Complex Event Recognition with Allen Relations

Periklis Mantenoglou ${ }^{1,2}$, Dimitrios Kelesis ${ }^{3,2}$, Alexander Artikis ${ }^{4,2}$
${ }^{1}$ National and Kapodistrian University of Athens, GR
${ }^{2}$ NCSR "Demokritos", GR
${ }^{3}$ National Technical University of Athens, GR
${ }^{4}$ University of Piraeus, GR
periklismant@di.uoa.gr, dkelesis@ mail.ntua.gr, a.artikis@unipi.gr

Abstract

Contemporary applications require the processing of large, high-velocity streams of symbolic events derived from sensor data. A complex event recognition (CER) system processes these symbolic events online and reports the satisfaction of complex event patterns with minimal latency. We extend an Event Calculus dialect optimised for online CER with Allen's interval algebra, in order to provide more accurate event patterns. We demonstrate the effectiveness of our system on real data streams from maritime situational awareness.

1 Introduction

Complex event recognition (CER) systems process highvelocity data streams in order to extract and report instances of (spatio-)temporal pattern satisfaction with minimal latency (Cugola and Margara 2012). CER has been applied to various contemporary applications. In maritime situational awareness, e.g., a CER system consumes streams of vessel position signals, in order to detect instances of dangerous, suspicious and illegal vessel activities in real time, thus supporting safe shipping (Pitsikalis et al. 2019).

The target activities of a CER system, such as illegal fishing, are typically durative, and thus should be expressed using temporal intervals. Such a treatment allows the detection of ongoing activities, while avoiding the unintended semantics of using single time-points (Giatrakos et al. 2020). Moreover, the use of Allen's Interval Algebra has proven quintessential for CER (Awad et al. 2022; Körber et al. 2019; Song et al. 2013; Anicic et al. 2012; Brendel et al. 2011). Allen's algebra specifies thirteen jointly exhaustive and pairwise disjoint relations among intervals (Allen 1984). Consider, e.g., the detection of a 'suspicious rendez-vous' of two vessels in the maritime domain, where one of the vessels turns off signal transmissions, while being close to the other vessel. This phenomenon can be expressed with the 'during' relation of Allen's algebra, while it cannot be captured by common interval operators, such as union and intersection.

We extend the Event Calculus for Run-Time reasoning (RTEC) (Mantenoglou et al. 2022), a formal, logic-based CER system, in order to support the relations of Allen's interval algebra in temporal patterns. RTEC already includes optimisation techniques, like windowing, allowing
for highly efficient reasoning in CER applications (Mantenoglou et al. 2022; Tsilionis et al. 2022).

The contributions of this paper may be summarised as follows. First, we present RTEC $_{A}$, an open source, formal computational framework for CER with Allen relations. We present the syntax, semantics and reasoning algorithms of RTEC $_{A}$. Second, we prove the correctness of RTEC A, which stems from the use of a novel interval caching technique. Third, we show that RTEC $_{\mathrm{A}}$ has linear-time complexity, bound by a small part of the stream of constant size. Fourth, we present an extensive, reproducible empirical comparison of our approach with two state-of-the-art systems supporting Allen relations on real maritime data. Our comparison demonstrates that RTEC $_{A}$ is at least one order of magnitude more efficient than the state-of-the-art.

2 Background

2.1 Event Calculus for Run-Time Reasoning

The Event Calculus for Run-Time reasoning (RTEC) (Mantenoglou et al. 2022; Artikis et al. 2015) is a logic programming implementation of the Event Calculus (Kowalski and Sergot 1986), designed for reasoning over data streams. The time model of RTEC is linear and includes integer time-points. Variables start with an upper-case letter, while predicates and constants start with a lower-case letter. The language of RTEC includes events and fluents, i.e., properties that may have different values at different points in time. The term $F=V$ denotes that fluent F has value V. Boolean fluents are a special case where the possible values are true and false. Events are instantaneous and may change the values of fluents. The task of RTEC is to compute the maximal intervals during which a fluent-value pair (FVP) holds continuously. The main predicates of RTEC are the following. happensAt (E, T) denotes that event E occurs at time-point T, while initiatedAt $(F=V, T)$ (resp. terminatedAt $(F=V, T)$) specifies that fluent F starts (stops) having value V at T. For a FVP $F=V$, holdsFor $(F=V, I)$ states that fluent F has value V continuously during the maximal intervals in list I, and holdsAt $(F=V, T)$ expresses the truth value of $F=V$ at a given time-point T.

A formalisation in RTEC contains a set of applicationspecific rules, expressing the relations between the events

Figure 1: Interval manipulation constructs of RTEC. I_{1}, I_{2} and I_{3} (resp. I_{c}, I_{i} and I_{u}) are input (output) lists of maximal intervals.
and the FVPs of a domain, called event description.
Definition 1 (Event description). An event description is a set of:

- Ground facts in the form of happensAt (E, T), expressing a stream of event instances.
- Rules with head initiatedAt $(F=V, T)$ or terminatedAt $(F=V, T)$, expressing the effects of events on FVPs.
- Rules with head holdsFor $(F=V, I)$, defining $F=V$ in terms of other FVPs.
RTEC features simple and statically determined fluents. Simple fluents are defined by means of initiatedAt and terminatedAt rules, and are subject to the commonsense law of inertia, i.e., a FVP $F=V$ holds at a time-point T, if $F=V$ has been 'initiated' by an event at a time-point earlier than T, and not 'terminated' by another event in the meantime.
Example 1 (Within area). In maritime monitoring, various areas, e.g., fisheries restricted areas, disallow certain activities. It is thus useful to compute the intervals during which a vessel is in such an area. See the formalisation below:

$$
\begin{align*}
& \text { initiatedAt }(\text { withinArea }(\text { Vl, AreaType })=\operatorname{true}, T) \leftarrow \\
& \text { happensAt }(\text { entersArea }(V l, \text { AreaID }), T), \tag{1}\\
& \quad \text { areaType }(\text { AreaID, AreaType }) . \\
& \text { terminatedAt }(\text { withinArea }(V l, \text { AreaType })=\operatorname{true}, T) \leftarrow \\
& \text { happensAt }(\text { leavesArea }(V l, \text { AreaID }), T), \tag{2}\\
& \text { areaType }(\text { AreaID, AreaType }) \text {. } \\
& \text { terminatedAt }(\text { withinArea }(V l, \text { AreaType })=\operatorname{true}, T) \leftarrow \tag{3}\\
& \text { happensAt }(\text { gapStart }(V l), T) .
\end{align*}
$$

withinArea(Vl, AreaType) is a Boolean simple fluent denoting that a vessel $V l$ is in some area of AreaType, while entersArea(Vl, AreaID), leavesArea(Vl, AreaID) and gapStart ($V l$) are input events, derived by the online processing of vessel position signals, and their spatial relations with areas of interest (Santipantakis et al. 2018). areaType (AreaID, AreaType) is an atemporal predicate storing background knowledge concerning the types of areas in a dataset. Rules (1) and (2) state that withinArea (Vl, AreaType) is initiated (resp. terminated) as soon as vessel $V l$ enters (leaves) an area AreaID, whose type is AreaType. According to rule
(3), withinArea(Vl, AreaType) is terminated when there is a communication gap, i.e., when $V l$ stops transmitting its position. In this case, we are uncertain of the vessel's whereabouts. Using rules (1)-(3), RTEC computes, with the use of application-independent rules, holdsFor (withinArea (Vl, AreaType) $=$ true, I), i.e., the list of maximal intervals I during which $V l$ is in AreaType.

The syntax of simple fluent definitions is provided in the supplementary document. In addition to the domainindependent definition of holdsFor, which is used for computing the maximal intervals of simple fluents, an event description may include domain-specific holdsFor rules, used to define the values of a fluent F in terms of the values of other fluents. Such a fluent F is called 'statically determined', and the maximal intervals of $F=V$ are derived by applying on the intervals of other FVPs the following interval manipulation constructs: union_all, intersect_all and relative_complement_all. union_all (L, I) (resp. intersect_all (L, I)) computes the list of maximal intervals I as the union (intersection) of all lists of maximal intervals of list L. relative_complement_all $\left(I^{\prime}, L, I\right)$ computes the list of maximal intervals I by removing from the maximal intervals of list I^{\prime} all time-points included in some list of maximal intervals of list L. Figure 1 presents an illustration.
Definition 2 (Syntax of statically determined fluent definitions). The rules defining statically determined fluents have the following syntax:

$$
\begin{align*}
& \text { holdsFor }\left(F=V, I_{n+m}\right) \leftarrow \\
& \quad \text { holdsFor }\left(F_{1}=V_{1}, I_{1}\right)\left[\left[\text {, holdsFor }\left(F_{2}=V_{2}, I_{2}\right), \ldots\right.\right. \tag{4}\\
& \text { holdsFor }\left(F_{n}=V_{n}, I_{n}\right), \text { intervalConstruct }\left(L_{1}, I_{n+1}\right), \\
& \left.\left.\quad \ldots, \text { intervalConstruct }\left(L_{m}, I_{n+m}\right)\right]\right] \text {. }
\end{align*}
$$

