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Abstract
Automating acts on touch surfaces opens a range of possi-
bilities for researching and experimenting with hybrid AI ap-
proaches. In this paper, we propose a delta robot capable of
playing match-3 games and ball-sorting puzzles by acting on
mobile phones. The robot recognizes objects of different col-
ors and shapes through a vision module, is capable of making
strategic decisions based on declarative models of the game’s
rules and of the game playing strategy, and features an effec-
tor that executes moves on physical devices.
Our solution integrates multiple AI methods, including vi-
sion processing and answer set programming. Helpful and
reusable infrastructure is provided: the vision task is facili-
tated, while robot motion control is inherently simplified by
the usage of a delta robot layout. We illustrate the com-
ponents of our robotic application and how they were in-
tegrated. Then, we briefly showcase how recognition and
general knowledge can be modeled and implemented, by
overviewing the implementation of representative games.
We argue that our application provides potential for KR and
robotics to be combined in creative ways, and offers itself as
a general controlled environment where to experiment with
forms of hybrid reasoning, while relieving from implementa-
tion details.

1 Introduction
A researcher in knowledge representation and reasoning
(KRR in the following) that wants to approach robotics has
to face many entry barriers: it is difficult to pinpoint the
right hardware; the hardware itself can be out of the reach of
available funding for a small laboratory, unless recurring to
limited, educational robots; one has to address many imple-
mentation details requiring the presence of persons skilled
in electronics and/or robotics in the research group; and, last
but not least, one has to attend the tedious job of mapping
quantitative and qualitative sensor and actuator data streams
to the world of symbolic reasoning. On the other hand, sym-
bolic reasoning almost entirely deals on high-level, qualita-
tive information, and adapts itself with difficulty to, possibly
continuous, numerical quantities.

We particularly focus in this paper on Answer Set Pro-
gramming (ASP in the following), the known declarative
paradigm with a tradition in modeling planning problems,
robotics, computational biology as well as many other in-
dustrial applications (Erdem, Gelfond, and Leone 2016).
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Figure 1: Main parts of the BrainyBot.

ASP shows a notable potential in robotics, and indeed
its capabilities in terms of declarative problem solving, di-
agnostic and planning, have been helpful in many remark-
able robotic applications, including coordination, path find-
ing and planning for multi-robots, arrangement and assem-
bly of object (Erdem and Patoglu 2018).

Applications of ASP in robotics are not exclusively of
deductive nature, but can be also based on inductive tech-
niques (Meli, Sridharan, and Fiorini 2021), while a non-
exhaustive list of the fields of interest includes cognitive
factories (Saribatur, Patoglu, and Erdem 2019), service
robots (Chen, Yang, and Chen 2016) and autonomous sur-
gical task planning (Meli, Sridharan, and Fiorini 2021).

In this paper we join the effort of leveraging ASP in
robotics and enlarging the corresponding community, with
the proposal of a controlled environment for experimenting
and researching with mobile games.
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Figure 2: Main components of the BrainyBot.

The proposed BrainyBot bridges games to robotics, and
eases research on the KRR aspects of these. Designers of
BrainyBot appliances are relieved from many aspects of the
sensor and actuator implementation and can focus on higher-
level aspects of object recognition, discretization, abstrac-
tion and reasoning. Our main contributions are:
• we introduce a robot which acts on mobile phones to play

match-3 games and ball-sorting puzzles;
• the robot integrates multiple AI methods, including vision

processing and ASP, to automate the robot’s actions on
touchscreens;

• an ample part of the robot hardware and software is gen-
eral enough to provide helpful and reusable infrastructure;
this way a knowledge designer can better focus on reason-
ing aspects, since most of the low-level object recognition
tasks are facilitated, while motion control is simplified by
the adoption of a delta robot layout;

• the robot build is purposely inexpensive and both hard-
ware and software are open-sourced: we hope this can
contribute to expand the research community interested
in reasoning and robotics, or generally interested in an
experimental application bed for their research on KRR;

• we illustrate how recognition and general knowledge can
be modeled in the framework of our robot. Also we report
on how vision information can be translated to qualitative
knowledge, and then how one can pass from qualitative
reasoning to the execution of actions.
The paper is structured as follows: in Section 2, we de-

scribe the robot’s components, its run-time workflow and
how it interacts with mobile phone games; then in Section 3,
we outline the types of games that the robot supports and the
background knowledge required to play these games effec-
tively; in Section 4, we discuss the design workflow of a new
game AI on top of BrainyBot; in Section 5, we explain the
vision and abstraction techniques used by the robot to rec-
ognize and interact with objects on mobile phones; in Sec-
tion 6, we exemplify the declarative modelling techniques

that can be used in a BrainyBot appliance to solve games;
in Section 7, we discuss related work and then we outline
future directions for research and conclusions in Section 8.

