
Complex Event Recognition with Allen Relations

Periklis Mantenoglou1,2 , Dimitrios Kelesis3,2 , Alexander Artikis4,2
1National and Kapodistrian University of Athens, GR

2NCSR “Demokritos”, GR
3National Technical University of Athens, GR

4University of Piraeus, GR
periklismant@di.uoa.gr, dkelesis@mail.ntua.gr, a.artikis@unipi.gr

Abstract

Contemporary applications require the processing of large,
high-velocity streams of symbolic events derived from sensor
data. A complex event recognition (CER) system processes
these symbolic events online and reports the satisfaction of
complex event patterns with minimal latency. We extend an
Event Calculus dialect optimised for online CER with Allen’s
interval algebra, in order to provide more accurate event pat-
terns. We demonstrate the effectiveness of our system on real
data streams from maritime situational awareness.

1 Introduction
Complex event recognition (CER) systems process high-
velocity data streams in order to extract and report instances
of (spatio-)temporal pattern satisfaction with minimal la-
tency (Cugola and Margara 2012). CER has been applied to
various contemporary applications. In maritime situational
awareness, e.g., a CER system consumes streams of vessel
position signals, in order to detect instances of dangerous,
suspicious and illegal vessel activities in real time, thus sup-
porting safe shipping (Pitsikalis et al. 2019).

The target activities of a CER system, such as ille-
gal fishing, are typically durative, and thus should be ex-
pressed using temporal intervals. Such a treatment allows
the detection of ongoing activities, while avoiding the un-
intended semantics of using single time-points (Giatrakos
et al. 2020). Moreover, the use of Allen’s Interval Alge-
bra has proven quintessential for CER (Awad et al. 2022;
Körber et al. 2019; Song et al. 2013; Anicic et al. 2012;
Brendel et al. 2011). Allen’s algebra specifies thirteen
jointly exhaustive and pairwise disjoint relations among in-
tervals (Allen 1984). Consider, e.g., the detection of a ‘sus-
picious rendez-vous’ of two vessels in the maritime domain,
where one of the vessels turns off signal transmissions, while
being close to the other vessel. This phenomenon can be ex-
pressed with the ‘during’ relation of Allen’s algebra, while it
cannot be captured by common interval operators, such as
union and intersection.

We extend the Event Calculus for Run-Time reasoning
(RTEC) (Mantenoglou et al. 2022), a formal, logic-based
CER system, in order to support the relations of Allen’s
interval algebra in temporal patterns. RTEC already in-
cludes optimisation techniques, like windowing, allowing

for highly efficient reasoning in CER applications (Man-
tenoglou et al. 2022; Tsilionis et al. 2022).

The contributions of this paper may be summarised as
follows. First, we present RTECA, an open source, formal
computational framework for CER with Allen relations. We
present the syntax, semantics and reasoning algorithms of
RTECA. Second, we prove the correctness of RTECA, which
stems from the use of a novel interval caching technique.
Third, we show that RTECA has linear-time complexity,
bound by a small part of the stream of constant size. Fourth,
we present an extensive, reproducible empirical comparison
of our approach with two state-of-the-art systems support-
ing Allen relations on real maritime data. Our comparison
demonstrates that RTECA is at least one order of magnitude
more efficient than the state-of-the-art.

2 Background
2.1 Event Calculus for Run-Time Reasoning
The Event Calculus for Run-Time reasoning (RTEC) (Man-
tenoglou et al. 2022; Artikis et al. 2015) is a logic pro-
gramming implementation of the Event Calculus (Kowal-
ski and Sergot 1986), designed for reasoning over data
streams. The time model of RTEC is linear and includes
integer time-points. Variables start with an upper-case let-
ter, while predicates and constants start with a lower-case
letter. The language of RTEC includes events and flu-
ents, i.e., properties that may have different values at dif-
ferent points in time. The term F=V denotes that fluent
F has value V . Boolean fluents are a special case where
the possible values are true and false. Events are instanta-
neous and may change the values of fluents. The task of
RTEC is to compute the maximal intervals during which
a fluent-value pair (FVP) holds continuously. The main
predicates of RTEC are the following. happensAt(E ,T)
denotes that event E occurs at time-point T , while
initiatedAt(F =V ,T) (resp. terminatedAt(F =V ,T)) speci-
fies that fluent F starts (stops) having value V at T . For
a FVP F=V , holdsFor(F =V , I) states that fluent F has
value V continuously during the maximal intervals in list I ,
and holdsAt(F =V ,T) expresses the truth value of F=V at
a given time-point T .

A formalisation in RTEC contains a set of application-
specific rules, expressing the relations between the events

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

502

I1
I2
I3

Iu
Ii
Ic

union all([I1 , I2 , I3], Iu)

intersect all([I1 , I2 , I3], Ii)

relative complement all(I1 , [I2 , I3], Ic)

Time

Figure 1: Interval manipulation constructs of RTEC. I1 , I2 and I3
(resp. Ic , Ii and Iu) are input (output) lists of maximal intervals.

and the FVPs of a domain, called event description.
Definition 1 (Event description). An event description is a
set of:
• Ground facts in the form of happensAt(E ,T), expressing

a stream of event instances.
• Rules with head initiatedAt(F =V ,T) or

terminatedAt(F =V ,T), expressing the effects of
events on FVPs.

• Rules with head holdsFor(F =V , I), defining F=V in
terms of other FVPs. ■

RTEC features simple and statically determined flu-
ents. Simple fluents are defined by means of initiatedAt and
terminatedAt rules, and are subject to the commonsense law of
inertia, i.e., a FVP F=V holds at a time-point T , if F=V
has been ‘initiated’ by an event at a time-point earlier than
T , and not ‘terminated’ by another event in the meantime.
Example 1 (Within area). In maritime monitoring, various
areas, e.g., fisheries restricted areas, disallow certain activi-
ties. It is thus useful to compute the intervals during which
a vessel is in such an area. See the formalisation below:

initiatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(entersArea(Vl ,AreaID),T),
areaType(AreaID ,AreaType).

(1)

terminatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(leavesArea(Vl ,AreaID),T),
areaType(AreaID ,AreaType).

(2)

terminatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(gapStart(Vl),T).