The first body literal of a holdsFor rule defining $F=V$ is a holdsFor predicate expressing the maximal intervals of a FVP other than $F=V$. This is followed by a possibly empty list, denoted by ' $[[$]]', of holdsFor predicates for other FVPs, and interval manipulation constructs, expressed by intervalConstruct in formulation (4). intervalConstruct $\left(L_{j}, I_{n+j}\right)$ may be union_all $\left(L_{j}, I_{n+j}\right)$, intersect_all $\left(L_{j}, I_{n+j}\right)$ or relative_complement_all $\left(I_{k}, L_{j}, I_{n+j}\right)$. I_{k}, where $k<n+j$, is a list of maximal intervals appearing earlier in the body of the rule, and list L_{j} contains a subset of such lists. The output list I_{n+m} contains the maximal intervals during which $F=V$ holds continuously.
Example 2 (Anchored and moored vessels). Consider the following example from maritime situational awareness:

```
holdsFor(anchoredOrMoored \((V l)=\operatorname{true}, I) \leftarrow\)
    holdsFor \(\left(\right.\) stopped \((V l)=\) farFromPorts,\(\left.I_{s f}\right)\),
    holdsFor (withinArea \((V l\), anchorage \()=\) true,\(\left.I_{a}\right)\),
    intersect_all( \(\left.\left(I_{s f}, I_{a}\right], I_{s f a}\right)\),
    holdsFor (stopped \((V l)=\) nearPorts,\(\left.I_{s n}\right)\),
    union_all \(\left(\left[I_{s f a}, I_{s n}\right], I\right)\).
```

anchoredOrMoored $(V l)$ is a Boolean statically determined fluent defined in terms of the FVPs stopped $(V l)=$ farFromPorts, stopped $(V l)=$ nearPorts and withinArea $(V l$, anchorage $)=$ true. stopped $(V l)$ is a multi-valued fluent expressing the periods during which

Relation	Definition	Illustration
before $\left(i^{s}, i^{t}\right)$	$f\left(i^{s}\right)<s\left(i^{t}\right)$	$i^{s} \quad i^{t}$
meets $\left(i^{s}, i^{t}\right)$	$f\left(i^{s}\right)=s\left(i^{t}\right)$	$i^{s} \quad i^{t}$
$\operatorname{starts}\left(i^{s}, i^{t}\right)$	$\begin{aligned} & s\left(i^{s}\right)=s\left(i^{t}\right), \\ & f\left(i^{s}\right)<f\left(i^{t}\right) \end{aligned}$	$\frac{i^{s}}{i^{t}}$
finishes $\left(i^{s}, i^{t}\right)$	$\begin{aligned} & s\left(i^{s}\right)>s\left(i^{t}\right), \\ & f\left(i^{s}\right)=f\left(i^{t}\right) \end{aligned}$	$\frac{i^{s}}{i^{t}}$
during $\left(i^{s}, i^{t}\right)$	$\begin{aligned} & s\left(i^{s}\right)>s\left(i^{t}\right), \\ & f\left(i^{s}\right)<f\left(i^{t}\right) \end{aligned}$	$\frac{i^{s}}{i^{t}}$
overlaps $\left(i^{s}, i^{t}\right)$	$\begin{aligned} & s\left(i^{s}\right)<s\left(i^{t}\right), \\ & f\left(i^{s}\right)>s\left(i^{t}\right), \\ & f\left(i^{s}\right)<f\left(i^{t}\right) \end{aligned}$	$\frac{i^{s}}{-} i^{t}$
equal $\left(i^{s}, i^{t}\right)$	$\begin{aligned} & s\left(i^{s}\right)=s\left(i^{t}\right), \\ & f\left(i^{s}\right)=f\left(i^{t}\right) \end{aligned}$	$\frac{i^{s}}{i^{t}}$

Table 1: Seven relations of Allen's interval algebra.
vessel $V l$ is idle near some port or far from all ports. The specification of this fluent is available with the complete event description of maritime situational awareness ${ }^{1}$. Rule (5) derives the intervals during which vessel $V l$ is both stopped far from all ports and within an anchorage area, by applying the intersect_all operation on the lists of maximal intervals $I_{s f}$ and I_{a}. The output of this operation is list $I_{s f a}$. Subsequently, list I is derived by applying union_all on lists $I_{s f a}$ and $I_{s n}$. In this way, list I contains the maximal intervals during which vessel $V l$ has stopped near some port or within an anchorage area.

For a wide range of fluents, the use of union_all, intersect_all and relative_complement_all allows for more concise event descriptions, as opposed to the traditional style of Event Calculus representation, i.e., identifying the various conditions under which a fluent is initiated and terminated, so that maximal intervals can then be computed using the domainindependent holdsFor. Moreover, according to the complexity analysis of (Artikis et al. 2015), the interval manipulation constructs of RTEC can also lead to much more efficient computation. In this paper, we extend the expressivity of the language of RTEC by allowing for Allen's relations within statically determined fluent definitions.

2.2 Allen's Interval Algebra

Allen's interval algebra specifies thirteen jointly exhaustive and pairwise disjoint relations among intervals (Allen 1984). Table 1 presents relations before, meets, starts, finishes, during, overlaps and equal. The remaining six relations are the 'inverse' relations; equal does not have an inverse relation. The second column of Table 1 shows the conditions that must be

[^0]| outMode | Output list I |
| :---: | :---: |
| source | $I=\mathcal{S}_{\text {rel }}$ |
| target | $I=\mathcal{T}_{\text {rel }}$ |
| union | union_all $\left(\left[\mathcal{S}_{\text {rel }}, \mathcal{T}_{\text {rel }}\right], I\right)$ |
| intersect | intersect_all $\left(\left[\mathcal{S}_{\text {rel }}, \mathcal{T}_{\text {rel }}\right], I\right)$ |
| complement | relative_complement_all $\left(\mathcal{S}_{\text {rel }},\left[\mathcal{T}_{\text {rel }}\right], I\right)$ |
| complement_inv | relative_complement_all $\left(\mathcal{T}_{\text {rel }},\left[\mathcal{S}_{\text {rel }}\right], I\right)$ |

Table 2: Output modes of the allen construct.
satisfied in order to compute an Allen relation. i^{s} and i^{t} express intervals, while $s(i)$ and $f(i)$ denote the start and end endpoint of interval i, respectively.

Allen's relations have proven necessary for CER (Awad et al. 2022; Körber et al. 2019). However, the interval manipulation constructs of RTEC cannot express the relations of Allen's algebra. Consider, e.g., the computation of the interval pairs $\left(i^{s}, i^{t}\right)$, where $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, satisfying before. intersect_all $([\mathcal{S}, \mathcal{T}],[])$ states that for every interval pair $\left(i^{s}, i^{t}\right)$, such that $i^{s} \in \mathcal{S}, i^{t} \in \mathcal{T}$, it holds that $i^{s} \cap i^{t}=\emptyset$. Therefore, i^{s} is before i^{t}, or vice versa. It is impossible, however, to distinguish between the two cases.

3 Allen Relations in Event Descriptions

We present RTEC $_{A}$, an extension of RTEC supporting CER specifications requiring Allen relations.

3.1 Representation and Semantics

Representation. We cannot express Allen relations in RTEC without extending its expressive power. Simple fluent definitions evaluate fluent initiation and termination conditions on a particular time instant, and thus do not support interval endpoint comparisons. Moreover, as already mentioned, the interval manipulation constructs in statically determined fluent definitions cannot express Allen relations. To address this issue, we extend the statically determined fluent definitions.
Definition 3 (Syntax of statically determined fluent definitions in $\left.\mathrm{RTEC}_{\mathrm{A}}\right)$. A holdsFor $(F=V, I)$ rule defining a statically determined fluent F may additionally contain body predicates in the form of allen(rel, \mathcal{S}, \mathcal{T}, outMode, I), where rel denotes an Allen relation, \mathcal{S} and \mathcal{T} are input lists of maximal intervals, outMode expresses how we should treat the interval pairs $\left(i^{s}, i^{t}\right)$ satisfying rel, where $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, and I is the output list of maximal intervals.
According to allen(rel, \mathcal{S}, \mathcal{T}, outMode, I), I contains the maximal intervals produced by applying outMode to the interval pairs of the 'source list' \mathcal{S} and the 'target list' \mathcal{T} satisfying rel, i.e., one of the Allen relations presented in Table 1 . The inverse relations may be computed by reversing the order of the input lists. outMode is applied to the intervals of lists $\mathcal{S}_{\text {rel }}=\left\{i^{s} \mid i^{s} \in \mathcal{S} \wedge \exists i^{t} \in \mathcal{T}: \operatorname{rel}\left(i^{s}, i^{t}\right)\right\}$ and $\mathcal{T}_{\text {rel }}=\left\{i^{t} \mid i^{t} \in \mathcal{T} \wedge \exists i^{s} \in \mathcal{S}: \operatorname{rel}\left(i^{s}, i^{t}\right)\right\}$, i.e., the intervals of the source and the target lists appearing in at least one pair of intervals satisfying rel. The possible values of outMode and

