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Abstract

Inconsistency-tolerant semantics have been proposed to pro-
vide meaningful ontological query answers even in the pres-
ence of inconsistencies. Several such semantics rely on the
notion of a repair, which is a “maximal” consistent subset
of the database, where different maximality criteria might be
adopted depending on the application at hand. Previous work
in the context of Datalog± has considered only the subset and
cardinality maximality criteria. We take here a step further
and study inconsistency-tolerant semantics under maximality
criteria based on weights and priority levels. We provide a
thorough complexity analysis for a wide range of existential
rule languages and for several complexity measures.

1 Introduction
In real-world applications, data possibly coming from dif-
ferent sources may exhibit inconsistency. Obtaining mean-
ingful ontological query answers in these scenarios requires
inconsistency-tolerant semantics. Popular ones are the ABox
repair (AR), first defined for relational databases (Arenas,
Bertossi, and Chomicki 1999) and then generalized for de-
scription logics (DLs) (Lembo et al. 2010), the intersection
of repairs (IAR) (Lembo et al. 2010), and the intersection
of closed repairs (ICR) (Bienvenu 2012).

All the aforementioned semantics, as well as others (see,
e.g., (Lembo et al. 2010)), are based on the notion of a re-
pair, which is a “maximal” consistent subset of the knowl-
edge base’s facts. Subset maximality was adopted upon in-
troduction of all the above semantics. However, other max-
imality criteria are relevant in practice. For instance, max-
imum cardinality is a stronger criterion ruling out subset-
maximal repairs not containing the highest number of facts,
which is suitable for settings where all database facts are
considered equally reliable. When some facts are consid-
ered more reliable than others, both the criteria above can
be refined by priorities, where the database is partitioned
into groups of different priority levels. Then, the maximal-
ity of consistent subsets of facts is checked per priority level
via the subset and cardinality maximality criteria. Further,
when database facts are associated with weights (e.g., quan-
titatively measuring their reliability), a natural criterion is to
select maximum-weight consistent subsets of the database.
All the criteria above have been proven apt in many con-
texts, including ranked knowledge bases (Brewka 1989;

Benferhat et al. 1993), explaining query answering (Ceylan
et al. 2021), abduction reasoning (Eiter and Gottlob 1995),
preferred subtheories for default reasoning (Brewka 1991),
and prioritized circumscription (Lifschitz 1985).

With different possible criteria to define repairs, one rel-
evant issue is to understand how the choice of a criterion
affects the complexity of common reasoning tasks. While
the aforementioned criteria have been studied in the con-
text of querying inconsistent DL knowledge bases (Bien-
venu, Bourgaux, and Goasdoué 2014a), they have received
little attention under existential rule languages. Indeed, in
the latter setting, the complexity of inconsistency-tolerant
query answering has been studied only for subset-maximal
(Lukasiewicz et al. 2022) and cardinality-maximal repairs
(Lukasiewicz, Malizia, and Vaicenavičius 2019).

In this paper, we close this gap and study the complexity
of the AR, IAR, and ICR semantics for maximality crite-
ria based on weights and priority levels. We also study the
complexity of another common reasoning task in inconsis-
tency handling, namely, repair checking—that is, deciding
whether a database is a repair (w.r.t. a maximality criterion).
Besides analyzing the complexity of repair checking for the
criteria based on weights and priority levels, we also con-
sider the subset and cardinality criteria, for which this prob-
lem has not been thoroughly investigated yet. We provide a
thorough complexity analysis for a wide range of existential
rule languages and for several complexity measures.

2 Preliminaries
We briefly recall some basics on existential rules from the
context of Datalog± (Calı̀, Gottlob, and Lukasiewicz 2012).

General We assume a set C of constants, a set N of la-
beled nulls, and a set V of variables. A term t is a con-
stant, a null, or a variable. We also assume a set of predi-
cates, each associated with an arity, i.e., a non-negative in-
teger. An atom has the form p(t1, . . . , tn), where p is an
n-ary predicate, and t1, . . . , tn are terms. An atom con-
taining only constants is also called a fact. Conjunctions
of atoms are often identified with the sets of their atoms.
An instance I is a (possibly infinite) set of atoms containing
only constants and nulls. A database D is a finite instance
that contains only constants. A homomorphism is a substitu-
tion h : C∪N∪V → C∪N∪V that is the identity on C and
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maps N to C∪N. With a slight abuse of notation, homomor-
phisms are applied also to (sets/conjunctions of) atoms. A
conjunctive query (CQ) q has the form ∃Yϕ(X,Y), where
ϕ(X,Y) is a conjunction of atoms without nulls. The an-
swer to q over an instance I , denoted q(I), is the set of all
tuples t over C for which there is a homomorphism h such
that h(ϕ(X,Y)) ⊆ I and h(X)= t. A Boolean CQ (BCQ)
q is a CQ ∃Yϕ(Y), i.e., all its variables are existentially
quantified; for BCQs, the only possible answer is the empty
tuple. A BCQ q is true over I , denoted I |= q, if q(I) ̸= ∅,
i.e., there is a homomorphism h with h(ϕ(Y)) ⊆ I .

Dependencies A tuple-generating dependency (TGD) σ
is a first-order formula ∀X∀Y (φ(X,Y) → ∃Z p(X,Z)),
where X, Y, and Z are pairwise disjoint sets of vari-
ables, φ(X,Y) is a conjunction of atoms, and p(X,Z) is
an atom, all without nulls; φ(X,Y) is the body of σ, de-
noted body(σ), while p(X,Z) is the head of σ, denoted
head(σ). We consider single-atom-head TGDs; however,
our results extend to TGDs with a conjunction of atoms
in the head. An instance I satisfies a TGD σ, written
I |= σ, if the following holds: whenever there exists a ho-
momorphism h such that h(φ(X,Y)) ⊆ I , then there exists
h′ ⊇ h|X, where h|X is the restriction of h on X, such that
h′(p(X,Z)) ∈ I . A negative constraint (NC) ν is a first-
order formula ∀X (φ(X) → ⊥), where X ⊆ V, φ(X) is a
conjunction of atoms without nulls, called the body of ν and
denoted body(ν), and ⊥ denotes the truth constant false . An
instance I satisfies an NC ν, written I |= ν, if there is no
homomorphism h such that h(φ(X)) ⊆ I . We will use qν
to denote the BCQ ∃Xφ(X). Given a set Σ of TGDs and
NCs, I satisfies Σ, written I |= Σ, if I satisfies each TGD
and NC of Σ. For brevity, we omit the universal quantifiers
in front of TGDs and NCs, and use the comma (instead of ∧)
for conjoining atoms. For a class C of TGDs, C⊥ denotes
the combination of C with arbitrary NCs. NC denotes the
language using only NCs. Finite sets of TGDs and NCs are
called programs, and TGDs are also called existential rules.