2 The Run-Time Workflow of BrainyBot
BrainyBot is built according to the design of the open source
TapsterBot1 project, which is also commercially distributed
by Tapster Robotics. The robot is mostly 3D-printed and
follows the known design of a delta-robot. Since their intro-
duction (Vischer and Clavel 1998) delta-robots gained wide
popularity for their relatively simple kinematics and ease
of realization. Many variants of delta-robot exist (Clark et
al. 2022; Kansal and Mukherjee 2022; Temel et al. 2018),
and applications range from robotic surgery (Moustris and
Tzafestas 2022) to agricultural (Yang et al. 2021). A delta-
robot has a unique end-effector controlled in parallel by
three arms: each arm is constituted by two rods forming a
parallelogram. The arms can be moved by changing the an-
gle of three respective servo motors. The design of the robot
is such that the orientation of the effector is kept virtually
constant, while one can drive its 3D position.

The main hardware parts of a BrainyBot (Figure 1) are a
mobile device PH , the effector E controlled using an Ar-
duino board, and a computer C (not shown). A touch stylus
is placed at the center of E. Figure 2 shows the operating
workflow of an instance of a BrainyBot, which is conceived
according to a mix of the classic sense-think-act loop and its
hybrid-deliberative variant (Murphy 2000). Software com-
ponents are placed respectively on PH or on C. In turn, C
controls all the parts of the system. A game G of choice
runs on PH . From the perspective of a BrainyBot instance,
one can regard the touch display of PH as the external envi-
ronment from which information is sensed, and to which the
actions of BrainyBot are directed. BrainyBot cyclically pro-
cesses information taken from PH’s display, then decides
and executes arm moves on the touch display itself. More

1https://github.com/tapsterbot/tapsterbot
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in detail, in each iteration, the Sense-Think-Act workflow is
executed as described next.

Sense. Along with the game G, a ScreenshotServer
runs on PH and is prompted to produce an image IM of
what currently appears on PH’s display. IM is processed
by a vision module, which recognizes relevant objects to-
gether with their raw position and other attributes like color
and shape. Before sending this information to the next step,
an Abstraction module transforms quantitative informa-
tion, (e.g., pixel coordinates of objects) into an abstracted
description of the current game board. This operation is per-
formed by exploiting some game background information,
like assuming that the game level contains objects forming
a rectangular grid, almost default in match-3 games, or as-
suming that objects are laid out in stacks, a typical setting
of ball sort games. Background knowledge is also helpful
in filtering out false positive images, such as duplicates, or
ghost detections appearing in displaced positions.

Think. The task of this step depend on whether the cur-
rent iteration is planned or reactive: the two different work-
flows are depicted in Figure 2 by the blue and green paths,
respectively. In reactive iterations the decision making step
is performed inline whereas, in planned iterations the robot
executes moves that were planned ahead. In this latter type
of iteration, the think and vision steps are skipped. In a re-
active iteration, the game board description is transformed
in logical assertions. Logical assertions are then fed to the
Solving module together with a declarative representation
of the game rules and of the game strategy of choice. The
Solving module is made of an answer set solver S inter-
faced using the EmbASP framework (Calimeri et al. 2019),
which plays the role of Mapping module. S is expected to
produce at least one optimal answer set A. A might encode
the next move to be executed, or a sequence of moves to be
executed in later planned iterations.

Act. Eventually, a move appearing in A is converted
back into a specific gesture to be executed on the touch dis-
play. A gesture can be either a tap or a swipe, and requires
to specify proper quantitative pixel coordinates. Specif-
ically, taps require to specify a couple of screen coordi-
nates (x, y) where to perform a tap, whereas swipes re-
quire a 4-tuple (x0, y0, x1, y1) describing a line to be swiped
while touching the screen. The inverse and forward kine-
matic of a delta-robot has been widely studied since its pro-
posal (Vischer and Clavel 1998). Given a desired target
point T = (x, y) to touch on the mobile surface, T is first
converted to a tridimensional value T ′ = (x0, y0, z0) using
a function C(T, d) = T ′ where d are calibration data. It is
then possible to make the robot effector reach T ′ by using
an inverse kinematics function F (x0, y0, z0) = (θ1, θ2, θ3)
where (θ1, θ2, θ3) are the obtained target angles for the servo
motors (Figure 3).

3 Types of Games and Background
Knowledge

Before describing how one can design an AI working for
a BrainyBot, we briefly overview the features of the games
we focused on in our research. Our BrainyBot prototype can

T’ = (X0,Y0,Z0)

Θ3

Θ2

Θ1

Figure 3: Abstract layout of a delta-robot.

currently play two types of games: Match-3 and Ball Sort
games. Both game types are conceived for individual play-
ers which are challenged to solve a game level, whose initial
and following states are shown on a screen. The gameplay is
turn-based, and there is, in general, no time limit between a
move and another. The two categories of games differ how-
ever in the board layout, in the level of observability and
in the game strategy. On the one hand, Ball Sort puzzles
have a peculiar board layout, formed of stacks of objects;
they are usually complete information games with a shallow
search tree. On the other hand, Match-3 games are typically
not fully observable and feature some non-deterministic ele-
ments in them, thus being an interesting ground for research
in the game-play strategy.

