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Abstract

This paper presents ORLA (Online Reinforcement Learn-
ing Argumentation), a new approach for learning explainable
symbolic argumentation models through direct exploration of
the world. ORLA takes a set of expert arguments that pro-
mote some action in the world, and uses reinforcement learn-
ing to determine which of those arguments are the most ef-
fective for performing a task by maximizing a performance
score. Thus, ORLA learns a preference ranking over the ex-
pert arguments such that the resulting value-based argumen-
tation framework (VAF) can be used as a reasoning engine
to select actions for performing the task. Although model-
extraction methods exist that extract a VAF by mimicking the
behavior of some non-symbolic model (e.g., a neural net-
work), these extracted models are only approximations to
their non-symbolic counterparts, which may result in both a
performance loss and non-faithful explanations. Conversely,
ORLA learns a VAF through direct interaction with the world
(online learning), thus producing faithful explanations with-
out sacrificing performance. This paper uses the Keepaway
world as a case study and shows that models trained using
ORLA not only perform better than those extracted from non-
symbolic models but are also more robust. Moreover, ORLA
is evaluated as a strategy discovery tool, finding a better solu-
tion than the expert strategy proposed by a related study.

1 Introduction
In recent years, there has been a growing interest in utilizing
symbolic knowledge representation (KR) in machine learn-
ing (ML) to enhance the performance and interpretability of
non-symbolic models (Tiddi and Schlobach 2022), such as
neural networks (NNs). Argumentation frameworks (AFs)
(Dung 1995) are a specific type of KR that contain a collec-
tion of defeasible arguments and counterarguments, that is
arguments and the attacks between them. These arguments
can have an internal premise-conclusion structure (Besnard
et al. 2014), where the conclusion is a claim about the world
and the premise is some observation. For example, an argu-
ment that captures a basic traffic rule is “stop at the traffic
light if the light is red” (here, stop at the traffic light is the
conclusion and the light is red is the premise). An exam-
ple of an argument that attacks this argument could then be
“continue if directed to do so by a traffic officer”. Any law-
abiding driver would agree that the second argument over-
rides the first one and would obey the traffic officer, even if

that contradicts the traffic light. So we could say that the
second argument is preferred to the first one. This notion of
some arguments being preferred to others has given birth to
a particular kind of AFs called value-based argumentation
frameworks (VAFs) (Bench-Capon 2002), where arguments
have associated values that can be compared to each other.

Many studies exist that employ some form of argumen-
tation to improve the explainability and/or performance of
their ML models (Cocarascu and Toni 2016). One such in-
stance of argumentation being applied specifically to rein-
forcement learning (RL) is argumentation-accelerated rein-
forcement learning (AARL) (Gao and Toni 2013), in which
a VAF provided by a human expert is used as a reasoning
engine to guide reinforcement learning agents during their
exploration phase. The main advantage of this approach
is a faster convergence during training with respect to ap-
proaches that rely on random exploration. It is also possible
to use argumentation for explainability purposes by employ-
ing it in model-extraction methods, which use interpretable
models to approximate complex models (Bastani, Kim, and
Bastani 2017). A recent example of argumentation-based
model extraction for RL is MARLeME (Kazhdan, Shams,
and Liò 2020), which extracts a symbolic argumentation
model from a non-symbolic (deep) RL model by taking as
inputs a set of sampled trajectories—lists of state-action tu-
ples that describe the behavior of the non-symbolic model—
and an expert AF—a set of arguments about possible ac-
tions as defined by some human expert. In MARLeME, ex-
tracting a model amounts to deriving a VAF by assigning a
unique value to each argument of the expert AF, such that
the VAF recommends the same action as the non-symbolic
model as often as possible (by imitating the behavior of the
non-symbolic model captured by the sampled trajectories).
According to the authors of MARLeME, this method can
be used both to study the policy learned by a non-symbolic
agent (i.e., by periodically extracting a symbolic model) or
to replace the non-symbolic model altogether in applications
where safety is critical (i.e., the model must be verifiable)
(Ribeiro, Singh, and Guestrin 2016).

There are, however, some disadvantages to these two de-
scribed approaches. Methods that use argumentation just to
guide the exploration process of an RL agent (i.e., AARL
(Gao and Toni 2013)), ultimately produce non-symbolic
agents, so their behavior cannot be easily explained or ver-
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ified (Saleem et al. 2022; Albarghouthi 2021). In con-
trast, symbolic argumentation-based model-extraction tech-
niques such as MARLeME (Kazhdan, Shams, and Liò 2020)
do produce explainable and verifiable models (Vassiliades,
Bassiliades, and Patkos 2021; Baumann, Linsbichler, and
Woltran 2016), but the faithfulness of their explanations—
the precision with which a model’s true reasoning process is
described (Jacovi and Goldberg 2020)—cannot be guaran-
teed since the extracted models are only symbolic approx-
imations of their non-symbolic counterparts, which usually
cannot capture all the subtleties of their behavior. Explana-
tions with such a low(er) degree of faithfulness hinder the
study of the behavior of the non-symbolic model. Addition-
ally, if the extracted symbolic model is used to replace the
non-symbolic model, the behavior of the extracted model
may divert from that of the non-symbolic one, potentially
leading to unexpected functioning and/or performance loss
(Kazhdan, Shams, and Liò 2020).

In summary, non-symbolic models can learn complex
high-performing policies through direct interaction with the
world, but they are often difficult to verify and explain.
Model-extraction methods can alleviate these issues by ap-
proximating non-symbolic models via extracted symbolic
models (such as argumentation-based models) that are veri-
fiable and explainable. However, these improvements come
at the expense of some performance loss and the explana-
tions derived from them cannot be guaranteed to be com-
pletely faithful to the non-symbolic model.