(3)

withinArea(Vl ,AreaType) is a Boolean simple fluent de-
noting that a vessel Vl is in some area of AreaType ,
while entersArea(Vl ,AreaID), leavesArea(Vl ,AreaID)
and gapStart(Vl) are input events, derived by the on-
line processing of vessel position signals, and their spa-
tial relations with areas of interest (Santipantakis et al.
2018). areaType(AreaID ,AreaType) is an atemporal
predicate storing background knowledge concerning the
types of areas in a dataset. Rules (1) and (2) state
that withinArea(Vl ,AreaType) is initiated (resp. termi-
nated) as soon as vessel Vl enters (leaves) an area
AreaID , whose type is AreaType . According to rule

(3), withinArea(Vl ,AreaType) is terminated when there
is a communication gap, i.e., when Vl stops transmit-
ting its position. In this case, we are uncertain of
the vessel’s whereabouts. Using rules (1)-(3), RTEC
computes, with the use of application-independent rules,
holdsFor(withinArea(Vl ,AreaType)= true, I), i.e., the list
of maximal intervals I during which Vl is in AreaType . □

The syntax of simple fluent definitions is provided in
the supplementary document. In addition to the domain-
independent definition of holdsFor, which is used for com-
puting the maximal intervals of simple fluents, an event de-
scription may include domain-specific holdsFor rules, used
to define the values of a fluent F in terms of the values
of other fluents. Such a fluent F is called ‘statically de-
termined’, and the maximal intervals of F =V are derived
by applying on the intervals of other FVPs the following
interval manipulation constructs: union all, intersect all and
relative complement all . union all(L, I) (resp. intersect all(L, I))
computes the list of maximal intervals I as the union
(intersection) of all lists of maximal intervals of list L.
relative complement all(I ′,L, I) computes the list of maximal
intervals I by removing from the maximal intervals of list I ′
all time-points included in some list of maximal intervals of
list L. Figure 1 presents an illustration.
Definition 2 (Syntax of statically determined fluent defini-
tions). The rules defining statically determined fluents have
the following syntax:

holdsFor(F =V , In+m)←
holdsFor(F1 =V1 , I1)[[, holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn =Vn , In), intervalConstruct(L1 , In+1),
. . . , intervalConstruct(Lm , In+m)]].

(4)

The first body literal of a holdsFor rule defining F =V
is a holdsFor predicate expressing the maximal intervals
of a FVP other than F =V . This is followed by
a possibly empty list, denoted by ‘[[]]’, of holdsFor
predicates for other FVPs, and interval manipulation
constructs, expressed by intervalConstruct in formulation
(4). intervalConstruct(Lj , In+j) may be union all(Lj , In+j),
intersect all(Lj , In+j) or relative complement all(Ik ,Lj , In+j).
Ik , where k < n+ j , is a list of maximal intervals appearing
earlier in the body of the rule, and list Lj contains a sub-
set of such lists. The output list In+m contains the maximal
intervals during which F=V holds continuously. ■

Example 2 (Anchored and moored vessels). Consider the
following example from maritime situational awareness:

holdsFor(anchoredOrMoored(Vl)= true, I)←
holdsFor(stopped(Vl)= farFromPorts , Isf),
holdsFor(withinArea(Vl , anchorage)= true, Ia),
intersect all([Isf , Ia], Isfa),
holdsFor(stopped(Vl)=nearPorts , Isn),
union all([Isfa , Isn], I).

(5)

anchoredOrMoored(Vl) is a Boolean statically
determined fluent defined in terms of the FVPs
stopped(Vl)= farFromPorts , stopped(Vl)=nearPorts
and withinArea(Vl , anchorage)= true. stopped(Vl) is a
multi-valued fluent expressing the periods during which

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

503

Relation Definition Illustration

before(i s , i t) f (i s) < s(i t)
i s

i t

meets(i s , i t) f (i s) = s(i t)
i s

i t

starts(i s , i t)
s(i s) = s(i t),
f (i s) < f (i t)

i s

i t

finishes(i s , i t)
s(i s) > s(i t),
f (i s) = f (i t)

i s

i t

during(i s , i t)
s(i s) > s(i t),
f (i s) < f (i t)

i s

i t

overlaps(i s , i t)
s(i s) < s(i t),
f (i s) > s(i t),
f (i s) < f (i t)

i s

i t

equal(i s , i t)
s(i s) = s(i t),
f (i s) = f (i t)

i s

i t

Table 1: Seven relations of Allen’s interval algebra.

vessel Vl is idle near some port or far from all ports. The
specification of this fluent is available with the complete
event description of maritime situational awareness1. Rule
(5) derives the intervals during which vessel Vl is both
stopped far from all ports and within an anchorage area, by
applying the intersect all operation on the lists of maximal
intervals Isf and Ia . The output of this operation is list
Isfa . Subsequently, list I is derived by applying union all on
lists Isfa and Isn . In this way, list I contains the maximal
intervals during which vessel Vl has stopped near some port
or within an anchorage area. □

For a wide range of fluents, the use of union all, intersect all
and relative complement all allows for more concise event de-
scriptions, as opposed to the traditional style of Event Cal-
culus representation, i.e., identifying the various conditions
under which a fluent is initiated and terminated, so that
maximal intervals can then be computed using the domain-
independent holdsFor. Moreover, according to the complex-
ity analysis of (Artikis et al. 2015), the interval manipulation
constructs of RTEC can also lead to much more efficient
computation. In this paper, we extend the expressivity of the
language of RTEC by allowing for Allen’s relations within
statically determined fluent definitions.

2.2 Allen’s Interval Algebra
Allen’s interval algebra specifies thirteen jointly exhaustive
and pairwise disjoint relations among intervals (Allen 1984).
Table 1 presents relations before, meets, starts, finishes, during,
overlaps and equal. The remaining six relations are the ‘in-
verse’ relations; equal does not have an inverse relation. The
second column of Table 1 shows the conditions that must be

1https://github.com/aartikis/RTEC

outMode Output list I
source I =Srel
target I = Trel
union union all([Srel, Trel], I)

intersect intersect all([Srel, Trel], I)
complement relative complement all(Srel, [Trel], I)

complement inv relative complement all(Trel, [Srel], I)

Table 2: Output modes of the allen construct.

satisfied in order to compute an Allen relation. i s and i t ex-
press intervals, while s(i) and f (i) denote the start and end
endpoint of interval i , respectively.

Allen’s relations have proven necessary for CER (Awad
et al. 2022; Körber et al. 2019). However, the interval ma-
nipulation constructs of RTEC cannot express the relations
of Allen’s algebra. Consider, e.g., the computation of the
interval pairs (i s , i t), where i s ∈ S and i t ∈ T , satisfy-
ing before. intersect all([S, T], []) states that for every inter-
val pair (i s , i t), such that i s ∈ S , i t ∈ T , it holds that
i s ∩ i t = ∅. Therefore, i s is before i t , or vice versa. It is
impossible, however, to distinguish between the two cases.

3 Allen Relations in Event Descriptions
We present RTECA, an extension of RTEC supporting CER
specifications requiring Allen relations.

