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Abstract

Knowledge Graph (KG) completion is the problem of ex-
tending an incomplete KG with missing facts. A key feature
of Machine Learning approaches for KG completion is their
ability to learn inference patterns, so that the predicted facts
are the results of applying these patterns to the KG. Stan-
dard completion benchmarks, however, are not well-suited
for evaluating models’ abilities to learn patterns, because the
training and test sets of these benchmarks are a random split
of a given KG and hence do not capture the causality of in-
ference patterns. We propose a novel approach for designing
KG completion benchmarks based on the following princi-
ples: there is a set of logical rules so that the missing facts
are the results of the rules’ application; the training set in-
cludes both premises matching rule antecedents and the cor-
responding conclusions; the test set consists of the results of
applying the rules to the training set; the negative examples
are designed to discourage the models from learning rules not
entailed by the rule set. We use our methodology to gener-
ate several benchmarks and evaluate a wide range of existing
KG completion systems. Our results provide novel insights
on the ability of existing models to induce inference patterns
from incomplete KGs.

1 Introduction
Knowledge Graphs (KGs) are graph-structured databases
where nodes are entities of interest and edges represent re-
lations between such entities (Hogan et al. 2022). KGs
are commonly represented as a set of RDF triples (Manola
and Miller 2004), and prominent KGs in RDF format, such
as DBpedia (Auer et al. 2007) and Freebase (Bollacker et
al. 2008), have been successfully exploited in Web search,
question answering, and recommendation tasks (Luo et al.
2018; Wang et al. 2019). These KGs are, however, highly
incomplete; for example, over 93% of persons in Freebase
have no place of birth, which is a compulsory attribute (Min
et al. 2013). This has motivated a growing interest in KG
completion (Bordes et al. 2013; Schlichtkrull et al. 2018;
Sun et al. 2019): a learning task where the aim is to extend
a KG with missing triples that are likely to hold.

The availability of suitable benchmarks is key to the de-
velopment of Machine Learning (ML) technologies, and a
number of benchmarks such as FB15K-237 (Toutanova and
Chen 2015) and WN18RR (Dettmers et al. 2018) have be-
come de-facto standards for the evaluation of KG comple-

tion models. Positive examples in these benchmarks are
obtained by random splitting of the triples in a given real-
life KG into training, validation, and test sets; in turn, nega-
tive examples are typically generated according to a specific
negative sampling method. The most common method is
corruption, where entities occurring in the subject (i.e., the
first) or the object (i.e., the last) position in positive exam-
ple triples are replaced with other entities sampled from the
KG. The standard benchmarking approach based on random
splitting is well-suited for assessing the models’ capability
to learn a (randomly generated) probability distribution on
triples; however, it also comes with significant shortcom-
ings, which we discuss next.

The first important limitation of standard benchmarks is
that they provide little information on the models’ ability to
capture inference patterns—that is, types of causal depen-
dencies between premises and conclusions that may hold in
the KGs (Abboud et al. 2020). Examples of such patterns
include symmetry (e.g., if relation ‘is colleague’ is symmet-
ric and a is a colleague of b, then b is also a colleague of a);
composition (e.g., if ‘is grandmother of’ is the composition
of the relation ‘is mother of’ with itself, a is the mother of
b, and b is the mother of c, then a is a grandmother of c);
and intersection (e.g., if ‘is mother of’ is the intersection of
relations ‘is parent of’ and ’gives birth to’, a is a parent of
b, and a gives birth to b, then a is the mother of b). There
is broad consensus that the ability of KG completion models
to learn inference patterns is key to improving the reliability
and explainability of their predictions (Bianchi et al. 2020).

Inference patterns can be formally represented as rule
templates. For example, the intersection pattern can be ex-
pressed using the following rule template, where R, S and
T can be instantiated to arbitrary relations:

(x, R, y) ∧ (x, S, y) → (x, T, y). (1)
In turn, instantiations of an inference pattern for specific re-
lations can be represented as Datalog rules. For instance, our
example (1) of the intersection pattern involving parenthood
relations can be written as the following rule:
(x, IsParent, y)∧(x,GivesBirth, y)→(x, IsMother, y). (2)
The ability of KG completion systems to capture infer-

ence patterns has been recently analysed from a theoretical
perspective (Sun et al. 2019; Abboud et al. 2020). For in-
stance, it has been shown that RotatE (Sun et al. 2019) is able
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to capture symmetry—that is, given a rule defining a relation
as symmetric, there exists a configuration of the models’ pa-
rameters associated to the relevant relation such that, for any
dataset, the models’ predictions will coincide with the facts
derived by the symmetry rule; in contrast, TransE (Bordes
et al. 2013) is not able to capture symmetry in this sense.
These theoretical results, however, provide little indication
of the models’ capabilities to learn relevant patterns in prac-
tice. To this end, there is a need for benchmarks that take
into account the causal dependencies inherent to inference
patterns, thus satisfying the following requirement.

1. During training, models should witness both the premise
and conclusion triples for selected rules instantiating a
pattern of interest; at the same time, triples used as posi-
tive validation and test examples should have supporting
evidence in the training set—that is, be the conclusions of
rule witnesses with premises in the training set.

