mation states and crisp support relation, the second one on
fuzzy information states and crisp support relation, and the
third one (which is the main novel contribution of this pa-
per) on fuzzy information states and fuzzy support relation.
Among the four possibilities, we have not considered the
version of the semantics that would be based on crisp states
but fuzzy support. This option, though technically also in-
teresting, is conceptually somewhat problematic because in
the related framework information states (crisp sets) would
be entities of a different kind than propositions (fuzzy sets).

For declarative formulas we have formulated in each of
these frameworks a connection between truth and support in
the form of a Truth-Support Bridge. The three versions of
this principle are summarized in Table 5.

Truth-Support Bridge does not apply generally to formu-
las involving inquisitive disjunction. We have also formu-
lated the key general features of all propositions, i.e. se-
mantic contents expressed in a given model by formulas that
may possibly involve inquisitive disjunction. These features
amount to the three versions of the empty-set property and
the persistence property and they are summarized in Table 6.

In future research, we will explore the relation between a
question and its resolutions in the context of fuzzy support.
We also plan to extend the semantics with epistemic modal-
ities and we will explore the resulting logic of questions.
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