In this study, we aim to bridge this gap between
experience-driven learning and symbolic argumentation-
based models by directly learning a symbolic
argumentation-based model. To that end, we present
ORLA (Online Reinforcement Learning Argumentation), a
novel approach that uses online RL to derive a VAF from
a given expert AF by maximizing a performance score (a
measure of how good the VAF is as a reasoning engine to
decide which action to perform to solve a task in the world).
Simply put, ORLA takes as input a set of arguments (an
AF) and outputs a preference ranking over those arguments
(a VAF) that maximizes a performance score. This learned
VAF can then be used as an RL policy by having the agent
take the actions promoted by the accepted arguments. This
approach is an improvement over model-extraction tech-
niques because ORLA not only produces symbolic models
(that are explainable and verifiable) but also provides
faithful explanations without performance loss.

Figure 1 illustrates how ORLA compares to model-
extraction methods. Model-extraction methods can learn a
family of policies Πext from a set of sampled trajectories
(τsamp), that are meant to be representative of all the possi-
ble trajectories a trained non-symbolic model can describe
(τns). Although ORLA has the same expressive power as
model-extraction techniques (i.e., they both can potentially
learn the same family of VAFs), ORLA can learn a super-
set of policies (ΠORLA) since it has no learning constraints
(i.e., ΠORLA has incoming arrows from outside τsamp), which
allows it to learn about the full dynamics of the world and
potentially find a better VAF.

Additionally, ORLA’s automatic exploration of the space

Possible trajectories Learnable policies
τworld

τsamp

ΠORLA

Πext

Πworld

τns

Figure 1: Visual mapping from the trajectory space of the world
with which our agents interact to their associated family of policies.
The family of potential trajectories described by the non-symbolic
model is τns, of which τsamp is a subset of sampled trajectories. The
family of policies a model-extraction method can learn is denoted
by Πext, while ΠORLA indicates the family of policies a symbolic
model with the same expressive power can learn when trained also
on trajectories from outside τsamp.

of learnable policies can save time in developing a new sym-
bolic model. For example, for ORLA to solve a task, an ex-
pert must supply ORLA with an expert set of arguments to
solve it, but the expert is relieved from also having to man-
ually determine which arguments are preferred over others
to derive a VAF. Not only can this save development time,
but also lead to strategies that achieve a higher performance
score than those devised by the expert, enabling the use of
ORLA as an automatic strategy discovery tool.

The remainder of this paper aims to provide a thorough
description of how ORLA works and how it compares to
other models, starting by giving some preliminary notions
about abstract argumentation and RL in Section 2. Sec-
tion 3 describes Keepaway—a soccer-like game that we will
use as the world for our model—and an expert AF to solve
a particular task of that game. Our method is explained
in Section 4, where we describe how we translate the task
of learning a VAF to play a task of Keepaway into an RL
problem. Section 5 compares ORLA with model-extraction
techniques, hand-crafted (expert) models and standard non-
symbolic RL models. Section 6 describes how ORLA effec-
tively produces a verifiable and explainable argumentation-
based model that provides fully faithful explanations, while
also achieving a higher performance score and being more
robust than an extracted argumentation-based model with
the same expressive power. Finally, in Section 7 we discuss
our findings and possible future works.

2 Preliminaries
2.1 Abstract Argumentation
Argumentation Frameworks According to Dung (1995),
an argumentation framework (AF) is defined as follows:

Definition 1 (Argumentation framework). An argumenta-
tion framework (AF) is a pair (Arg,Att) where Arg is a set
of arguments and Att ⊆ Arg × Arg is a binary relation
that defines the attacks between arguments. For any two ar-
guments a and b, such that (a, b) ∈ Att, it is said that a
attacks b.
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This definition of AF was further extended by Bench-
Capon (2002) to create the concept of a value-based ar-
gumentation framework (VAF), where each argument pro-
motes a value (values can be thought of as principles or be-
liefs that are used to evaluate the strength of an argument).
We here give an adapted definition of a VAF and define what
constitutes a defeat between two of its arguments.
Definition 2 (Value-based argumentation framework). A
value-based argumentation framework (VAF) is a 5-tuple
(Arg,Att, V, val, valpref ) where Arg and Att define a
standard argumentation framework AF , V is a non-empty
set of values, val : Arg → V , and valpref is a preference
relation (a partial order1) on V × V such that va ≥v vb
(meaning (va, vb) ∈ valpref ) iff value va is at least equally
preferred to value vb. An argument a is said to promote
value va iff val(a) = va.
Definition 3 (Defeat of arguments in a VAF). Given a
standard VAF, an argument a ∈ Args defeats argument
b ∈ Args iff both (a, b) ∈ Att and vb ≱v va.