The second important shortcoming of standard bench-
marks lies in their corruption-based strategy for generat-
ing negative examples via sampling. As shown by Safavi
and Koutra (2020), correct classification of corruption-based
negative examples is nearly trivial for state-of-the-art KG
completion systems. To further illustrate the limitations of
corruption-based negative sampling, consider the situation
where the function to be learnt involves the dependency for-
malised by rule (2); however, a particular model learns in-
stead the simpler rule

(x, IsParent, y) → (x, IsMother, y). (3)

Rule (3) logically entails (2), but not vice-versa, and hence
the model can make (a potentially large number of) wrong
predictions. Corruption-based negative sampling, however,
would most likely not generate negative examples that pe-
nalise the model for learning the unintended rule. To address
this issue, we need benchmarks where the negative examples
(either included into the benchmark explicitly or produced
by a sampling strategy) satisfy the following requirement.

2. Negative training examples should witness the rules that
the model should not learn, in particular those that log-
ically entail the rules selected for learning (but not the
other way round); at the same time, the negative valida-
tion and test examples should also include such witnesses,
so that a model is penalised for learning unintended rules.

Overall, we will call KG completion benchmarks satis-
fying Requirements 1 and 2 inferential benchmarks, and in
this paper we describe a principled approach for construct-
ing such benchmarks of appropriate size and complexity.

Related Work. Before describing our approach, we
briefly discuss existing benchmarks based on inference pat-
terns and argue that they do not satisfy all our requirements
for inferential benchmarks. Benchmarks Kinship (Kemp
et al. 2006) and Country (Bouchard, Singh, and Trouil-
lon 2015) are based on simple inference patterns and in-
volve datasets of small size with a very limited number
of relations. Although these benchmarks satisfy our Re-
quirement 1, they fail to satisfy Requirement 2 as they

do not include negative examples and (silently) rely on
the corruption-based negative sampling strategy. Cao et
al. (2021) recently proposed a more sophisticated bench-
mark InferWiki based on Wikidata. Their approach relies on
the rule mining system AnyBURL (Meilicke et al. 2019) for
generating relevant rules of a very specific syntactic shape.
Triples witnessing the premises of these rules are included in
the training set as positive examples, while all the conclusion
triples are included as positive examples in the test set; as a
result, InferWiki does not satisfy Requirement 1 since mod-
els are not able to witness during training both the premise
and the conclusion triples for the selected rules. Candidate
negative examples are generated using the conventional ran-
dom corruption strategy and are then subsequently filtered
by human annotators on the base of their plausibility in real
life; thus, InferWiki does not satisfy Requirement 2 either.

Several papers have already reported issues with ex-
isting KG completion benchmarks and evaluation proto-
cols, including the unchallenging nature of negative exam-
ples (Wang et al. 2017; Bansal, Tiwari, and Rivero 2020;
Cao et al. 2021), leakage of the test set (Akrami et al.
2020), and the potential unfairness of ranking-based met-
rics (Berrendorf et al. 2020; Sun et al. 2020).

Our Contribution. In this paper, we propose a novel ap-
proach that enables researchers to create inferential bench-
marks and assess the performance of their own KG comple-
tion systems. The pipeline of our approach for constructing
inferential benchmarks starts with a KG and a set of infer-
ence patterns of interest, and consists of three main steps.
The first step generates rules for the selected inference pat-
terns with large number of witnessing premises in the KG.
The second step applies the rules and distributes the inferred
triples amongst sets of positive examples for training, val-
idation, and testing, respectively, so that Requirement 1 is
satisfied (the triples in the original KG are also taken as pos-
itive training examples). Finally, the third step generates
negative training, validation, and testing examples satisfy-
ing Requirement 2 by means of one of three novel mathods.

Using our pipeline, we generated a collection of inferen-
tial benchmarks based on common inference patterns and
the KGs underpinning FB15K-237 (Toutanova and Chen
2015), WN18RR (Dettmers et al. 2018), and LUBM (Guo,
Pan, and Heflin 2005). We then conducted a comprehensive
evaluation of KG completion systems on these benchmarks,
including embedding-based TransE (Bordes et al. 2013),
RotatE (Sun et al. 2019), ComplEx (Trouillon et al. 2016),
DistMult (Yang et al. 2015), and BoxE (Abboud et al. 2020);
GNN-based R-GCN (Schlichtkrull et al. 2018); and rule
mining AnyBURL (Meilicke et al. 2019) and RuleN (Meil-
icke et al. 2018).

Our findings can be summarised as follows.

• All systems performed significantly worse on our bench-
marks than on the standard ones, which suggests that
benchmarks generated using our approach are challeng-
ing for state-of-the-art KG completion systems.

• BoxE and RotatE are the best performing embedding-
based models. Rule-based systems outperformed others
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on simple inference patterns, but not on complex patterns.

• Some models achieved favourable performance despite
their theoretical inability to capture certain patterns.

• Performance on classification metrics relies heavily on the
choice (or sampling strategy) of negative examples, with
our generation methods leading to a considerable perfor-
mance drop.

These findings highlight the benefits of our benchmarking
approach and provide interesting insights for the further de-
velopment of KG completion methods.

