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Abstract

In this article, we provide the weak version of ensconcement
which characterizes an interesting family of Shielded base
contractions. In turn, this characterization induces a class of
AGM contractions satisfying certain postulates that we reveal
here. Finally, we show a connection among the class of con-
tractions given by our weak ensconcement and other kinds of
base contraction operators. In doing so, we also point out a
flaw in the original theorems that link the epistemic entrench-
ment with ensconcement (which are well established in the
literature), and then we provide two possible solutions.

1 Introduction
Nowadays, any interesting intelligent agent should be capa-
ble of adapting its beliefs to the new information constantly
provided by its environment. It is then crucial to develop be-
lief models that are useful for the agent’s decision-making
task. The one which is currently considered the standard
model in the belief change literature is known as the AGM
model (Alchourrón, Gärdenfors, and Makinson 1985) which
has different, but equivalent, presentations. The main one
is a set of rational postulates that point out natural proper-
ties that any change operator should satisfy. In (Gärdenfors
and Makinson 1988), the authors proposed a constructive
approach based on these postulates, called “epistemic en-
trenchment”. This approach involves establishing an order-
ing between the facts in the agent’s knowledge, based on
their epistemic value. Such ordering then determines the pri-
ority of the facts when revising and contracting. However,
when the agent’s beliefs are represented by a belief set (i.e.
a set closed under logical consequences) like in the AGM
model, not only it could be necessary to take into account an
infinite set of formulas (since, for example, all tautologies
are in the belief set), but also the epistemic entrenchment
construction requires explicitly ordering all logical conse-
quences of the known facts.

As an example, consider the following situation: Asimov
is a robot that interacts with humans, and his beliefs are p:
“I must not injure human beings” and q: “Alex is a human”.
However, the epistemic entrenchment model not only re-
quires to order epistemically p and q, but also beliefs such as
“I must not injure human beings or the earth is flat” which
are logical consequences of her original beliefs.

To overcome this drawback, one solution is to work with
belief bases, which are more suitable for computer-based
implementations (Hansson 1992). In (Williams 1994), an
adaptation of epistemic entrenchment called ensconcement
relation was proposed. This is a total preorder on a belief
base B that can be ”blown up” to a full epistemic entrench-
ment ≤ related to Cn(B). The formal axiomatic character-
ization of the ensconcement was given in (Fermé, Garapa,
and Reis 2017), while also proving that the ensconcement
contractions are a generalization of entrenchment contrac-
tions.

However, the AGM model still has another drawback very
criticized in the literature: every non-tautological sentence is
always removed when contracting by it. When this happens,
due to the success postulate, it is said that the new obser-
vation is prioritized. Going back to our example, if Asimov
was asked by a user to attack Alex, the robot must contract “I
must not hurt Alex”, a consequence of its beliefs. Thus Asi-
mov would have to give up either p or q. However, both be-
liefs should not be available for contraction: Alex is indeed
a human, and Asimov must avoids hurting humans. Thus,
both beliefs p and q should be shielded from any possible
contraction.

To model this behaviour, shielded contractions were in-
troduced in (Fermé and Hansson 2001). This operator con-
siders a set of retractable observations under which the con-
traction is performed as usual, and otherwise, the knowledge
is left unchanged.

In (Fermé and Hansson 2001), the authors defined a
shielded non-prioritized contraction for belief sets, by using
an alternative epistemic entrenchment first defined in (Hans-
son et al. 2001) (which is obtained by eliminating the maxi-
mality of the tautologies postulate). Later, (Garapa, Fermé,
and Reis 2018) provided the axiomatic characterization of
the shielded contraction for belief bases.

In this work, we generalize that shielded entrenchment
construction by defining a weak ensconcement, achieved by
removing the maximality of the tautologies postulate for
ensconcements. We then present the contraction operator
based on this ensconcement and provide its axiomatic char-
acterization and its standard shielded form. Finally, we es-
tablish the links between the shielded epistemic entrench-
ment and our new construction, as it has been done with
their classical counterparts. In doing so, we also point
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out a flaw in the original theorems of (Williams 1994)
that link the epistemic entrenchment with ensconcement
(which has been reproduced by other authors (Peppas 2008;
Williams et al. 1995; Fermé, Krevneris, and Reis 2008;
Fermé, Garapa, and Reis 2017; Garapa, Fermé, and Reis
2017)), and then we provide two possible solutions.

The beliefs of an agent will be represented by a belief set
K or a belief base A, both finite or infinite sets of sentences
from a (possibly infinite) propositional logic L. The main
difference between them is that belief sets are closed under
logical consequences. We will also add ⊥ and ⊤ as formu-
las of L denoting an arbitrary contradiction and an arbitrary
tautology, respectively.

2 Belief Base Contraction
This section will be devoted to prioritized belief operators.
We shall briefly review the axiomatic approach of the be-
lief base paradigm, as well as its explicit construction for
this process based on preorders over sentences known as en-
sconcement. The following are well-known postulates for
belief contraction over every belief base A, and every for-
mula α, β ∈ L:

(Success) If α /∈ Cn(∅), then α /∈ Cn(A− α)

(Inclusion) A− α ⊆ A.

(Failure) If ⊢ α then A− α = A.

(Vacuity) If A ̸⊢ α, then A ⊆ A− α.

(Relative Closure) A ∩ Cn(A− α) ⊆ A− α.

(Core retainment) If β ∈ A and β /∈ A − α then there
is some set A′ such that A′ ⊆ A and α /∈ Cn(A′) but
α ∈ Cn(A′ ∪ {β}).

(Relevance) If β ∈ A and β /∈ A − α then there is some
set A′ such that A − α ⊆ A′ ⊆ A and α /∈ Cn(A′) but
α ∈ Cn(A′ ∪ {β}).

(Recovery) A ⊆ Cn((A− α) ∪ {α}).
(Disjunctive Elimination) If β ∈ A and β /∈ A − α then
A− α ̸⊢ α ∨ β.

(Extensionality) If ⊢ α ↔ β, then A− α = A− β.