These two definitions introduce the notion that some
arguments can be defeated in the presence of stronger
arguments—those that promote a preferred value—but they
may result undefeated in a different scenario where stronger
arguments do not hold. This view that arguments have dif-
ferent strength depending on the value they promote, can
be used to create a preference ranking of arguments (in the
remainder of this paper, we will simply call it a ranking),
sorting the arguments according to their strength (Amgoud
and Ben-Naim 2013). Working with rankings directly is pre-
ferred when the argument values are unknown. Our formal-
ization of a ranking slightly differs from those found in the
literature in that we consider partial rankings and we explic-
itly assign a numerical rank to the arguments.
Definition 4 (Ranking). Let Arg be a set of arguments. Let
S denote the subset of ranked arguments (S ⊆ Arg). Let
rank : S → N be a mapping function that assigns a non-
negative integer to each argument a ∈ S (the greater the
integer, the stronger the argument). A ranking over Arg is a
partial order R = (Arg,⪰) such that ∀a, b ∈ S, a ⪰ b iff
rank(a) ≥ rank(b). All rankings are partial rankings, but
when all the arguments in Arg are comparable (i.e., when
Arg = S), R is also a total ranking.
Definition 5 (Strict ranking). A strict ranking (R⋆) is a stan-
dard ranking in which rank is an injective function. A strict
ranking over a set Arg can be concisely expressed by an
n-tuple R⋆ = ⟨a0, a1, ..., an−1⟩Arg with n ≤ |Arg|, where
|Arg| is the size of Arg. The rank function is implicitly
given by the index i ∈ [0, n−1] that each argument ai has in
R⋆ according to rank(ai) = |Arg| − i (i.e., the arguments
in R⋆ are listed in decreasing degree of strength).
Definition 6 (Equivalence between ranking and VAF). A
ranking over Arg is said to be equivalent to a VAF when

1The original definition of VAF (Bench-Capon 2002) requires
valpref to be a strict partial order. Our definition allows valpref
to be also a non-strict partial order without loss of generality. This
is consistent with observed instantiations of VAFs in the literature
(Gao and Toni 2013).

a ⪰ b iff va ⪰ vb for any two arguments a, b ∈ Arg.

Definition 7 (VAF induced by a total ranking). Given a
standard AF and a total ranking, it is immediate to induce
an equivalent VAF by choosing V as the set of integers,
valpref as the standard order of the integers, and by setting
val = rank.

Definition 8 (Total ranking induced by a VAF). Given a
VAF, it is immediate to induce an equivalent total ranking
of its arguments by assigning each argument the number of
strict predecessors in V of the value it promotes. More for-
mally: ∀a ∈ Arg, rank(a) = pred(va), where pred(va) is
the number of values in V that strictly precede va.

Semantics An argumentation semantics (or simply se-
mantics) defines zero or more sets of acceptable arguments
(extensions) (Dung 1995). When defining a semantics it is
useful to define some recurrent concepts that express some
relevant relations among arguments.

Definition 9 (Conflict-free set). Given an argumentation
framework (Arg,Att), a set S is conflict-free if there are
no two arguments a, b ∈ S such that (a, b) ∈ Att.

Definition 10 (Argument defended by a set). Given an argu-
mentation framework (Arg,Att), a set S defends argument
a if for each b ∈ Arg, if (b, a) ∈ Att, b is attacked by S.

Definition 11 (Admissible set). A set of arguments S is ad-
missible if it is conflict-free and for each argument a ∈ S it
is the case that S defends a.

Dung’s original work defines four different semantics that
establish different criteria to accept a set of arguments. In
this work we consider just the complete and grounded ex-
tensions:

Definition 12 (Complete extension). S is a complete exten-
sion if it is an admissible set and for every argument a de-
fended by S it is the case that a ∈ S.

Definition 13 (Grounded extension). S is a grounded ex-
tension if it is the minimal (with respect to the set inclusion)
complete extension.

VAFs as a Reasoning Engine Following the work of Gao
et al. (2014), VAFs can be used as a reasoning engine by RL
agents. We use their definition of argument:

Definition 14 (Arguments for RL agents). An argument a
follows the structure

a = con(a) IF pre(a) ,

where con(a) is the conclusion of argument a and pre(a) is
the set of premises of a. The conclusion is the action that
argument a recommends the agent to perform. An argument
is said to be applicable when all its premises (conditions)
hold.

Definition 15 (Value-specific AF). Given a standard VAF,
a value-specific AF (VSAF) is another VAF resulting from
eliminating all non-applicable arguments (those whose
premises do not hold) and their attacks (incoming and out-
going) from the given VAF.
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Once a VSAF has been generated according to some state
s, an action is determined by the conclusion of the grounded
extension of the VSAF, as described by Gao et al. (2014).
This entire process is fully demonstrated in the example be-
low (adapted from Gao et al. (2012)).
Example 1 (VAF as a reasoning engine). Consider an AF
containing the set of arguments S = {a, b, c, d, e} where
arguments a and c promote action x, arguments b and d
promote action y and argument e promotes action z. Fig-
ure 2(i) shows the arguments and attacks corresponding
to the described AF. Consider now the total strict ranking
⟨a, b, d, c, e⟩S . Figure 2(ii) shows the corresponding VAF,
where all attacks coming from a weaker argument have
been removed. Suppose now that given the current state
of the world, s, pre(b) does not hold, meaning that argu-
ment b is not applicable in the current situation. Figure 2(iii)
shows the corresponding VSAF resulting from removing all
non-applicable arguments and their associated attacks. Fi-
nally, Figure 2(iv) shows the grounded extension calculated
from the VSAF. The recommended action is either con(a) or
con(c), which promote the same action x.

2.2 Reinforcement Learning
Reinforcement learning (RL) is a popular paradigm in ML
in which an agent learns what action at to perform given
some state st of the environment to maximize the cumula-
tive value of some numerical reward signal rt across mul-
tiple time steps t (Sutton and Barto 2018). In episodic
tasks (where there is some final state sT ), the evolution
of an episode can be fully described through its trajectory
τ = {s0, a0, s1, r1, a1, . . . , sT , rT }.