2 Background
In this section, we first describe the basic notions underpin-
ning KGs and define the KG completion problem, then intro-
duce the standard approach to KG completion benchmarking
and the evaluation metrics they use, and finally recapitulate
concepts related to Datalog and inference patterns.

2.1 KGs and KG Completion
In our context, a signature consists of pairwise disjoint sets
of types and relations, collectively referred to as predicates,
and constants, which are also often referred to as entities. A
knowledge graph (KG) is a finite set of triples of the form
(e, type, t), where e is a constant and t a type, and of the
form (s,R, o), where s and o are constants, and R is a rela-
tion. For K a KG, let Sig(K), Types(K), Rels(K), Preds(K),
and Consts(K) denote the signature, the (set of) types, rela-
tions, predicates, and constants used in K, respectively. We
write Sig(K) ⊆ Sig(K′) if the signature of K uses only pred-
icates and constants in the signature of K′.

Intuitively, KG completion is the problem of extending a
KG to its complete version over the same signature. It is
customary to formalise this problem as a (transductive) ML
task where, given an incomplete KG K, the goal is to learn
the Boolean completion function fK(·) applicable to triples
over Sig(K) such that fK(λ) is true if λ is in the completion
K∗ of K. The confidence-based variant of this task assumes
that fK(λ) is, for each triple λ, a value in [0, 1] representing
the likelihood that λ holds in K∗.

2.2 KG Completion Benchmarks
Benchmarks play an important role in evaluating KG com-
pletion methods and thus in motivating further develop-
ment of the field. KG completion benchmarks usually
contain disjoint sets Ptrain, Pvalid (possibly), and Ptest of
triples for training, validation, and testing, respectively, with
Sig(Pvalid) ⊆ Sig(Ptrain) and Sig(Ptest) ⊆ Sig(Ptrain). Let
Pall denote the union of these three sets. Triples Ptrain, Pvalid,
and Ptest are assumed to be positive training, validation,
and test examples; so, each KG completion benchmark may
also contain sets Ntrain, Nvalid, and Ntest of negative exam-
ples for training, validation, and testing, respectively (Safavi
and Koutra 2020; Cao et al. 2021). It is common, how-
ever, not to include explicit negative examples into a bench-
mark, but instead rely on a sampling strategy for generating
these examples (Socher et al. 2013), thus adopting a (par-
tial) closed-world assumption—that is, assuming the triples

not observed in Pall to be false. It is worth to note here that
taking all unobserved triples over the signature as negative
examples instead of sampling not only leads to unaccept-
able imbalance between positive and negative examples, but
is also computationally prohibitive.

The most common negative sampling strategy is to ran-
domly corrupt one of the three components of a positive
example triple (Bordes et al. 2013). For instance, for a pos-
itive test example (s,R, o), the triples (s′, R, o), (s,R, o′),
and (s,R′, o) may be taken as negative test examples, where
s′ and o′ are randomly sampled from Consts(Ptrain) and R′

is randomly sampled from Rels(Ptrain) so that the resulting
triple is not in Pall (it is also not required that exactly three
corrupted triples are constructed for each positive example,
and variations are possible; for example, corrupting R is less
common, while s and o are often corrupted a given number
of times). Note, however, that negative examples generated
in this way can be easily predicted as false, which often leads
to nearly perfect performance (Safavi and Koutra 2020). In
Section 3.3, we will discuss alternative methods for generat-
ing more challenging negative examples.

KG completion systems are evaluated on benchmarks us-
ing classification-based and ranking-based metrics, which
are both computed based on their predictions on positive
Ptest and negative Ntest test examples (where Ntest is either
given by a benchmark or sampled as explained above). The
basic classification metrics are based on the counts tp, tn,
fp, and fn of true positive, true negative, false positive, and
false negative predictions, respectively, which are computed
in the usual way from Ptest and Ntest, and the predictions of a
model trained on Ptrain and Ntrain, and validated on Pvalid and
Nvalid (systems designed for the confidence-based variant of
the completion task usually rely on a threshold hyperparam-
eter to obtain a Boolean prediction). Standard classification-
based metrics include precision Prec = tp/(tp+fp), recall
Rec = tp/(tp+fn), accuracy Acc = (tp+ tn)/(tp+ tn+
fp + fn), and F1 F1 = 2 ∗ Prec ∗ Rec/(Prec + Rec).
For confidence-based systems, the Receiver Operator Char-
acteristic Area Under the Curve (ROC AUC) is also a com-
monly used metric (Bradley 1997).