Figure 2: Maximal interval computation with the allen construct.
their meaning are presented in Table 2. Below, we illustrate the use of the allen predicate.
Example 3 (Allen relations for maritime situational awareness). Vessels often attempt to conceal illegal activities in certain areas, such as fishing in fisheries restricted areas, by stopping transmitting their position. See the rule below:

$$
\begin{align*}
& \text { holdsFor }\left(\text { disappearedInArea }(\text { Vl, AreaType })=\operatorname{true}, I_{\text {dia }}\right) \leftarrow \\
& \text { holdsFor }(\text { withinArea }(\text { Vl, AreaType })=\text { true }, \mathcal{S}) \text {, } \\
& \text { holdsFor }(\text { gap }(V l)=\text { farFromPorts }, \mathcal{T}) \text {, } \\
& \text { allen }\left(\text { meets }, \mathcal{S}, \mathcal{T}, \text { target, } I_{\text {dia }}\right) \text {. } \tag{6}
\end{align*}
$$

disappearedInArea(Vl, AreaType) is a statically determined Boolean fluent defined in terms of withinArea (Vl, AreaType) (see Example 1), and gap(Vl), i.e., a multi-valued fluent expressing the intervals during which vessel $V l$ stopped transmitting its position. The specification of gap is available with the complete event description of maritime situational awareness ${ }^{1}$. The last condition of rule (6) expresses the meets Allen relation. allen (meets, \mathcal{S}, \mathcal{T}, target, $I_{\text {dia }}$) states that from the interval pairs $\left(i^{s}, i^{t}\right)$ satisfying meets, where $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, we will keep in the output list $I_{d i a}$ the target intervals i^{t} (see the second line of Table 2). According to rule (6), therefore, a vessel $V l$ is said to disappear in an area of AreaType during an interval $i^{d i a}$, if $i^{d i a}$ is an interval during which $\operatorname{gap}(V l)=$ farFromPorts, i.e., $V l$ stopped transmitting its position while being in the open sea, and $i^{d i a}$ is met by an interval i^{s} during which $V l$ was within an area of AreaType. Figure 2(a) provides a graphical illustration. In this illustration, the only interval pair satisfying meets is $\left(i_{1}^{s}, i_{2}^{t}\right)$, and thus $I_{d i a}=\left[i_{2}^{t}\right]$. If we wanted to include i_{1}^{s} in the output $I_{d i a}$, then we would have replaced target by union in the last condition of rule (6) (see the third line of Table 2). This way, i_{1}^{s} would be amalgamated with i_{2}^{t} producing a single interval, i.e., $I_{\text {dia }}=\left[i_{1}^{s} \cup i_{2}^{t}\right]$. In any case, the interval manipulation constructs of RTEC cannot express disappearedInArea. For instance, relative_complement_all $(\mathcal{T},[\mathcal{S}], I)$ would discard the common time-point of i_{1}^{s} and i_{2}^{t}, and would include i_{1}^{t}, which does not satisfy meets. Similarly, union_all $\left([\mathcal{S}, \mathcal{T}], I_{d i a}\right)$ would include all intervals of \mathcal{S} and \mathcal{T}, which is incorrect.

Proximate vessels may stop transmitting their position to conduct illegal activities, such as an illegal cargo transfer.

Consider the formalisation below:

$$
\begin{align*}
& \text { holdsFor }\left(\text { suspiciousRendezVous }\left(V l_{1}, V l_{2}\right)=\text { true, } I_{\text {srv }}\right) \leftarrow \\
& \text { holdsFor }\left(\text { gap }\left(V l_{1}\right)=\text { farFromPorts, }, I_{g_{1}}\right), \\
& \text { holdsFor }\left(\operatorname{gap}\left(V l_{2}\right)=\text { farFromPorts, }, I_{g_{2}}\right), \\
& \text { holdsFor }\left(\text { proximity }\left(V l_{1}, V l_{2}\right)=\operatorname{true}, \mathcal{T}\right) \text {, } \\
& \text { union_all } \left.\left(\left[I_{g_{1}}, I_{g_{2}}\right], \mathcal{S}\right) \text {, allen (during, } \mathcal{S}, \mathcal{T} \text {, target, } I_{\text {srv }}\right) \text {. } \tag{7}
\end{align*}
$$

suspiciousRendezVous $\left(V l_{1}, V l_{2}\right)$ is a statically determined fluent, and $\operatorname{proximity}\left(V l_{1}, V l_{2}\right)$ is a Boolean fluent denoting whether two vessels, $V l_{1}$ and $V l_{2}$, are close to each other. \mathcal{T}, i.e., the list of maximal intervals during which two vessels are close to each other, is derived by an online spatial processing technique on vessel positional signals, which is robust to interim signal gaps (Santipantakis et al. 2018). union_all in rule (7) derives \mathcal{S}, i.e., the list of maximal intervals during which $\operatorname{gap}\left(V l_{1}\right)=$ farFromPorts or gap $\left(V l_{2}\right)=$ farFromPorts . Then, allen(during, \mathcal{S}, \mathcal{T}, target, $I_{s r v}$) identifies the maximal intervals of \mathcal{T} that contain an interval of \mathcal{S} and stores them in list $I_{s r v}$. Therefore, rule (7) specifies that vessels $V l_{1}$ and $V l_{2}$ may be conducting an illegal activity during an interval $i^{s r v}$, if $i^{s r v}$ is an interval during which $V l_{1}$ and $V l_{2}$ are close to each other, and $i^{s r v}$ contains an interval i^{s} during which at least one of the vessels stops transmitting its position. Figure 2(b) displays an illustration of rule (7). union_all constructs list \mathcal{S} as the union of the intervals in lists $I_{g_{1}}$ and $I_{g_{2}}$. Among the intervals of \mathcal{S} and \mathcal{T}, during is only satisfied for the interval pair $\left(i_{2}^{s}, i_{1}^{t}\right)$, resulting in $I_{s r v}=\left[i_{1}^{t}\right]$. Note that $I_{s r v}$ cannot be derived by the interval manipulation constructs of RTEC. union_all $([\mathcal{S}, \mathcal{T}], I)$, e.g., would compute list $I=\left[i_{1}^{s}, i_{1}^{t}, i_{2}^{t}\right]$, including intervals i_{1}^{s} and i_{2}^{t} that do not satisfy during.

As mentioned earlier, Table 2 lists the possible values of outMode and their meaning. Consider the computation of allen(meets, \mathcal{S}, \mathcal{T}, outMode, $I_{d i a}$) in the example of Figure 2(a), where the only interval pair satisfying meets is $\left(i_{1}^{s}, i_{2}^{t}\right)$. If outMode was complement or complement_inv, we would apply the relative_complement_all construct on i_{1}^{s} and i_{2}^{t} (complementinv reverses the order of operants in relative_complement_all) and compute, respectively, list $I_{d i a}$ as $\left[i_{1}^{s} \backslash i_{2}^{t}\right]$ or $\left[i_{2}^{t} \backslash i_{1}^{s}\right]$. Note that some combinations of rel and outMode are equivalent. For instance, if an interval pair $\left(i^{s}, i^{t}\right)$ satisfies during, then i^{s} is a subinterval of i^{t}. Therefore, allen(during, \mathcal{S}, \mathcal{T}, union, I) and allen(during, \mathcal{S}, \mathcal{T}, target, I) produce the same output list.
Semantics. An event description in RTEC $_{\mathrm{A}}$ defines a $d e$ pendency graph expressing the relationships between the FVPs of the event description.
Definition 4 (Dependency Graph). The dependency graph of an event description is a directed graph such that:

1. Each vertex denotes a FVP $F=V$;
2. There exists an edge $\left(F_{j}=V_{j}, F_{i}=V_{i}\right)$ iff:

- There is an initiatedAt or terminatedAt rule for $F_{i}=V_{i}$ having holdsAt $\left(F_{j}=V_{j}, T\right)$ as one of its conditions.
- There is a holdsFor rule for $F_{i}=V_{i}$ having holdsFor $\left(F_{j}=V_{j}, I\right)$ as one of its conditions.
According to Definition 4, the addition of allen constructs
in statically determined fluents definitions does not introduce additional dependencies among FVPs. Therefore, our extension of RTEC does not affect its semantics.
Proposition 1 (Semantics of RTEC ${ }_{A}$). An event description in RTEC $_{A}$ is a locally stratified logic program.

A discussion of the semantics of RTEC may be found in (Mantenoglou et al. 2022).