The Datalog± languages here considered guaranteeing
decidability are among the most frequently analyzed in the
literature, namely, linear (L) (Calı̀, Gottlob, and Lukasiewicz
2012), guarded (G) (Calı̀, Gottlob, and Kifer 2013), sticky
(S) (Calı̀, Gottlob, and Pieris 2012), and acyclic TGDs (A),
the “weak” generalizations weakly sticky (WS) (Calı̀, Gott-
lob, and Pieris 2012) and weakly acyclic TGDs (WA) (Fagin
et al. 2005), their “full” (i.e., existential-free) restrictions lin-
ear full (LF), guarded full (GF), sticky full (SF), and acyclic
full TGDs (AF), respectively, and full TGDs (F) in general.
We refer to (Calautti et al. 2022; Lukasiewicz et al. 2022)
for a more detailed overview.

Knowledge Bases A knowledge base is a pair (D,Σ),
where D is a database and Σ is a program. For a pro-
gram Σ, ΣT and ΣNC denote the subsets of Σ containing
the TGDs and NCs of Σ, respectively. The set of models of
KB = (D,Σ), denoted mods(KB), is the set of instances
{I | I ⊇ D ∧ I |= Σ}. We say that KB is consistent if
mods(KB) ̸= ∅, otherwise KB is inconsistent. The answer
to a CQ q relative to KB is the set of tuples ans(q,KB) =⋂
{q(I) | I ∈ mods(KB)}. The answer to a BCQ q is true,

denoted KB |= q, if ans(q,KB) ̸= ∅. Another way to de-
fine ontological query answering is via the concept of the
Chase (see, e.g., Calı̀, Gottlob, and Kifer 2013; Tsamoura et
al. 2021). The decision version of CQ answering is: given
a knowledge base KB , a CQ q, and a tuple t of constants,
decide whether t ∈ ans(q,KB). Since CQ answering can
be reduced in LOGSPACE to BCQ answering, we focus on
BCQs. We denote by BCQ(L) the problem of BCQ answer-
ing when restricted over programs belonging to L.

Following Vardi (1982), the combined complexity of BCQ
answering considers the database, the program, and the
query as part of the input. The bounded-arity-combined
(or ba-combined) complexity assumes that the arity of the
underlying schema is bounded by constant. The fixed-
program-combined (or fp-combined) complexity considers
the program fixed; in the data complexity the query is fixed
as well. Table 1 recalls complexity results of BCQ answer-
ing for the languages in this paper (Lukasiewicz et al. 2022).

In the repair checking problem, i.e., deciding if a database
is a repair of a knowledge base, the data and fp-combined
complexity coincide, as there is no query in the input.

Computational Complexity AC0 is the class of problems
that can be decided by uniform families of Boolean circuits
of polynomial size and constant depth. PSPACE (resp., P,
EXP, 2EXP) is the class of problems decidable in determin-
istic polynomial space (resp., polynomial time, exponential
time, double exponential time). NP and NEXP are the classes
of problems decidable in nondeterministic polynomial and
exponential time, respectively; co-NP and co-NEXP are their
complement. DP = NP ∧ co-NP (resp., DEXP = NEXP ∧
co-NEXP) is the class of problems that are the conjunction
of a problem in NP (resp., NEXP) and a problem in co-NP
(resp., co-NEXP). ΣP

2 is the class of problems decidable in
nondeterministic polynomial time with an NP oracle, and ΠP

2
is the complement of ΣP

2. ΘP
2 is the class of problems decid-

able in deterministic polynomial time with logarithmically-
many calls (or, equivalently, a constant number of rounds
of polynomially-many parallel calls) to an NP oracle. ∆P

2
(resp., ∆P

3) is the class of problems decidable in determin-
istic polynomial time with an NP (resp., ΣP

2) oracle. PNEXP

is the class of problems that are decidable in deterministic
polynomial time with a NEXP oracle. The above complex-
ity classes and their inclusion relationships are: AC0 ⊆ P ⊆
NP, co-NP ⊆ DP ⊆ ΘP

2 ⊆ ∆P
2 ⊆ ΣP

2,Π
P
2 ⊆ ∆P

3 ⊆ PSPACE ⊆
EXP ⊆ NEXP, co-NEXP ⊆ DEXP ⊆ PNEXP ⊆ 2EXP.

Data fp-comb. ba-comb. Comb.

L, LF, AF in AC0 NP NP PSPACE
S, SF in AC0 NP NP EXP
A in AC0 NP NEXP NEXP
G P NP EXP 2EXP

F, GF P NP NP EXP
WS, WA P NP 2EXP 2EXP

Table 1: Complexity of BCQ answering (Lukasiewicz et al. 2022).
All non-“in” entries are completeness results.
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3 Inconsistency-Tolerant Semantics Under
Preferred Repairs

We recall the AR, IAR, and ICR semantics, defined w.r.t.
an arbitrary notion of preferred repair. We then introduce
different maximality criteria for preferred repairs.

Given a knowledge base KB = (D,Σ), a selection of
KB is a database D′ such that D′ ⊆ D. A selection D′

of KB is consistent iff (D′,Σ) is consistent. Symmetrically,
the concept of consistent selection is linked to that of culprit.
Intuitively, a culprit is a subset of D that, together with ΣT ,
entails some NC; more formally, a culprit is a subset C ofD
s.t. (C,ΣT ) |= qν for some ν ∈ ΣNC . A culprit for an NC ν
is an “explanation” (Ceylan et al. 2019) of qν . By delet-
ing fromD a hitting set (Chomicki and Marcinkowski 2005;
Gottlob and Malizia 2014; 2018) of facts S intersecting all
culprits, we obtain a consistent selection D′ = D \ S. The
consistent selections of a knowledge base can be ordered
according to some criteria to select the maximal (or “pre-
ferred”) ones. Given a preorder ≼ over a set S of databases
(i.e., ≼ is a reflexive and transitive binary relation on S), for
two elements D′ and D′′ ∈ S , we write D′ ≺ D′′ to de-
note that D′ ≼ D′′ and D′′ ̸≼ D′. A database D ∈ S is
≼-maximal in S iff there is no D′ ∈ S such that D ≺ D′.

Definition 1. A ≼-repair of a knowledge base KB is a con-
sistent selection of KB that is ≼-maximal in the set of all
the consistent selections of KB .

Rep≼(KB) denotes the set of all ≼-repairs of KB .
For a knowledge base KB = (D,Σ), the closure of KB ,

denoted Cl(KB), is the set of all facts built from constants
in D and Σ, entailed by D and the TGDs of Σ.

Definition 2. Let KB be a knowledge base, let q be a BCQ,
and let ≼ be a preorder over the consistent selections of KB .

• KB entails q under the ≼-ABox repair semantics (≼-AR),
denoted KB |=≼-AR q, if (D′,Σ) |= q for all D′ ∈
Rep≼(KB).