Ranking-based metrics rely on confidence predictions
in [0, 1] and hence are applicable only to systems solv-
ing the confidence-based variant of the completion task.
These metrics usually take into account only triples of the
form (s,R, o), but a generalisation to triples (c, type, t) is
straightforward. For each λ = (s,R, o) in Ptest, let N s

λ be
the subset of Ntest of all triples of the form (s′, R, o) (i.e., λ
with corrupted s), and let N R

λ and N o
λ be computed anal-

ogously. Then, for each x ∈ {s,R, o}, let rankx(λ) be
the position of λ in the ordering of {λ} ∪ N x

λ based on the
prediction confidences of the model (trained on Ptrain, Ntrain
and validated on Pvalid, Nvalid). The constant-hit C-Hits@k
and relation-hit R-Hits@k metrics for a number k ∈ N
are then defined as C-Hits@k = (Hitss@k + Hitso@k)/2
and R-Hits@k = HitsR@k, respectively, where, for ev-
ery x, Hitsx@k = |{λ ∈ Ptest | rankx(λ) ≤ k}|/|Ptest|. Fur-
thermore, the Mean Reciprocal Rank (MRR) for constants
and relations are defined as C-MRR = (MRRs + MRRo)/2
and R-MRR = MRRR, respectively, where, for each x,
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MRRx =
(∑

λ∈Ptest

1
rankx(λ)

)/
|Ptest|.

2.3 Datalog
Our benchmark construction for KG completion relies on
the concept of inference pattern, which is an abstraction of a
set of logical rules describing a type of causal dependencies
that may exist in the KG. The concrete logical rules included
in the benchmarks are represented in Datalog, a well-known
rule language for knowledge representation.

In our context, a (Datalog) atom is an expression of the
form (d, type, t), (d1, R, d2), or (d1 ̸= d2) where t is a type,
R is a relation, and each of d, d1 and d2 is either a constant
or a variable. A (Datalog) rule is a function-free first-order
logic sentence of the form

B1 ∧ · · · ∧Bn → H, (4)

where H is a ̸=-free atom, which is called the head of the
rule, all Bi are atoms serving together as the body of the
rule, and each variable in the rule is mentioned in some ̸=-
free Bi. A (Datalog) program is a finite set of rules.

A substitution is an assignment of constants to variables,
and it extends to atoms and conjunctions of atoms in the
usual way. Each rule r of form (4) realises a one-step rule
application Tr on KGs: for a KG K, KG Tr(K) consists of
all triples σ(H) for all witnesses of the body in K—that is,
substitutions σ such that σ(d1) ̸= σ(d2) for each Bi of the
form (d1 ̸= d2) and σ(Bi) ∈ K for each other Bi. We call
all such ̸=-free σ(Bi) in K the premise triples for r in K and
all such σ(H) the conclusion triples for r in K (note that
a triple may be both a premise and conclusion triple at the
same time); moreover, we call all such σ the support of r in
K. The one-step application TR(K) of a program R to a KG
K is defined as TR(K) =

⋃
r∈R Tr(K). Materialisation (or

forward chaining) is a reasoning paradigm which consists of
successive rounds of one-step rule applications until no new
triples can be derived for an input program and a KG (Motik
et al. 2019). For a program R and a KG K, the materialisa-
tion MR(K) of R on K is defined as MR(K) =

⋃
i≥0 Ki,

where K0 = K and Ki+1 = TR(Ki) ∪ Ki for each i ≥ 0.
A set R of rules logically entails another set R′, written
R |= R′, if MR′(K) ⊆ MR(K) for each KG K.

An inference (rule) pattern is an expression of the form

B1 ∧ · · · ∧Bn → H, (5)

where the Bi and H are same as the Bi and H in rule (4), re-
spectively, except that instead of types t and relations R they
use type templates t and relation templates R, which are
coming from dedicated infinite sets of symbols; it is worth
emphasising that the template in H may or may not be men-
tioned in one or several Bi. A rule r is represented by a
inference pattern p if r can be obtained from p by substitut-
ing type and relation templates by types and relations, re-
spectively. In principle, our benchmarking approach works
for arbitrary inference patterns; however, most of our con-
crete benchmarks (see Section 5) rely on the common pat-
terns summarised in Table 1.

Pattern

Symmetry (x, R, y) → (y, R, x)
Inversion (x, R, y) → (y, S, x)
Hierarchy (x, R, y) → (x, S, y)

Composition (x, R, y) ∧ (y, S, z) → (x, T, z)
Intersection (x, R, y) ∧ (x, S, y) → (x, T, y)

Triangle (x, R, y) ∧ (x, S, z) ∧ (y, T, z) ∧ (x ̸= y)
∧ (x ̸= z) ∧ (y ̸= z) → (x, P, y)

Diamond
(x, R, y) ∧ (x, S, z) ∧ (y, T, w) ∧ (z, P, w)

∧ (x ̸= y) ∧ (x ̸= z) ∧ (x ̸= w) ∧(y ̸= z)
∧ (y ̸= w) ∧ (z ̸= w) → (x, Q, y)

Table 1: Inference patterns considered in this paper

3 Inferential Benchmark Construction
In this section, we introduce our pipeline for constructing
KG completion benchmarks satisfying the two key require-
ments postulated in the introduction. An inferential bench-
mark is built from a KG K and one or several inference pat-
terns P. Our approach for constructing an inferential bench-
mark for K and P then consists of three steps:

1. rule generation, which produces a set R of rules based on
K and P so that the size of their support (i.e., the number
of witnessing premises) in K is maximised;

2. rule application and distributing the results, which dis-
tributes the one-step application result TR(K) and K itself
into the training, validation, and test positive sets Ptrain,
Pvalid, and Ptest, so that Requirement 1 is satisfied;

3. negative example generation, which constructs appropri-
ate and challenging negative examples according to one
of three methods, so that Requirement 2 is satisfied.