3.2 Reasoning

We extend the process of statically determined fluent evaluation of RTEC with algorithms computing Allen relations. Algorithm 1 presents the steps of the evaluation of allen(rel, \mathcal{S}, \mathcal{T}, outMode, I). This algorithm derives all interval pairs $\left(i^{s}, i^{t}\right)$, such that $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, satisfying Allen relation rel, and stores them in list pairs (line 3). We then compute lists $\mathcal{S}_{\text {rel }}$ and $\mathcal{T}_{\text {rel }}$ containing, respectively, the source and the target intervals appearing in list pairs at least once (line 4). This way, we may apply outMode to lists $\mathcal{S}_{\text {rel }}$ and $\mathcal{T}_{\text {rel }}$, as specified in Table 2, in order to compute the output list I (line 5). In what follows, we present the algorithm computing the interval pairs of \mathcal{S} and \mathcal{T} satisfying an Allen relation, and the bookkeeping operations which are necessary for correct Allen relation computation in a streaming setting (see lines 1, 2 and 6 of Algorithm 1).

Allen Relation Computation. Algorithm 2 computes the interval pairs of \mathcal{S} and \mathcal{T} satisfying an Allen relation rel and stores them in list pairs. I in holdsFor $(F=V, I)$ is a sorted list of maximal intervals (even if the items of the stream are not sorted) (Artikis et al. 2015). Therefore, \mathcal{S} and \mathcal{T} are also sorted lists of maximal intervals (see Definition 3). We evaluate rel by means of interval endpoint comparisons, following the corresponding definition in Table 1. An element of pairs is a tuple of the form $\left(i^{s}, \mathcal{T}^{\prime}\right)$, denoting that the source interval i^{s} satisfies rel with every interval in the list of target intervals $\mathcal{T}^{\prime} \subseteq \mathcal{T}$. Using this compact representation, we avoid enumerating all computed interval pairs, without information loss. For example, the tuple $\left(i_{1}^{s},\left[i_{1}^{t}, i_{2}^{t}\right]\right)$ for a relation rel denotes that rel $\left(i_{1}^{s}, i_{1}^{t}\right)$ and rel $\left(i_{1}^{s}, i_{2}^{t}\right)$ hold.

Algorithm 2 uses two pointers, p_{s} and p_{t}, to traverse \mathcal{S} and \mathcal{T}. If rel is before and, indeed, before $\left(i^{s}, i^{t}\right)$ holds, we add the tuple $\left(i^{s},\left[i^{t}, \ldots, \mathcal{T}[\right.\right.$ length $\left.\left.(\mathcal{T})]\right]\right)$ to pairs, where $\mathcal{T}[$ length $(\mathcal{T})]$ denotes the last interval of \mathcal{T} (line 6). If before $\left(i^{s}, i^{t}\right)$ does not hold and $f\left(i^{s}\right) \leq f\left(i^{t}\right)$, i.e., the source interval does not end after the target interval, then i^{s} is before all target intervals after i^{t}. Consequently, we add the tuple $\left(i^{s},\left[\mathcal{T}\left[p_{t}+1\right], \ldots, \mathcal{T}[\operatorname{length}(\mathcal{T})]\right]\right)$ to pairs (line 8). If rel is not before and $\operatorname{rel}\left(i^{s}, i^{t}\right)$ holds, we simply add $\left(i^{s}, i^{t}\right)$ to pairs (line 9).

Afterwards, Algorithm 2 increments pointer p_{s} and/or pointer $p_{t} . p_{s}\left(\right.$ resp. p_{t}) may be incremented only if the current source (target) interval $i^{s}\left(i^{t}\right)$ cannot satisfy rel with any subsequent target (source) interval. Since \mathcal{S} and \mathcal{T} are sorted lists of maximal intervals, we can check this based on the relative positions of i^{s} and i^{t}, and the given relation rel, without iterating over any subsequent interval of \mathcal{S} and \mathcal{T}. The conditions in which pointers p_{s} and p_{t} may be incremented, while guaranteeing the correct computation of interval pairs satisfying rel, are presented in lines 10 and 12.

```
Algorithm 1 allen(rel, \(\mathcal{S}, \mathcal{T}\), outMode, \(I\) )
    \(\mathcal{S}^{c}, \mathcal{T}^{c} \leftarrow\) retrieveCachedIntervals ( )
    \(\mathcal{S} \leftarrow \operatorname{append}\left(\mathcal{S}^{c}, \mathcal{S}\right), \quad \mathcal{T} \leftarrow \operatorname{append}\left(\mathcal{T}^{c}, \mathcal{T}\right)\)
    pairs \(\leftarrow\) compute_allen_relation \((\mathcal{S}, \mathcal{T}\), rel \()\)
    \(\mathcal{S}_{\text {rel }}, \mathcal{T}_{\text {rel }} \leftarrow\) getSourceTargetIntervals(pairs)
    \(I \leftarrow \operatorname{applyOutMode}\left(\mathcal{S}_{\text {rel }}, \mathcal{T}_{\text {rel }}\right.\), outMode \()\)
    windowing \((\mathcal{S}, \mathcal{T}\), rel \()\)
```

```
Algorithm 2 compute_allen_relation \((\mathcal{S}, \mathcal{T}\), rel)
    \(p_{s} \leftarrow 1, p_{t} \leftarrow 1\), pairs \(\leftarrow[]\)
    while \(p_{s} \leq \operatorname{length}(\mathcal{S})\) or \(p_{t} \leq \operatorname{length}(\mathcal{T})\) do
        \(i^{s} \leftarrow \mathcal{S}\left[p_{s}\right], i^{t} \leftarrow \mathcal{T}\left[p_{t}\right]\)
        if \(\mathrm{rel}=\) before then
            if before \(\left(i^{s}, i^{t}\right)\) then
                pairs.add \(\left(\left(i^{s},\left[i^{t}, \ldots, \mathcal{T}[\right.\right.\right.\) length \(\left.\left.\left.(\mathcal{T})]\right]\right)\right)\)
            else if \(f\left(i^{s}\right) \leq f\left(i^{t}\right)\) then
                pairs.add \(\left(\left(i^{s},\left[\mathcal{T}\left[p_{t}+1\right], \ldots, \mathcal{T}[\operatorname{length}(\mathcal{T})]\right]\right)\right)\)
        else if \(\operatorname{rel}\left(i^{s}, i^{t}\right)\) then pairs.add \(\left(\left(i^{s},\left[i^{t}\right]\right)\right)\)
        if \(f\left(i^{s}\right) \leq f\left(i^{t}\right)\) or \(\left(s\left(i^{s}\right) \leq f\left(i^{t}\right)\right.\) and
        rel \(\in\{\) starts, finishes, during, equal \(\}\) ) then
            \(p_{s} \leftarrow p_{s}+1\)
        if \(f\left(i^{s}\right) \geq f\left(i^{t}\right)\) or \(\left(f\left(i^{s}\right) \geq s\left(i^{t}\right)\right.\) and
        rel \(\in\{\) before, meets, starts, overlaps, equal \(\}\) ) then
            \(p_{t} \leftarrow p_{t}+1\)
    return pairs
```

Example 4 (Allen relation computation). In the example of Figure 2(a), allen (meets, \mathcal{S}, \mathcal{T}, target, $I_{d i a}$) is used to compute the maximal intervals of disappearedInArea in list $I_{\text {dia }}$. In order to derive these intervals, RTEC $_{\mathrm{A}}$ computes all interval pairs in lists \mathcal{S} and \mathcal{T} satisfying meets (see line 3 of Algorithm 1). This is achieved with Algorithm 2. In this example, the source list is $\mathcal{S}=\left[i_{1}^{s}, i_{2}^{s}\right]$, the target list is $\mathcal{T}=\left[i_{1}^{t}, i_{2}^{t}\right]$. Initially, p_{s} points to i_{1}^{s} and p_{t} points to i_{1}^{t}. Algorithm 2 verifies that meets does not hold for the interval pair $\left(i_{1}^{s}, i_{1}^{t}\right)$ in line 9 . Next, we check whether pointer p_{s} needs to be incremented. Since $f\left(i_{1}^{s}\right)>f\left(i_{1}^{t}\right)$, the condition in line 10 fails, and thus we do not increment p_{s}. In contrast, the condition in line 12 succeeds because $f\left(i_{1}^{s}\right)>f\left(i_{1}^{t}\right)$. Therefore, we increment p_{t} (line 13). The interval pair of the next iteration is $\left(i_{1}^{s}, i_{2}^{t}\right)$. meets $\left(i_{1}^{s}, i_{2}^{t}\right)$ is satisfied and thus we compute the pair $\left(i_{1}^{s},\left[i_{2}^{t}\right]\right) . i_{1}^{s}$ and i_{2}^{t} cannot satisfy meets with any future interval; consequently, we increment both p_{s} and p_{t}. There is no target interval after i_{2}^{t}. Thus, Algorithm 2 terminates and returns $\left(i_{1}^{s},\left[i_{2}^{t}\right]\right)$.