• KB entails q under the ≼-intersection of repairs seman-
tics (≼-IAR), denoted KB |=≼-IAR q, if (DI ,Σ) |= q,
where DI =

⋂
{D′ | D′ ∈ Rep≼(KB)}.

• KB entails q under the ≼-intersection of closed re-
pairs semantics (≼-ICR), denoted KB |=≼-ICR q, if
(DC ,Σ) |= q, where DC =

⋂
{Cl((D′,Σ)) | D′ ∈

Rep≼(KB)}.

Two common tasks in inconsistency handling are repair
checking (i.e., deciding whether a database is a ≼-repair)
and query entailment under inconsistency-tolerant seman-
tics, which in our case are the ≼-AR/IAR/ICR semantics.
Problem: ≼-RC (L).
Input: A knowledge base (D,Σ) with Σ ∈ L, and a data-
base D′.
Question: Is D′ a ≼-repair of (D,Σ)?

Problem: ≼-S(L), with S ∈ {AR, IAR, ICR}.
Input: A knowledge base (D,Σ) with Σ ∈ L, and a BCQ q.
Question: Does (D,Σ) |=≼-S q hold?

Besides ⊆ and ≤, we also consider the preorders intro-
duced below. In the following, (D,Σ) is a knowledge base.

Weights (≤w) The database D comes along with a weight
functionw : D → N assigning weights to its facts. For every
D′ ⊆ D, w assigns a weight to D′ defined as w(D′) =∑
f∈D′ w(f) (with a slight abuse of notation, w applies to

both facts and sets of facts). Also, w induces a preorder over
the subsets ofD as follows: for everyD1, D2 ⊆ D, we write
D1 ≤w D2 iff w(D1) ≤ w(D2). We assume that weights
are represented in binary (this plays a role for establishing
upper bounds—see, e.g., the proof of Theorem 11).

The following two preorders are based on a prioritization
P = (P1, . . . ,Pn) of the databaseD, that is, P is a partition
of D into the priority levels Pi, where P1 contains the most
reliable facts, and Pn contains the least reliable facts of D.

Prioritized Cardinality (≤P ) For everyD1, D2 ⊆ D, we
write D1 ≤P D2 iff for every 1 ≤ i ≤ n, |D1 ∩ Pi| =
|D2∩Pi| , or there is some 1 ≤ i ≤ n such that |D1∩Pi| <
|D2 ∩ Pi| and for every 1 ≤ j < i, |D1 ∩ Pj | = |D2 ∩ Pj |.
Prioritized Set Inclusion (⊆P ) For every D1, D2 ⊆ D,
we write D1 ⊆P D2 iff for every 1 ≤ i ≤ n, D1 ∩ Pi =
D2 ∩ Pi, or there is some 1 ≤ i ≤ n such that D1 ∩ Pi ⊊
D2 ∩ Pi and for every 1 ≤ j < i, D1 ∩ Pj = D2 ∩ Pj .

Note that ≤w generalizes ≤P , see, e.g., (Bienvenu, Bour-
gaux, and Goasdoué 2014a; Eiter and Gottlob 1995). Also,
≤P (resp., ⊆P ) generalizes ≤ (resp., ⊆), as the latter can be
captured by the former with the prioritization P = (D).

4 Overview of Complexity Results
Our complexity results are summarized in Tables 2 to 7. In
particular, Tables 2 and 3 cover repair checking, while Ta-
bles 4 to 7 cover inconsistency-tolerant query entailment.

As for repair checking, our results show that we can par-
tition the considered maximality criteria into two classes
{≤,≤P ,≤w} and {⊆,⊆P }, with criteria in the same class
having the same complexity. Thus, moving from ≤ to the
more general criteria ≤P and ≤w does not incur an increase
of complexity (this holds also when moving from ≤P to
≤w). Likewise, the complexity does not increase when mov-
ing from ⊆ to ⊆P . Comparing the two classes of criteria,
≤w, ≤P , and ≤ are always at least as expensive as ⊆P and
⊆, with higher complexity in most of the cases.

We now discuss the complexity results for inconsistency-
tolerant query entailment. Our results show that ≤w and
≤P exhibit the same complexity, which is always at least as
high as the one of ⊆P . The IAR and ICR semantics have
the same complexity across all maximality criteria, which
is a behavior shown by ≤ as well (Lukasiewicz, Malizia,
and Vaicenavičius 2019), while this does not hold for ⊆
(Lukasiewicz et al. 2022). As usual, the IAR and ICR se-
mantics are at most as expensive as the AR semantics.

Another interesting comparison to make is between ⊆
(resp., ≤) and ⊆P (resp., ≤w,≤P ). The complexity re-
sults for ⊆ and ≤ can be found in (Lukasiewicz et al. 2022)
and (Lukasiewicz, Malizia, and Vaicenavičius 2019), re-
spectively. When we move from ⊆ to the more general
⊆P criterion, the complexity does not increase for the AR
and ICR semantics. In contrast, the complexity increases
for the IAR semantics, but only for the FO-rewritable lan-
guages (L⊥, S⊥, A⊥, and their sublanguages) in the data and
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L Data ba-comb. Comb.
L⊥, LF⊥, AF⊥ co-NP ΠP

2 PSPACE
S⊥, SF⊥ co-NP ΠP

2 EXP
A⊥ co-NP DEXP DEXP

G⊥ co-NP EXP 2EXP
F⊥, GF⊥ co-NP ΠP

2 EXP
WS⊥, WA⊥ co-NP 2EXP 2EXP

Table 2: Complexity of ≼-RC (L) for ≼ ∈ {≤w,≤P ,≤}. All
entries are completeness results.

L Data ba-comb. Comb.
L⊥, LF⊥, AF⊥ in P DP PSPACE

S⊥, SF⊥ in P DP EXP
A⊥ in P DEXP DEXP

G⊥ in P EXP 2EXP
F⊥, GF⊥ in P DP EXP

WS⊥, WA⊥ in P 2EXP 2EXP

Table 3: Complexity of ≼-RC (L) for ≼ ∈ {⊆P ,⊆}. All non-“in”
entries are completeness results.

fp-combined complexity. In particular, the complexity goes
from membership in AC0 to co-NP-completeness in the data
complexity, and from NP-completeness to ΘP

2-completeness
in the fp-combined complexity. When we move from ≤ to
the more general ≤w and ≤P criteria, the complexity of all
inconsistency-tolerant semantics increases in several cases.

5 Repair Checking
We first discuss membership, and then hardness results. In
the theorem statements, L is any language of this paper.

5.1 Membership Results
Membership results rely on the fact that testing that a knowl-
edge base (D,Σ) is consistent can be accomplished by
checking that there is no ν ∈ ΣNC such that (D,ΣT ) |= qν .

The following two theorems provide upper bounds for
≤w-RC (L) and ⊆P -RC (L), respectively, via general pro-
cedures that apply to all languages and complexity measures
that we consider. The resulting upper bounds are always
tight, except for ≤w-RC (A⊥) in the ba-combined and com-
bined complexity—these cases will be dealt with separately.