We briefly outline both game types next, with particular
focus on some standard assumptions that can help in mod-
elling a) the game rules and the decision-making process,
and b) the recognition of the game board and the subsequent
abstraction steps.

Match-3 games. The family of Match-3 games takes its
name from its basic move, consisting in swapping objects
laid out in a planar grid, and aiming to align at least three
objects of the same kind. The most representative game of
this family is Candy Crush Saga2 (CCS in the following).

Game rules. In Match-3 games, legal moves require to
align at least three identical objects by swapping one source
object s with a vertically/horizontally adjacent object t. Af-
ter a move, all the objects involved in alignments of three or
more of the same kind/color disappear, causing the objects
above to fall down into the now empty space, and creating
difficulties in predicting chain reactions.

Images and Board layout. Simpler objects in Match-3
games use a fixed shape and color: for instance, in CCS there
are orange oval candies, green square candies, etc. Simple
objects can have special attributes, which change their ap-
pearance, e.g., there can be candies blocked in a liquorice

2https://www.king.com/it/game/candycrush
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Figure 4: A Ball Sort game screenshot.

cage. All the objects are arranged in a planar grid g. Al-
though g is not necessarily square, all the objects in the game
are laid out according to discrete rows and columns.

Ball Sort puzzles. Ball Sort Puzzles constitute a family of
smartphone video games available in several variants from
different software houses.

Game rules. In general, a level of a ball sort puzzle con-
sists in n+m tubes, n of which are filled each with p stacked
balls which can have one out of n colors, while the remain-
ing m tubes are empty (as shown in Figure 4). A maximum
of p balls can be in a certain tube at any given moment. A
game level is solved when one has n full tubes, each with
balls of the same color. The core rule of the game prescribes
that only a ball on top of its source tube s can be moved to
another target tube t, provided that t contains at most p−1
balls before the move and that the ball on top of t has the
same color of the one on top of s.

Images and Board layout. Ball Sort puzzles feature two
type of objects: balls and tubes. Balls can differ in their
color, whereas tubes have a fixed shape, although their ap-
pearance might vary depending on whether they contain
balls or not. The structure of the game board is nested: balls
are stacked within tubes, while tubes are arranged in discrete
rows and columns.

4 BrainyBot Design Workflow
Let us assume that a researcher R aims to use a BrainyBot
for research purposes, maybe customizing its workflow for
a new mobile game/application G. One can proceed by mod-
ifying/reusing the modules shown in Figure 2 as follows.

Camera taking and screenshots. BrainyBot does not pur-
posely feature a physical camera. Taking screenshots is sim-
plified as it is sufficient to install the Screenshot Server ap-
plication on the mobile phone at hand.

Vision. The Vision module includes the builtin possibility
of recognizing objects of fixed appearance, typical of Match-
3 games, or balls of different colors, typical of Ball Sort
puzzles. When implementing the AI for G, R can add new
template images corresponding to new arbitrarily shaped ob-
jects. Objects in the shape of balls can be instead automat-

ically detected whenever they appear in a screenshot, inde-
pendently from their color and size.

Abstraction. R can use predefined modules able to re-
construct discrete planar grids of objects, typical of Match-3
games, or groups of stacks of objects, typical of Ball Sort
Puzzles. With relatively small effort, the Abstraction mod-
ule can be customized for accommodating differences in the
layout of the game at hand, possibly implementing arbitrary
board layouts.

Mapping. The implementation of BrainyBot provides pre-
defined data structures which are automatically mapped to
predefined predicates. These allow to model object grids and
content thereof, balls and tubes and their layout, and asso-
ciate them to their mapped logic assertions. For instance, the
Python class Edge is associated to the homonymous predi-
cate used for modelling grid adjacency graphs. If necessary,
the EmbASP subsystem allows to easily map new custom
logic predicates to and from Python objects meant to de-
scribe other features of a game level. For instance, given
a game based on a maze structure, one could be interested
in modelling the Wall class: this could be automatically
mapped to a logic assertion with a few lines of Python code.

Solving. Game rules and decision making can be declar-
atively modelled by providing a declarative knowledge base
KB written in ASP, which combined with a game board de-
scription B, and run using an ASP solver, would produce
appropriate game moves. This is the most flexible part of
the BrainyBot infrastructure, as R can experiment with dif-
ferent knowledge bases, in order to accommodate diverse
game rules and diverse game playing strategies.

Acting. R is relieved from most of low-level details of
the acting step, except for the customary calibration routine.
Calibration requires to redefine the function C(., d) with up-
dated values for d, meant to compensate various factors that
can cause the position and orientation of the three arms to
drift. This process must be repeated periodically and is par-
tially manual.