A summary of our pipeline is depicted in Fig. 1(a), and a
simple example benchmark is given in Fig. 1(b).

3.1 Rule Generation
We initiate rule generation by constructing a set Rcand of
candidate rules from inference patterns P (and Preds(K)).
First, for each pattern in P with the head predicate (type
or relation) template mentioned in the body, Rcand contains
each rule obtained from the pattern by substituting all pred-
icate templates by predicates in Preds(K). Second, for each
pattern in P with the head template not mentioned in the
body, Rcand contains one rule for every substitution of the
templates in the body as above; in turn, the head template is
substituted by a random type or relation from Types(K) and
Rels(K), respectively. This is justified by the fact that rules
differing only in the head predicate are essentially equivalent
for learning purposes.

Although set Rcand may be very large, the majority of its
rules are not useful for generating examples as they do not
apply to K sufficiently many times. So, we complete the
rule generation step by selecting a subset R of rules Rcand
with large support in K. One approach is to select into R
a fixed predefined number of relations with the largest sup-
port; note, however, that we do this separately for each pat-
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(⋃
r∈R Pr
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)
\ Ptrain

(⋃
r∈R Pr
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)
\ (Ptrain ∪ Pvalid)

Rule
set
R

Positive training set Ptrain

Negative training set Ntrain

Positive validation set Pvalid

Negative validation set Nvalid

Positive test set Ptest

Negative test set Ntest

Rule

generation

Rule

application

+

Negative example generation

Negative example generation

Negative example generation

(a)

Positive training set:

(Alex, IsColleague, Bob), (Bob, IsColleague, John),

(Alex, IsColleague, John), (Harry, IsColleague, James),

(James, IsColleague, Tony), (Harry, IsColleague, Tony),

(Ada, IsColleague, Eve), (Eve, IsColleague, Lucy)
Negative training set:

(Alex, IsColleague, James), (Alex, IsColleague, Tony),

(Alex, IsColleague, Eve), (Harry, IsColleague, John),

(James, IsColleague, John), (Ada, IsColleague, John),

(Harry, IsColleague, Eve), (Harry, IsColleague, Lucy)

Positive test set: Negative test set:

(Ada, IsColleague, Lucy) (Ada, IsColleague, James)

(b)

Figure 1: (a) Summary of our pipeline for constructing an example inferential benchmark (b) An example inferential benchmark based on
the rule (x, IsColleague, y)∧ (y, IsColleague, z) → (x, IsColleague, z) and the position-aware corruption method for negative example gen-
eration (validation set is omitted for simplicity); during training, a model could witness (Alex, IsColleague,Bob), (Bob, IsColleague, John)
as premises, and (Alex, IsColleague, John) as conclusion, and similar witness is enabled for Harry, James, and Tony; for the positive test
example (Ada, IsColleague,Lucy), its premises (Ada, IsColleague,Eve) and (Eve, IsColleague,Lucy) are included in the training set

tern to ensure that each of them is represented and can be
learned—that is, for eack pattern, we include k1 rules with
the largest support in K, where k1 is a pre-defined number
that can be customised based on the expected size and rule
diversity of the benchmark. The support can be computed
using a SPARQL engine (we used RDFox (Nenov et al.
2015), see Section 5). Selecting rules with the largest sup-
port is, however, not essential, and an alternative approach is
to manually select rules with large enough support. We will
use both approaches in our benchmarks.

Instead of using rule mining models to generate rules from
the KG, which only generate very specific types of rules, we
choose to generate rules more randomly. As a result, we may
generate rules that do not make sense from a modelling per-
spective, such as (x, Speaks, y) → (x, LocatedIn, y). This
is justified by that fact that our aim is to design benchmarks
that test the ability to learn rules according to inference pat-
terns, rather than according to modelling considerations.

3.2 Distributing Rule Application Results
The second step constructs the positive examples in Ptrain,
Pvalid, and Ptest for training, validation, and testing, respec-
tively. To satisfy our Requirement 1, we include the original
KG K in Ptrain and then distribute the triples in TR(K), ob-
tained by applying the selected rules R to K, between the
three sets Ptrain, Pvalid, and Ptest as described next.

To avoid data leakage (i.e., the situation where test ex-
amples are observed during training), we only consider the
newly derived triples for distribution. Moreover, we dis-
tribute these triples independently rule by rule to ensure that
each rule can be learned, at the same time ensuring that the
same triple does not end up in more than one of the three sets
(this must be done with care since a triple may be derived by
several different rules); however, to ensure a reasonable size
of the dataset, we sample a fixed number of triples for each
of the rules before distribution.