RL problems are often modeled as (finite) Markov deci-
sion processes (MDPs). An MDP is a formalization of an
RL problem in which the probabilities that an environment
evolves in a particular way and returns a particular reward
signal, depend only on the previous state (Sutton and Barto
2018). More formally:
Definition 16 (Markov decision process). A Markov deci-
sion process (MDP) is a 3-tuple (S,A, p), where S is the
state space, A is the action space, and p(s′, r|s, a) is a func-
tion that determines the probability of transitioning to a state
s′ producing a reward signal r when action a is taken from
state s.

The goal of an RL agent at any time step t is to select an
action at to maximize the current return (Sutton and Barto
2018).
Definition 17 (Return). The return at time step t of an
episodic RL task is defined as the sum of the future rewards
up until the terminal time step (t = T ):

Gt = rt+1 + rt+2 + ...+ rT−1 + rT
A straightforward approach for training an agent to

choose the best next action is by directly learning some pol-
icy π(at|st, θ), where θ is a set of parameters that fully char-
acterize the policy (e.g., the weights of a NN) such that the
expected return gets maximized (Sutton and Barto 2018).
Since π is a stochastic policy, meaning that it outputs a prob-
ability distribution over the action space given st and θt, the
expected return can be expressed in terms of π and G:

c

ad

b
e

c

ad

b
e

c

ad
e

c

ad
e

(i) (ii)

(iii) (iv)

Figure 2: (i) AF indicating all possible attacks between arguments
in Example 1. (ii) VAF resulting from discarding defeated attacks
according to their value. (iii) Resulting VSAF after removing all
non-applicable arguments. (iv) Grounded extension (darkened ar-
guments). Adapted from Gao et al. (2012).

Definition 18 (Expected return). Given a trajectory τ sam-
pled according to π, the expected return is defined as:

Eτ∼π[G|θ] =
∑

at,st∈τ

π(at|st, θt)Gt

The described approach is known in the literature as a
policy-gradient method, and its goal is to incrementally up-
date θ in such a way that π maximizes the expected return.
Several methods that build on these fundamental RL no-
tions have been developed to improve the convergence time
and optimality of the estimated policy π (Sutton and Barto
2018).

3 The Keepaway World
We employ the term world to refer to the context of the ul-
timate task we are interested to learn. For example, in our
case, the world will be the Keepaway game (Stone, Sutton,
and Kuhlmann 2005). Keepaway is a multi-agent soccer-like
2D game in which two teams (the takers and the keepers)
compete for the possession of the ball. The keepers always
have the ball under their control at the beginning of each
match and their objective is to maintain possession of the
ball for as long as possible (by dribbling, holding the ball,
or passing it to another team member). For their part, the
goal of the takers is to take the ball from the keepers (ei-
ther by tackling the ball or by forcing the keepers to send
it out of the field) in the shortest time possible. We say
that, within the Keepaway world, keepers and takers have
a different task. The Keepaway game is implemented us-
ing the RoboCup Soccer Simulator2 and the Keepaway li-
brary3 (Stone, Sutton, and Kuhlmann 2005). The Keepaway
library is an interface that enables AI practitioners to study
the Keepaway game by abstracting away many of the intri-
cacies of the simulator.

2https://rcsoccersim.github.io
3https://www.cs.utexas.edu/∼AustinVilla/sim/keepaway
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3.1 The Takeaway Task
The problem of learning to play Keepaway receives different
names in the literature depending on which player(s) is (are)
being trained. In this paper, we will focus on learning the
task in which the takers are the only learning agents while
the keepers follow a fixed policy, as done by Kazhdan et al.
(2020). This specific task is known as Takeaway. Analo-
gously to Kazhdan et al. (2020), our matches take place in
a 40×40 field with 3 takers (Ti) and 4 keepers (Kj). One
difference with respect to the original implementation of the
Keepaway game is that we initialize the ball at a random po-
sition in the vicinity of one arbitrary keeper to promote the
emergence of different configurations in the field (instead of
always initializing it at the same position). A screenshot of
a newly generated match is shown in Figure 3. At the be-
ginning of a match, all takers are placed at the bottom left
corner while the keepers are distributed along the remaining
corners and the center. The keepers are enumerated by their
relative distance to K1, being K1 always the keeper in pos-
session of the ball, K2 the closest, etc. The game terminates
once the takers have tackled the ball or the ball has been sent
out of the field. The game score is the total duration of the
match (i.e., the lower the score, the better the strategy of the
takers).

State and Action Space The Keepaway library acts as an
interface that represents the state of the world by outputting
a set of variables that contain relevant distances and angles
between the dynamic elements of the world (i.e., the players
and the ball). Similarly, the Keepaway library offers each
player a set of macro-actions they can choose from to inter-
act with the simulator. Each macro-action encapsulates one
or more low-level primitive actions of the simulator (e.g.,
”move to position x,y”). For each of the takers (the only
learning agents in our setup), there are two types of macro-
actions:

• TackleBall(): go towards the ball and take it from K1.

• MarkKeeper(j ): prevent Kj from receiving the ball, with
j ̸= 1.

Takers

K4

K1

K3

K2

Ball

Figure 3: Screenshot of the start of a new Keepaway match on a
40×40 field. Kj labels the keepers, where j denotes how close
to K1 they are. The cloud of dots indicates the possible initial
positions of the ball.

3.2 Expert Domain Knowledge
Gao et al. (2013) propose an expert domain knowledge for
playing Takeaway consisting of an expert AF (AFχ), an ex-
pert set of values (V χ) for the arguments of AFχ, and an
expert preference relation (valpref χ) over V χ.

Expert Argumentation Framework AFχ contains the
following set of expert arguments (Argχ):

• TBi: TackleBall() if Ti is closest to K1.

• Ai,j : MarkKeeper(j ) if Ti describes the smallest angle
with Kj with vertex at K1 (∠TiK1Kj) .