5 Vision and Abstraction Techniques
The Vision subsystem uses known computer vision methods,
available in the OpenCV library (Bradski 2000) to recognize
type and position of the game elements appearing in-game
screenshots. Each of these techniques might be specific to
the type of game at hand: a useful common technique is
Template Matching (TM, in the following) which allows the
recognition of fixed objects. In TM, one tries to locate one or
more instances of a template image im within a larger-sized
image IM. To achieve this goal, im is iteratively translated
onto the larger image, thus performing a 2D convolution. An
output matrix m of size (W−w + 1, H−h+ 1) is returned,
where (W,H) represents the size of the larger image, while
(w, h) represents the size of im. Each element of m denotes
how much, at any valid coordinate (x, y) of IM, im coincides
with the corresponding subregion of IM.

Note that m typically reports several matchings very close
to each other. We use the normalized cross-correlation co-
efficient to score matchings, and we consider only matches
above a given threshold. A match m is identified by its cen-
ter (xm, ym). As there can be several partial matchings of
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Figure 5: Game graph representation.

the same image, with just a slight difference in their coordi-
nates, we use a deduplication strategy in which a new match
m′ is assumed to be a duplicate of m, and thus discarded,
whenever m′ coordinates (xm′ , ym′) fall in the bounding
box of m. Considering that game objects very often have
a static shape in the type of turn-based games we are tar-
getting, we opted for TM as it works very well on fixed
images and does not require time-consuming training and
fine-tuning.

Recognition of Match-3 objects and grids. The vision
module in charge of reconstructing levels of a Match-3 game
makes use only of TM to recognize objects in a screenshot.
We implemented our recognition strategy in the specific case
of CCS. All the candy object template images are stored and
labeled with a type identifier that denotes the correspond-
ing candy throughout the game. The threshold of choice for
comparing normalized cross-correlation values (0.85) has
been obtained by looking at the highest value with zero false
negatives. In the next abstraction layer, background knowl-
edge is used very effectively in discarding the possibly re-
maining false positives (e.g. out-of-grid artifacts), thus vir-
tually achieving a precision and recall of 100%.

Each candidate object o has its own pixel coordinate
(xo, yo) and a type t. The Vision module forms a collec-
tion O of candidate objects. Then Abstraction works by ar-
ranging elements of O in a grid g, modeled as an undirected
graph connecting adjacent objects (Figure 5), either in a ver-
tical or horizontal relationship. We assume each template
image (sprite in the following) is of the same size. We form
the nodes and edges of g by taking the left-uppermost object
o ∈ O and sweeping the pixel space in fixed vertical and
horizontal steps of the size of a sprite. A horizontal/verti-
cal link between two nodes n1 and n2 is added only if the
distance between their centers is around the size of a sprite.
The coordinates of unique sprite occurrences are replaced
with a unique identifier, while edges are labeled to take into
account the horizontal/vertical adjacency relationship.

Recognition of balls, tubes and puzzles layouts. Since
Ball Sort puzzles suit the approach of planning in advance
all the solution moves, we take a screenshot for the initial
game board only. Among the current implementations of

this puzzle, we used Ball Sort Puzzle - Color Game3 as test
case. The subsystem that can reconstruct Ball Sort game
levels combines a number of vision techniques.

Tubes. We use sprites of empty tubes as templates to be
identified within the game snapshots. These have been di-
rectly acquired from game screenshots. We set the thresh-
old for the normalized cross-correlation coefficient to 0.80,
again choosing the highest value with no false negatives,
which experimentally gave us 100% precision and recall of
empty tubes appearing in a screenshot IM. Tubes of different
sizes and height are detected using a set of different match-
ing images.

Balls. Balls are game objects constituting a typical exam-
ple of image that cannot be recognized by simple template
matching. Their size, texture and color can be very different
from one level to another, and it is not feasible to maintain
stored template images for any possible visual appearance
of this kind of object. Ball detection requires two separate
vision tasks: coordinate detection and color detection.

For coordinate detection, we applied a Canny Edge De-
tector (Ruff 1987) to IM, to obtain contours of game objects,
then the Hough Circle Transform (Yuen et al. 1989), a spe-
cialization of the Hough Transform that is used in the field
of digital image processing, to identify circles present in an
image. All pixels in the screenshot are ranked according to
their likelihood of being at the center of a circle. It is im-
portant to note that some circle centers may be mistakenly
detected in the presence of edges that define shapes similar
to a circle, such as the lower part of tubes that describe a
semicircle. This issue is solved by the Abstraction mod-
ule, which is able to filter the detection results.

In order to detect ball colors, one has to take into account
small differences in hue and texture and some lack of preci-
sion in finding the precise center of a given ball. This issue is
circumvented by applying a Gaussian blur filter to IM. This
filter smoothens noise and decreases the level of detail, thus
making decorative patterns lesser relevant in color detection.
The ball color is then detected by looking at the blurred im-
age instead of the original one.

Layouts and abstraction. The Abstraction module filters

3https://bit.ly/ball sort puzzle android2
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out false positives and determines qualitative values for balls
and tubes’ positions, and for ball colors.