Windowing. In order to handle streaming data, CER systems often employ windowing techniques. At each 'query time' q_{j}, RTEC reasons over the items of an input stream that fall within a specified sliding window $w_{j}=\left(q_{j}-\omega, q_{j}\right]$, where ω is the size of the window. All elements of the stream that took place before or at $q_{j}-\omega$ are discarded/‘forgotten'. This ensures that the cost of reasoning depends on the window size ω and not on the complete stream. The size of ω and the temporal distance between two consecutive query times, i.e., the 'step' $q_{j}-q_{j-1}$, may be manually set or opti-

Figure 3: Online maximal interval computation.
mised to meet the requirements of the given application. In the common case that the elements of a stream arrive with delays, e.g., due to network delays, it is preferable to make ω longer than the step. This way, we may reason, at q_{j}, over the stream elements that took place in $\left(q_{j}-\omega, q_{j-1}\right]$, but arrived after q_{j-1}. As an example, Figure 3 shows the intervals of \mathcal{S} and \mathcal{T} of Figure 2(a) as they are available at query times q_{81} and q_{82}. The corresponding windows w_{81} and w_{82} are overlapping in order to accommodate, at query time q_{82}, stream elements that took place in $\left(q_{82}-\omega, q_{81}\right]$, but arrived after q_{81}.
$\mathrm{RTEC}_{\mathrm{A}}$ follows RTEC and reasons over streams using sliding windows. We make the following assumptions. First, the window size and the step remain constant. Thus, we can always derive the endpoints of the next window based on the current query time. Second, the delays in the stream may be tolerated by the window size. In other words, at query time q_{j}, the intervals taking place before the current window w_{j} are not revised. In contrast, the intervals that were available or derived at q_{j-1} and take place within w_{j} may be revised at $q_{j} . \mathrm{RTEC}_{\mathrm{A}}$ guarantees correct reasoning by computing, at q_{j}, all interval pairs $\left(i^{s}, i^{t}\right)$ satisfying Allen relation rel, such that at least one of i^{s} and i^{t} intersects with window w_{j}. The proof of correctness is presented in the following section. To compute all such interval pairs, we cache at each query time the intervals that may be required in the future (line 6 of Algorithm 1). This way, we may retrieve at q_{j} the intervals cached at q_{j-1} (see lines 1-2) that allow us to perform correct Allen relation computation. In the following example, we motivate our caching technique.
Example 5 (Windowing). Figure 3(a) illustrates the computation of allen(meets, \mathcal{S}, \mathcal{T}, target, $I_{d i a}$) at query time q_{81}, where \mathcal{S} and \mathcal{T} contain only the intervals that fall within window w_{81}. Contrast these intervals with the ones depicted in Figure 2(a). Interval $i_{1}^{t, q_{81}}$, e.g., is shorter than the interval i_{1}^{t} of Figure 2(a) because a segment of i_{1}^{t} falls outside w_{81}. Moreover, the events leading to the extension of $i_{2}^{t, q_{81}}$ up to q_{81} have been delayed and are not available at q_{81}, and thus $i_{2}^{t, q_{81}}$ ends earlier than q_{81}. Based on the intervals in w_{81}, we compute that meets $\left(i_{1}^{s, q_{81}}, i_{2}^{t, q_{81}}\right)$ holds at q_{81} and derive the output interval $i_{1}^{d i a, q_{81}}$, which matches $i_{2}^{t, q_{81}}$.

The intervals of \mathcal{S} and \mathcal{T} available at the next query time, q_{82}, i.e., $i_{2}^{s, q_{82}}$ and $i_{2}^{t, q_{82}}$, are displayed in Figure 3(b). The

```
Algorithm 3 windowing \((\mathcal{S}, \mathcal{T}\), rel)
    \(s\left(w_{j+1}\right)=q_{j}+\) step \(-\omega\)
    \(\mathcal{S}_{<} \leftarrow\) getIntervalsBeforeTimepoint \(\left(\mathcal{S}, s\left(w_{j+1}\right)\right)\)
    \(i_{*}^{s} \leftarrow\) getIntervalContainingTimepoint \(\left(\mathcal{S}, s\left(w_{j+1}\right)\right)\)
    \(i_{*}^{t} \leftarrow\) getIntervalContainingTimepoint \(\left(\mathcal{T}, s\left(w_{j+1}\right)\right)\)
    if \(i_{*}^{s} \neq\) null then
        if rel \(\in\{\) meets, overlaps, before \(\}\) or \(\left(i_{*}^{t} \neq\right.\) null and
        \(\left(\left(\right.\right.\) rel \(\in\{\) starts, equal \(\}\) and \(\left.s\left(i_{*}^{s}\right)=s\left(i_{*}^{t}\right)\right)\) or
        \(\left(\right.\) rel \(\in\{\) finishes, during \(\}\) and \(\left.\left.s\left(i_{*}^{s}\right)>s\left(i_{*}^{t}\right)\right)\right)\) ) then
            \(\operatorname{cache}\left(\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]\right)\)
    if \(i_{*}^{t} \neq\) null then
        if rel \(\in\{\) meets, starts, overlaps \(\}\) and
        \(\exists i^{s} \in \mathcal{S}_{<}: \operatorname{rel}\left(i^{s}, i_{*}^{t}\right)\) then
            \(\operatorname{cache}\left(\left[s\left(i_{*}^{t}\right), s\left(w_{j+1}\right)\right]\right)\), \(\operatorname{cache}\left(i^{s}\right)\)
        else if rel \(\in\{\) before \(\}\) and \(\exists i^{s} \in \mathcal{S}_{<}\): (before \(\left(i^{s}, i_{*}^{t}\right)\)
            and \(\left.f\left(i^{s}\right) \geq s\left(w_{j+1}\right)-m e m\right)\) then
                \(\operatorname{cache}\left(\left[s\left(i_{*}^{t}\right), s\left(w_{j+1}\right)\right]\right)\)
        else if rel \(\in\{\) finishes, during \(\}\) or \(\left(i_{*}^{s} \neq\right.\) null and
                \(\left(\left(\right.\right.\) rel \(\in\{\) starts, equal \(\}\) and \(\left.s\left(i_{*}^{s}\right)=s\left(i_{*}^{t}\right)\right)\) or
                \(\left(\right.\) rel \(\in\{\) overlaps \(\}\) and \(\left.\left.s\left(i_{*}^{s}\right)<s\left(i_{*}^{t}\right)\right)\right)\) ) then
                    \(\operatorname{cache}\left(\left[s\left(i_{*}^{t}\right), s\left(w_{j+1}\right)\right]\right)\)
        if rel \(\in\{\) during \(\}\) then
            for \(i^{s} \in \mathcal{S}_{<}: \operatorname{rel}\left(i^{s}, i_{*}^{t}\right)\) do \(\operatorname{cache}\left(i^{s}\right)\)
    if rel \(\in\{\) before \(\}\) then
        for \(i^{s} \in \mathcal{S}_{<}: f\left(i^{s}\right) \geq s\left(w_{j+1}\right)-m e m\) do \(\operatorname{cache}\left(i^{s}\right)\)
```

first segment of $i_{2}^{t, q_{81}}$, i.e., $\left[s\left(i_{2}^{t, q_{81}}\right), s\left(w_{82}\right)\right]$ is missing, because it is outside the current window, while its final segment $\left(s\left(w_{82}\right), f\left(i_{2}^{t, q_{81}}\right)\right]$ has been extended, given the events that arrived after q_{81}. Considering the intervals i_{1}^{s} and i_{2}^{t} of Figure 2(a), it is not possible to compute meets $\left(i_{1}^{s}, i_{2}^{t}\right)$ at q_{82} because i_{1}^{s} and part of i_{2}^{t} take place before w_{82}. To address this issue, we cache, at $q_{81}, i_{1}^{s, q_{81}}$ and the segment of $i_{2}^{t, q_{81}}$ that is before time-point $s\left(w_{82}\right)$. Figure 3(b) depicts these cached (segments of) intervals with dotted lines. At $q_{82}, i_{1}^{s, q_{81}}$, which matches i_{1}^{s}, is added to \mathcal{S} and the cached segment of $i_{2}^{t, q_{81}}$ is amalgamated with $i_{2}^{t, q_{82}}$, forming an interval that matches i_{2}^{t}. As a result, we compute that meets $\left(i_{1}^{s}, i_{2}^{t}\right)$ holds and the output interval $i_{1}^{\text {dia, } q_{82}}$ at q_{82}. In Figure 3(b), the dashed segment of $i_{1}^{d i a, q_{82}}$ denotes the interval part that falls outside w_{82}. In contrast to $i_{1}^{\text {dia, } q_{81}}$, $i_{1}^{d i a, q_{82}}$ matches $i_{1}^{d i a}$, i.e., the output interval displayed in Figure 2(a).