Theorem 3. If BCQ(L) is in the complexity class C in the
data / ba-combined / combined complexity, then ≤w-RC (L)
is in co-(NPC) in the data / ba-combined / combined com-
plexity.

Proof. Let (D,Σ) be a knowledge base with Σ ∈ L, let w
be D’s weight function, and let D′ be a database. To decide
whether D′ is not a ≤w-repair of (D,Σ), we guess a subset
D′′ of D and check that (1) (D′,Σ) is inconsistent, or (2)
(D′′,Σ) is consistent andw(D′) < w(D′′). Both conditions
can be verified in polynomial time with an oracle in C.

Theorem 4. If BCQ(L) is in the complexity class C in the
data / ba-combined / combined complexity, then ⊆P -RC (L)
can be decided with a polynomial number of C checks and
a linear number of co-C checks in the data / ba-combined /
combined complexity.

Proof. Let KB = (D,Σ) be a knowledge base with Σ ∈ L,
let P = (P1, . . . ,Pn) be a prioritization, and let D′ be a
database. To decide whether D′ is a ⊆P -repair of KB , we
check that (1) (D′,Σ) is consistent and (2) for every 1 ≤ i ≤
n and fact f in Pi \D′, ((D′ ∩ (P1 ∪ · · · ∪ Pi)) ∪ {f},Σ)
is inconsistent. Condition (1) can be verified with a linear
number of co-C checks. Condition (2) can be verified with
a polynomial number of C checks.

To obtain the DP (resp., DEXP) membership results in Ta-
ble 3, observe in the previous theorem that multiple NP,
co-NP, NEXP, and co-NEXP checks can be carried out with a
single NP, co-NP, NEXP, and co-NEXP check, respectively.

The upper bound for ≤w-RC (A⊥) in the ba-combined
and combined complexity requires a dedicated analysis.

Theorem 5. ≤w-RC (A⊥) is in DEXP in the ba-combined
and combined complexity.

Proof. Let (D,Σ) be a knowledge base with Σ ∈ L, let w
be the weight function forD, and letD′ be a database. First,
notice that BCQ(A⊥) is in NEXP. We need to check that (1)
(D′,Σ) is consistent and (2) there is no D′′ ⊆ D such that
(D′′,Σ) is consistent and w(D′) < w(D′′). Condition (1)
can be verified in co-NEXP: we can apply the same argument
used for Condition (1) in the proof of Theorem 4 along with
the observation reported after the theorem. As for Condi-
tion (2), we need to check that all the (exponentially many)
subsets D′′ of D are such that (D′′,Σ) is inconsistent or
w(D′) ≥ w(D′′). Notice that checking inconsistency of a
single (D′′,Σ) is in NEXP. Thus, we can guess exponen-
tially many witnesses for the inconsistency of every single
D′′—notice that the overall size of the guess remains ex-
ponential. Then, we can go over each D′′ and check that
w(D′) ≥ w(D′′) holds or D′′ is inconsistent (by verifying
its witness, which takes exponential time, since checking in-
consistency of a single D′′ is in NEXP). The latter checking
procedure goes through an exponential number of databases
D′′ and requires exponential time on each of them, hence
remaining exponential overall.

The upper bounds in Table 2 (resp., Table 3) for ≤P and
≤ (resp., ⊆) follow from those of ≤w (resp., ⊆P ) discussed
so far, since the latter generalizes the former.

5.2 Hardness Results
The following theorem provides tight lower bounds for ≤
for all languages in the data complexity.

Theorem 6. (Lopatenko and Bertossi 2016) ≤-RC (NC) is
co-NP-hard in the data complexity.

The theorem below provides lower bounds for ≤-RC (L)
and ⊆-RC (L) for all languages in the ba-combined and
combined complexity. Such lower bounds are not always
tight; we will devise tailored reductions for different cases.
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Theorem 7. The complement of BCQ(L) is reducible in
polynomial time to ≤-RC (L) and ⊆-RC (L) in the ba-com-
bined and combined complexity.

Proof. From a knowledge base (D,Σ) with Σ ∈ L, and
a BCQ q = ∃Yϕ(Y), we derive an instance of ≤-
RC (L) (resp., ⊆-RC (L)) as follows: the knowledge base is
(D,Σ′), where Σ′ = Σ ∪ {ϕ(Y) → ⊥}, and the candidate
≤- (resp., ⊆-) repair is D. Notice that Σ′ ∈ L and the re-
duction takes polynomial time. It can be easily verified that
(D,Σ) ̸|= q iff D is a ≤- (resp., ⊆-) repair of (D,Σ′).

The theorem above does not provide tight lower bounds
for both ≤ and ⊆ in the following cases: A⊥ in the ba-
combined and combined complexity, as well as LF⊥, AF⊥,
and SF⊥ in the ba-combined complexity. We provide spe-
cific hardness results for such cases in the following.

Theorem 8. ≤-RC (NC) is ΠP
2-hard in the ba-combined

complexity.

Proof. We provide a reduction from the following ΠP
2-com-

plete problem: decide the validity of a quantified Boolean
formula ∀X∃Y ϕ(X,Y ), where ϕ is in 3CNF. We will use
ℓj,k to refer to the kth literal of the jth clause of ϕ(X,Y ).

Below we build a knowledge base (D,Σ), with Σ ∈ NC,
and a database D′, where all predicates have bounded arity.

The database. For each variable xi ∈ X , the following
facts are included into D:

Val(xi, f ), Val(xi, t), Dummy(xi),

where xi is a constant representing the respective variable
in X , and f and t are constants representing the Boolean
values false and true, respectively.

Furthermore, the following facts are included in D to im-
pose the consistency of the truth assignments to the literals:

SimLit(f , f ), OppLit(f , t),

SimLit(t , t), OppLit(t , f ),

where f and t are constants with the same meaning as above.
The predicate SimLit(·, ·) is used to impose that when a
variable appears twice as a positive or a negative literal in
two different places in the formula, the two literals must
have the same truth value. On the other hand, the predicate
OppLit(·, ·) is used to impose that when a variable appears
as a positive literal in one place in the formula and as a neg-
ative literal in another place of the formula, the two literals
must have different truth value.

The following facts are included in D to select possible
ways of satisfying the clauses in a 3CNF formula:

ClSat(f , t , t), ClSat(t , t , t), ClSat(t , f , f ),

ClSat(f , t , f ), ClSat(t , t , f ),

ClSat(f , f , t), ClSat(t , f , t),

where f and t are constants with the same meaning as above.
The predicate ClSat(·, ·, ·) states which truth assignments to
the literals (and not to the variables) satisfy a clause.

In the following, we use Dst to denote the set of all
SimLit , OppLit , and ClSat facts in D.