3.1 Representation and Semantics
Representation. We cannot express Allen relations in
RTEC without extending its expressive power. Simple fluent
definitions evaluate fluent initiation and termination condi-
tions on a particular time instant, and thus do not support
interval endpoint comparisons. Moreover, as already men-
tioned, the interval manipulation constructs in statically de-
termined fluent definitions cannot express Allen relations.
To address this issue, we extend the statically determined
fluent definitions.
Definition 3 (Syntax of statically determined fluent defini-
tions in RTECA). A holdsFor(F =V , I) rule defining a stat-
ically determined fluent F may additionally contain body
predicates in the form of allen(rel,S, T , outMode, I), where
rel denotes an Allen relation, S and T are input lists of max-
imal intervals, outMode expresses how we should treat the in-
terval pairs (i s , i t) satisfying rel, where i s ∈ S and i t ∈ T ,
and I is the output list of maximal intervals. ■

According to allen(rel,S, T , outMode, I), I contains the max-
imal intervals produced by applying outMode to the inter-
val pairs of the ‘source list’ S and the ‘target list’ T sat-
isfying rel, i.e., one of the Allen relations presented in Ta-
ble 1. The inverse relations may be computed by reversing
the order of the input lists. outMode is applied to the inter-
vals of lists Srel ={i s | i s ∈ S ∧ ∃i t ∈ T : rel(i s , i t)} and
Trel ={i t | i t ∈ T ∧ ∃i s ∈ S : rel(i s , i t)}, i.e., the intervals
of the source and the target lists appearing in at least one pair
of intervals satisfying rel. The possible values of outMode and

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

504

https://github.com/aartikis/RTEC

S
T

Idia

(a) disappearedInArea

Time

is1 is2

it1 it2

idia1

Ig1

Ig2

S
T

Isrv

(b) suspiciousRendezVous

Time

ig11

ig21

is1 is2

it1 it2

i srv1

Figure 2: Maximal interval computation with the allen construct.

their meaning are presented in Table 2. Below, we illustrate
the use of the allen predicate.
Example 3 (Allen relations for maritime situational aware-
ness). Vessels often attempt to conceal illegal activities in
certain areas, such as fishing in fisheries restricted areas, by
stopping transmitting their position. See the rule below:

holdsFor(disappearedInArea(Vl ,AreaType)= true, Idia)←
holdsFor(withinArea(Vl ,AreaType)= true,S),
holdsFor(gap(Vl)= farFromPorts , T),
allen(meets,S, T , target, Idia).

(6)

disappearedInArea(Vl ,AreaType) is a statically
determined Boolean fluent defined in terms of
withinArea(Vl ,AreaType) (see Example 1), and gap(Vl),
i.e., a multi-valued fluent expressing the intervals during
which vessel Vl stopped transmitting its position. The
specification of gap is available with the complete event
description of maritime situational awareness1. The last
condition of rule (6) expresses the meets Allen relation.
allen(meets,S, T , target, Idia) states that from the interval
pairs (i s , i t) satisfying meets, where i s ∈ S and i t ∈ T , we
will keep in the output list Idia the target intervals i t (see
the second line of Table 2). According to rule (6), therefore,
a vessel Vl is said to disappear in an area of AreaType
during an interval idia , if idia is an interval during which
gap(Vl)= farFromPorts , i.e., Vl stopped transmitting
its position while being in the open sea, and idia is met
by an interval i s during which Vl was within an area of
AreaType . Figure 2(a) provides a graphical illustration.
In this illustration, the only interval pair satisfying meets
is (i s1 , i

t
2), and thus Idia =[i t2]. If we wanted to include

i s1 in the output Idia , then we would have replaced target
by union in the last condition of rule (6) (see the third
line of Table 2). This way, i s1 would be amalgamated
with i t2 producing a single interval, i.e., Idia =[i s1 ∪ i t2].
In any case, the interval manipulation constructs of
RTEC cannot express disappearedInArea . For instance,
relative complement all(T , [S], I) would discard the common
time-point of i s1 and i t2 , and would include i t1 , which does
not satisfy meets. Similarly, union all([S, T], Idia) would
include all intervals of S and T , which is incorrect.

Proximate vessels may stop transmitting their position to
conduct illegal activities, such as an illegal cargo transfer.

Consider the formalisation below:

holdsFor(suspiciousRendezVous(Vl1 ,Vl2)= true, Isrv)←
holdsFor(gap(Vl1)= farFromPorts , Ig1),
holdsFor(gap(Vl2)= farFromPorts , Ig2),
holdsFor(proximity(Vl1 ,Vl2)= true, T),
union all([Ig1 , Ig2],S), allen(during,S, T , target, Isrv).

(7)

suspiciousRendezVous(Vl1 ,Vl2) is a statically deter-
mined fluent, and proximity(Vl1 ,Vl2) is a Boolean flu-
ent denoting whether two vessels, Vl1 and Vl2 , are close
to each other. T , i.e., the list of maximal intervals dur-
ing which two vessels are close to each other, is de-
rived by an online spatial processing technique on ves-
sel positional signals, which is robust to interim signal
gaps (Santipantakis et al. 2018). union all in rule (7) de-
rives S , i.e., the list of maximal intervals during which
gap(Vl1)= farFromPorts or gap(Vl2)= farFromPorts .
Then, allen(during,S, T , target, Isrv) identifies the maximal
intervals of T that contain an interval of S and stores them
in list Isrv . Therefore, rule (7) specifies that vessels Vl1 and
Vl2 may be conducting an illegal activity during an inter-
val i srv , if i srv is an interval during which Vl1 and Vl2 are
close to each other, and i srv contains an interval i s during
which at least one of the vessels stops transmitting its posi-
tion. Figure 2(b) displays an illustration of rule (7). union all
constructs list S as the union of the intervals in lists Ig1 and
Ig2 . Among the intervals of S and T , during is only satisfied
for the interval pair (i s2 , i

t
1), resulting in Isrv =[i t1]. Note

that Isrv cannot be derived by the interval manipulation con-
structs of RTEC. union all([S, T], I), e.g., would compute list
I =[i s1 , i

t
1 , i

t
2], including intervals i s1 and i t2 that do not sat-

isfy during. □

As mentioned earlier, Table 2 lists the possible values
of outMode and their meaning. Consider the computa-
tion of allen(meets,S, T , outMode, Idia) in the example of
Figure 2(a), where the only interval pair satisfying meets
is (i s1 , i

t
2). If outMode was complement or complement inv,

we would apply the relative complement all construct on i s1
and i t2 (complement inv reverses the order of operants in
relative complement all) and compute, respectively, list Idia
as [i s1 \ i t2] or [i t2 \ i s1]. Note that some combinations
of rel and outMode are equivalent. For instance, if an
interval pair (i s , i t) satisfies during, then i s is a sub-
interval of i t . Therefore, allen(during,S, T , union, I) and
allen(during,S, T , target, I) produce the same output list.

Semantics. An event description in RTECA defines a de-
pendency graph expressing the relationships between the
FVPs of the event description.
Definition 4 (Dependency Graph). The dependency graph
of an event description is a directed graph such that:
1. Each vertex denotes a FVP F =V ;
2. There exists an edge (Fj =Vj ,Fi =Vi) iff:

• There is an initiatedAt or terminatedAt rule for Fi =Vi

having holdsAt(Fj =Vj ,T) as one of its conditions.
• There is a holdsFor rule for Fi =Vi having

holdsFor(Fj =Vj , I) as one of its conditions. ■

According to Definition 4, the addition of allen constructs

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

505

in statically determined fluents definitions does not intro-
duce additional dependencies among FVPs. Therefore, our
extension of RTEC does not affect its semantics.
Proposition 1 (Semantics of RTECA). An event description
in RTECA is a locally stratified logic program. ▲

A discussion of the semantics of RTEC may be found
in (Mantenoglou et al. 2022).