Example 5 demonstrates that the prefix of a target interval intersecting with the next window, and a source interval ending before the next window, may need to be cached to guarantee correct reasoning. Target intervals ending before the next window are not cached because they cannot satisfy any Allen relation with a source interval ending in the future. Algorithm 3 presents our caching procedure. First, we compute the start endpoint of the next window $s\left(w_{j+1}\right)$ (line 1), and identify the list of source intervals $\mathcal{S}_{<}$taking place before $s\left(w_{j+1}\right)$, as well as the source and target intervals i_{*}^{s} and i_{*}^{t}, if any, containing $s\left(w_{j+1}\right)$ (lines 2-4). For example,
in Figure 3(a), $\mathcal{S}_{<}=\left[i_{1}^{s, q_{81}}\right], i_{*}^{s}=$ null and $i_{*}^{t}=i_{2}^{t, q_{81}}$. The segments of i_{*}^{s} and i_{*}^{t} that are before $s\left(w_{j+1}\right)$ may need to be cached (see $i_{2}^{t, q_{81}}$ in Example 5). The conditions for caching $\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]$ and $\left[s\left(i_{*}^{t}\right), s\left(w_{j+1}\right)\right]$ are in lines 57 and $8-14$, respectively. Moreover, we may need to cache a subset of the intervals in $\mathcal{S}_{<}$. The conditions for caching such intervals are presented in lines 8-10 and 15-18.

In the case of before, it is impossible to guarantee correct reasoning without caching every source interval. For example, interval $i_{1}^{s, q_{81}}$ of Figure 3(a) will satisfy before with all target intervals after $i_{2}^{t, q_{81}}$ that arrive in the future. Thus, we need to always keep $i_{1}^{2, q_{81}}$ in memory to ensure correctness. In order to maintain a balance between efficiency and correctness in the case of before, we use a memory threshold $m e m$ and cache, at query time q_{j}, all source intervals ending in $\left[s\left(w_{j+1}\right)-m e m, s\left(w_{j+1}\right)\right]$ (see lines 17-18 of Algorithm 3). If at least one of these intervals is before i_{*}^{t}, i.e., the target interval containing $s\left(w_{j+1}\right)$, then we also cache $\left[s\left(i_{*}^{t}\right), s\left(w_{j+1}\right)\right]$ (see lines 11-12). This way, we may compute, at q_{j+1}, the interval pairs $\left(i^{s}, i^{t}\right)$ satisfying before, such that i^{t} intersects with window w_{j+1} and i^{s} ends in $\left[s\left(w_{j+1}\right)-m e m, s\left(w_{j+1}\right)\right]$.

3.3 Correctness and Complexity

We prove the correctness of RTEC $_{A}$ and present its complexity, with respect to Allen relation computation for CER. The corresponding analyses on CER without Allen relations may be found in (Mantenoglou et al. 2022; Artikis et al. 2015).
Proposition 2 (Correctness of RTEC ${ }_{A}$). RTEC $_{A}$ computes all maximal intervals of a statically determined fluent defined in terms of an Allen relation, and no other interval. -

As expected, RTEC $_{\mathrm{A}}$ is correct provided that interval delays, if any, can be tolerated by the window size. In other words, all intervals occurring before query time q_{j} that were not available at q_{j}, take place after $s\left(w_{k}\right)$, where $k>j$, and will be available by query time q_{k}. For the case of before, we additionally permit delayed source intervals taking place in $\left[s\left(w_{k}\right)-m e m, s\left(w_{k}\right)\right]$ and arriving by q_{k}.

To prove the correctness of RTEC ${ }_{\mathrm{A}}$, we first show that Algorithm 2 computes all interval pairs $\left(i^{s}, i^{t}\right)$, where $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, satisfying an Allen relation, and no other interval pair. Then, we show that Algorithm 3 caches all intervals that may be required by Algorithm 2 in the future for correct Allen relation computation, and no other interval.
Lemma 1. Algorithm 2 computes all interval pairs $\left(i^{s}, i^{t}\right)$, where $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, satisfying an Allen relation, and no other interval pair.

Proof. We present the proof for meets; the proofs for the remaining relations are similar and may be found in the supplementary material. Algorithm 2 is sound because, according to line 9 , it may only compute an interval pair $\left(i^{s}, i^{t}\right)$, such that $i^{s} \in \mathcal{S}$ and $i^{t} \in \mathcal{T}$, if meets $\left(i^{s}, i^{t}\right)$ holds. Towards proving completeness, suppose that meets $\left(i^{s}, i^{t}\right)$ holds and Algorithm 2 does not compute $\left(i^{s}, i^{t}\right)$. In this case, according to line 9 , there is no iteration of the while loop of Algorithm 2 such that pointer p_{s} points to i^{s} and p_{t} points to i^{t}. The condition of line 2 states that Algorithm 2 iterates over
all items in at least one of its input lists. Suppose that, in the current iteration, p_{s} points to i^{s} when p_{t} points to an interval i_{b}^{t} that is before i^{t}. By the definition of meets, we have $f\left(i^{s}\right)=s\left(i^{t}\right)$, while it holds that $s\left(i^{t}\right)>f\left(i_{b}^{t}\right)$, because \mathcal{T} is a sorted list of maximal intervals. Therefore, it holds that $f\left(i^{s}\right)>f\left(i_{b}^{t}\right)$, and thus we only increment pointer p_{t} (see lines 10-13). This condition continues to hold for all target intevals until p_{t} points to i^{t}. Similarly, assume that p_{t} points to i^{t} when p_{s} points to an interval i_{b}^{s} that is before $i^{s} . s\left(i^{t}\right)=f\left(i^{s}\right)>f\left(i_{b}^{s}\right)$ holds, and thus Algorithm 2 increments p_{s} until it points to i^{s}. In both cases, we reach an iteration of the while loop where p_{s} points to i^{s} and p_{t} points to i^{t}, which is a contradiction. Thus, if meets $\left(i^{s}, i^{t}\right)$ holds, then Algorithm 2 computes $\left(i^{s}, i^{t}\right)$.

Lemma 2. Algorithm 3 caches all intervals that may satisfy an Allen relation with an interval arriving in the future, and no other interval.

Proof. Suppose that there is a source interval i_{*}^{s} containing the start of the next window $s\left(w_{j+1}\right)$. We will prove that Algorithm 3 caches $\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]$ iff i_{*}^{s} may satisfy an Allen relation with a target interval i^{t} arriving in the future. meets/overlaps/before: if i^{t} occurs in the next window w_{j+1}, it holds that $s\left(i^{t}\right)>s\left(i_{*}^{s}\right)$, and thus i_{*}^{s} may satisfy meets, overlaps or before with i^{t}. Therefore, Algorithm 3 caches $\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]$ (line 6). starts/equal: $\operatorname{starts}\left(i_{*}^{s}, i^{t}\right)$ and equal $\left(i_{*}^{s}, i^{t}\right)$ may hold only if $s\left(i_{*}^{s}\right)=s\left(i^{t}\right)$ and $f\left(i_{*}^{s}\right) \leq f\left(i^{t}\right)$, in which case i^{t} also contains $s\left(w_{j+1}\right)$. Thus, we cache $\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]$ iff there is a target interval starting at $s\left(i_{*}^{s}\right)$ and containing $s\left(w_{j+1}\right)$ (see the conditions for starts and equal in line 6). finishes/during: finishes $\left(i_{*}^{s}, i^{t}\right)$ and during $\left(i_{*}^{s}, i^{t}\right)$ may hold only if $s\left(i_{*}^{s}\right)>s\left(i^{t}\right)$ and $f\left(i_{*}^{s}\right) \leq f\left(i^{t}\right)$. Therefore, we cache $\left[s\left(i_{*}^{s}\right), s\left(w_{j+1}\right)\right]$ iff there is a target interval starting before $s\left(i_{*}^{s}\right)$ and containing $s\left(w_{j+1}\right)$ (see the conditions for finishes and during in line 6). The proofs for caching a target interval containing $s\left(w_{j+1}\right)$ and source intervals ending before $s\left(w_{j+1}\right)$ are provided in the supplementary material.

Proposition 3 (Complexity of RTEC $_{A}$). The cost of computing the maximal intervals of a statically determined fluent defined in terms of an Allen relation is $\mathcal{O}(n)$, where n is the number of input intervals.

We identified the conditions according to which a source (resp. target) interval cannot satisfy an Allen relation with any future target (source) interval. Algorithm 2 leverages these conditions (lines 10 and 12) in order to compute all interval pairs satisfying an Allen relation in a single pass over the input intervals. Moreover, we specified the conditions that allow us to detect in linear time the intervals that need to be cached (see lines 5-18 of Algorithm 3). In practice, the number of cached intervals is negligible. Thus the cost of computing Allen relations remains constant as the stream progresses, and is bound by the size of the window.

4 Experimental Analysis

Experimental Setup. For our empirical analysis, we employed real data streams from the field of maritime situa-

Batch size	Reasoning Time		
Input Intervals	$\mathrm{RTEC}_{\mathrm{A}}$ AEGLE D ${ }^{2} \mathrm{IA}$		
200	1	980	2K
2K	14	4K	6K
20K	154	71.5 K	395K
200K	1.8K	MEM	$>3.6 \mathrm{M}$

(a) Batch setting.