• Ci,j : MarkKeeper(j ) if Ti is the closest taker to Kj .

• Oi,j : Ti must MarkKeeper(j ) if Kj is open (i.e., all the
angles with vertex at K1 between the keeper and each of
the takers is greater than 15º).

• Fi,j : Ti must MarkKeeper(j ) if Kj is far (i.e., its dis-
tance from all takers is greater than 15 units).

For a setup with Nk keepers and Nt takers there is a total
of 4

(
Nt (Nk − 1)

)
+ Nt arguments. Our Takeaway games

are played with 4 keepers and 3 takers, therefore there are
39 different arguments in Argχ.

Gao et al. (2013) also define what constitutes an attack
between two arguments in a multi-agent game. Two argu-
ments are in an attack relation with each other when either
of the following conditions is met:

• each argument promotes a different macro-action to the
same agent.

• both arguments promote the same macro-action to differ-
ent agents.

These conditions can be used to derive an expert set of at-
tacks (Attχ), that along with Argχ constitute AFχ.

Expert Values and Mapping To derive a VAF, Gao et al.
(2013) give a set of expert values (V χ). Each argument in
Argχ promotes exactly one of these expert values:

• VT (promoted by TBi): the ball should be tackled as fast
as possible.

• VA (promoted by Ai,j): a potential pass should be inter-
cepted by the taker forming the smallest angle ∠TiK1Kj .

• VC (promoted by Ci,j): a potential pass should be inter-
cepted by the closest taker.

• VO (promoted by Oi,j): K1 is likely to pass the ball to a
keeper that is open.

• VF (promoted by Fi,j): K1 is likely to pass the ball to a
keeper that is far.

Note that these definitions implicitly define an expert map-
ping function valχ : Argχ → V χ (e.g., valχ(TB1) = VT ).

Expert Preference Additionally, Gao et al. (2013) spec-
ify the following expert preference relation (valpref χ) over
V χ:

VT >v VA =v VC >v VO >v VF
4

4VT >v VA means that VT ≥v VA holds but not VA ≥v VT .
VA =v VC means that both VA ≥v VC and VC ≥v VA hold.
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The 5-tuple (Argχ,Attχ,V χ, valχ, valpref χ) defines
what we call the expert VAF (VAFχ). Note that, as per Def-
inition 8, VAFχ induces a total expert ranking over Argχ.

4 Method
The goal of ORLA is to learn a total ranking over the ar-
guments of a given expert AF to maximize a performance
score. The performance score is a measure of how good
the VAF induced by the learned ranking (Definition 7) is as
a reasoning engine for choosing actions to solve the task.
As mentioned in the previous section, Takeaway will be the
chosen task our induced VAF will be evaluated on, and the
expert AF to play Takeaway will be AFχ. The remainder of
this section describes how ORLA can learn a total ranking
(that induces a VAF) directly from experience to maximize
the performance score in Takeaway. For technical details
about ORLA, the full implementation has been made pub-
licly available 5.

4.1 Learning a Total Ranking
ORLA directly learns a total ranking over Argχ to induce a
VAF that can be used as a reasoning engine in Takeaway. In
this way, the expert only has to supply an expert AF but is
relieved from manually ranking its arguments, saving devel-
opment time and potentially exploring better solutions. The
ORLA pipeline presented here explicitly learns a strict rank-
ing over Argχ (although in Section 5 we show how a non-
strict ranking can be produced post-hoc by merging multiple
arguments) that we call RO

⋆ . Since learning RO
⋆ amounts to

strictly sorting the arguments of Argχ to maximize some
performance score, we formulate this problem as a com-
binatorial optimization (CO) problem and use RL to solve
it, analogously to recent CO-RL works (Mazyavkina et al.
2021). This section describes the environment and the agent
used in our RL pipeline.

Environment Learning RO
⋆ is equivalent to finding a per-

mutation of all the arguments in Argχ such that some per-
formance score is maximized. Similar to related works
(Mazyavkina et al. 2021), we start by formulating our CO
problem as an MDP.

Definition 19 (MDP for ORLA). We define the MDP where
the state space S is the set of all the possible partial rankings
over Argχ and the action space A is Argχ. The state st is a
partial ranking over Argχ determined as follows:

st+1 = ⟨a0, a1, ..., at⟩Argχ

The transition probability of the MDP is given by the de-
terministic function

p(st+1, rt+1|st, at) = 1 ,

with rt+1 = 0 for 0 ≤ t < T − 1 and rT = World(sT ),
where World is a function that evaluates the performance
score of sT . The episode reaches terminal state sT once st
becomes a total ranking over Argχ. Note that sT is the total
ranking over Argχ to be learned (i.e., RO

⋆ ).

5https://github.com/omcandido/ORLA
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N

Y total
ranking?rt+1 = World(st+1)rt+1
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Figure 4: Diagram of the ORLA environment to decode a strict
ranking over Argχ. The agent iteratively appends an argument to
the partial solution, st, until it can be evaluated using the World
function. The agent learns using a Monte-Carlo method (it first
observes a full trajectory and then updates its parameters).

Figure 4 offers a visual explanation of the dynamics of
the environment implementing this MDP. We start the anal-
ysis of the diagram by observing that, at time step t, the
agent picks argument at, which gets appended to the par-
tial solution st, producing st+1. While st+1 is not a total
ranking over Argχ, the environment emits a reward of zero.
Once st+1 becomes a total ranking, st+1 gets passed to the
World function, which measures the performance score of
the learned ranking. Specifically, World induces a VAF
from st+1 (Definition 7) and uses it as a reasoning engine
(see Example 1) for the takers in a Takeaway match. World
returns the performance score of the ranking, which is the
duration of the match in negative value (since we framed
this as a maximization problem).