Concerning colors, the Abstraction module works assum-
ing a dynamic number of ball colors are present in the game.
A collection of color labels C is constructed as follows:
when a new RGB value (r, g, b) is detected for a candidate
center pixel of a ball, we assume to be in the presence of a
new color if the minimum Euclidean distance in the RGB
space from colors in C exceeds a given threshold. Other-
wise, we map (r, g, b) to the element c ∈ C which has the
closest Euclidean distance in the RGB space (see Figure 7).

The quantitative information associated with the pixel po-
sition of balls is abstracted using an algorithm that iterates
over the raw data received as input, i.e., the pixel coordinates
of the individual balls, and instantiates for each coordinate
pair a Ball object, to which it is assigned the correct color
label c ∈ C.

Each tube t is modeled using a unique label and a list
Lt of contained balls. Empty tubes which were separately
identified using TM are instantiated with an empty list of
balls, while tubes containing balls are implicitly identified
using the position of detected balls.

In order to reconstruct the content of a tube t, we assume
it respects the following criteria: i) contained balls are ver-
tically aligned, i.e., their x coordinate may be not perfectly
aligned but belong to a fixed pixel range; ii) the difference
between the y coordinate of each ball of t must be lower than
a certain threshold τ1 and not higher than a second threshold
τ2; this permits to tell apart ghost detections and balls com-
ing from different tubes which are aligned vertically (Fig-
ure 8). Let B be the set of detected balls. The content of a
new tube t is reconstructed by moving a ball b from B to t.
Then we move from B to t all the balls b′ ∈ B that fulfill
the above distance criteria from elements of t. New tubes are
created until B is empty, obtaining a collection T of tubes.

The content of each tube represents an ordered stack
where the original pixel position of balls is abstracted away.
Since tubes contain at least 4 balls, we assume all t ∈ T with
less than 4 balls are ghost detections, and we remove them
from T .

Figure 6: A Candy Crush game screenshot with yellow candies
highlighted by the Vision module.

Figure 7: Color matching in the Ball Sort game.

6 Declarative Knowledge Modelling
In this section we overview the knowledge modeling process
happening when designing the Think stage: in particular we
showcase how parts of the game logic and the decision pro-
cess can be declaratively described using ASP.

We herein recall briefly the main features of ASP (Gel-
fond and Lifschitz 1988; Gelfond and Lifschitz 1991) the
known declarative logic formalism developed in the field
of logic programming and non-monotonic reasoning. The
basic constructs of ASP are rules with form Head :− Body,
where Body is a logic conjunction in which negation may
appear, and Head can be either an atomic formula or a logic
disjunction. ASP knowledge bases are composed of set of
rules. Choice rules allow to define spaces of possible values
for logical assertions, while hard and soft constraints, allow
respectively to define disallowed or undesirable scenarios.
Soft constraints can be prioritized, thus enabling the pos-
sibility of combining multiple optimization criteria on sev-
eral tiers. One can model problems in ASP by expressing
knowledge into three distinct parts, namely guess (mostly
composed of choice rules and disjunctive statements), check
(mostly composed of hard constraints) and optimize (mostly
composed of soft constraints).

A set of input values F (called facts), describing the cur-
rent state of the world, are fed together with an ASP knowl-
edge base KB to a solver. Solvers in turn produce one or
more outputs A(KB ∪ F ) called Answer Set(s). An answer
set is a set of logical assertions, which might represent shifts
to be scheduled, protein sequences, diagnoses, and so on. In
our setting an answer set encodes a set of one or more moves
to be executed on the game board at hand. If a program has
no answer sets, the corresponding input problem has no so-
lutions. We refer the reader to (Calimeri et al. 2020) for an
analytic description of the full syntax and semantics of the
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ASP-Core-2 standard language. A number of solvers and
systems are available among which Clingo (Gebser et al.
2011; Gebser et al. 2019) and DLV2 (Calimeri et al. 2016;
Calimeri et al. 2022) are actively developed.

Next, we overview how one could model games, by focus-
ing on some of the salient parts of knowledge bases meant
to declaratively specify the rules and the game playing strat-
egy for the Match-3 and Ball Sort Puzzle families. Note that
the focus of this paper is not on the quality of the presented
declarative AIs: these are assumed to be modular, and ex-
pected to be provided by interested KRR designers.