(Uniformity) If it holds for all subsets A′ ⊆ A that α ∈
Cn(A′) if and only if β ∈ Cn(A′), then A− α = A− β.

(Closure) If A is logically closed, then so is A− α.

If A is logically closed, then the postulates of closure,
inclusion, vacuity, success, extensionality, and recovery cor-
respond to the commonly called basic AGM postulates. It is
worth noticing that some postulates are implied by combi-
nations of others as the following properties show:

Lemma 1. (Garapa, Fermé, and Reis 2018) Let A be a be-
lief base and − an operator on A. Then:

(a) If − satisfies relevance, then it satisfies relative closure
and core-retainment.

(b) If −satisfies inclusion and core-retainment, then it satis-
fies failure and vacuity.

(c) If − satisfies uniformity, then it satisfies extensionality.

(d) If − satisfies disjunctive elimination, then it satisfies rel-
ative closure. If also satisfies inclusion, then it satisfies
failure.

(e) If − satisfies relevance, then it satisfies disjunctive elimi-
nation.

We also introduce other postulates used in the characteri-
zation of ensconcement and their relations (Fermé, Garapa,
and Reis 2017):

(Conjunctive Factoring)

A− α ∧ β =

{
A− α or
A− β or
A− α ∩A− β

This postulate is equivalent to the well-known supplemen-
tary AGM postulates when A is logically closed.

(Transitivity) If β ∈ A, α /∈ A−α∧β and β /∈ A−β ∧ δ,
then α /∈ A− α ∧ δ.

(ST) If δ ∈ A, β ∈ A − α ∧ β and β /∈ A − β ∧ δ, then
δ ∈ A− α ∧ δ.

(SST) If α ∈ A, β ∈ A − α ∧ β and δ ∈ A − β ∧ δ, then
δ ∈ A− α ∧ δ.

(EB1) If β ∈ A and {γ ∈ A : β /∈ A − β ∧ γ} ̸⊢ α, then
β ∈ A− α.

(EB2) If β ∈ A−α then {γ ∈ A : γ ∈ A−γ∧α} ⊢ α∨β.

Lemma 2. (Fermé, Garapa, and Reis 2017) Let A be a be-
lief base and − be an operator on A. Then:

(a) If − satisfies extensionality, then − satisfies transitivity if
and only if − satisfies ST.

(b) If − satisfies success, inclusion, extensionality, relative
closure, and transitivity, then it satisfies SST.

2.1 Epistemic Entrenchment
Epistemic entrenchment is a very flexible constructive ap-
proach for change operators. For example, given a total pre-
order on L satisfying certain properties then, we shall see
next, it can uniquely determine a contraction operator that
satisfies both basic and complementary AGM postulates.
Definition 1. An ordering of epistemic entrenchment (in
short EE) with respect to a belief set K is a binary relation
≤ on L which satisfies the following properties:

(EE1) For all α, β, δ ∈ L, if α ≤ β and β ≤ δ then α ≤ δ.
(EE2) For all α, β ∈ L, if α ⊢ β then α ≤ β.
(EE3) For all α, β ∈ L, α ≤ α ∧ β or β ≤ α ∧ β.
(EE4) When K ̸⊢ ⊥, α ̸∈ K iff α ≤ β for all β ∈ L.
(EE5) If β ≤ α for all β ∈ L, then ⊢ α.

Each one of these properties receives an alternative name:
(EE1) Transitivity, (EE2) Dominance, (EE3) Conjunctive-
ness, (EE4) K-minimality, (EE5) Maximality.
Definition 2. Let K be a belief set and ≤ be an EE relation
with respect to K. The ≤-based contraction on K is the
contraction operation ÷≤ defined, for any α ∈ L, by:

K ÷≤ α =

{
{β ∈ K : α < α ∨ β} if ̸⊢ α
K if ⊢ α

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

522



An operation ÷ on K is an EE-based contraction on K
if and only if there is an EE relation with respect to K such
that, for all sentences α ∈ L, K ÷ α = K ÷≤ α.

The following theorem shows the characterizations of
these contractions in terms of a subset of the postulates pre-
sented before.

Theorem 1. (Gärdenfors and Makinson 1988) Let K be a
belief set and ÷ be a contraction function on K. Then ÷ is
an EE-based contraction if and only if it satisfies both the
basic and the supplementary AGM postulates for contrac-
tion.

The proof of the only if part of this theorem is straightfor-
ward. In order to complete the if direction of the proof, one
shall construct the EE ordering by defining (C≤) as follows:

α ≤ β ⇐⇒ α /∈ K ÷ (α ∧ β) or ⊢ β (C≤)

The last definition captures the idea that a sentence α is
epistemically less entrenched according to a knowledge state
A than another sentence β if and only if an agent in a knowl-
edge state A who is forced to give up either α or β will give
up α and possibly preserves β.

2.2 Ensconcement
Mary-Anne Williams introduced a Belief Base Contraction
operator called Ensconcement (Williams 1994), which gen-
eralizes the EE relation to belief bases. In particular, it paves
the way for computer implementations of EE. The follow-
ing definitions were provided in (Fermé, Krevneris, and Reis
2008).

Definition 3. Define an ensconcement to be a set of formu-
las A together with a total and transitive preorder ⪯ of A
satisfying the following conditions:

(⪯ 1) If β ∈ A and ̸⊢ β, then {α ∈ A | β ≺ α} ̸⊢ β.
(⪯ 2) If ̸⊢ α and ⊢ β, then α ≺ β, for all α, β ∈ A.
(⪯ 3) If ⊢ α and ⊢ β then α ⪯ β, for all α, β ∈ A.

According to the first of these conditions, the formulas
that are strictly more ensconced than β do not (even con-
jointly) imply β. According to the last two conditions, if
there are any tautologies in a belief base A, then they are its
most ensconced formulas.

In order to contract A by α given an ensconcement oper-
ator, a subset of A is used, called cut.