During the initial training episodes, the learned rankings
may perform very poorly due to the lack of exploration. This
can lead to very long matches or even to the takers never
attempting to gain possession of the ball. To avoid long
evaluation times, the World function aborts the match if no
keeper has passed the ball for at least 10 seconds and adds a
penalization time of 20 seconds to the duration of the match
up until that moment.

Agent The agent interacts with the environment by fol-
lowing a policy π(at|st, θt) and its goal is to maximize the
expected return (Definition 18). Similar to related CO-RL
works (Joshi et al. 2020), we train our agent using a Monte-
Carlo policy-gradient method (Sutton and Barto 2018).

Monte-Carlo methods require an entire episode to be gen-
erated before any learning takes place. In our case, gener-
ating a full episode amounts to decoding a total strict rank-
ing over Argχ, which is represented by the final state of the
episode (sT ). Once a total strict ranking has been gener-
ated, our agent uses the final reward—given by the World
function—to update its parameters (θ) with the aim of maxi-
mizing the expected return (Definition 18). The details of
how ORLA’s agent chooses the next argument to be ap-
pended to the partial solution are shown in Figure 5. We start
the analysis of the diagram by observing that, at time step t,
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Figure 5: Diagram of the ORLA agent. The agent decodes a total
strict ranking by iteratively sampling an argument (at) to be ap-
pended to the partial solution (st). When a total strict ranking has
been decoded, the weights of the preference function are updated
according to maximize the expected return.

the agent receives state st from the environment. Since st is
a partial ranking, it needs to be encoded into a set of features
so it can be fed into π. This encoding is done by creating a
binary set of features representing the relative order between
every pair of non-identical arguments (a ⪰ b, being a and b
two different arguments).

Definition 20 (Encoding of a ranking). Given a standard
ranking R over a set of arguments Arg of size N , this rank-
ing can be encoded as a squared binary matrix M of size
N ×N . Using ai to denote the i-th argument of Arg, each
element mjk ∈ M is defined according to:

mjk =

{
1 if

(
(aj ⪰ ak) and (j ̸= k)

)
0 otherwise

Example 2. Let S be a set of arguments S = {a, b, c, d, e}.
To demonstrate how an encoding is generated, the previ-
ous definition has been applied to the total strict ranking
⟨d, a, e, b, c⟩S . Its corresponding encoding is shown in Ta-
ble 1 for s2 (i) and s5 (ii). For example: in Table 1(ii),
m12 = 1 because b ⪰ c, however m33 = 0 because it com-
pares argument d to itself.

After the state is encoded into an N × N matrix, it is
flattened to an N2 array so it can be fed into a preference
function (Sutton and Barto 2018) that will output a proba-
bility distribution over all N possible arguments the agent
can append to st. We implement this preference function
as a multilayer feedforward NN (parameterized by θ) with a
softmax activation in the output layer. Each of the N neu-
rons of the output layer corresponds to each of the candidate
arguments to be appended, such that the k-th neuron rep-
resents the action ”append the k-th argument to the partial
ranking st”. To prevent the agent from choosing an argu-
ment that has already been added to the partial solution, the

action space at any time step t is limited to the set of ar-
guments that are not yet in the partial solution st. This ap-
proach is consistent with similar CO-RL work (Kool, van
Hoof, and Welling 2019; Cappart et al. 2021). Finally, an
argument is sampled according to the probability distribu-
tion output by the NN over Argχ. The agent explores differ-
ent solutions by stochastically sampling the next argument
to be appended to the partial solution, updating θ to gradu-
ally increase the probability of choosing arguments that are
expected to yield a higher return. The actual update rule we
implemented uses a baseline to reduce variance (Sutton and
Barto 2018) and updates θ in mini-batches for a smoother
convergence.

After an agent has been trained, the learned total strict
ranking RO

⋆ is obtained by performing a greedy decoding
(i.e., sequentially picking the argument with the highest
probability output by the preference function until obtaining
a total strict rank). This approach of iteratively feeding the
partial solution into the agent to determine the next element
of the solution is known as autoregressive decoding and is in
line with similar works in CO-RL (Joshi et al. 2020).

5 Experimental Setup
5.1 Benchmark Models
We compare ORLA to four benchmark models:

• Mhand rule-based takers that follow a handcrafted policy
(designed by Stone et al. (2005)).

• Mexp: argumentation-based takers that use VAFχ (the ex-
pert VAF) as their reasoning engine. Note that VAFχ

induces a non-strict ranking.

• Mns: non-symbolic takers trained directly on the state fea-
tures output by the Keepaway library. The learning algo-
rithm used is SARSA with tile coding and linear function
approximation, as originally implemented by Stone et al.
(2005), and as used by Kazhdan et al. (2020) to evaluate
MARLeME.

• Mext: argumentation-based takers that use the VAF ex-
tracted from Mns via MARLeME (Kazhdan, Shams, and
Liò 2020) as their reasoning engine. The trajectories are
sampled by running Mns for 1000 episodes. Note that the
VAF extracted by MARLeME induces a total strict rank-
ing (by design of the authors).