Window size		Reasoning Time		Output Interval Pairs	
Days	Input Intervals	$\mathrm{RTEC}_{\mathrm{A}}$	$\mathrm{D}^{2} \mathrm{IA}$	RTEC	$\mathrm{D}^{2} \mathrm{IA}$
1	125	1	48	5K	5K
2	250	2	164	19K	18K
4	500	4	568	72K	71K
8	1 K	8	1.7 K	237K	236K
16	2 K	15	7.8K	878K	874K

(b) Streaming setting.

| Window size | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Reasoning Time \(\left.\begin{array}{c}Output

Intervals\end{array}\right]\)
(c) CER with Allen relations.

Table 3: Average reasoning times for Allen relation computation ((a) and (b)) and CER (c) in milliseconds.
tional awareness. The input events were derived from Automatic Identification System (AIS) position signals emitted by vessels, including information about their heading, speed and navigational status. Upon a stream of such events, we detect dangerous, suspicious and illegal vessel activities, such as disappearedInArea (see rule (6)). The complete event description is available with the source code of RTEC $_{\mathrm{A}}{ }^{1}$. We employed a publicly available dataset ${ }^{2}$ including 18M AIS position signals, emitted from 5 K vessels sailing in the Atlantic Ocean around the post of Brest, France, between October 2015-March 2016.

We compared RTEC A $_{\text {a }}$ with AEGLE and D ${ }^{2}$ IA. AEGLE (Georgala et al. 2016) is a state-of-the-art system computing Allen relations that has been used in the link discovery framework LIMES (Ngomo et al. 2021). AEGLE reduces each Allen relation into a subset of eight atomic comparisons between interval endpoints. Moreover, AEGLE caches the outcome of each atomic comparison in order to reuse it in future relation evaluations. D^{2} IA is a CER system extending the Big Data stream processing engine Flink with interval-based semantics (Awad et al. 2022). Furthermore, $\mathrm{D}^{2} \mathrm{IA}$ includes operators for reasoning over durative events using Allen relations. RTEC ${ }_{\mathrm{A}}$ operated in SWI-8.4 Prolog, while AEGLE and D ${ }^{2}$ IA operated on Java OpenJDK 18. The experiments were run on a core of a desktop PC running Ubuntu 22.04, with AMD Ryzen 75700 CPU @ 1.8 GHz and 16GB RAM. Our empirical analysis is reproducible; the code and the data of our experiments are publicly available ${ }^{1}$.

Experimental Results. AEGLE does not support windowing or CER. Thus, the aim of the first set of experiments was to compare RTEC $_{A}$, AEGLE and $\mathrm{D}^{2} \mathrm{IA}$ in a batch setting, for Allen relation computation without CER. We instructed these systems to derive all interval pairs satisfying an Allen relation among lists of maximal intervals during which composite maritime activities were detected on the Brest dataset. We evaluated the efficiency of each framework as the number of input intervals increases, while making sure that all systems produced the same interval pairs (see Lemma 1 for the correctness of RTEC ${ }_{A}$ in a batch setting). As expected, the most common Allen relation was before, while relations requiring endpoing equality, i.e., meets, starts, finishes and equal, were less frequently satisfied. Table

[^1]3(a) shows the average reasoning times of RTEC $_{A}$, AEGLE and D^{2} IA for computing all Allen relations among input lists containing 200-200K intervals. All results displayed in Table 3 are the average of 30 experiments. Since AEGLE and D^{2} IA do not assume that the input lists are temporally sorted, the interval lists of composite maritime activities were not sorted. The performance of AEGLE and D^{2} IA on sorted input lists is almost identical to that presented in Table 3(a), and thus omitted here. For RTEC $_{A}$, we had to sort the input lists prior to Allen relation computation; the cost of sorting is included in the reported times of RTEC ${ }_{A}$.

Table 3(a) shows that the reasoning time of RTEC $_{A}$ increases linearly with the input size, verifying our complexity analysis (see Proposition 3). Moreover, RTEC $_{\mathrm{A}}$ outperforms AEGLE and D^{2} IA by $2-3$ orders of magnitude. For example, in the experiments with 200 K input intervals, RTEC $_{\mathrm{A}}$ was able to compute all interval pairs satisfying an Allen relation in about 1.9 seconds. In contrast, AEGLE terminated with a memory error, while we killed the execution of D^{2} IA because it lasted for more than one hour. AEGLE sorted each input interval list by start or end endpoint, depending on the relation under evaluation. However, both sorting operations produce the same result on a list of maximal intervals, and thus only one of them is sufficient. RTEC $_{A}$ leverages the common assumption in CER that intervals are maximal, and avoids such unnecessary re-computations. $\mathrm{D}^{2} \mathrm{IA}$ has higher reasoning times than RTEC $_{\mathrm{A}}$ and AEGLE, because it is significantly slower when computing before, which is satisfied by most interval pairs in each experiment. $\mathrm{RTEC}_{\mathrm{A}}$ evaluates before very efficiently as it derives all target intervals satisfying before with some source interval in a single iteration. Furthermore, in contrast to $\mathrm{D}^{2} \mathrm{IA}$ and AE GLE, RTEC $_{\mathrm{A}}$ uses a compact representation for the computed interval pairs in order to avoid their explicit enumeration (see lines 6 and 8 of Algorithm 2).
In our next set of experiments, we compared RTEC $_{A}$ with D^{2} IA for Allen relation computation in a streaming setting, but without CER. D ${ }^{2}$ IA does not support overlapping windows for Allen relations and does not cache intervals that may satisfy an Allen relation, such as before, in the future. Thus, to facilitate a fair comparison, we set the step of RTEC $_{\mathrm{A}}$ to the window size and the threshold mem to zero. Table 3(b) presents the average reasoning times of RTEC A_{A} and $\mathrm{D}^{2} \mathrm{IA}$, and the average number of interval pairs com-
puted by each system (see 'output interval pairs'). The input lists were provided to each system in windows, ranging from 1 day, including approx. 125 intervals, to 16 days, including 2 K intervals. Our results show that $\mathrm{RTEC}_{\mathrm{A}}$ remains orders of magnitude faster than $\mathrm{D}^{2} \mathrm{IA}$. Moreover, the cost of our caching mechanism is negligible (e.g., compare the second line of Table 3(a) with the last line of Table 3(b)), verifying our complexity analysis. Note that RTEC $_{A}$ computed more interval pairs than $\mathrm{D}^{2} \mathrm{IA}$ in most settings. This is due to the fact that $\mathrm{D}^{2} \mathrm{IA}$ does not include a technique for transferring intervals to future windows (with the exception of open intervals), compromising correctness. See Lemma 2 for the correctness of RTEC ${ }_{A}$ in a streaming setting.

In the final set of experiments, we compared RTEC $_{A}$ and $\mathrm{D}^{2} \mathrm{IA}$ on CER, using fifteen patterns of composite maritime activities with Allen relations, such as those presented in Section 3.1. Given a pattern including allen(rel, \mathcal{S}, \mathcal{T}, outMode, I), RTEC $_{\mathrm{A}}$ computes all interval pairs of \mathcal{S} and \mathcal{T} satisfying rel, and applies outMode to the computed pairs, in order to produce the maximal intervals of the composite activity defined by the pattern. In contrast, D^{2} IA computes only the union of the interval pairs satisfying an Allen relation within a composite activity pattern, i.e., D^{2} IA does not allow the specification of another output mode. To facilitate a fair comparison, we set the outMode of $\mathrm{RTEC}_{\mathrm{A}}$ to union in all maritime patterns.

Table 3(c) presents the average reasoning times of RTEC ${ }_{A}$ and $\mathrm{D}^{2} \mathrm{IA}$, and the average number of composite activity intervals (see 'output intervals'). The number of input intervals is significantly larger as compared to our previous experiments, because the input intervals correspond to activities performed by all vessels in the dataset. In CER, we are interested in the combinations of input items indicated by the composite activity patterns, and not on evaluating all possible interval combinations, as in the previous experiments. Consequently, the number of composite activity intervals is much smaller than the number of input intervals. Our results show that RTEC $_{A}$ is significantly faster than $D^{2} I A$, without compromising correctness (in some cases D^{2} IA misses composite activities due to the absence of interval caching).

5 Summary, Related and Further Work

We proposed RTEC A $_{\text {, a CER system supporting Allen rela- }}$ tions in temporal patterns. We presented the syntax, semantics and reasoning algorithms of RTEC $_{\mathrm{A}}$, proved its correctness, and showed that it has linear complexity bound by the window size. Moreover, we compared RTEC $_{A}$ with AEGLE and $\mathrm{D}^{2} \mathrm{IA}$, two state-of-the-art computational frameworks supporting Allen relations, on real maritime data, demonstrating the benefits of RTEC ${ }_{A}$.