Match-3 games. We designed an illustrative ASP-based
Think module focused on CCS. CCS follows the basic rules
of Match-3 games, i.e., one can swap adjacent objects pro-
vided they make an alignment of three or more objects of
the same kind (i.e., they produce a 3-match). Matches im-
ply cancellation and fall of objects on the game board. De-
fault objects are candies of several color and shapes, but spe-
cial objects are possible. Swapping special objects, like e.g.,
the so-called color bomb, has specific special effects. For
the sake of simplicity we will not show the modelling of
the behavior of special objects. The current game board is
modeled via a non-oriented graph, in which nodes represent
game objects, while edges model adjacency relations among
them. In the case of CCS, game objects correspond to can-
dies of several shape and color (see Figure 6). The game
graph is mapped to input facts over the predicates node and
edge. A fact of the form node(id,t) is used to model that
the game object having as unique identifier id is a node of
type t; in CCS, the type is the shape and color of the candy.
A fact of the form edge(id1,id2,A) models that there is
an alignment between the directly adjacent nodes id1 and
id2, where A can be either v or h, meaning respectively a

vertical or horizontal alignment, as shown in Figure 5b. The
following ASP rules can be used for defining the basic game
rules and the optimal object swap.

r1 : {swap(ID1,ID2): edge(ID1,ID2)}=1.

r2 : swap(ID2,ID1) :− swap(ID1,ID2).

r3 : newEdge(ID1,ID3,A) :−
swap(ID1,ID2), edge(ID2,ID3,A),

ID1!=ID3, node(ID1,T), node(ID3,T).

r4 : deletedEdge(ID2,ID3) :− edge(ID2,ID3,A),

swap(ID1,ID2).

r5 : match(ID1,ID3,A) :−
newEdge(ID1,ID2,A),

newEdge(ID2,ID3,A), ID1!=ID3.

r6 : match(ID1,ID3,A) :−
newEdge(ID1,ID2,A),

edge(ID2,ID3,A), not deletedEdge(ID2,ID3),

node(ID2,T), node(ID3,T), ID1!=ID3.

r7 : match(ID1,ID3,A) :−
match(ID1,ID2,A),

edge(ID2,ID3,A), not deletedEdge(ID2,ID3),

node(ID2,T), node(ID3,T), ID1!=ID3.

Rule r1 defines a search space among possible swaps be-
tween two game objects. Rule r2 makes a swap as a symmet-
ric operation (i.e., swapping nodes a and b implies swapping
b and a). Since swapping nodes make edges change, rules
r3 and r4 are respectively used to determine new edges and
keep track of no longer existing connections. Rules r5 and
r6 determine simple matches, i.e., configurations of three
aligned game objects of the same type, whereas rule r7 re-
cursively defines longer strides of matches.

Constraint r8 ensures that only swaps provoking at least a
3-match are allowed:

r8 : :− #count{ID1,ID3,A: match(ID1,ID3,A)}=0.

Among all admissible swaps, one can declaratively spec-
ify the preferred one in terms of some custom criterion. For
instance, soft constraint r12 below attributes a cost to swaps:

r9 : involvedNode(ID) :− match(ID,_,_).

r10 : involvedNode(ID) :− match(_,ID,_).

r11 : survivingNode(ID) :− node(ID,_),

not involvedNode(ID).

r12 : :∼ survivingNode(ID). [1@1,ID]

This cost is proportional to candies remaining in the scene
after the swap, thus defining that the more desirable solu-
tions are those with the highest number of destroyed game
objects. The rules and game strategy for Match-3 games can
be customized at will by adding additional knowledge and
other soft/hard constraints.

Ball Sort Puzzles. We show next how one can model
game rules and the decision making process for ball-sort
puzzles. We devised a knowledge base that can find an ex-
ecution plan at once or be broken into layered pieces decid-
ing shorter sequences of steps. At each step a single move
is made and the ultimate goal is to minimize the total num-
ber of moves. The initial state of the game is modeled via
some ASP facts over the predicates color, ball, tube,
tubeSize, and on. Facts of the form color(c) describe
the possible colors. A fact of the form ball(b,c) repre-
sents that the ball b has color c. Facts of the form tube(t)
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on(7,6,6,1)

on(6,5,6,1)

on(5,0,6,1)

Tube ID : 5 Tube ID : 6

move(4,6,1)

Tube ID : 5 Tube ID : 6

on(4,3,5,1)

on(3,2,5,1)

on(2,1,5,1)

on(1,0,5,1)

ID: 4

ID: 3   

ID: 2

ID: 1

ID: 7

ID: 6

ID: 5

ID: 3

ID: 2

ID: 1

ID: 4

ID: 7

ID: 6

ID: 5

on(4,7,6,2)

on(7,6,6,2)

on(6,5,6,2)

on(5,0,6,1)

on(3,2,5,2)

on(2,1,5,2)

on(1,0,5,2)

Figure 9: Effect of a legal move in a Ball Sort game.

describe the tubes identified in the game scene, whereas the
fact tubeSize(s) expresses the global size of tubes. Fi-
nally, a fact of the form on(b1,b2,t,s) encodes that the
ball b1 is above the ball b2 and both belong to the tube t at
step s. The guess portion of the problem model, introduces
per each step s, a possible move until the level is completed
(rule r1) and determines the game state at step s + 1 (rules
r2–r4). These latter rules use some predicates defined by
simple auxiliary rules, of which we omit the description as
their meaning is intuitively given by the names of predicates;
more in detail, r2 states that, in the next step, a ball b1 is on
top of a ball b2 if b1 is moved in the tube t and b2 was on
top of t; r3 says that when a ball b1 is moved into an empty
tube, it is the lowest one (the special placeholder 0 encodes
that there is no other ball under b1); r4 is used to determine
the state of all other balls not involved in a movement in the
current step (Figure 9). r1–r4 are as follows:

r1 : {move(B,T,S): onTop(B,T1,S), tube(T), T!=T1}=1 :−
step(S), not levelComplete(S).

r2 : on(B1,B2,T,S+1) :−
step(S), move(B1,T,S), onTop(B2,T,S).

r3 : on(B1,0,T,S+1) :−
step(S), move(B1,T,S), emptyTube(T,S).

r4 : on(B1,B2,T,S+1) :−
step(S), on(B1,B2,T,S), not ballMoved(B1,S).