(i)
s2 = ⟨d, a⟩S

a b c d e
a 0 1 1 0 1
b 0 0 0 0 0
c 0 0 0 0 0
d 1 1 1 0 1
e 0 0 0 0 0

(ii)
s5 = ⟨d, a, e, b, c⟩S
a b c d e

a 0 1 1 0 1
b 0 0 1 0 0
c 0 0 0 0 0
d 1 1 1 0 1
e 0 1 1 0 0

Table 1: Proposed order encoding at two different time steps. Ma-
trix indices start at 0.
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5.2 ORLA Models
Because Mext and Mexp induce a different family of rankings,
two different ORLA models are used to match their respec-
tive expressiveness:
• Mloc: argumentation-based takers whose reasoning engine

is a VAF induced by the total strict ranking over Argχ

learned by ORLA (RO
⋆ ). Here, Mloc has the same expres-

siveness as Mext and both find a local strategy for each
taker.

• Mglob: argumentation-based takers whose reasoning en-
gine is a VAF analogous to VAFχ (the expert VAF), but
whose preference relation over V χ has been learned by
ORLA. To learn this new preference over the argument
values using the same RL pipeline from Section 4, it suf-
fices to assign to each value the average rank of all the ar-
guments that promote that value and round it to the nearest
integer. For example, VC is given by:

VC =

 1

nm

n∑
i

m∑
j

rank(Ci,j)


Once every value is assigned an integer, the values are
ordered following the standard order of the integers. In
this case, Mglob has the same expressiveness as Mexp and
both find a global strategy common to all takers.

5.3 Evaluation Criteria
Performance The in-distribution performance—the
model is evaluated on the same distribution it was trained
on—is estimated by averaging the performance score across
1000 independent Takeaway matches played by each model
on a 40×40 field (same as the training distribution).

Similarly to Stone et al (2005), we evaluate the robust-
ness of the models by estimating the out-of-distribution per-
formance—the model is evaluated on a distribution differ-
ent from the one it was trained on. Specifically, we addi-
tionally evaluate them on Keepaway distributions with field
sizes 30×30 and 60×60.

Note that the concepts of in-/out-of-distribution perfor-
mance only apply to the learning models (Mns, Mext, Mloc and
Mglob) since the human-designed ones (Mhand and Mexp) are
not trainable (they are evaluated as a performance baseline).

Interpretability To evaluate the faithfulness of Mext to Mns,
1000 trajectories are sampled from Mns to estimate the fi-
delity score of each taker, which is the ratio with which
each Mext taker and its Mns counterpart perform the same
macro-action given the same state (Kazhdan, Shams, and
Liò 2020).

Analogously to Kazhdan et al. (2020), the local strategies
learned by both Mext and Mloc are analyzed post-hoc by ex-
amining the five strongest arguments for each taker. As for
Mglob, its global strategy is analyzed qualitatively, by exam-
ining the resulting ranking of arguments, and quantitatively,
by comparing the magnitude of the rank assigned to each
argument type. The magnitude of the integer that defines
the rank of an argument can give a coarse estimation of the
relative strength of each argument type.

6 Results
6.1 Performance
The performance scores along with their standard error are
given in Table 2. We assess the in-distribution performance
by examining exclusively the 40×40 column. It can be ob-
served that Mloc learned a policy that takes 25% less time
than that of Mext to tackle the ball, despite both models hav-
ing the same expressive power. This supports our obser-
vation illustrated in Figure 1 that the learning constraint in
model-extraction methods (i.e., τsamp ⊆ τworld) can im-
pose a limit on the performance score the extracted model
can reach. The benchmark model with the best performance
score is Mns, which can be explained by the fact that it is the
only benchmark model that is learning through direct ex-
perience, so it can fine-tune its parameters to perform well
on the task of playing Takeaway on a 40 × 40 field. The
ORLA models Mloc and Mglob perform at least as well as
Mns, with Mloc being less than a 1% slower and Mglob around
a 5% faster. We attribute the better performance of Mglob
with respect to Mloc to the fact that Mglob draws on the ad-
ditional expert knowledge that arguments of the same type
should promote the same value. The fact that none of the
human-designed models (Mhand and Mexp) are among the best-
performing ones indicates that manually crafting a strategy
for Takeaway is not a trivial task.

We now assess the out-of-distribution performance by ex-
amining the 30×30 and 60×60 columns from Table 2. In
the 30×30 column, we observe that Mexp, Mns, Mloc and Mglob
perform all on par (within a 3% window). It can be observed
that ORLA models are still among the 3 top-performing
agents in this new distribution. The 60×60 Takeaway dis-
tribution seems to be the most challenging variant (possibly
because there is more room for keepers to get away), as the
results are more scattered and the deviations in performance
are more evident. One noticeable observation is that the per-
formance score of Mns is now a 13% worse than that of the
best-performing model, (Mexp). This failure of Mns to gener-
alize to bigger field sizes, suggests that Mns might be overfit-
ting to the 40×40 distribution. Conversely, Mloc and Mglob are
close runners-up just around 3% and 0.1% slower than Mexp,
respectively, showing again that ORLA models are among

Performance score ± s.e. (seconds)

30×30 40×40 60×60

Mhand 8.16 ± 0.15 13.32 ± 0.29 14.83 ± 0.30
Mexp 7.06 ± 0.11 9.68 ± 0.15 13.27 ± 0.23
Mns 7.28 ± 0.13 9.14 ± 0.17 14.99 ± 0.26
Mext 8.02 ± 0.15 12.16 ± 0.29 19.96 ± 0.45
Mloc 7.13 ± 0.12 9.23 ± 0.15 13.71 ± 0.24
Mglob 7.19 ± 0.11 8.67 ± 0.13 13.29 ± 0.23

Table 2: Estimated performance score (lower is better) and stan-
dard error (sample size = 1000) of each model evaluated on 3 differ-
ent Takeaway distributions (worlds with field size 30×30, 40×40,
and 60 × 60). Note that the learned models (last four rows) have
only been trained on the 40×40 distribution.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

549



the most robust models to changes to the field size.