Finally, a fact NonSat() is added to D.
The program has no TGDs. Below, we define some con-

junctions that are used to define the NCs.
A first piece “reads” onto the query variables Ti the as-

signment to the variables in X encoded in a set of Val facts:

AssignX ≡
∧
xi∈X

Val(xi, Ti).

A second piece “copies” the assignment on each variable
xi onto an occurrence of xi as a positive literal in ϕ(X,Y ):

Copy ≡
∧
xi∈X

SimLit(Ti, Tj,k),

where in each atom SimLit(Ti, Tj,k), Tj,k is a variable for
the Boolean value of the literal ℓj,k = xi in ϕ(X,Y ). Ob-
serve that, in order for Copy to work properly, each variable
xi must appear as a positive literal in the clauses of ϕ(X,Y )
at least once. This can be assumed without loss of general-
ity, because if xi always appears as a negative literal in all
the clauses of ϕ(X,Y ), then we can replace all the occur-
rences of the negative literal ¬xi with the positive literal xi
without altering the satisfiability properties of ϕ(X,Y ).

A third piece forces the ground values f and t assigned to
the variables Tj,k, so that assignments to the literals are con-
sistent. Below, ℓj,k ∼ ℓj′,k′ means that literals ℓj,k and ℓj′,k′
refer to the same variable, and are both positive or both neg-
ative, while ℓj,k ̸∼ ℓj′,k′ means that they refer to the same
variable, but one literal is positive and the other is negative.

Consist ≡
∧

∀(ℓj,k,ℓj′,k′ )
s.t. ℓj,k∼ℓj′,k′

SimLit(Tj,k, Tj′,k′)

∧
∀(ℓj,k,ℓj′,k′ )
s.t. ℓj,k ̸∼ℓj′,k′

OppLit(Tj,k, Tj′,k′),

where Tj,k and Tj′,k′ are variables with the above meaning.
The last piece checks the satisfiability of ϕ(X,Y ), where

m is the number of clauses of ϕ(X,Y ):

Satisfied ≡
m∧
j=1

ClSat(Tj,1, Tj,2, Tj,3).

Then, we add the following NC to Σ:

AssignX ,Copy ,Consist ,Satisfied ,NonSat() → ⊥.

We also add the following NCs to Σ:

Val(X, f ),Val(X, t) → ⊥,
Val(X,V ),Dummy(Y ) → ⊥,
NonSat(),Dummy(Y ) → ⊥.

The candidate ≤-repair. D′ = Dst ∪ {Dummy(xi) |
xi ∈ X}. Notice that D′ is a consistent selection of (D,Σ).

Below we show that ∀X∃Y ϕ(X,Y ) is valid iff D′ is a
≤-repair of (D,Σ).

(⇒) Assume that ∀X∃Y ϕ(X,Y ) is valid. We show
that for every consistent selection D′′ of (D,Σ), we have
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|D′′| ≤ |D′|, and thus D′ is a ≤-repair of (D,Σ). If D′′ is
a consistent selection of (D,Σ), there are two cases: either
(a) D′′ contains at least one Dummy fact, or (b) it does not.

Case (a). If a Dummy fact is in D′′, then D′′ contains
neither Val facts nor the NonSat() fact; thus |D′′| ≤ |D′|.

Consider Case (b). Observe that the maximum number of
Val facts that D′′ can contain is |X|. Hence, there are two
cases: either (i) D′′ contains strictly less than |X| Val facts,
or (ii) it does not. Consider Case (i). If the number of Val
facts in D′′ is strictly less than |X|, then |D′′| ≤ |D′|—at
the very most,D′′ can include the wholeDst and NonSat().
Consider now Case (ii). The number of Val facts in D′′ is
exactly |X|, and thus D′′ encodes a truth assignment to the
variables in X . There are again two cases: either (1) D′′

excludes some fact in Dst, or (2) it does not. For Case (1),
since D′′ does not contain some fact in Dst, it must be the
case that |D′′| ≤ |D′|. In Case (2), since D′′ contains all
facts in Dst and ∀X∃Y ϕ(X,Y ) is valid, D′′ cannot include
NonSat(). Thus |D′′| = |D′|, and hence, |D′′| ≤ |D′|.

(⇐) Assume that ∀X∃Y ϕ(X,Y ) is not valid, and let
τ be a truth assignment to the variables in X such that
ϕ(X/τ, Y ) is unsatisfiable. Let D′′ = Dst ∪ {Val(xi, f) |
xi ∈ X, τ(xi) = false} ∪ {Val(xi, t) | xi ∈ X, τ(xi) =
true} ∪ {NonSat()}. It is easy to see that D′′ is consistent
and |D′′| > |D′|, and thus D′ is not a ≤-repair.

Theorem 9. ⊆-RC (NC) is DP-hard in the ba-combined
complexity.

Proof. We exhibit a reduction from the following DP-com-
plete problem: given a pair (ϕ, ψ) of 3CNF formulas, decide
whether ϕ is satisfiable and ψ is not satisfiable.

Below we build a knowledge base (D,Σ), with Σ ∈ NC,
and a database D′, where all predicates have bounded arity.

The database. The following facts, whose meaning is the
same as in the proof of Theorem 8, are added to D:

SimLit(f , f ), OppLit(f , t),

SimLit(t , t), OppLit(t , f ),

ClSat(f , t , t), ClSat(t , t , t), ClSat(t , f , f ),

ClSat(f , t , f ), ClSat(t , t , f ),

ClSat(f , f , t), ClSat(t , f , t).

Furthermore, a fact Aux () is added to D.
The program has only the following NCs:

Consistϕ,Satisfiedϕ,Aux () → ⊥,
Consistψ,Satisfiedψ → ⊥,

where Consistϕ and Satisfiedϕ (resp., Consistψ and
Satisfiedψ) are the conjunctions Consist and Satisfied in-
troduced in the proof of Theorem 8 defined for ϕ (resp., ψ).

The candidate ⊆-repair. D′ = D \ {Aux ()}.

Below, we show that ϕ is satisfiable and ψ is not satisfi-
able iff D′ is a ⊆-repair of (D,Σ).

(⇒) Assume that ϕ is satisfiable and ψ is not satisfiable.
Since ψ is not satisfiable, D′ is a consistent selection of
(D,Σ). To show that D′ is a ⊆-repair of (D,Σ), it suffices

to show that D′ ∪ {Aux ()} (which is D) is not consistent.
Indeed, since ϕ is satisfiable,D′∪{Aux ()} is not consistent.

(⇐) Assume that ϕ is not satisfiable or ψ is satisfiable.
If ψ is satisfiable, then D′ is not a consistent selection of
(D,Σ), and thus not a ⊆-repair. If ψ is not satisfiable and ϕ
is not satisfiable, thenD′∪{Aux ()} is a consistent selection
of (D,Σ), and thus D′ is not a ⊆-repair of (D,Σ).