Definition 4. Let A be a belief base and α ∈ L. Then
cut≺(α) and cut⪯(α) are defined as follows:

cut≺(α) = {β ∈ A : {γ ∈ A : β ⪯ γ} ̸⊢ α}

cut⪯(α) = {β ∈ A : {γ ∈ A : β ≺ γ} ̸⊢ α}
Then, the contraction operator is defined as follows:

Definition 5. Let A be a belief base, and ⪯ an ensconcement
defined over A. Then the ensconcement-based contraction
operator for A (−) is defined as follows:

A− α = {β ∈ A : cut≺(α) ⊢ α ∨ β}

In (Fermé, Garapa, and Reis 2017) the axiomatic char-
acterization of the ensconcement-based contraction was
proven in the following theorem.
Theorem 2. Let A be a belief base. An operator − of A
is an ensconcement-based contraction on A if and only if it
satisfies success, inclusion, vacuity, extensionality, conjunc-
tive factoring, disjunctive elimination, transitivity, EB1 and
EB2.

The proof of this theorem requires constructing an asso-
ciated ensconcement which is given, again, by using (C≤)
considering A instead of K (i.e. considering a belief base
instead of a belief set).

2.3 Relationship Between Epistemic
Entrenchment and Ensconcement

In her original paper (Williams 1994), where she presented
the ensconcement operator, she also provided the following
definitions and properties:
Definition 6. Let (A,⪯) be an ensconcement. For α, β ∈ L,
we define ≤⪯ to be given by α ≤⪯ β if and only if either
(i) α ̸∈ Cn(A), or
(ii) α, β ∈ Cn(A) and cut⪯(β) ⊆ cut⪯(α).
Lemma 3. (Williams 1994, Theorem 4)

≤⪯ is an EE order relative to Cn(A).
However, we shall see next that Lemma 3 does not hold

in general by providing a counterexample. Fortunately, this
flaw can be overcome in a very natural way.
Example 1. Let A = {(p0 ∧ pi) | i ∈ N} ⊆ L be our set
of formulas. Let ⪯ be an ensconcement defined over A such
that:

(p0 ∧ pk) ≺ (p0 ∧ pj) ⇐⇒ k < j

Then Lemma 3 does not hold.

Proof. First, we shall see that cut⪯(p0) = ∅. Let us assume
cut⪯(p0) ̸= ∅. Then there is a formula (p0 ∧ pk) ∈ A with
k ∈ N>0 such that: {γ ∈ A : (p0 ∧ pk) ≺ γ} ̸⊢ p0. But
(p0 ∧ pk+1) ∈ A, and (p0 ∧ pk) ≺ (p0 ∧ pk+1). Thus
{(p0 ∧ pk+1)} ⊂ {γ ∈ A : (p0 ∧ pk) ≺ γ} ⊢ p0, resulting
in a contradiction. Thus cut⪯(p0) = ∅.

Next, using this result with Definition 6, we have that
α ≤⪯ p0 for all α /∈ Cn(A), and α ≤⪯ p0 for all
α ∈ Cn(A) since cut⪯(p0) = ∅ ⊆ cut⪯(α). Thus,
α ≤⪯ p0 for all α ∈ L.

Interestingly, this means that Lemma 3 is not true, since
the entrenchment postulate EE5 would imply that ⊢ p0
which leads to a contradiction.

This flaw has not been pointed out before, and Lemma 3
is used throughout literature to link EE and ensconcement
(Peppas 2008; Fermé, Garapa, and Reis 2017). Luckily,
there are different ways in which to solve this problem, and
we shall present two different approaches. The first one1 is
to change Definition 6 and make α ≤⪯ β iff one of the fol-
lowing is satisfied:
(i) ⊢ β;

1Which was proposed by Garapa in a personal communication.
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(ii) α ̸∈ Cn(A);
(iii) α, β ∈ Cn(A) \ Cn(∅) and cut⪯(β) ⊆ cut⪯(α).

Another possible approach is to add the condition that ev-
ery belief base A should satisfy ⊤ ∈ A, where ⊤ is a tautol-
ogy. This would mean that every non-tautological sentence
would have ⊤ in their cut⪯, so it would never be empty,
and the only ones with empty cut⪯ would be the tautolo-
gies. This last approach will become more relevant when
the shielded version of ensconcement is presented.

We shall continue this section with the properties that re-
late the EE and ensconcement which are well known in the
literature. However, we will restate them including the con-
dition ⊤ ∈ A. It is relatively easy to check that each of the
original proofs in (Williams 1994) can be extended to take
into consideration this new requirement.

Definition 7. Let K ⊆ L be a belief set, ≤ an EE defined
over K and A ⊆ K a belief base. We define ≤|A to be the
restriction of ≤ over A, that is:

For every α, β ∈ A, α ≤|A β ⇐⇒ α ≤ β

The next result confirms that it is always possible to ob-
tain an ensconcement from an epistemic entrenchment under
certain natural conditions.

Lemma 4. Let K be a belief set and ≤ an EE ordering
relative to K. Let A ⊆ K a belief base such that ⊤ ∈ A,
and let ≤|A be the restriction of ≤ over A. Then ≤|A is an
ensconcement ordering on A.

Moreover, under stricter conditions, it is possible to re-
cover the original EE ordering using Definition 6 as it is
shown in the following theorem.

Theorem 3. Let K be a belief set, and A ⊆ K a belief base
such that ⊤ ∈ A. Let ≤ be an EE related to K. If A is such
that for all α ∈ K, {β ∈ A : α ≤ β} ⊢ α, then ≤|A is an
ensconcement ordering on A such that ≤(≤|A)=≤

The last theorem implies that an EE ordering over a belief
set K can be used to define both an EE contraction operator
(according to Definition 2) and an ensconcement one.

The following result shows the connection between an
ensconcement-based contraction (using Definition 5) and its
corresponding EE-based contraction (according to Lemma
3 with ⊤ ∈ A and Definition 2).