The check part consists of strong constraints that discard not
allowed plans. In particular, at each step s, a move is not
admissible when either: i) b is moved in a full tube (rule r5)
or, ii) b has been moved in the previous step s−1 which
would result in a useless move (rule r6) or, iii) b is moved

on top of another ball b′ with a different color (rule r7):

r5 : :− step(S), move(B,T, S), size(T,S,N), tubeSize(N).

r6 : :− step(S), move(B,_,S), move(B,_,S-1).

r7 : :− step(S), move(B, T, S), onTop(B1,T,S), C1!=C2,

ball(B,C1), ball(B1,C2).

The optimize part of the program defines the game strategy
by means of soft constraints whose priority depends on the
associated tier level (i.e., the higher the level, the greater the
priority). It is worth to note that this part is the one more
strictly dependent to the specific Ball Sort game variant, but
it lends itself to be repurposed to other games of the same
category. We list below some possible soft constraints, or-
dered in descending priority. We say that a tube is mono-
color if it contains only balls of the same color. In rule r8,
we introduce a cost if we don’t move a ball of color c in
the mono-color tube containing the largest number of balls
of the same color c. We prefer to move a ball in an empty
tube, if available, in order to facilitate the construction of a
mono-colored tube (rule r9) and among all colors, we pre-
fer to move a ball of a color c, which appears on top of the
largest number of tubes (rule r10). Via rule r11, we discour-
age to move a ball of color c which is already in the tube
containing the largest number of c-colored balls. Rule r12
aims at freeing balls of a color c that are not on top of a
tube when there is a tube having only c-colored balls. Rule
r13 suggests to move a ball having another one of the same
color below it. Finally, rule r14 encourages to move a ball
in a tube t that in the next step would keep t mono-colored.
r8–r14 are as follows:

r8 : :∼ step(S), not move(B,T1,S), not inTube(B,T1,S),

biggestMonoColorTube(T1,C,S), ball(B,C),

onTop(B,_,S). [1@7, B,S]

r9 : :∼ step(S), move(B,T1,S), not monoColorTube(T1,S),

notEmptyTube(T1,S), emptyTube(T2,S),

T1!=T2. [1@6,B,S]

r10 : :∼ step(S), move(B,_,S), ball(B,C),

ballOnTopOfColor(C,N,S), C!=C1, N<M,

ballOnTopOfColor(C1,M,S). [1@5,B,S]

r11 : :∼ step(S), inTube(B,T1,S), ball(B,C),

biggestMonoColorTube(T1,C,S),

not biggestMonoColorTube(T2,C,S),

move(B,T2,S). [1@4,B,S]

r12 : :∼ step(S), move(B,_,S), onTop(B1,T,S),

not monoColorTube(T,S), on(B1, B2,T,S),

ball(B2,C), monoColorTubeWithColor(_,C,S),

B!=B1. [1@3,B,S]

r13 : :∼ step(S), move(B,_,S), on(B,B1,T,S),

not monoColorTube(T,S), ball(B,C),

ball(B1,C1), C!=C1. [1@2,B,S]

r14 : :∼ step(S), move(B,_,S), on(B,_,T,S),

not monoColorTube(T,S+1). [1@1,B,S]

7 Related Work
Our work contributes to other lines of research in several
respects, that can be categorized as (1) Research on Match-
3 and Ball sort games; (2) Vision in games, both physical
and on screen; (3) Other end-to-end approaches integrating
ASP; (4) Modelling games in ASP.
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Research on Match-3 and Ball sort games. Match-3
games stimulated interest in the general research commu-
nity since it features elements of non-observability which
makes the task of game playing nonobvious. Also pre-
scribed game goals can be fairly complex, ranging from
destroying given target objects to moving objects in given
target locations in a limited number of moves. Match-3
have been proved to be NP-hard in (Gualà, Leucci, and
Natale 2014), and indeed their combinatorial properties are
nontrivial (Hamilton, Nguyen, and Roughan 2021). Given
its wide popularity it is rather unsurprising that CCS has
been subject of social research (Chen and Leung 2016;
Amaro, Veloso, and Oliveira 2016). Ball Sort puzzles and
their variants in which quantities of water are sorted, can be
seen as a gamified variant of the classic Hanoi Tower puz-
zle. Ball and water sort puzzles have been proved to be NP-
Hard (Ito et al. 2022); a usage of Ball Sort as a testbed in
augmented reality can be found in (Maraj, Hurter, and Mur-
phy 2020).