3.2 Reasoning
We extend the process of statically determined fluent eval-
uation of RTEC with algorithms computing Allen rela-
tions. Algorithm 1 presents the steps of the evaluation of
allen(rel,S, T , outMode, I). This algorithm derives all inter-
val pairs (i s , i t), such that i s ∈ S and i t ∈ T , satisfying
Allen relation rel, and stores them in list pairs (line 3). We
then compute lists Srel and Trel containing, respectively, the
source and the target intervals appearing in list pairs at least
once (line 4). This way, we may apply outMode to lists Srel
and Trel, as specified in Table 2, in order to compute the out-
put list I (line 5). In what follows, we present the algorithm
computing the interval pairs of S and T satisfying an Allen
relation, and the bookkeeping operations which are neces-
sary for correct Allen relation computation in a streaming
setting (see lines 1, 2 and 6 of Algorithm 1).

Allen Relation Computation. Algorithm 2 computes the
interval pairs of S and T satisfying an Allen relation rel and
stores them in list pairs . I in holdsFor(F =V , I) is a sorted
list of maximal intervals (even if the items of the stream are
not sorted) (Artikis et al. 2015). Therefore, S and T are
also sorted lists of maximal intervals (see Definition 3). We
evaluate rel by means of interval endpoint comparisons, fol-
lowing the corresponding definition in Table 1. An element
of pairs is a tuple of the form (i s , T ′), denoting that the
source interval i s satisfies rel with every interval in the list of
target intervals T ′ ⊆ T . Using this compact representation,
we avoid enumerating all computed interval pairs, without
information loss. For example, the tuple (i s1 , [i

t
1 , i

t
2]) for a

relation rel denotes that rel(i s1 , i
t
1) and rel(i s1 , i

t
2) hold.

Algorithm 2 uses two pointers, ps and pt , to traverse S
and T . If rel is before and, indeed, before(i s , i t) holds, we
add the tuple (i s , [i t , . . . , T [length(T)]]) to pairs , where
T [length(T)] denotes the last interval of T (line 6). If
before(i s , i t) does not hold and f (i s) ≤ f (i t), i.e., the
source interval does not end after the target interval, then
i s is before all target intervals after i t . Consequently, we add
the tuple (i s , [T [pt+1], . . . , T [length(T)]]) to pairs (line
8). If rel is not before and rel(i s , i t) holds, we simply add
(i s , i t) to pairs (line 9).

Afterwards, Algorithm 2 increments pointer ps and/or
pointer pt . ps (resp. pt) may be incremented only if the
current source (target) interval i s (i t) cannot satisfy rel with
any subsequent target (source) interval. Since S and T are
sorted lists of maximal intervals, we can check this based
on the relative positions of i s and i t , and the given relation
rel, without iterating over any subsequent interval of S and
T . The conditions in which pointers ps and pt may be in-
cremented, while guaranteeing the correct computation of
interval pairs satisfying rel, are presented in lines 10 and 12.

Algorithm 1 allen(rel,S, T , outMode, I)

1: Sc , T c ← retrieveCachedIntervals()
2: S ← append(Sc ,S), T ← append(T c , T)
3: pairs ← compute allen relation(S, T , rel)
4: Srel, Trel ← getSourceTargetIntervals(pairs)
5: I ← applyOutMode(Srel, Trel, outMode)
6: windowing(S, T , rel)

Algorithm 2 compute allen relation(S, T , rel)

1: ps ← 1 , pt ← 1 , pairs ← []
2: while ps ≤ length(S) or pt ≤ length(T) do
3: i s ← S[ps], i t ← T [pt]
4: if rel= before then
5: if before(i s , i t) then
6: pairs .add((i s , [i t , . . . , T [length(T)]]))
7: else if f (i s) ≤ f (i t) then
8: pairs .add((i s , [T [pt+1], . . . , T [length(T)]]))
9: else if rel(i s , i t) then pairs .add((i s , [i t]))

10: if f (i s) ≤ f (i t) or (s(i s) ≤ f (i t) and
rel ∈ {starts, finishes, during, equal}) then

11: ps ← ps + 1

12: if f (i s) ≥ f (i t) or (f (i s) ≥ s(i t) and
rel ∈ {before,meets, starts, overlaps, equal}) then

13: pt ← pt + 1

14: return pairs

Example 4 (Allen relation computation). In the example of
Figure 2(a), allen(meets,S, T , target, Idia) is used to compute
the maximal intervals of disappearedInArea in list Idia . In
order to derive these intervals, RTECA computes all interval
pairs in lists S and T satisfying meets (see line 3 of Algo-
rithm 1). This is achieved with Algorithm 2. In this exam-
ple, the source list is S =[i s1 , i

s
2], the target list is T =[i t1 , i

t
2].

Initially, ps points to i s1 and pt points to i t1 . Algorithm 2 ver-
ifies that meets does not hold for the interval pair (i s1 , i

t
1) in

line 9. Next, we check whether pointer ps needs to be incre-
mented. Since f (i s1) > f (i t1), the condition in line 10 fails,
and thus we do not increment ps . In contrast, the condition
in line 12 succeeds because f (i s1) > f (i t1). Therefore, we
increment pt (line 13). The interval pair of the next iteration
is (i s1 , i

t
2). meets(i s1 , i

t
2) is satisfied and thus we compute the

pair (i s1 , [i
t
2]). i

s
1 and i t2 cannot satisfy meets with any future

interval; consequently, we increment both ps and pt . There
is no target interval after i t2 . Thus, Algorithm 2 terminates
and returns (i s1 , [i

t
2]). □

Windowing. In order to handle streaming data, CER sys-
tems often employ windowing techniques. At each ‘query
time’ qj , RTEC reasons over the items of an input stream
that fall within a specified sliding window wj =(qj−ω, qj],
where ω is the size of the window. All elements of the stream
that took place before or at qj−ω are discarded/‘forgotten’.
This ensures that the cost of reasoning depends on the win-
dow size ω and not on the complete stream. The size of ω
and the temporal distance between two consecutive query
times, i.e., the ‘step’ qj−qj−1 , may be manually set or opti-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

506

q81 q82

S
T

Idia

w81

w82

(a) Query time: q81

is,q811

it,q811 it,q812

idia,q811

s(w82)
q81 q82

S
T

Idia

w81

w82

(b) Query time: q82

is,q822

it,q822

idia,q821

s(w82)

Figure 3: Online maximal interval computation.

mised to meet the requirements of the given application. In
the common case that the elements of a stream arrive with
delays, e.g., due to network delays, it is preferable to make
ω longer than the step. This way, we may reason, at qj ,
over the stream elements that took place in (qj−ω, qj−1],
but arrived after qj−1 . As an example, Figure 3 shows the
intervals of S and T of Figure 2(a) as they are available at
query times q81 and q82 . The corresponding windows w81

and w82 are overlapping in order to accommodate, at query
time q82 , stream elements that took place in (q82−ω, q81],
but arrived after q81 .

RTECA follows RTEC and reasons over streams using
sliding windows. We make the following assumptions. First,
the window size and the step remain constant. Thus, we can
always derive the endpoints of the next window based on the
current query time. Second, the delays in the stream may be
tolerated by the window size. In other words, at query time
qj , the intervals taking place before the current window wj

are not revised. In contrast, the intervals that were available
or derived at qj−1 and take place within wj may be revised
at qj . RTECA guarantees correct reasoning by computing,
at qj , all interval pairs (i s , i t) satisfying Allen relation rel,
such that at least one of i s and i t intersects with window
wj . The proof of correctness is presented in the following
section. To compute all such interval pairs, we cache at each
query time the intervals that may be required in the future
(line 6 of Algorithm 1). This way, we may retrieve at qj the
intervals cached at qj−1 (see lines 1–2) that allow us to per-
form correct Allen relation computation. In the following
example, we motivate our caching technique.