Several approaches in the literature are related to our work. CORE (Bucchi et al. 2022) is an automata-based CER engine deriving durative composite events efficiently, using a compact data structure for maintaining partial matches. However, relations in the language of CORE can only be unary. Thus, CORE cannot express, e.g., the maritime patterns of RTEC $_{A}$. A comparison of automata-based and logic-based CER systems may be found in the recent survey of Giatrakos et al. (2020). LARS (Beck et al. 2018) is a
formal stream reasoning language that can express intervalbased rules. LARS-based reasoners (Urbani et al. 2022; Eiter et al. 2019; Beck et al. 2017; Bazoobandi et al. 2017), however, support only a fragment of LARS that cannot express interval derivations. s(CASP) (Arias et al. 2022) is a query-driven execution model for Answer Set Programming with constraints, supporting Event Calculus-based reasoning. jREC is an implementation of the Event Calculus, using caching and indexing techniques for interval-based CER (Falcionelli et al. 2019). None of these systems supports Allen relations. Moreover, RTEC has proven very efficient (in real applications), outperforming related systems, such as jREC (Mantenoglou et al. 2022).

Several CER systems do support Allen relations. TPStream (Körber et al. 2019) transforms instantaneous events into durative situations, and computes temporal patterns, including Allen relations, over situation intervals. In TPStream, situations cannot be defined in terms of multiple event types or background knowledge. For example, it is not possible to express withinArea (see rules (1)-(3)). Moreover, the cost of Allen relation computation in TPStream is $\mathcal{O}(n \log n)$, where n is the number of input intervals, which is higher than that of RTEC $_{A}$. ISEQ (Li et al. 2011) processes streams of durative events and allows for Allen relations. Unlike RTEC $_{A}$, neither ISEQ nor TPStream supports relational patterns, which is a significant limitation for CER. Furthermore, ISEQ does not allow for the derivation of intervals from instantaneous events or the specification of an output interval when an Allen relation is satisfied. ETALIS (Anicic et al. 2012) is an event-driven stream reasoning system that supports Allen relations. Similar to AEGLE, ETALIS and ISEQ do not take advantage of the common assumption in CER that activity intervals are maximal, compromising performance.
Havelund et al. (2021) proposed an extension of Allen's algebra featuring quantification over intervals. This work focuses on relations before, during and overlaps, omitting the remaining relations. Unlike RTEC $_{A}$, this approach does not support the construction of intervals by means of (arbitrary conditions on) concurrent events. nfer (Kauffman et al. 2018) is a rule-based system transforming instantaneous event streams into interval-based, hierarchical abstractions, possibly using Allen relations. nfer does not include optimisations for Allen relation computation and does not guarantee correct reasoning in a streaming setting. Several approaches compute Allen relations using versions of the plane-sweeping algorithm. For example, Piatov et al. (2021) developed a family of interval join algorithms, including Allen relations, with log-linear time complexity. Chekol et al. (2019) extended SPARQL with plane-sweeping-based algorithms for Allen relation computation; however, this work does not support streaming data. None of the aforementioned frameworks for Allen relation computation is designed to handle the inherent delays in streams.

TPStream and the system of Chawda et al. (2014) support distributed Allen relation computation. Pilourdault et al. (2016) compute approximate incarnations of Allen relations. Extending RTEC $_{\mathrm{A}}$ with approximate Allen relations and distribution techniques are future work directions.

Acknowledgements

We would like to thank Christos Doulkeridis for his comments at the early stages of this work. This work was supported by the EU-funded CREXDATA project (No 101092749), and by the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd and the 4th Call for HFRI PhD Fellowships (Fellowship Numbers: 6011 and 10860).

References

Allen, J. 1984. Towards a general theory of action and time. Artif. Intell. 23(2):123-154.
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012. Stream reasoning and complex event processing in ETALIS. Semantic Web 3(4):397-407.
Arias, J.; Carro, M.; Chen, Z.; and Gupta, G. 2022. Modeling and reasoning in event calculus using goal-directed constraint answer set programming. Theory Pract. Log. Program. 22(1):51-80.
Artikis, A.; Sergot, M. J.; and Paliouras, G. 2015. An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4):895-908.
Awad, A.; Tommasini, R.; Langhi, S.; Kamel, M.; Valle, E. D.; and Sakr, S. 2022. D ${ }^{2}$ ia: User-defined interval analytics on distributed streams. Inf. Syst. 104:101679.
Bazoobandi, H. R.; Beck, H.; and Urbani, J. 2017. Expressive stream reasoning with laser. In $I S W C$, volume 10587, 87-103.
Beck, H.; Eiter, T.; and Folie, C. 2017. Ticker: A system for incremental asp-based stream reasoning. Theory Pract. Log. Program. 17(5-6):744-763.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logicbased framework for analytic reasoning over streams. Artif. Intell. 261:16-70.
Brendel, W.; Fern, A.; and Todorovic, S. 2011. Probabilistic event logic for interval-based event recognition. In $C V P R$, 3329-3336.
Bucchi, M.; Grez, A.; Quintana, A.; Riveros, C.; and Vansummeren, S. 2022. CORE: a complex event recognition engine. Proc. VLDB Endow. 15(9):1951-1964.
Chawda, B.; Gupta, H.; Negi, S.; Faruquie, T. A.; Subramaniam, L. V.; and Mohania, M. K. 2014. Processing interval joins on map-reduce. In EDBT, 463-474.
Chekol, M. W.; Pirrò, G.; and Stuckenschmidt, H. 2019. Fast interval joins for temporal SPARQL queries. In Companion of $W W W, 1148-1154$. ACM.
Cugola, G., and Margara, A. 2012. Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. 44(3):15:1-15:62.
Eiter, T.; Ogris, P.; and Schekotihin, K. 2019. A distributed approach to LARS stream reasoning (system paper). Theory Pract. Log. Program. 19(5-6):974-989.
Falcionelli, N.; Sernani, P.; de la Torre, A. B.; Mekuria, D. N.; Calvaresi, D.; Schumacher, M.; Dragoni, A. F.; and Bromuri, S. 2019. Indexing the event calculus: Towards
practical human-readable personal health systems. Artif. Intell. Medicine 96:154-166.
Georgala, K.; Sherif, M. A.; and Ngomo, A. N. 2016. An efficient approach for the generation of allen relations. In ECAI, volume 285, 948-956.
Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.; and Garofalakis, M. N. 2020. Complex event recognition in the big data era: a survey. VLDB J. 29(1):313-352.
Havelund, K.; Omer, M.; and Peled, D. 2021. Monitoring first-order interval logic. In SEFM, volume 13085, 66-83. Springer.
Kauffman, S.; Havelund, K.; Joshi, R.; and Fischmeister, S. 2018. Inferring event stream abstractions. Formal Methods Syst. Des. 53(1):54-82.
Körber, M.; Glombiewski, N.; Morgen, A.; and Seeger, B. 2019. Tpstream: low-latency and high-throughput temporal pattern matching on event streams. Distributed and Parallel Databases 39:361-412.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus of events. New Gen. Comput. 4(1).
Li, M.; Mani, M.; Rundensteiner, E. A.; and Lin, T. 2011. Complex event pattern detection over streams with intervalbased temporal semantics. In DEBS, 291-302. ACM.
Mantenoglou, P.; Pitsikalis, M.; and Artikis, A. 2022. Stream reasoning with cycles. In $K R, 544-553$.
Ngomo, A. N.; Sherif, M. A.; Georgala, K.; Hassan, M. M.; Dreßler, K.; Lyko, K.; Obraczka, D.; and Soru, T. 2021. LIMES: A framework for link discovery on the semantic web. Künstliche Intell. 35(3):413-423.
Piatov, D.; Helmer, S.; Dignös, A.; and Persia, F. 2021. Cache-efficient sweeping-based interval joins for extended allen relation predicates. $V L D B J .30(3): 379-402$.
Pilourdault, J.; Leroy, V.; and Amer-Yahia, S. 2016. Distributed evaluation of top-k temporal joins. In SIGMOD, 1027-1039. ACM.
Pitsikalis, M.; Artikis, A.; Dreo, R.; Ray, C.; Camossi, E.; and Jousselme, A. 2019. Composite event recognition for maritime monitoring. In $D E B S, 163-174$. ACM.
Santipantakis, G. M.; Vlachou, A.; Doulkeridis, C.; Artikis, A.; Kontopoulos, I.; and Vouros, G. A. 2018. A stream reasoning system for maritime monitoring. In TIME, volume 120, 20:1-20:17.
Song, Y. C.; Kautz, H. A.; Allen, J. F.; Swift, M. D.; Li, Y.; Luo, J.; and Zhang, C. 2013. A markov logic framework for recognizing complex events from multimodal data. In ICMI, 141-148.
Tsilionis, E.; Artikis, A.; and Paliouras, G. 2022. Incremental event calculus for run-time reasoning. J. Artif. Intell. Res. 73:967-1023.
Urbani, J.; Krötzsch, M.; and Eiter, T. 2022. Chasing streams with existential rules. In $K R$.

[^0]: ${ }^{1}$ https://github.com/aartikis/RTEC

[^1]: ${ }^{2}$ https://zenodo.org/record/1 167595