6.2 Interpretability
The 5 strongest arguments extracted for the Mext takers are
shown in Table 3. According to this order, it can be inferred
that T1 and T3 prioritize marking keepers K4 and K3, re-
spectively (i.e., arguments of the form X1,4 and X3,3), be-
fore they attempt to tackle the ball (TBi). On the other hand,
T2 first focuses on tackling the ball first and then on mark-
ing the keepers. The takers T1, T2 and T3 of Mext achieved an
estimated fidelity score of 0.99, 0.41 and 0.97, respectively.
This means that the previous explanations of the policies fol-
lowed by T1 and T3 are highly (but not completely) faithful
to their Mns counterparts, whereas the explanation derived for
the extracted T2 fails to capture the reasoning process of its
Mns counterpart more than half of the times.

Regarding Mloc, Table 3 shows that tackling the ball is the
top priority for all three takers, which is in line with the ex-
pert preference defined in Section 3.2. The remaining argu-
ments serve to coordinate the marking of keepers (i.e., T2

and T3 both focus on K3 and K4 while T1 prioritizes mark-
ing K2 before marking the rest).

As for Mglob, the integers it assigned to each expert value
are VT = 36, VA = 25, VC = 23, VO = 14 and VF = 12.
This yields the value preference VT >v VA >v VC >v

VO >v VF , which is almost analogous to the expert prefer-
ence (VT >v VA =v VC >v VO >v VF ). Here, ORLA has
identified that marking the keeper forming the smallest an-
gle with K1 is preferred to marking the closest keeper (i.e.,
VA >v VC) instead of equally preferred, as the expert sug-
gested. This small difference resulted in a remarkable per-
formance difference since Mglob tackled the ball in around
10% less time than Mexp. These results show that ORLA can
be effectively used to discover new strategies. Furthermore,
ORLA gives not only a qualitative, but also a quantitative re-
sult since the difference of the assigned integers gives an in-
tuitive idea of how strong one argument is relative to others.
For example, we could say that arguments promoting VT are
strongly preferred to those promoting VC , 13 points below.
However, arguments promoting VA are not so strongly pre-
ferred to those promoting VC , just two points below.

Note that the explanations derived from ORLA models
are totally faithful since the model that the VAF intends to
explain is the VAF itself. In contrast, Mext is not completely
faithful since it is an approximation of Mns.

Mext (MARLeME) Mloc (ORLA)

T1 T2 T3 T1 T2 T3

1st O1,4 TB2 O3,3 TB1 TB2 TB3

2nd A1,4 A2,3 A3,3 A1,2 O2,4 C3,4

3rd C1,4 C2,3 C3,3 C1,2 C2,4 O3,3

4th F1,4 A2,4 F3,3 C1,3 O2,3 C3,3

5th TB1 F1,2 TB3 O1,4 A2,3 O3,4

Table 3: Top 5 arguments (first = strongest) per taker, for each
VAF-based model.

7 Discussion
7.1 Conclusion
This paper demonstrates the use of ORLA to learn a sym-
bolic argumentation-based model (a VAF) using reinforce-
ment learning. We claim that ORLA is an improvement over
model-extraction methods—such as MARLeME (Kazhdan,
Shams, and Liò 2020)—because ORLA learns a VAF that
is completely faithful and because of its unrestricted explo-
ration of the world (we show, in fact, that by interacting with
the world, ORLA consistently achieved a better performance
score and was more robust than the extracted model in the
Takeaway task).

Apart from being a convenient alternative to model-
extraction methods, ORLA can also be used to automatically
derive a VAF from an expert set of arguments. For VAFχ,
the domain expert ranked 39 arguments to play Takeaway.
This can become a time-consuming task if changes are often
introduced to the AF or if the AF contains a large number
of arguments. For example, if we were to choose a more
challenging game such as chess, Go or FreeCiv (Voss et al.
2020) as the agent’s world, thousands of expert arguments
could be gathered from experienced players, where each ar-
gument captures an action that can be performed given a
state of the world6. Ranking each of those arguments would
probably be a daunting task if done manually. Furthermore,
allowing ORLA to automatically learn a strategy makes it
suitable as a strategy discovery tool since it can potentially
lead to better performance than an expert strategy. That is
precisely the case in our setup, where ORLA learned a VAF
that resulted in a substantial 10% improvement over the per-
formance score of the proposed expert VAF.

Lastly, we observed that the performance of the non-
symbolic model deteriorated when evaluated on Keepaway
fields larger than those seen during training. ORLA, in
contrast, showed a robust behavior, remaining among the 3
top performing models across the three different distribu-
tions they were evaluated on. We attribute the robustness of
ORLA models to the fact that they are hybrid models that
leverage expert knowledge while still using a data-driven
learning approach to maximize the performance score.

7.2 Future Work
The use of ORLA has been demonstrated using Keepaway
as a case study, analogously to related works (Gao and Toni
2013; Kazhdan, Shams, and Liò 2020). We think that the
use of ORLA can be further studied in more challenging
tasks, leading to three different lines of research: (i) cre-
ating a standard, open and challenging task with a com-
prehensive expert AF to solve it; (ii) using more sophisti-
cated RL algorithms for learning a ranking to reduce training
time and/or improve performance; and (iii) learning other
kinds of AFs—such as bipolar argumentation frameworks
(BAFs) (Amgoud, Cayrol, and Lagasquie-Schiex 2004)—
which might yield more intuitive explanations and better
capture some underlying knowledge about the world.

6For example, for FreeCiv, 11 experts defined 400-800 rules
(arguments) each (Voss et al. 2020).
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