We first compute Tr(K) \ K for each rule r ∈ R, then

randomly sample up to k2 triples from Tr(K) \ K (where k2
is again a pre-defined number that can be customised based
on the expected size), and split the sampled triples into three
sets, Pr

train, Pr
valid, Pr

test, according to a predefined ratio (e.g.,
8:1:1 in our benchmarks, see Section 5). Then, we take

Ptrain =
(⋃

r∈R
Pr

train

)
∪ K

as the positive training set,

Pvalid =
(⋃

r∈R
Pr

valid

)
\ Ptrain

as the positive example triples for validation, and

Ptest =
(⋃

r∈R
Pr

test

)
\ (Ptrain ∪ Pvalid)

as the positive example triples for testing. Finally, we again
let Pall = Ptrain ∪ Pvalid ∪ Ptest.

3.3 Negative Example Generation
The third step of our approach tackles the generation of neg-
ative examples Ntrain, Nvalid, and Ntest for training, valida-
tion, and testing, respectively, so that Requirement 2 for in-
ferential benchmarks is satisfied. In particular, negative ex-
amples are generated so as to witness rules that the model
should not learn, especially those that logically entail rules
from R (but are not equivalent to any rule in R). In con-
trast to standard benchmarks, which provide a (corruption-
based) negative sampling strategy, benchmarks produced by
our approach do include concrete negative examples; this
allows us to specify more precisely the undesired dependen-
cies that should be prevented from learning, and hence make
negative examples more challenging to classify.

We introduce three methods for generating negative ex-
amples: relevance-based sampling, position-aware corrup-
tion, and query-guided sampling. All three methods ensure
balance between positive and negative examples—that is,
|Ntrain| = |Ptrain|, |Nvalid| = |Pvalid|, and |Ntest| = |Ptest|.
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Relevance-based sampling relies on random generation of
negative examples involving predicates from the heads of
rules R, and entities from the triples of K contributing to
the support of these rules (i.e., matching the rules’ bodies);
additionally, it is ensured that the generated examples are
truly negative—that is, not mentioned in any of the posi-
tive sets. Formally, let PredR be the set of predicates in the
heads of the rules in R, Constsup be all the constants from
K occurring in the support of rules in R, and Ncand be the
set of triples over PredR and Constsup. Then, we take Ntrain,
Nvalid, and Ntest as disjoint sets of the size specified above
randomly sampled from Ncand \Pall without repetition. Note
that this simple method is likely to ensure Requirement 2,
because the predicates and constants of such negative exam-
ples are all involved in rule applications generating positive
examples, and so it is likely that they represent rules that are
similar to R but should not be learned.

Position-aware corruption is a more fine-grained ap-
proach than relevance-based sampling. In particular, instead
of sampling from all unseen triples in Ncand, sampling is re-
stricted to conclusion triples corrupted with constants seen
in a similar context. Formally, let Ctrain, Cvalid, and Ctest
be the sets of conclusion triples in Ptrain, Pvalid, and Ptest,
respectively, for rules R in K (note that, by construction,
Cvalid = Pvalid and Ctest = Ptest, but we give them different
names for uniformity). Let C′

train be the set that contains
– each triple (e′, type, t) /∈ Pall such that there exist triples

(e, type, t) ∈ Ctrain and (e′, type, t′) ∈ Pall;
– each triple (s′, R, o) /∈ Pall such that there exist triples
(s,R, o) ∈ Ctrain and (s′, R, o′) ∈ Pall; and

– each triple (s,R, o′) /∈ Pall such that there exist triples
(s,R, o) ∈ Ctrain and (s′, R, o′) ∈ Pall.

Moreover, let C′
valid and C′

test be constructed in the same
way from Cvalid and Ctest, respectively. Finally, we take
Ntrain, Nvalid, and Ntest as sets of the sizes as specified
above randomly sampled from C′

train, C′
valid \ Ntrain, and

C′
test \ (Ntrain ∪Nvalid), respectively, without repetition (note

that the set difference is taken to avoid data leakage). This
simple method makes it even more likely that the predicates
and constants represent undesired rules similar to R, and
hence makes further progress towards ensuring our Require-
ment 2 for inferential benchmarks.

Query-guided sampling refines position-aware corruption
and puts more emphasis on preventing systems from learn-
ing simple rules that entail rules in R (e.g., Rule (2) follows
from Rule (3) and so, assuming that (2) is in R, we should
ensure that (3) is not learned, unless it logically follows from
other rules in R). Since there is usually an infinite number
of rules logically entailing another rule, we take a pragmatic
approach and, for the purpose of generating negative exam-
ples, concentrate on rules obtained from rules in R by taking
a subset of their body atoms. To cover rules that do not have
any sub-rules entailing them, including those with a single
body atom, we also generate negative examples using the
position-aware corruption method. Formally, let R− be the
set of rules obtained from rules in R by removing one or
more body atoms, and let Rcomplex be the rules in R that
contribute to this process. Then, let C−

train, C−
valid, and C−

test be

a split of the set TR−(K)\Pall with the same ratio as we used
in Section 3.2. Finally, we take Ntrain, Nvalid, and Ntest as sets
of the sizes as specified above constructed as follows: up
to |Rcomplex|/|R| fraction of needed triples is sampled from
C−

train, C−
valid, and C−

test without repetition, and the rest is sam-
pled from C′

train, C′
valid \Ntrain, and C′

test \ (Ntrain ∪Nvalid), re-
spectively, where C′

train, C′
valid, and C′

test are defined as in the
position-aware case (note that ‘up to’ in the first sampling is
essential because C−

train, C−
valid, and C−

test may not have suffi-
ciently many triples; however, the sampling here adheres as
much as possible to the specified bound).