Example 5 (Windowing). Figure 3(a) illustrates the com-
putation of allen(meets,S, T , target, Idia) at query time q81 ,
where S and T contain only the intervals that fall within
window w81 . Contrast these intervals with the ones depicted
in Figure 2(a). Interval i t,q811 , e.g., is shorter than the interval
i t1 of Figure 2(a) because a segment of i t1 falls outside w81 .
Moreover, the events leading to the extension of i t,q812 up to
q81 have been delayed and are not available at q81 , and thus
i t,q812 ends earlier than q81 . Based on the intervals in w81 ,
we compute that meets(i s,q811 , i t,q812) holds at q81 and derive
the output interval idia,q811 , which matches i t,q812 .

The intervals of S and T available at the next query time,
q82 , i.e., i s,q822 and i t,q822 , are displayed in Figure 3(b). The

Algorithm 3 windowing(S, T , rel)

1: s(wj+1)= qj+step − ω
2: S< ← getIntervalsBeforeTimepoint(S, s(wj+1))
3: i s∗ ← getIntervalContainingTimepoint(S, s(wj+1))
4: i t∗ ← getIntervalContainingTimepoint(T , s(wj+1))
5: if i s∗ ̸= null then
6: if rel ∈ {meets, overlaps, before} or (i t∗ ̸= null and

((rel ∈ {starts, equal} and s(i s∗)= s(i t∗)) or
(rel ∈ {finishes, during} and s(i s∗) > s(i t∗)))) then

7: cache([s(i s∗), s(wj+1)])

8: if i t∗ ̸= null then
9: if rel ∈ {meets, starts, overlaps} and

∃i s ∈ S< : rel(i s , i t∗) then
10: cache([s(i t∗), s(wj+1)]), cache(i s)
11: else if rel ∈ {before} and ∃i s ∈ S< : (before(i s , i t∗)

and f (i s) ≥ s(wj+1)−mem) then
12: cache([s(i t∗), s(wj+1)])
13: else if rel ∈ {finishes, during} or (i s∗ ̸= null and

((rel ∈ {starts, equal} and s(i s∗)= s(i t∗)) or
(rel ∈ {overlaps} and s(i s∗) < s(i t∗)))) then

14: cache([s(i t∗), s(wj+1)])

15: if rel ∈ {during} then
16: for i s ∈ S< : rel(i s , i t∗) do cache(i s)

17: if rel ∈ {before} then
18: for i s∈ S< : f (i s) ≥ s(wj+1)−mem do cache(i s)

first segment of i t,q812 , i.e., [s(i t,q812), s(w82)] is missing, be-
cause it is outside the current window, while its final seg-
ment (s(w82), f (i

t,q81
2)] has been extended, given the events

that arrived after q81 . Considering the intervals i s1 and i t2 of
Figure 2(a), it is not possible to compute meets(i s1 , i

t
2) at

q82 because i s1 and part of i t2 take place before w82 . To
address this issue, we cache, at q81 , i s,q811 and the segment
of i t,q812 that is before time-point s(w82). Figure 3(b) de-
picts these cached (segments of) intervals with dotted lines.
At q82 , i s,q811 , which matches i s1 , is added to S and the
cached segment of i t,q812 is amalgamated with i t,q822 , form-
ing an interval that matches i t2 . As a result, we compute that
meets(i s1 , i

t
2) holds and the output interval idia,q821 at q82 .

In Figure 3(b), the dashed segment of idia,q821 denotes the
interval part that falls outside w82 . In contrast to idia,q811 ,
idia,q821 matches idia1 , i.e., the output interval displayed in
Figure 2(a). □

Example 5 demonstrates that the prefix of a target inter-
val intersecting with the next window, and a source interval
ending before the next window, may need to be cached to
guarantee correct reasoning. Target intervals ending before
the next window are not cached because they cannot satisfy
any Allen relation with a source interval ending in the fu-
ture. Algorithm 3 presents our caching procedure. First, we
compute the start endpoint of the next window s(wj+1) (line
1), and identify the list of source intervals S< taking place
before s(wj+1), as well as the source and target intervals i s∗
and i t∗ , if any, containing s(wj+1) (lines 2–4). For example,

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

507

in Figure 3(a), S< =[i s,q811], i s∗ =null and i t∗ = i t,q812 . The
segments of i s∗ and i t∗ that are before s(wj+1) may need
to be cached (see i t,q812 in Example 5). The conditions for
caching [s(i s∗), s(wj+1)] and [s(i t∗), s(wj+1)] are in lines 5–
7 and 8–14, respectively. Moreover, we may need to cache
a subset of the intervals in S<. The conditions for caching
such intervals are presented in lines 8–10 and 15–18.

In the case of before, it is impossible to guarantee correct
reasoning without caching every source interval. For exam-
ple, interval i s,q811 of Figure 3(a) will satisfy before with all
target intervals after i t,q812 that arrive in the future. Thus, we
need to always keep i s,q811 in memory to ensure correctness.
In order to maintain a balance between efficiency and cor-
rectness in the case of before, we use a memory threshold
mem and cache, at query time qj , all source intervals end-
ing in [s(wj+1)−mem, s(wj+1)] (see lines 17–18 of Algo-
rithm 3). If at least one of these intervals is before i t∗ , i.e.,
the target interval containing s(wj+1), then we also cache
[s(i t∗), s(wj+1)] (see lines 11–12). This way, we may com-
pute, at qj+1 , the interval pairs (i s , i t) satisfying before,
such that i t intersects with window wj+1 and i s ends in
[s(wj+1)−mem, s(wj+1)].

3.3 Correctness and Complexity
We prove the correctness of RTECA and present its complex-
ity, with respect to Allen relation computation for CER. The
corresponding analyses on CER without Allen relations may
be found in (Mantenoglou et al. 2022; Artikis et al. 2015).
Proposition 2 (Correctness of RTECA). RTECA computes
all maximal intervals of a statically determined fluent de-
fined in terms of an Allen relation, and no other interval. ▲

As expected, RTECA is correct provided that interval de-
lays, if any, can be tolerated by the window size. In other
words, all intervals occurring before query time qj that were
not available at qj , take place after s(wk), where k > j , and
will be available by query time qk . For the case of before, we
additionally permit delayed source intervals taking place in
[s(wk)−mem, s(wk)] and arriving by qk .