Theorem 4. Let A be a belief base such that ⊤ ∈ A and
let ⪯ be an ensconcement over A. Let −⪯ be the belief
base contraction operator as in Definition 5. Let −≤⪯ be
the contraction operator for Cn(A) uniquely determined by
Definitions 2 and 6. Then A−⪯ α = (Cn(A)−≤⪯ α) ∩A

This theorem sheds light on several properties that link
EE with ensconcement. First, we can see that for every
EE contraction operator, there is an equivalent ensconce-
ment contraction operator. To see that, let ≤ be an EE over
K. Then we can trivially define an ensconcement as the
restriction of ≤ over the whole set K (≤|K), which would
be as thinking the EE ordering as an ensconcement. Then
≤ clearly satisfies conditions of Theorem 3, so Theorem 4
implies:

K −≤|K α = K −≤ α

Furthermore, Theorems 3 and 4 make explicit the link be-
tween EE and ensconcement. The relationship can be estab-
lished in both ways: on one hand, given an ensconcement
over a belief base A (satisfying ⊤ ∈ A) one can build an
EE over Cn(A). Then perform the contraction over Cn(A)
with this last operator, and finally intersect the result with
A to obtain the same outcome as if contracting A with the
operator determined by our original ensconcement, as The-
orem 4 shows. In addition, by also taking into consideration
Theorem 3, we can deduce the following result.

Theorem 5. Let K be a belief set and ≤ an EE ordering
relative to K. Let A ⊆ K be a belief base satisfying condi-
tions of Theorem 3. Then, defining the ensconcement (≤|A)
over A, we have:

Cn(A−≤|A α) = K −≤ α

This theorem shows the other way EE and ensconcement
can relate: given an EE ≤ relative to a belief set K, we can
focus over a particular subset A and the restriction over A of
≤. Then performing the ensconcement contraction over A
by a formula α and then closing the result under its logical
consequences, yields the same result as performing the EE
contraction over the whole belief set.

All the results in this section show how ensconcement is
a natural adaptation of epistemic entrenchment over bases.
In fact, this link is also preserved between their respective
order-based contractions, which satisfy the success postu-
late. In the next sections, we are going to show how this link
could be preserved in a non-prioritized context by consider-
ing some non-trivial adaptations.

3 Shielded Base Contraction
The success postulate for contraction requires that all non-
tautological beliefs should be retractable. This is not a fully
realistic requirement, since agents are known to have beliefs
of a non-logical nature, which should not be given up un-
der any circumstance. To meet this requirement, the success
postulate is not generally taken into account by shielded con-
traction. In this way, some non-tautological beliefs can be
shielded from contraction, and thus cannot be given up.

In this section, we will introduce the formalities behind
Shielded Base Contraction. Bear in mind that Shielded Con-
traction for theories is just a special case where the belief
base is closed under logical consequence.

In (Fermé and Hansson 2001), a shielded contraction is
defined by means of an AGM contraction and a set of sen-
tences R satisfying certain properties, called the set of re-
tractable sentences, which models the set of sentences that
the agent is willing to give up (if needed).

Definition 8. Let − be a contraction operator on a belief
base A (i.e. an operator that satisfies at least success and
inclusion). Let R be a set of sentences (the associated set of
retractable sentences). Then ∼ is the shielded base contrac-
tion induced by − and R if and only if:

A ∼ α =

{
A− α if α ∈ R
A otherwise
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Besides the already specified postulates for belief base
contraction operators, the following are some postulates that
∼ might satisfy:
(Relative Success) A ∼ α = A or α /∈ Cn(A ∼ α)

(Success Propagation) If A ∼ β ⊢ β and ⊢ β → α then
A ∼ α ⊢ α

(Conjunctive Constancy) If A ∼ α = A ∼ β = A, then
A ∼ α ∧ β = A

(Persistence) If β ∈ Cn(A ∼ β), then β ∈ Cn(A ∼ α)

In (Fermé, Mikalef, and Taboada 2003) the properties of
the set of retractable sentences that were considered as prop-
erties that may be desirable from a set R of retractable sen-
tences were the following:
(Non-retractability Propagation) If α ̸∈ R, then
Cn(α) ∩R = ∅.

(Conjunctive Completeness) If α ∧ β ∈ R, then α ∈ R or
β ∈ R.

(Non-retractability Preservation) L \R ⊆ Cn(A ∼ α).
(Non-retractability of Tautology) R ∩ Cn(∅) = ∅.

It is also possible to define relations between some usual
base contraction operators and shielded base contraction op-
erators.
Observation 1. (Fermé, Mikalef, and Taboada 2003;
Fermé, Garapa, and Reis 2017) Let A be a belief base and ∼
an operator on A. Then the following conditions are equiva-
lent:
(a) ∼ satisfies relative success, persistence, inclusion, rele-

vance and uniformity.
(b) ∼ is an operator of shielded contraction induced by

a contraction operator satisfying the basic AGM postu-
lates, and an associated retractable set R ⊆ L that satis-
fies non-retractability propagation and non-retractability
preservation.
This observation presents an interesting fact: some

shielded base contractions can be directly represented by a
base contraction.

3.1 Shielded Epistemic-Entrenchment
In (Fermé and Hansson 2001, Section 3), the authors show
how to build shielded contractions based on an EE order-
ing. Essentially, they point out that EE5 establishes that
only tautologies can be maximally entrenched. Therefore,
they consider a new entrenchment-based contraction by just
withdrawing this property in the following way:
Definition 9. Let K be a belief set. A relation ≤K defined
over K satisfying EE1-EE4 is called a Shielded Epistemic-
Entrenchment (Shielded EE). Then ∼≤ is the entrenchment-
based shielded contraction based on ≤K if and only if:

K ∼≤ α =

{
{β ∈ K : α <K α ∨ β} if α <K ⊤
K otherwise

Bear in mind that Definition 9 is not presented in the
way as the standard shielded contraction in Definition 8.
However, the following characterization is given in (Garapa
2017):

Theorem 6. Let K be a consistent belief set. Let − be a
contraction operator defined over K, then the following are
equivalent:

• − is an entrenchment-based shielded contraction opera-
tor.