The missing tight lower bounds concern ≤-RC (A⊥) and
⊆-RC (A⊥) in the ba-combined and combined complexity.

Theorem 10. ≤-RC (A⊥) and ⊆-RC (A⊥) are DEXP-hard
in the ba-combined

Proof sketch. We provide a reduction from the following
DEXP-complete problem: Given two (independent) instances
TP1 and TP2 of the tiling problem for the exponential
squares 2n1 × 2n1 and 2n2 × 2n2 , respectively, and two ini-
tial tiling conditionsw1 andw2, respectively, decide whether
TP1 has solution withw1 and TP2 has no solution withw2.

For i = 1, 2, we use the encoding by Eiter, Lukasiewicz,
and Predoiu (2016) to create programs ΣTPi,|wi|, and data-
bases Dwi

and DTPi
, such that TP i has a solution with wi

iff
(
DTPi

∪Dwi
,ΣTPi,|wi|

)
|= Tiling i(). We also add an

additional fact Aux () to the database. The candidate repair
is the database minus Aux (). Two NCs are added to the
program, one to ensure that the candidate repair is consistent
iff Tiling()2 is not entailed (i.e., TP2 has no solution with
w2) and another one to ensure that Aux () cannot be taken if
Tiling()1 is entailed (i.e., TP1 has solution with w1).

The lower bounds for ≤ apply to ≤P and ≤w, while those
for ⊆ apply to ⊆P .

6 Inconsistency-Tolerant Query Entailment
We first discuss membership and then hardness results.

6.1 Membership Results
The following two theorems provide upper bounds for each
≼ ∈ {≤w,⊆P } in the following cases: ≼-AR(L) and
≼-IAR(L) in the data, ba-combined, and combined com-
plexity, as well as ≼-ICR(L) only in the data and ba-
combined complexity.

Theorem 11. If BCQ(L) is in the complexity class C in the
data / ba-combined / combined complexity (resp., data / ba-
combined complexity), then ≤w-AR(L) and ≤w-IAR(L)
(resp., ≤w-ICR(L)) is in P with an oracle for NPC in the
data / ba-combined / combined complexity (resp., data / ba-
combined complexity).

Proof. Let KB = (D,Σ) be a knowledge base with Σ ∈ L,
let w be the weight function for D, and let q be a BCQ.
First, we compute the maximum weight max of a consistent
selection of KB . This can be done in polynomial time us-
ing an oracle in NPC as follows. We can perform a binary
search in the range [0, w(D)] by asking the oracle whether
there is a consistent selection with weight at least k. Such
a binary search takes at most a polynomial number of steps,
as weights are encoded in binary. The oracle has to guess a
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L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ∆P

2 ΠP
2 ∆P

3 PSPACE
S⊥, SF⊥ ∆P

2 ΠP
2 ∆P

3 EXP
A⊥ ∆P

2 ΠP
2 PNEXP PNEXP

G⊥ ∆P
2 ΠP

2 EXP 2EXP
F⊥, GF⊥ ∆P

2 ΠP
2 ∆P

3 EXP
WS⊥, WA⊥ ∆P

2 ΠP
2 2EXP 2EXP

Table 4: Complexity of ≼-AR(L) for ≼ ∈ {≤w,≤P }. All entries
are completeness results.

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ∆P

2 ∆P
2 ∆P

3 PSPACE
S⊥, SF⊥ ∆P

2 ∆P
2 ∆P

3 EXP
A⊥ ∆P

2 ∆P
2 PNEXP PNEXP

G⊥ ∆P
2 ∆P

2 EXP 2EXP
F⊥, GF⊥ ∆P

2 ∆P
2 ∆P

3 EXP
WS⊥, WA⊥ ∆P

2 ∆P
2 2EXP 2EXP

Table 5: Complexity of ≼-IAR(L) and ≼-ICR(L) for ≼ ∈ {≤w,
≤P }. All entries are completeness results.

database D′ ⊆ D, and then check whether (D′,Σ) is con-
sistent and w(D′) ≥ k. Since we are assuming that BCQ(L)
is in C, checking consistency of (D′,Σ) requires polyno-
mial time with an oracle in C. Verifying w(D′) ≥ k takes
polynomial time as well.

Notice that, by knowing the maximum weight max of
a consistent selection of KB , we can now verify whether
a database D′ ⊆ D is a ≤w-repair by checking whether
(D′,Σ) is consistent and w(D′) = max .

Then, the NPC oracle is asked whether q is entailed under
the ≤w-AR, ≤w-IAR, and ≤w-ICR semantics. In particu-
lar, we ask the oracle whether the query is not entailed. The
way in which the oracle computes the answer depends on
the specific semantics considered, as discussed below.

≤w-AR: The oracle guesses a database D′ ⊆ D and then
checks whether D′ is a ≤w-repair and (D′,Σ) ̸|= q.

≤w-IAR: The oracle guesses a database D⋆ ⊆ D along
with one database Dα ⊆ D for each α ∈ D \ D⋆, and
then it checks that (1) (D⋆, Σ) ̸|= q, and (2) each Dα is a
≤w-repair with α ̸∈ Dα.

≤w-ICR: The oracle guesses a subset D⋆ of Cl(KB) (the
size of Cl(KB) is polynomial in the input, because the
program has bounded arity in the worst case) along with
one database Dα ⊆ D for each α ∈ (Cl(KB) \D⋆), and
then it checks that (1) (D⋆,Σ) ̸|= q, and (2) each Dα is a
≤w-repair such that α /∈ Cl(Dα).

Theorem 12. If BCQ(L) is in the complexity class C in the
data / ba-combined / combined complexity (resp., data / ba-
combined complexity), then ⊆P -AR(L) and ⊆P -IAR(L)
(resp., ⊆P -ICR(L)) is in co-(NPC) in the data / ba-
combined / combined complexity (resp., data / ba-combined
complexity).

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ co-NP ΠP

2 ΠP
2 PSPACE

S⊥, SF⊥ co-NP ΠP
2 ΠP

2 EXP
A⊥ co-NP ΠP

2 PNEXP PNEXP

G⊥ co-NP ΠP
2 EXP 2EXP

F⊥, GF⊥ co-NP ΠP
2 ΠP

2 EXP
WS⊥, WA⊥ co-NP ΠP

2 2EXP 2EXP

Table 6: Complexity of ⊆P -AR(L). All entries are completeness
results.

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ co-NP ΘP

2 ΠP
2 PSPACE

S⊥, SF⊥ co-NP ΘP
2 ΠP

2 EXP
A⊥ co-NP ΘP

2 PNEXP PNEXP

G⊥ co-NP ΘP
2 EXP 2EXP

F⊥, GF⊥ co-NP ΘP
2 ΠP

2 EXP
WS⊥, WA⊥ co-NP ΘP

2 2EXP 2EXP

Table 7: Complexity of ⊆P -IAR(L) and ⊆P -ICR(L). All entries
are completeness results.