To prove the correctness of RTECA, we first show that Al-
gorithm 2 computes all interval pairs (i s , i t), where i s ∈ S
and i t ∈ T , satisfying an Allen relation, and no other inter-
val pair. Then, we show that Algorithm 3 caches all intervals
that may be required by Algorithm 2 in the future for correct
Allen relation computation, and no other interval.
Lemma 1. Algorithm 2 computes all interval pairs (i s , i t),
where i s ∈ S and i t ∈ T , satisfying an Allen relation, and
no other interval pair. △
Proof. We present the proof for meets; the proofs for the
remaining relations are similar and may be found in the sup-
plementary material. Algorithm 2 is sound because, accord-
ing to line 9, it may only compute an interval pair (i s , i t),
such that i s ∈ S and i t ∈ T , if meets(i s , i t) holds. Towards
proving completeness, suppose that meets(i s , i t) holds and
Algorithm 2 does not compute (i s , i t). In this case, accord-
ing to line 9, there is no iteration of the while loop of Algo-
rithm 2 such that pointer ps points to i s and pt points to i t .
The condition of line 2 states that Algorithm 2 iterates over

all items in at least one of its input lists. Suppose that, in the
current iteration, ps points to i s when pt points to an inter-
val i tb that is before i t . By the definition of meets, we have
f (i s)= s(i t), while it holds that s(i t) > f (i tb), because T
is a sorted list of maximal intervals. Therefore, it holds that
f (i s) > f (i tb), and thus we only increment pointer pt (see
lines 10–13). This condition continues to hold for all tar-
get intevals until pt points to i t . Similarly, assume that pt
points to i t when ps points to an interval i sb that is before
i s . s(i t)= f (i s) > f (i sb) holds, and thus Algorithm 2 in-
crements ps until it points to i s . In both cases, we reach
an iteration of the while loop where ps points to i s and pt
points to i t , which is a contradiction. Thus, if meets(i s , i t)
holds, then Algorithm 2 computes (i s , i t).

Lemma 2. Algorithm 3 caches all intervals that may satisfy
an Allen relation with an interval arriving in the future, and
no other interval. △

Proof. Suppose that there is a source interval i s∗ contain-
ing the start of the next window s(wj+1). We will prove
that Algorithm 3 caches [s(i s∗), s(wj+1)] iff i s∗ may satisfy
an Allen relation with a target interval i t arriving in the
future. meets/overlaps/before: if i t occurs in the next win-
dow wj+1 , it holds that s(i t) > s(i s∗), and thus i s∗ may
satisfy meets, overlaps or before with i t . Therefore, Al-
gorithm 3 caches [s(i s∗), s(wj+1)] (line 6). starts/equal:
starts(i s∗ , i

t) and equal(i s∗ , i
t) may hold only if s(i s∗)= s(i t)

and f (i s∗) ≤ f (i t), in which case i t also contains s(wj+1).
Thus, we cache [s(i s∗), s(wj+1)] iff there is a target interval
starting at s(i s∗) and containing s(wj+1) (see the conditions
for starts and equal in line 6). finishes/during: finishes(i s∗ , i

t)
and during(i s∗ , i

t) may hold only if s(i s∗) > s(i t) and
f (i s∗) ≤ f (i t). Therefore, we cache [s(i s∗), s(wj+1)] iff
there is a target interval starting before s(i s∗) and containing
s(wj+1) (see the conditions for finishes and during in line 6).
The proofs for caching a target interval containing s(wj+1)
and source intervals ending before s(wj+1) are provided in
the supplementary material.

Proposition 3 (Complexity of RTECA). The cost of comput-
ing the maximal intervals of a statically determined fluent
defined in terms of an Allen relation isO(n), where n is the
number of input intervals. ▲

We identified the conditions according to which a source
(resp. target) interval cannot satisfy an Allen relation with
any future target (source) interval. Algorithm 2 leverages
these conditions (lines 10 and 12) in order to compute all in-
terval pairs satisfying an Allen relation in a single pass over
the input intervals. Moreover, we specified the conditions
that allow us to detect in linear time the intervals that need
to be cached (see lines 5–18 of Algorithm 3). In practice,
the number of cached intervals is negligible. Thus the cost
of computing Allen relations remains constant as the stream
progresses, and is bound by the size of the window.

4 Experimental Analysis
Experimental Setup. For our empirical analysis, we em-
ployed real data streams from the field of maritime situa-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

508

Batch size Reasoning Time

Input
Intervals RTECA AEGLE D2IA

200 1 980 2K
2K 14 4K 6K
20K 154 71.5K 395K

200K 1.8K MEM >3.6M

(a) Batch setting.

Window size Reasoning Time Output
Interval Pairs

Days Input
Intervals RTECA D2IA RTECA D2IA

1 125 1 48 5K 5K
2 250 2 164 19K 18K
4 500 4 568 72K 71K
8 1K 8 1.7K 237K 236K
16 2K 15 7.8K 878K 874K

(b) Streaming setting.

Window size Reasoning Time Output
Intervals

Days Input
Intervals RTECA D2IA RTECA D2IA

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K

16 297K 285 2.7K 77K 76K

(c) CER with Allen relations.

Table 3: Average reasoning times for Allen relation computation ((a) and (b)) and CER (c) in milliseconds.

tional awareness. The input events were derived from Au-
tomatic Identification System (AIS) position signals emit-
ted by vessels, including information about their heading,
speed and navigational status. Upon a stream of such events,
we detect dangerous, suspicious and illegal vessel activi-
ties, such as disappearedInArea (see rule (6)). The com-
plete event description is available with the source code of
RTECA

1. We employed a publicly available dataset2 includ-
ing 18M AIS position signals, emitted from 5K vessels sail-
ing in the Atlantic Ocean around the post of Brest, France,
between October 2015–March 2016.

We compared RTECA with AEGLE and D2IA. AE-
GLE (Georgala et al. 2016) is a state-of-the-art system com-
puting Allen relations that has been used in the link discov-
ery framework LIMES (Ngomo et al. 2021). AEGLE re-
duces each Allen relation into a subset of eight atomic com-
parisons between interval endpoints. Moreover, AEGLE
caches the outcome of each atomic comparison in order to
reuse it in future relation evaluations. D2IA is a CER system
extending the Big Data stream processing engine Flink with
interval-based semantics (Awad et al. 2022). Furthermore,
D2IA includes operators for reasoning over durative events
using Allen relations. RTECA operated in SWI-8.4 Prolog,
while AEGLE and D2IA operated on Java OpenJDK 18. The
experiments were run on a core of a desktop PC running
Ubuntu 22.04, with AMD Ryzen 7 5700U CPU @ 1.8GHz
and 16GB RAM. Our empirical analysis is reproducible; the
code and the data of our experiments are publicly available1.

Experimental Results. AEGLE does not support win-
dowing or CER. Thus, the aim of the first set of experiments
was to compare RTECA, AEGLE and D2IA in a batch set-
ting, for Allen relation computation without CER. We in-
structed these systems to derive all interval pairs satisfying
an Allen relation among lists of maximal intervals during
which composite maritime activities were detected on the
Brest dataset. We evaluated the efficiency of each frame-
work as the number of input intervals increases, while mak-
ing sure that all systems produced the same interval pairs
(see Lemma 1 for the correctness of RTECA in a batch set-
ting). As expected, the most common Allen relation was be-
fore, while relations requiring endpoing equality, i.e., meets,
starts, finishes and equal, were less frequently satisfied. Table

2https://zenodo.org/record/1167595

3(a) shows the average reasoning times of RTECA, AEGLE
and D2IA for computing all Allen relations among input lists
containing 200–200K intervals. All results displayed in Ta-
ble 3 are the average of 30 experiments. Since AEGLE and
D2IA do not assume that the input lists are temporally sorted,
the interval lists of composite maritime activities were not
sorted. The performance of AEGLE and D2IA on sorted in-
put lists is almost identical to that presented in Table 3(a),
and thus omitted here. For RTECA, we had to sort the input
lists prior to Allen relation computation; the cost of sorting
is included in the reported times of RTECA.