Vision in games. In the context of artificial game player
programming, it is necessary to know the game scene in or-
der to obtain a credible AI: many interesting commercial
games do not expose an abstract representation of the game
scene thus the vision task can not be neglected. In the An-
gry Birds competition (Renz et al. 2015) the organizers deal
with this aspect and provide participants with a vision mod-
ule producing and encoding the current game scene. Even
when the main objective is not to obtain an artificial player,
vision in video games can be helpful. In (Gielis et al. 2019)
authors used the game FreeCell for the diagnosis and follow-
up of cognitive impairments, using image recognition tech-
niques for extracting digital bio-markers. When it comes
to robots playing against humans on physical board games,
a lot of studies have been conducted on detecting game
situations on the basis of scenarios captured by cameras,
with special focus on Chess (Wei et al. 2017; Wölflein and
Arandjelovic 2021) and Go (Scher, Crabb, and Davis 2008;
Song and Li 2018).

Other end-to-end approaches integrating ASP. Our
work shares the same spirit of (Andres et al. 2015), in which
facilities for connecting ASP to ROS-enabled (Quigley et
al. 2009) robots are provided. The adaptation of the sense-
think-act cycle follows the ideas of ThinkEngine (Angilica,
Ianni, and Pacenza 2022), in which we proposed a similar
variant of the evaluation loop; this allows to program non-
player characters in video games by mixing plans and reac-
tive actions. The necessity of acting on planar surfaces is not
restricted to the case of touch surfaces. For instance the sur-
gical Vinci® robot has been used in (Meli, Sridharan, and
Fiorini 2021) by inducting ASP programs and then testing
and training on a planar surface, which substitutes the pa-
tient open abdomen with an abstract description thereof. We
plan to investigate the usage of a tablet device as a simplified
environment for testing surgical robots.

Game modelling in ASP. ASP has a longstanding tra-
dition in modelling single player, turn-based games. One
can mention all the game-based problems appearing in the
past ASP Competitions from its first through its seventh
edition (Gebser et al. 2007; Gebser, Maratea, and Ricca

2020) or even work combining or using ASP in video
games (Calimeri et al. 2016; Stanescu and Certický 2016;
Angilica, Ianni, and Pacenza 2022). This research has a
clear connection with general game playing languages and
GDL in particular (Genesereth et al. 2005): indeed ASP has
been attempted to be used as a general game description lan-
guage in (Thielscher 2009; Smith et al. 2010).

We believe our work can stimulate this line of research as
it opens many possibilities such as (i) experimenting with
new games, (ii) collect new benchmark data taken from
actual levels, (iii) investigate on practical abstraction tech-
niques, (iv) explore what can be the impact of the presence
of relatively complex gestures in the reasoning workflow,
such as swipes, taps, long and double taps, etc., and, (v) last
but not least, one should not disregard the emotional impact
of “seeing things done by my robot” that can spark further
interest in games and robotics research & learning.

8 Conclusions
In this paper, we have presented a robot appliance aiming
to bridge the gap between knowledge representation, games
and robotics. The proposed BrainyBot can serve as a generic
ground where a researcher can focus on high-level aspects
of object recognition, discretization, abstraction, and rea-
soning, while lower level implementation details are fairly
simple to address, thus reducing the barriers to entry for re-
searchers interested in this type of application.

Many components of our contribution are reusable, in-
cluding standardized objects, grid reconstruction algorithms
and (portions of) declarative models written in ASP. The in-
expensive and open-source nature of our robot’s hardware
and software is intended to expand the community of re-
searchers interested in reasoning and robotics, offering a
practical application bed for research on knowledge rep-
resentation and reasoning. Through this work, we have
demonstrated how vision information can be translated into
qualitative knowledge, and how qualitative knowledge can
inform actual actions.

Future research directions include developing support for
additional game categories, enlarge the portfolio of available
standard objects and board reconstruction tools, automate
handling of interstitial game screens (recognition and push-
ing of “next level” buttons, etc.), and enlarge the range of
BrainyBot capabilities to mobile applications. Also, we plan
to further develop the knowledge representation techniques
used in conjunction with the robot in many directions.
Among these we aim to use BrainyBot as an application and
testing environment where to represent and deal with contin-
uous numeric values. BrainyBot qualifies also as a good data
producer and consumer for ongoing search on stream and
incremental reasoning (Ianni, Pacenza, and Zangari 2020;
Calimeri et al. 2021; Calimeri et al. 2022). In the actua-
tor design compartment, the BrainyBot could be improved
by eliminating the need for human involvement in the te-
dious calibration process and incorporating feedback mech-
anisms to more effectively handle plan failures and replan-
ning. The BrainyBot building instructions, its control soft-
ware and declarative knowledge bases are available at https:
//github.com/DeMaCS-UNICAL/BrainyBot.
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