• − satisfies closure, inclusion, vacuity, extensionality, re-
covery, relative success, persistence and conjunctive fac-
toring.

• − is an operator of shielded contraction induced by a con-
traction operator for K that satisfies both the basic and
complementary AGM postulates, and a set R ⊆ L that
satisfies non-retractability propagation, conjunctive com-
pleteness and non-retractability preservation.

4 Weak Ensconcement
To generalize the shielded EE, as (Williams 1994) did with
the classic one, we defined the weak version of ensconce-
ment. The intuition behind the construction is the follow-
ing: analogously to the shielded EE, the irretractable be-
liefs should be the most ensconced, a place that (⪯ 2) re-
serves only for tautologies. Thus, it seems natural to remove
(⪯ 2) to weaken the ensconcement. Moreover, if present,
such formulas at the top are the only ones with empty cut.
So the contraction by any formula with empty cut should
yield no change in the belief base. This intuition motivated
the following definitions.

Definition 10. Define a w-ensconcement to be a set of for-
mulas A together with a total preorder ⪯ of A satisfying the
following conditions:

(⪯w 1) If β ∈ A and ̸⊢ β, then {α ∈ A | β ≺ α} ̸⊢ β.
(⪯w 2) If β ∈ A and ⊢ β, then for every α ∈ A : α ⪯ β

Intuitively, (⪯w 1) says that the formulas which are
strictly more ensconced than an arbitrary formula β do not
entail β. If there are any tautologies in A, then (⪯w 2) says
they are the most ensconced formulas but they are not nec-
essarily unique. It is worth noticing that (⪯w 1) is the same
as (⪯ 1) in the Definition 3 of (prioritized) ensconcement,
and that (⪯w 2) is weaker than (⪯ 2) and (⪯ 3) together
because the former implies that tautologies are on top of the
order and equally ensconced, but that they are not necessar-
ily the only ones.

Now, we are in a position to introduce the contraction op-
erator based on this new order.

Definition 11. Let A be a belief base and ⪯ be a weak en-
sconcement (Definition 10) over A. Then −⪯ is the weak-
ensconcement contraction based on ⪯ if and only if:

A−⪯ α =

{ {β ∈ A : if cut≺(α) ̸= ∅
cut≺(α) ⊢ α ∨ β}
A otherwise

Now we will resume the discussion about the condition
which requires ⊤ ∈ A for every belief base. In Subsection
2.3 we showed that there were two possible ways to solve the
flaw in Lemma 3. We opted for the solution with requires
⊤ ∈ A and the reason why will become clearer with the
following example.
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As a weak ensconcement is, precisely, a weakened ver-
sion of ensconcement, then, for every contraction operator
defined over an ensconcement there should be an equivalent
contraction operator defined over a weak-ensconcement.
However, let us consider the following example (assuming
that the condition ⊤ ∈ A is not required):
Example 2. Let A = {α} with ̸⊢ α. There is just one en-
sconcement possible over A, where α ⪯ α. The same goes
for a weak-ensconcement, where α ⪯w α. We clearly have
cut≺(α) = cut≺w(α) = ∅. Thus, A−⪯ α = ∅ since ∅ ̸⊢ α,
but A−⪯wα = A = {α}. So there is no weak-ensconcement
possible that could yield A−⪯ α = A−⪯w α

This problem arises from the fact that every maximal sen-
tence (if there is one) will always have an empty cut, so, by
our construction, it would be irretractable. More precisely,
the problem is that there is no way for distinguishing irre-
tractable sentences from just maximal ones. An elegant (and
computationally cheap) solution is to always have a maximal
irretractable element in the belief base, ⊤.

This is not much to ask, as intuitively this can be inter-
preted as having an intrinsic truth in our beliefs to which
compare other beliefs. This way, if they are equally en-
sconced, they must be irretractable too. In previous exam-
ple, considering A = {α,⊤}, we have two possible enscon-
cements: {α ≺ ⊤} and {α ≡ ⊤}. The second one corre-
sponds to shielding α from contraction.

It is worth noticing that adding ⊤ to the belief base A will
not change the belief set it represents, since ⊤ ∈ Cn(A) al-
ways holds. Finally, this new definition of belief base would
solve the problem in Lemma 3 (from Section 2). So from
now on we have:
Definition 12. Define a belief base to be a set of formulas
A ⊆ L ∪ {⊤} such that ⊤ ∈ A, where ⊢ ⊤

Also, it is important to notice that the converse does
not hold in the general case. That is, not every weak-
ensconcement-based contraction can be thought of as an
ensconcement-based contraction (even with the new Defi-
nition 12), as we shall see in the following example:
Example 3. Let A = {α,⊤} with ̸⊢ α. Let ⪯w be a
w-ensconcement defined as α ≡ ⊤. Let −⪯w be the w-
ensconcement contraction operator defined over ⪯w. Let
⪯ be an ensconcement (prioritized). In fact, there is only
one possible ensconcement over A, where α ≺ ⊤, since any
other ordering would violate (⪯ 2).

On one hand we have cut≺w
(α) = ∅, so A −⪯w

α = A.
On the other hand, cut≺(α) = {⊤}, so A −⪯ α = {⊤}
since {⊤} ̸⊢ α. Thus A −⪯ α ̸= A −⪯w

α. Since ⪯ is the
only ensconcement possible over A, this means there is no
equivalent contraction operator defined over an ensconce-
ment, to the one defined over ⪯w.