Table 3(a) shows that the reasoning time of RTECA in-
creases linearly with the input size, verifying our complexity
analysis (see Proposition 3). Moreover, RTECA outperforms
AEGLE and D2IA by 2–3 orders of magnitude. For exam-
ple, in the experiments with 200K input intervals, RTECA
was able to compute all interval pairs satisfying an Allen re-
lation in about 1.9 seconds. In contrast, AEGLE terminated
with a memory error, while we killed the execution of D2IA
because it lasted for more than one hour. AEGLE sorted
each input interval list by start or end endpoint, depend-
ing on the relation under evaluation. However, both sort-
ing operations produce the same result on a list of maximal
intervals, and thus only one of them is sufficient. RTECA
leverages the common assumption in CER that intervals
are maximal, and avoids such unnecessary re-computations.
D2IA has higher reasoning times than RTECA and AEGLE,
because it is significantly slower when computing before,
which is satisfied by most interval pairs in each experiment.
RTECA evaluates before very efficiently as it derives all tar-
get intervals satisfying before with some source interval in a
single iteration. Furthermore, in contrast to D2IA and AE-
GLE, RTECA uses a compact representation for the com-
puted interval pairs in order to avoid their explicit enumera-
tion (see lines 6 and 8 of Algorithm 2).

In our next set of experiments, we compared RTECA with
D2IA for Allen relation computation in a streaming setting,
but without CER. D2IA does not support overlapping win-
dows for Allen relations and does not cache intervals that
may satisfy an Allen relation, such as before, in the future.
Thus, to facilitate a fair comparison, we set the step of
RTECA to the window size and the threshold mem to zero.
Table 3(b) presents the average reasoning times of RTECA
and D2IA, and the average number of interval pairs com-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

509

https://zenodo.org/record/1167595

puted by each system (see ‘output interval pairs’). The input
lists were provided to each system in windows, ranging from
1 day, including approx. 125 intervals, to 16 days, including
2K intervals. Our results show that RTECA remains orders
of magnitude faster than D2IA. Moreover, the cost of our
caching mechanism is negligible (e.g., compare the second
line of Table 3(a) with the last line of Table 3(b)), verifying
our complexity analysis. Note that RTECA computed more
interval pairs than D2IA in most settings. This is due to the
fact that D2IA does not include a technique for transferring
intervals to future windows (with the exception of open in-
tervals), compromising correctness. See Lemma 2 for the
correctness of RTECA in a streaming setting.

In the final set of experiments, we compared RTECA
and D2IA on CER, using fifteen patterns of composite
maritime activities with Allen relations, such as those
presented in Section 3.1. Given a pattern including
allen(rel,S, T , outMode, I), RTECA computes all interval
pairs of S and T satisfying rel, and applies outMode to the
computed pairs, in order to produce the maximal intervals
of the composite activity defined by the pattern. In contrast,
D2IA computes only the union of the interval pairs satis-
fying an Allen relation within a composite activity pattern,
i.e., D2IA does not allow the specification of another output
mode. To facilitate a fair comparison, we set the outMode of
RTECA to union in all maritime patterns.

Table 3(c) presents the average reasoning times of RTECA
and D2IA, and the average number of composite activity in-
tervals (see ‘output intervals’). The number of input inter-
vals is significantly larger as compared to our previous ex-
periments, because the input intervals correspond to activi-
ties performed by all vessels in the dataset. In CER, we are
interested in the combinations of input items indicated by the
composite activity patterns, and not on evaluating all possi-
ble interval combinations, as in the previous experiments.
Consequently, the number of composite activity intervals is
much smaller than the number of input intervals. Our results
show that RTECA is significantly faster than D2IA, without
compromising correctness (in some cases D2IA misses com-
posite activities due to the absence of interval caching).

5 Summary, Related and Further Work
We proposed RTECA, a CER system supporting Allen rela-
tions in temporal patterns. We presented the syntax, seman-
tics and reasoning algorithms of RTECA, proved its correct-
ness, and showed that it has linear complexity bound by the
window size. Moreover, we compared RTECA with AEGLE
and D2IA, two state-of-the-art computational frameworks
supporting Allen relations, on real maritime data, demon-
strating the benefits of RTECA.

Several approaches in the literature are related to our
work. CORE (Bucchi et al. 2022) is an automata-based CER
engine deriving durative composite events efficiently, using
a compact data structure for maintaining partial matches.
However, relations in the language of CORE can only be
unary. Thus, CORE cannot express, e.g., the maritime pat-
terns of RTECA. A comparison of automata-based and
logic-based CER systems may be found in the recent sur-
vey of Giatrakos et al. (2020). LARS (Beck et al. 2018) is a

formal stream reasoning language that can express interval-
based rules. LARS-based reasoners (Urbani et al. 2022;
Eiter et al. 2019; Beck et al. 2017; Bazoobandi et al. 2017),
however, support only a fragment of LARS that cannot ex-
press interval derivations. s(CASP) (Arias et al. 2022) is
a query-driven execution model for Answer Set Program-
ming with constraints, supporting Event Calculus-based rea-
soning. jREC is an implementation of the Event Calculus,
using caching and indexing techniques for interval-based
CER (Falcionelli et al. 2019). None of these systems sup-
ports Allen relations. Moreover, RTEC has proven very ef-
ficient (in real applications), outperforming related systems,
such as jREC (Mantenoglou et al. 2022).

Several CER systems do support Allen relations. TP-
Stream (Körber et al. 2019) transforms instantaneous events
into durative situations, and computes temporal patterns,
including Allen relations, over situation intervals. In TP-
Stream, situations cannot be defined in terms of multiple
event types or background knowledge. For example, it is not
possible to express withinArea (see rules (1)–(3)). More-
over, the cost of Allen relation computation in TPStream is
O(nlogn), where n is the number of input intervals, which
is higher than that of RTECA. ISEQ (Li et al. 2011) pro-
cesses streams of durative events and allows for Allen re-
lations. Unlike RTECA, neither ISEQ nor TPStream sup-
ports relational patterns, which is a significant limitation for
CER. Furthermore, ISEQ does not allow for the derivation
of intervals from instantaneous events or the specification
of an output interval when an Allen relation is satisfied.
ETALIS (Anicic et al. 2012) is an event-driven stream rea-
soning system that supports Allen relations. Similar to AE-
GLE, ETALIS and ISEQ do not take advantage of the com-
mon assumption in CER that activity intervals are maximal,
compromising performance.