Proof. Let KB = (D,Σ) be a knowledge base with Σ ∈ L,
let P = (P1, . . . ,Pn) be a prioritization of D, and let q be a
BCQ. We recall that deciding whether a database D′ ⊆ D is
a ⊆P -repair can be done in polynomial time with an oracle
in C (see Theorem 4). We can decide query non-entailment
under the ⊆P -AR, ⊆P -IAR, and ⊆P -ICR semantics as dis-
cussed at the end of the proof of Theorem 11 (with the only
difference being that we need to check whether databases
are ⊆P -repairs), which yields the co-(NPC) upper bound for
query entailment under the aforementioned semantics.

The previous theorem does not provide upper bounds for
≤w-ICR(L) and ⊆P -ICR(L) in the combined complexity.
They are shown by the following theorem.

Theorem 13. ≤w-ICR(L) and ⊆P -ICR(L) in the com-
bined complexity are in the complexity classes shown in Ta-
bles 5 and 7, respectively.

Proof. The same argument in the proof of Theorem 7.1
in (Lukasiewicz et al. 2022) applies to ≤w-ICR(L) and
⊆P -ICR(L) in the combined complexity, noticing that the
upper bounds for ≤w-AR(L) and ⊆P -AR(L) are the same
as those of the classical (i.e., with set-inclusion maximal re-
pairs) AR semantics in the combined complexity.

The two theorems below state upper bounds for all three
semantics, for ≤w and ⊆P , in the fp-combined complexity.

Theorem 14. If BCQ(L) is in D in the data complexity and
in C in the fp-combined complexity, then ≤w-AR(L) (resp.,
≤w-IAR(L) and ≤w-ICR(L)) in the fp-combined complex-
ity can be answered by a computation in P with an oracle
for NPD, followed by a computation in co-(NPC) (resp., C).

Proof. Let KB = (D,Σ) be a knowledge base with Σ ∈ L,
let w be the weight function for D, and let q be a query. The
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maximum weight of a consistent selection of KB can be
computed via binary search in polynomial time calling an
oracle for NPD in the fp-combined complexity (as discussed
at the beginning of the proof of Theorem 11, even though we
can refer to the data complexity of standard BCQ answering
for consistency checking, since we are referring to the fp-
combined complexity, and thus the program is fixed).

The rest of the procedure depends on the specific seman-
tics, as discussed below.

≤w-AR: We can decide non-entailment under the ≤w-AR
semantics by guessing D′ ⊆ D and verifying that D′ is a
≤w-repair and (D′,Σ) ̸|= q, which is in NPC.

≤w-IAR (resp., ≤w-ICR): We can calculate the intersec-
tion of all ≤w-repairs DI (resp., the intersection of all
closed ≤w-repairs DC) as D minus all α ∈ D (resp., as
Cl(KB) minus all α ∈ Cl(KB)) for which there exists
a ≤w-repair (resp., a closed ≤w-repair) that does not con-
tain α, which can be done in polynomial time with poly-
nomially many parallel calls to an oracle for NPD. Then,
we check (DI ,Σ) |= q (resp., (DC ,Σ) |= q) (in C).

Theorem 15. If BCQ(L) is in D in the data complexity and
in C in the fp-combined complexity, then ⊆P -AR(L) (resp.,
⊆P -IAR(L) and ⊆P -ICR(L)) is in co-(NPC) (resp., can
be answered by a computation in P with a constant number
of rounds of polynomially many parallel calls to an NPD

oracle followed by a computation in C) in the fp-combined
complexity.

Proof. We can apply the same procedures in the second part
of the proof of Theorem 14 (thus, without the initial com-
putation of the maximum weight of a consistent selection),
with the only difference being that we refer to ⊆P -repairs
rather than ≤w-repairs.

The upper bounds for the ≤P -semantics follow from
those of the ≤w-semantics, which generalizes the former.

6.2 Hardness Results
Hardness results are discussed per criterion.

Let us start with the ≤P preorder. For all three semantics,
lower bounds in the data complexity follow from (Bienvenu,
Bourgaux, and Goasdoué 2014b).

Theorem 16. For each S ∈ {AR, IAR, ICR}, ≤P -S (NC)
is ∆P

2-hard in the data complexity.

We now show ∆P
3-hardness for all languages and all se-

mantics in the ba-combined complexity. The lower bound is
tight only for L⊥, S⊥, F⊥, and their specializations.

Theorem 17. For each S ∈ {AR, IAR, ICR}, ≤P -S (NC)
is ∆P

3-hard in the ba-combined complexity.

Proof. We provide a reduction from the following ∆P
3-

complete problem (Krentel 1992): given a 3DNF formula
ψ(X,Y ) over variables X and Y , with x1, . . . , xn being the
lexicographical order of the variables in X , decide whether
the lexicographically maximum truth assignment τmax to X
such that ∀Y ψ(X/τmax , Y ) is valid, satisfies τmax (xn) =
true (where such a τmax is known to exist).

We can replace ψ(X,Y ) with ¬ϕ(X,Y ), where
ϕ(X,Y ) ≡ ¬ψ(X,Y ), and ϕ(X,Y ) is a 3CNF formula that
can be constructed in polynomial time.

Below we build a knowledge base (D,Σ), a prioritization
P , and a query q, where all predicates have bounded arity.

The database. For each variable xi ∈ X , the following
facts are included into D:

Val(xi, f ), Val(xi, t),

as well as the following facts

SimLit(f , f ), OppLit(f , t),

SimLit(t , t), OppLit(t , f ),

ClSat(f , t , t), ClSat(t , t , t), ClSat(t , f , f ),

ClSat(f , t , f ), ClSat(t , t , f ),

ClSat(f , f , t), ClSat(t , f , t),

whose meaning is the same discussed in the proof of The-
orem 8. Additionally, for each variable xi ∈ X , the fact
ValTrue(xi) is included into D.

In the following, we use Dst to denote the set of all
SimLit , OppLit , and ClSat facts in D.

The program has no TGDs, while the NCs are:

AssignX ,Copy ,Consist ,Satisfied → ⊥,
Val(X, f ),Val(X, t) → ⊥,
Val(X, f ),ValTrue(X) → ⊥,

where AssignX , Copy , Consist , and Satisfied are defined
like in the proof of Theorem 8.

The prioritization. P = (P1,P2, . . . ,Pn+1), where

P1 = D \ {ValTrue(xi) | 1 ≤ i ≤ n},
Pi = {ValTrue(xi−1)} for 2 ≤ i ≤ n+ 1 .

The query is q = Val(xn, t).
We recall that for the formula ¬ϕ(X,Y ), the lexico-

graphically maximum truth assignment τmax to X such that
∀Y ¬ϕ(X/τmax , Y ) is valid is known to exist.