Using the new definition of Belief Base in Definition 12,
the way of defining a w-ensconcement contraction opera-
tor equivalent to an ensconcement contraction operator is
straightforward:
Lemma 5. Let ⪯ be an ensconcement operator and −⪯
the corresponding ensconcement based contraction opera-
tor. Since ⪯ also satisfies (⪯w 1) and (⪯w 2), it is also a

w-ensconcement. Let ∼⪯ be the w-ensconcement operator
defined by ⪯ using Definition 11, then −⪯ =∼⪯

4.1 Representation Theorem
In order to prove the Representation Theorem, the following
properties are useful to us. The first set of properties is al-
ready known in the literature. Although they have been pre-
sented for the prioritized ensconcement, they can easily be
shown to hold for the weak ensconcement case (even when
Definition 12 is used).
Lemma 6. (Fermé, Krevneris, and Reis 2008, Lemma 11)
Let A ⊆ L a belief set and ⪯ an ensconcement over A. Let
α, β ∈ L, then the following properties hold:

1. If ⊢ α, then cut≺(α) = ∅.
2. If ̸⊢ α, then cut≺(α) ̸⊢ α.
3. If A ̸⊢ α, then cut≺(α) = A.
4. If β ⊢ α, then cut≺(α) ⊆ cut≺(β).
5. If ⊢ α ↔ β, then cut≺(α) = cut≺(β).
6. ∀α, β ∈ A, if α ⪯ β, then cut≺(β) ⊆ cut≺(α).
7. ∀α, β ∈ A, if α ≺ β, then cut≺(α) ⊢ β and cut≺(β) ̸⊢

α.
8. ∀α, β ∈ A, if α ≺ β, then cut≺(α ∧ β) = cut≺(α).
9. ∀α, β ∈ A, if α ⪯ β and β ⪯ α, then cut≺(α ∧ β) =

cut≺(α) = cut≺(β).
10. If cut≺(α) ⊢ β, then cut≺(α ∧ β) = cut≺(α).
11. If cut≺(α) ̸⊢ β, then cut≺(α ∧ β) = cut≺(β).

The next new sets of properties expand the previous ones
and are necessary for proving the representation theorem
that will be presented later.
Lemma 7. Let A ⊆ L and ⪯ be a w-ensconcement defined
over A, the following holds:

1. For all α, β ∈ L, then either cut≺(α) ⊆ cut≺(β) or
cut≺(β) ⊆ cut≺(α).

2. If cut≺(α) = ∅ then A ⊢ α

3. Let β ∈ cut≺(α). Then {γ ∈ A : β ⪯ γ} ⊆ cut≺(α)

4. Let cut≺(α) ⊂ cut≺(β). Then cut≺(β) ⊢ α

5. If cut≺(α) = ∅ and cut≺(β) ̸= ∅ then cut≺(β) ⊢ α for
all α, β.
Colloraries:
• If cut≺(α) = ∅ and cut≺(β) ̸⊢ α then cut≺(β) = ∅
• If cut≺(β) ̸= ∅ and cut≺(β) ̸⊢ α then cut≺(α) ̸= ∅

6. cut≺(α ∧ β) = cut≺(α) ∪ cut≺(β) for all α, β
7. If γ ∈ A, then cut≺(γ) = ∅ ⇐⇒ β ⪯ γ for all β ∈ A

8. cut≺(α) = ∅ ⇐⇒ {γ ∈ A : cut≺(γ) = ∅} ⊢ α

9. If ̸⊢ β and cut≺(α) ⊢ β, then cut≺(β) ⊂ cut≺(α)

Lastly, the following set of properties is related to the w-
ensconcement order and its contraction operator.
Lemma 8. Let A ⊆ L, ⪯ a w-ensconcement ordering and
− a w-ensconcement based contraction based on ⪯. Then:

1. If cut≺(α) ̸= ∅, then A− α ̸⊢ α

2. A ⊢ α ∧ A− α = A ⇐⇒ cut≺(α) = ∅
3. cut≺(α) ⊆ A− α for all α
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4. If A− α ̸⊢ β, then cut≺(α) ̸⊢ β.
5. If A− α ⊢ β and cut≺(α) ̸= ∅ then cut≺(α) ⊢ α ∨ β.
6. If cut≺(α) = ∅ then A− α ∧ β = A− β for all α, β
7. If cut≺(α) ⊢ β, then A− α ∧ β ⊢ β

Collorary: If β ∈ cut≺(α) then β ∈ A− α ∧ β

With these properties, we shall see the axiomatic charac-
terization of the w-ensconcement contraction operator in the
following theorem:

Theorem 7. Let A be a belief base (as in Definition 12). An
operator − is a w-ensconcement-based contraction on A if
and only if it satisfies relative success, inclusion, vacuity, ex-
tensionality, disjunctive elimination, conjunctive factoring,
transitivity, EB1, EB2, persistence and success propagation.

The difference with the original ensconcement represen-
tation theorem is that the success postulate is weakened for
relative success and that both persistence and success prop-
agation are added. It is worth noticing that when success
and failure hold, persistence and success propagation are re-
dundant. Thus, the set of postulates that characterize the
w-ensconcement implies those of the ensconcement. This
means that every ensconcement operator is, indeed, a weak
ensconcement operator.

Once again, due to space restrictions, we provide the
proof in a separate appendix. However, it is worth notic-
ing that in order to prove the only if, the construction of the
w-ensconcement using C≤ does not work. In the proof, the
following construction is used:

α ≤ β ⇐⇒ α /∈ A÷ (α ∧ β) or A− β ⊢ β (WC≤)

Instead of requiring ⊢ β as in C≤, the condition A−β ⊢ β
places all irretractable sentences on top of the ordering. In
particular, as Failure holds, this condition places all tautolo-
gies on top.

4.2 Relationship Between Shielded Epistemic
Entrenchment and w-Ensconcement

This section is devoted to relating the Shielded EE with the
w-ensconcement. Intuitively, one would hope that applying
the same definitions from Section 2.3, analogous to the same
theorems that relate EE with ensconcement would hold, but
for their shielded counterparts.

The following definition is the adaptation of Definition 6
given by Williams and presented in Section 2.3.

Definition 13. Let K ⊆ L be a belief set, ≤ a shielded EE
relative to K and A ⊆ K a belief base. We define ≤|A to
be the restriction of ≤ over A; that is for every α, β ∈ A,
α ≤ β ⇐⇒ α ≤|A β

Continuing with the adaptation, the following lemma is a
reformulation of Lemma 4 for our proposal.