Havelund et al. (2021) proposed an extension of Allen’s
algebra featuring quantification over intervals. This work
focuses on relations before, during and overlaps, omitting the
remaining relations. Unlike RTECA, this approach does
not support the construction of intervals by means of (ar-
bitrary conditions on) concurrent events. nfer (Kauffman et
al. 2018) is a rule-based system transforming instantaneous
event streams into interval-based, hierarchical abstractions,
possibly using Allen relations. nfer does not include optimi-
sations for Allen relation computation and does not guar-
antee correct reasoning in a streaming setting. Several
approaches compute Allen relations using versions of the
plane-sweeping algorithm. For example, Piatov et al. (2021)
developed a family of interval join algorithms, including
Allen relations, with log-linear time complexity. Chekol
et al. (2019) extended SPARQL with plane-sweeping-based
algorithms for Allen relation computation; however, this
work does not support streaming data. None of the afore-
mentioned frameworks for Allen relation computation is de-
signed to handle the inherent delays in streams.

TPStream and the system of Chawda et al. (2014) sup-
port distributed Allen relation computation. Pilourdault et
al. (2016) compute approximate incarnations of Allen rela-
tions. Extending RTECA with approximate Allen relations
and distribution techniques are future work directions.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

510

Acknowledgements
We would like to thank Christos Doulkeridis for his com-
ments at the early stages of this work. This work was
supported by the EU-funded CREXDATA project (No
101092749), and by the Hellenic Foundation for Research
and Innovation (HFRI) under the 3rd and the 4th Call for
HFRI PhD Fellowships (Fellowship Numbers: 6011 and
10860).

References
Allen, J. 1984. Towards a general theory of action and time.
Artif. Intell. 23(2):123–154.
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012.
Stream reasoning and complex event processing in ETALIS.
Semantic Web 3(4):397–407.
Arias, J.; Carro, M.; Chen, Z.; and Gupta, G. 2022. Model-
ing and reasoning in event calculus using goal-directed con-
straint answer set programming. Theory Pract. Log. Pro-
gram. 22(1):51–80.
Artikis, A.; Sergot, M. J.; and Paliouras, G. 2015. An event
calculus for event recognition. IEEE Trans. Knowl. Data
Eng. 27(4):895–908.
Awad, A.; Tommasini, R.; Langhi, S.; Kamel, M.; Valle,
E. D.; and Sakr, S. 2022. D2ia: User-defined interval ana-
lytics on distributed streams. Inf. Syst. 104:101679.
Bazoobandi, H. R.; Beck, H.; and Urbani, J. 2017. Expres-
sive stream reasoning with laser. In ISWC, volume 10587,
87–103.
Beck, H.; Eiter, T.; and Folie, C. 2017. Ticker: A system
for incremental asp-based stream reasoning. Theory Pract.
Log. Program. 17(5-6):744–763.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16–70.
Brendel, W.; Fern, A.; and Todorovic, S. 2011. Probabilistic
event logic for interval-based event recognition. In CVPR,
3329–3336.
Bucchi, M.; Grez, A.; Quintana, A.; Riveros, C.; and Van-
summeren, S. 2022. CORE: a complex event recognition
engine. Proc. VLDB Endow. 15(9):1951–1964.
Chawda, B.; Gupta, H.; Negi, S.; Faruquie, T. A.; Subrama-
niam, L. V.; and Mohania, M. K. 2014. Processing interval
joins on map-reduce. In EDBT, 463–474.
Chekol, M. W.; Pirrò, G.; and Stuckenschmidt, H. 2019.
Fast interval joins for temporal SPARQL queries. In Com-
panion of WWW, 1148–1154. ACM.
Cugola, G., and Margara, A. 2012. Processing flows of
information: From data stream to complex event processing.
ACM Comput. Surv. 44(3):15:1–15:62.
Eiter, T.; Ogris, P.; and Schekotihin, K. 2019. A distributed
approach to LARS stream reasoning (system paper). Theory
Pract. Log. Program. 19(5-6):974–989.
Falcionelli, N.; Sernani, P.; de la Torre, A. B.; Mekuria,
D. N.; Calvaresi, D.; Schumacher, M.; Dragoni, A. F.; and
Bromuri, S. 2019. Indexing the event calculus: Towards

practical human-readable personal health systems. Artif. In-
tell. Medicine 96:154–166.
Georgala, K.; Sherif, M. A.; and Ngomo, A. N. 2016. An
efficient approach for the generation of allen relations. In
ECAI, volume 285, 948–956.
Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.;
and Garofalakis, M. N. 2020. Complex event recognition in
the big data era: a survey. VLDB J. 29(1):313–352.
Havelund, K.; Omer, M.; and Peled, D. 2021. Monitoring
first-order interval logic. In SEFM, volume 13085, 66–83.
Springer.
Kauffman, S.; Havelund, K.; Joshi, R.; and Fischmeister, S.
2018. Inferring event stream abstractions. Formal Methods
Syst. Des. 53(1):54–82.
Körber, M.; Glombiewski, N.; Morgen, A.; and Seeger, B.
2019. Tpstream: low-latency and high-throughput temporal
pattern matching on event streams. Distributed and Parallel
Databases 39:361–412.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Gen. Comput. 4(1).
Li, M.; Mani, M.; Rundensteiner, E. A.; and Lin, T. 2011.
Complex event pattern detection over streams with interval-
based temporal semantics. In DEBS, 291–302. ACM.
Mantenoglou, P.; Pitsikalis, M.; and Artikis, A. 2022.
Stream reasoning with cycles. In KR, 544–553.
Ngomo, A. N.; Sherif, M. A.; Georgala, K.; Hassan, M. M.;
Dreßler, K.; Lyko, K.; Obraczka, D.; and Soru, T. 2021.
LIMES: A framework for link discovery on the semantic
web. Künstliche Intell. 35(3):413–423.
Piatov, D.; Helmer, S.; Dignös, A.; and Persia, F. 2021.
Cache-efficient sweeping-based interval joins for extended
allen relation predicates. VLDB J. 30(3):379–402.
Pilourdault, J.; Leroy, V.; and Amer-Yahia, S. 2016. Dis-
tributed evaluation of top-k temporal joins. In SIGMOD,
1027–1039. ACM.
Pitsikalis, M.; Artikis, A.; Dreo, R.; Ray, C.; Camossi, E.;
and Jousselme, A. 2019. Composite event recognition for
maritime monitoring. In DEBS, 163–174. ACM.
Santipantakis, G. M.; Vlachou, A.; Doulkeridis, C.; Artikis,
A.; Kontopoulos, I.; and Vouros, G. A. 2018. A stream
reasoning system for maritime monitoring. In TIME, volume
120, 20:1–20:17.
Song, Y. C.; Kautz, H. A.; Allen, J. F.; Swift, M. D.; Li, Y.;
Luo, J.; and Zhang, C. 2013. A markov logic framework for
recognizing complex events from multimodal data. In ICMI,
141–148.
Tsilionis, E.; Artikis, A.; and Paliouras, G. 2022. Incremen-
tal event calculus for run-time reasoning. J. Artif. Intell. Res.
73:967–1023.
Urbani, J.; Krötzsch, M.; and Eiter, T. 2022. Chasing
streams with existential rules. In KR.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

511

	Introduction
	Background
	Event Calculus for Run-Time Reasoning
	Allen's Interval Algebra

	Allen Relations in Event Descriptions
	Representation and Semantics
	Reasoning
	Correctness and Complexity

	Experimental Analysis
	Summary, Related and Further Work