4 Benchmarks
Following our methodology in Section 3, we have con-
structed a suite of 37 benchmarks built upon three
KGs: those underpinning the standard benchmarks FB15K-
237 (Toutanova and Chen 2015) and WN18RR (Dettmers
et al. 2018), denoted as Kfb and Kwn, and the synthetic KG
LUBM(1,0) (Guo, Pan, and Heflin 2005), denoted as Klubm.
We used RDFox (Nenov et al. 2015) SPARQL engine to
compute TR(K) triples and in other similar cases.

Each benchmark based on Kfb and Kwn aims to test sys-
tems’ ability to learn a single inference pattern, and we con-
centrate on the patterns in Table 1. The intersection pat-
tern on Kwn does not give a large-enough number of pos-
itive examples, so we omitted this case; we also note that
query-guided negative sampling is relevant only to the in-
tersection, triangle, and diamond patterns. So we con-
structed 31 benchmarks, and we use the notation LogInfer-
XY

Z , where X ∈ {FB,WN} specifies the KG, Kfb or Kwn,
Y ∈ {sym, inver, hier, comp, inter, trian, diam} specifies the
pattern in Table 1, and Z ∈ {rb, pa, qg} specifies the neg-
ative example generation method (with Y = inter and
Z = qg applicable to only some cases as described above).
We used 8:1:1 as splitting ratio, and took numbers k1 and k2
as specified in Table 2 to ensure appropriate size and variety.

The benchmarks based on Klubm rely on the 107 rules pro-
vided by Nenov et al. (2015). These rules are designed to
have large support, and hence are well-suited for generat-
ing sets of positive examples; furthermore, they instantiate a
wide range of inference patterns, including symmetry, hier-
archy, inversion, and composition. We consider two variants
of these benchmarks: one that uses all the rules, and one that
uses only the 19 rules not mentioning any types. The latter
is justified by the fact that many KG completion systems
do not have special treatment for type triples and consider
them as regular triples over the type ‘relation’; this leads
to significantly poorer performance in comparison to ap-
proaches with dedicated care of type triples (Xie et al. 2016).
Overall, we constructed 6 benchmarks based on LUBM de-
noted as LogInfer-LUBMY

Z , where Y ∈ {all, no-type} spec-
ifies whether the rules with types are included or not, and
Z ∈ {rb, pa, qg} specifies the negative example generation
method. We used the ratio 8:1:1, and k1 and k2 as in Table 2.

The statistics of constructed benchmarks are summarised
in Table 2. The benchmarks themselves and the accompany-
ing documentation are available online.1

1https://github.com/shuwen-liu-ox/LogInfer
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Y k1 k2 |K| |Ptrain| |Pvalid| |Ptest|

LogInfer-
FBY

Z

sym 50 200 310,116 318,116 1,000 1,000
inver 200 200 310,116 341,603 3,928 3,946
hier 200 200 310,116 341,477 3,915 3,934
inter 200 200 310,116 333,478 2,908 3,126
comp 200 200 310,116 341,829 3,964 3,966
trian 200 200 310,116 341,974 3,975 3,975
diam 200 200 310,116 340,625 3,803 3,822

LogInfer-
WNY

Z

sym 5 2000 93,003 101,003 1,000 1,000
inver 5 2000 93,003 101,003 1,000 1,000
hier 5 2000 93,003 101,003 1,000 1,000

comp 20 2000 93,003 114,336 1,610 1,564
trian 20 2000 93,003 100,800 968 977
diam 20 2000 93,003 104,681 1,398 1,391

LogInfer- all 107 500 103,119 140,536 5,001 5,003
LUBMY

Z no-type 19 2500 103,119 140,540 4,999 5,002

Table 2: Benchmark statistics, where each number applies for all
relevant Z (the sizes of the negative example sets |Ntrain|, |Nvalid|,
and |Ntest| are the same as for positive examples)

5 Evaluation
We have evaluated a representative sample of eight state-of-
the-art KG completion systems on the benchmarks described
in Section 4.

5.1 Systems and Training
The evaluated systems can be divided into the following
three categories:

1. embedding-based methods, which include TransE (Bor-
des et al. 2013), RotatE (Sun et al. 2019), Com-
plEx (Trouillon et al. 2016), DistMult (Yang et al. 2015),
and BoxE (Abboud et al. 2020);

2. GNN-based methods, including R-GCN (Schlichtkrull et
al. 2018); and

3. rule mining methods, including AnyBURL (Meilicke et
al. 2019) and RuleN (Meilicke et al. 2018).

In the case of TransE, RotatE, ComplEx, and DistMult, we
used the implementations provided by Sun et al. (2019); for
the other systems, we used the implementations provided by
the respective authors. Additionally, we have implemented a
simple baseline SimpBL, which predicts a test triple (a, b, c)
as true if and only if Ptrain contains a triple involving both a
and b, and a triple involving both b and c.