Lemma 9. Let K be a belief set and ≤ a shielded EE or-
dering over K. Let A ⊆ K a belief base such that ⊤ ∈ A,
and let ≤|A be the restriction of ≤ over A.

Then ≤|A is a w-ensconcement ordering on A which sat-
isfies (⪯w 1), (⪯w 2).

We would like for a property such as Theorem 3 to hold
for shielded EE and weak ensconcement. However, we shall
see that this will not work if we use the same construc-
tion as in Definition 6 for building an EE ≤(⪯w) from a
w-ensconcement ⪯w. To avoid confusion, bear in mind that
Definition 6 uses cut⪯, as opposed to the contraction opera-
tor which is defined using cut≺.
Example 4. Let K = Cn(α) with ̸⊢ α be a belief set, and
let ≤ be a shielded EE defined as: β ≡ γ for all β, γ ∈ K,
β ≡ γ for all β, γ /∈ K, and β < γ if β /∈ K and γ ∈ K.
Let A ⊆ K a belief base defined as A = {α,⊤}. By Defini-
tion 13 we have ≤|A a weak ensconcement such that α ≤|A
⊤ and ⊤ ≤|A α. Intuitively, with this w-ensconcement, we
are establishing α as an irretractable sentence. Notice that
{β ∈ A : λ ≤ β} ⊢ λ for all λ ∈ K, because λ ≤ α for all
λ ∈ K, and K = Cn(α).

We then have cut≤|A(⊤) = ∅, and cut≤|A(α) = {α,⊤}.
If we use Definition 6 to obtain a shielded EE ≤(≤|A), we
will get α <(≤|A) ⊤, since cut≤|A(⊤) ⊂ cut≤|A(α). This
means that shielded version for Theorem 3 does not hold
using Definition 6, because we have ≰=≤(≤|A)

The problem we have here is that if a belief base has a
maximal equivalence class, then cut⪯(α) is empty if and
only if ⊢ α. Thus, even if there are irretractable sentences β
such that ̸⊢ β, we will have cut⪯(β) ̸= ∅, so when apply-
ing Definition 6 we will have β <⪯ α if ⊢ α. This can be
thought of as if cut⪯ distinguishes between maximal formu-
las which are tautologies and those that are not.

This problem can simply be solved by changing cut⪯ by
cut≺, yielding the following definition:
Definition 14. Let (A,⪯) be a w-ensconcement. For α, β ∈
L, we define ≤⪯ to be given by α ≤⪯ β if and only if either
(i) α ̸∈ Cn(A), or
(ii) α, β ∈ Cn(A) and cut≺(β) ⊆ cut≺(α).

Luckily, with this new definition, the analogous theorems
to those for the prioritized operators hold:
Lemma 10. ≤⪯ is a shielded EE relative to Cn(A).

In fact, it is easy to prove that Definition 14 produces an
EE (which satisfies EE1-EE5) if we use an ensconcement
(instead of a w-ensconcement).
Theorem 8. Let K be a belief set in L, and A ⊆ K a belief
base. Let ≤ be a shielded EE related to K. If A is such that
for all α ∈ K, {β ∈ A : α ≤ β} ⊢ α, then ≤|A is a weak
ensconcement ordering on A such that ≤(≤|A)=≤
Theorem 9. Let A be a belief base and let ⪯ be a w-
ensconcement over A. Let − be the w-ensconcement
contraction operator as in Definition 10. Let ÷ be
the entrenchment-based shielded contraction operator for
Cn(A) uniquely determined by ≤⪯ according to Definition
9. Then A− α = (Cn(A)÷ α) ∩A

Equivalently to its prioritized counterpart (Theorem 4),
this theorem shows how a w-ensconcement contraction op-
erator can be represented as a shielded epistemic entrench-
ment contraction over the logical consequences of the belief
base, and then intersecting it with the original belief base.
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Furthermore, it can also be used to show, in analogous way,
that every shielded epistemic entrenchment can be thought
as a w-ensconcement, yielding the same contraction opera-
tors. Finally, the following Theorem shows the other direc-
tion in the link between both orderings.

Theorem 10. Let K be a belief set and ≤ a shielded EE
ordering relative to K. Let A ⊆ K a belief base sat-
isfying conditions of Theorem 8. Then, defining the w-
ensconcement (≤|A) given by Definition 13, we have:

Cn(A−≤|A α) = K −≤ α

As Theorem 5 shows for their prioritized counterparts,
here we can see how the behavior of a shielded EE contrac-
tion over a belief set K can be replicated by performing a
w-ensconcement contraction over a particular subset A and
then closing the result under its logical consequences. This
result is very useful when looking for a computational ap-
proach for shielded EE contractions, since we can restrict
ourselves to a possibly finite subset of our belief set and ob-
tain the same results.

For finishing this section, we would like to summarize
that for establishing the connection between shielded EE
and w-ensconcement we should use both a new notion of
belief base given in Definition 12 and an alternative way to
obtain a shielded EE from a w-ensconcement through Defi-
nition 14 instead of Definition 6 (i.e. by using cut≺ instead
of cut⪯).

4.3 Standard Shielded Form
The construction that has been presented for w-
ensconcement is not in the Standard Shielded Form
(Definition 8). However, in this section, we shall see that
w-ensconcement characterizes a proper subclass of shielded
contractions. First, we will introduce two new properties
for shielded operators:

(Weak Non-Retractability Preservation):
Cn(A) ∩ (L \R) ⊆ Cn(A ∼ α)

(Non-Retractability Inclusion):
Cn(A) ∩ (L \R) ⊆ Cn(A ∩ (L \R))

Weak Non-Retractability Preservation means that all irre-
tractable formulas that are consequences of the belief base
A are also consequences of contracting A by any formula
(i.e.: irretractable sentences are preserved during contrac-
tion). Weak Non-Retractability Preservation is indeed a
weaker version of the known postulate of Non-Retractability
Preservation if ∼ satisfies Relative Closure and Inclusion.