We show that τmax (xn) = true iff (D,Σ) |=≤P -S q, for
each S ∈ {AR, IAR, ICR}. This is proven by showing that
the following set R is the only ≤P repair of (D,Σ):

R =Dst ∪ {Val(xi, f) | τmax (xi) = false, 1 ≤ i ≤ n}∪⋃
τmax (xi)=true,1≤i≤n

{Val(xi, t),ValTrue(xi)}.

In particular, we show that, for every other consistent se-
lection R′ of (D,Σ), we have R′ <P R. Obviously, (R,Σ)
satisfies the last two NCs above. Moreover, since τmax is
a truth assignment such that ∀Y ¬ϕ(X/τmax , Y ) is valid,
the first NC above is not violated. Thus, R is a consistent
selection of (D,Σ). Consider now any other consistent se-
lection R′ of (D,Σ). Notice that |R ∩ P1| = |Dst | + n.
Thus, if |R′ ∩ P1| < |Dst |+ n, then R′ <P R. Otherwise,
|R′ ∩ P1| = |Dst | + n (|R′ ∩ P1| cannot be higher than
|Dst |+ n in order for (R′,Σ) to be consistent).

Notice that R′ contains exactly one Val(xi, ·) for each
1 ≤ i ≤ n. Let R′′ = R′ ∪ {ValTrue(xi) | Val(xi, t) ∈
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R′}. Clearly, R′′ is a consistent selection (because R′ is
a consistent selection, and adding the ValTrue(xi) facts
keeps R′′ consistent). Also, R′ ≤P R′′. Let τR′′ be the
truth assignment to X defined as follows: for each xi ∈ X ,
τR′′(xi) = true iff Val(xi, t) ∈ R′′, and τR′′(xi) = false
iff Val(xi, f) ∈ R′′. Notice that, in order for R′′ to be con-
sistent, it has to be the case that ∀Y ¬ϕ(X/τR′′ , Y ) is valid.
Since τmax is the lexicographically maximum truth assign-
ment such that ∀Y ¬ϕ(X/τmax , Y ) is valid, it must be the
case that R′′ <P R, and thus R′ <P R.

The lower bounds for ≤P -IAR(L) and ≤P -ICR(L) in
the data complexity turn out to be tight in the fp-combined
complexity as well. All the remaining lower bounds fol-
low from those of the AR, IAR, and ICR semantics un-
der cardinality-maximal repairs (Lukasiewicz, Malizia, and
Vaicenavičius 2019).

All lower bounds for the ≤w criterion follow from the
lower bounds for the ≤P criterion discussed above and the
fact that the former generalizes the latter.

Let us consider now the ⊆P criterion. The lower bounds
for ⊆P -IAR(L) in the data and fp-combined complexity
are stated in the following theorem, which follows from the
proofs in (Bienvenu, Bourgaux, and Goasdoué 2014b).
Theorem 18. ⊆P -IAR(NC) is co-NP-hard in the data com-
plexity and ΘP

2-hard in the fp-combined complexity.
The remaining lower bounds for ⊆P -IAR(L) and all

lower bounds for ⊆P -AR(L) and ⊆P -ICR(L) follow from
those of the inconsistency-tolerant semantics with subset-
maximal repairs—see (Lukasiewicz et al. 2022).

7 Related Work
Bienvenu, Bourgaux, and Goasdoué (2014a) studied the data
and combined complexity of the AR and IAR semantics for
DL-LiteR for all maximality criteria here considered. For
existential rule languages, the AR, IAR, and ICR seman-
tics complexity was studied by Lukasiewicz et al. (2022) for
subset-maximal repairs and by Lukasiewicz, Malizia, and
Vaicenavičius (2019) for cardinality-maximal repairs, for all
languages and complexity measures here considered.

A line of research closely related to this paper con-
cerns inconsistency-tolerant query answering defined w.r.t.
“preferred” repairs, which are selected among the subset-
maximal ones on the basis of user preferences. Specifically,
Staworko, Chomicki, and Marcinkowski (2012) introduced
a framework where the AR semantics is generalized to
take into account a priority relation expressing preferences
among conflicting facts in the database. The class of denial
constraints is considered, which is a slight generalization
of negative constraints allowing comparison atoms. Prefer-
ences among facts are then used to define three notions of
preferred repairs: global-, Pareto-, and completion-optimal
repairs. These notions of optimal repairs have been recently
applied to DLs by Bienvenu and Bourgaux (2020; 2022),
who studied the data complexity of query entailment un-
der the AR, IAR, and brave semantics based on optimal
repairs, existence of a unique optimal repair, and enumer-
ation of all optimal repairs. The data and combined com-
plexity of the AR, IAR, and ICR semantics for existential

rules when preferences are expressed via so-called prefer-
ence rules have been investigated by Calautti et al. (2022).
The crucial difference between the body of work above
and the current paper is that the former considers subset-
maximal repairs only (where preferred ones are identified
on the basis of user preferences), while we consider differ-
ent notions of maximality to define repairs in the first place.

8 Summary and Outlook
We have considered natural ways to define the maximality
of repairs which are particularly relevant in practice, going
beyond the “classical” subset-maximality criterion. The cri-
teria that we have considered naturally arise in many real
applications, e.g., when some database facts are considered
more reliable than others. We have provided a thorough
complexity analysis of repair checking and AR/IAR/ICR
query entailment. Our results provide new insights into
how different notions of repair behave in terms of complex-
ity of common reasoning tasks. In summary, we can draw
the following conclusions. As for repair checking, maxi-
mality criteria can be partitioned into two classes {⊆,⊆P }
and {≤,≤P ,≤w}, with criteria in the same class having
the same complexity, and criteria in the second class be-
ing at least as expensive as those in the first class. As for
inconsistency-tolerant query entailment, maximality criteria
can be partitioned into the following ordered list of classes
{⊆}, {⊆P }, {≤}, {≤w,≤P }, with criteria in the same class
having the same complexity, and criteria in a class being at
least as expensive as those in the preceding classes.

Recently, there has been an increasing interest on ex-
plainable AI, including explaining query answering under
existential rules (Ceylan et al. 2019; Ceylan et al. 2020a;
Ceylan et al. 2021) and DLs (Bienvenu, Bourgaux, and
Goasdoué 2019; Ceylan et al. 2020b). In particular, (Bi-
envenu, Bourgaux, and Goasdoué 2019; Lukasiewicz, Mal-
izia, and Molinaro 2020; 2022) addressed the problem of ex-
plaining why a query is entailed or not under inconsistency-
tolerant semantics, where repairs are subset-maximal. An
interesting direction for future work is to address the same
problem for the different types of repairs considered in
this paper, also in the presence of generalized repairs, i.e.,
when rules can be repaired as well (Lukasiewicz, Malizia,
and Molinaro 2018), and when a richer formalism to ex-
press preferences over repairs can be employed (Calautti et
al. 2022; Lukasiewicz and Malizia 2019; 2022).
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