Lemma 11. Let A be a set of formulas, and ∼ a contrac-
tion operator defined over A. If ∼ satisfies Relative Closure,
Inclusion and Non-Retractability Preservation, then ∼ sat-
isfies Weak Non-Retractability Preservation.

This property is introduced to take advantage of the fol-
lowing fact: Let γ be a formula and let ∼ be an operator
satisfying Vacuity and Inclusion. If γ /∈ R and A ̸⊢ γ, then
A ∼ γ = A. This means that sentences not in A behave
as irretractable when A do not imply them, and if inclusion
holds, will continue behaving like that after a contraction.

However, the already known postulate of Non-
Retractability Preservation implies that A ⊢ β for all
β /∈ R, which we think is too strong. Weak Non-
Retractability Preservation requires the Non-Retractability
Preservation only for irretractable sentences already in A.
This allows for the agent to behave the following way: it
may not have a particular belief, but if that belief becomes
part of its belief base, then it will be as entrenched as its
most entrenched belief, thus it will become irretractable.

Non-Retractability Inclusion simply says that the irre-
tractable formulas that are consequences of A, are in par-
ticular consequences of the irretractable formulas in A

With these postulates, we can formulate the following
representation theorems for w-ensconcement in its shielded
standard form. First, we will construct a shielded operator
given a w-ensconcement:

Theorem 11. Let ⪯w be a weak ensconcement and −
the weak-ensconcement contraction operator related to ⪯w.
There is a set R ⊆ L and a (prioritized) ensconcement ⪯
with its related contraction operator ÷ such that defining:

A ∼ α =

{
A÷ α if α ∈ R
A otherwise

∼ satisfies Non-Retractability Propagation, Weak Non-
Retractability Preservation and Non-Retractability Inclu-
sion, and A− α = A ∼ α for all α ∈ L

The idea behind the proof is to define R = {α ∈ L :
cut≺(α) ̸= ∅}. Then, let the prioritized ensconcement or-
dering be such that for all α, β ∈ A:

(i) If cut≺w(β) ̸= ∅ then α ⪯ β ⇐⇒ α ⪯w β

(ii) If ⊢ β then α ⪯ β

(iii) If cut≺w
(β) = ∅ and ̸⊢ β then α ⪯ β for all α ∈

A \ Cn(∅)
This ordering basically places tautologies strictly on top,

then non-tautological formulas with empty cut and, strictly
below, the rest of the formulas in A maintain their order.

Next, we will see that it is possible to build a w-
ensconcement given a Shielded Operator.

Theorem 12. Let A a set of formulas, ⪯ an ensconcement
ordering over A and ÷ the contraction operator defined by
⪯ over A. Let R ⊆ L. Let ∼ be a contraction operator over
A defined as follow:

A ∼ α =

{
A÷ α if α ∈ R
A otherwise

If ∼ satisfies Non-Retractability Propagation, Weak Non-
Retractability Preservation and Non-Retractability Inclu-
sion, then there is a weak ensconcement ⪯w over A such
that its contraction operator − verifies: A−α = A ∼ α for
all α ∈ L

The idea behind this proof is to build the w-ensconcement
ordering as follows: for all α, β ∈ A, α ⪯w β if and only if
either:

(i) α and β ∈ R and α ⪯ β

(ii) β /∈ R
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This yields an ordering where formulas not in R are
strictly on top, and the rest remain the same. In particular,
since ∼ satisfies Non-retractability Propagation, tautologies
are placed on top. The postulates that ∼ satisfies guarantee
that placing the irretractable sentences on top does not affect
conditions (⪯w 1) and (⪯w 2).

5 Conclusion and Future Works
We introduced the concept of weak-ensconcement, an or-
der that merges the ideas of ensconcement (Williams 1994)
and non-prioritized shielded epistemic entrenchment opera-
tor (Fermé and Hansson 2001), and we also defined its as-
sociated base contraction operator. In doing so, we had to
provide a new definition of belief base for solving a flaw
we discovered in Theorem 4 of (Williams 1994). Then,
we provided the axiomatic characterization of our proposal,
after introducing new ensconcement properties relevant to
the proof. Furthermore, we described its relationship to a
shielded epistemic entrenchment in the same way enscon-
cements and epistemic entrenchment are related. Then, we
showed that the original definition for obtaining an EE from
an ensconcement given by Williams in that same paper does
not work for establishing the relationship between weak-
ensconcement and shielded epistemic entrenchment, so we
provided an alternative definition. Finally, we showed that
the w-ensconcement contraction operators correspond to a
subfamily of the Shielded base contractions family by pro-
viding its standard shielded form.

We consider that our characterization of a new non-
prioritized contraction operator in terms of an order among
formulas allow us to introduce a new perspective for future
computer-based implementations.

We finish this section by mentioning some ideas for work-
ing in the near future.
• An important challenge faced when implementing a con-

traction operator based on a w-ensconcement is how to
construct the order between formulas. We have begun
experimenting with AI language models to extract for-
mulas that represent the beliefs of an agent from text in
natural language (descriptions, dialogues, etc.). Addition-
ally, such AI language models are also capable of provid-
ing and explaining a possible epistemic order among the
agent’s beliefs. However, these orders do not necessar-
ily satisfy the postulates of the w-ensconcement. Conse-
quently, a promising line of work would be to integrate
these tools with logical processing software in order to
automate the creation of correct w-ensconcement orders.

• In (Rott 2003), the author introduces the concept of basic
entrenchment which is weaker than the original notion of
epistemic entrenchment given by Gärdenfors and Makin-
son in (Gärdenfors and Makinson 1988). In this way, Rott
is able to construct partial meet base and safe contrac-
tions using this new concept. We want to apply Rott’s
approach considering more flexible and adaptable notions
of w-ensconsement relations that exactly fit the different
classes of shielded base contractions.

• In (Garapa, Fermé, and Reis 2017), the authors present an
axiomatic characterization for brutal contractions based

on a general ensconcement relation. We want to extend
this result for brutal shielded base contraction.
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