All the evaluated state-of-the-art systems provide con-
fidence values in [0, 1] for each prediction; the threshold
needed for computing classification-based metrics is there-
fore considered a hyperparameter optimised during valida-
tion. In contrast, SimpBL outputs Boolean values and hence
metrics relying on confidence predictions are not applicable.

5.2 Results
We have evaluated all systems on all the benchmarks de-
scribed in Section 4. However, due to the large number
of benchmarks and metrics, we report only a representative
selection of the obtained results. In particular, we report

(ROC) AUC, F1, precision, recall, C-MRR and R-MRR,
and concentrate on query-guided method where applica-
ble and position-aware corruption in the remaining cases.
The results for LogInfer-FBY

Z and LogInfer-WNY
Z , where

Z = pa for Y ∈ {sym, inver, hier, comp}, and Z = qg
for Y ∈ {inter, trian, diam} are given in Table 3; in turn, the
results for LogInfer-LUBMall

qg and LogInfer-LUBMno type
qg are

in Table 4. Our results can be summarised as follows.
1. All systems clearly and consistently outperformed our

simple baseline on all benchmarks, with BoxE and Ro-
tatE outperforming all other embedding-based methods.

2. Systems’ performance was significantly better across the
board for simple inference patterns (i.e., symmetry, inver-
sion, and hierarchy) than for more complex patterns in-
volving conjunctions and inequalities in bodies (i.e., com-
position, triangle, and diamond).

3. Rule-based systems exhibited better performance than the
other systems on simple patterns; however, the gain is not
significant on complex patterns. This can be attributed to
the fact that rule-based systems, on the one hand, mine
rules based on the support of their bodies in the train-
ing set but, on the other hand, do not exploit the nega-
tive training examples, which penalise systems for learn-
ing unintended rules.

4. Some of our results are well-aligned with the theoreti-
cal findings on the expressive power of KG completion
models; for instance, TransE and DistMult performed
poorly on patterns that they cannot capture theoretically
(namely symmetry and inversion, respectively). In con-
trast, other models achieved good performance on pat-
terns that they cannot theoretically capture; for exam-
ple, RotatE cannot capture hierarchy, but showed strong
performance on LogicInfer-WNhier

pa and LogicInfer-FBhier
pa .

A possible reason is that RotatE captured a more spe-
cific pattern: it can capture (x,R, y) → (x, S, y) pro-
vided the embeddings of R and S coincide, in which case
(x, S, y) → (x,R, y) also holds. By making predictions
using (x,R, y) ↔ (x, S, y), RotateE may perform well.

5. Relative performance varied across different metrics; for
instance, R-GCN generally outperforms other models on
R-MRR, but fares worse on C-MRR; this can be explained
by the design of R-GCN, which learns relation-specific
parameters and so is adept at distinguishing relations.

5.3 Impact of Negative Example Generation
We have studied the impact of the different negative example
generation methods on LogInfer-FBsym

Z for Z ∈ {rc, rb, pa}
and LogInfer-FBinter

Z for Z ∈ {rc, rb, pa, qg}; here, Z = rc
corresponds to the conventional random object corruption
method where, for each triple (s,R, o) in Ptrain, Pvalid, and
Ptest, the corresponding Ntrain, Nvalid, and Ntest contains
a triple (s,R, o′) /∈ Pall for o′ randomly sampled from
Consts(K) in a way that the negative sets remain disjoint.

Table 5 summarises our results for the AUC metric. As we
can see, systems achieved high scores whenever the conven-
tional random corruption method was used (90.9% on aver-
age for symmetry and 96% for intersection); this aligns with
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LogInfer-FBY
Z LogInfer-WNY

Z
Y Z Model AUC F1 Precision Recall R-MRR C-MRR AUC F1 Precision Recall R-MRR C-MRR

sym pa

SimpBL - 66.7 50.0 100.0 - - - 30.5 31.8 29.4 - -
TransE 47.0 56.2 45.9 72.3 9.1 3.4 98.8 98.8 98.6 99.0 45.1 31.3
RotatE 86.8 93.1 87.7 99.1 56.8 19.9 99.1 99.1 98.5 99.8 50.0 61.6

ComplEx 73.0 83.5 74.0 95.8 48.3 16.3 80.3 81.1 77.8 84.8 49.4 6.9
DistMult 97.5 98.6 97.7 99.5 89.7 41.7 82.3 83.1 79.5 87.0 50.4 15.1

BoxE 92.8 94.9 95.3 94.6 87.3 30.6 100.0 100.0 100.0 100.0 53.6 68.8
R-GCN 92.8 96.2 92.8 100.0 81.0 17.4 96.1 96.2 92.8 100.0 81.0 54.7

AnyBURL 96.0 97.9 96.0 100.0 86.3 43.6 99.9 99.9 99.9 100.0 53.5 63.7
RuleN 98.0 99.0 98.0 100.0 86.6 43.7 88.3 86.7 100.0 76.5 53.8 51.1

inver pa

SimpBL - 36.2 38.2 34.4 - - - 31.1 31.6 30.6 - -
TransE 90.1 90.2 88.9 91.6 69.9 34.3 87.6 88.5 82.3 95.6 48.5 18.7
RotatE 91.4 92.0 87.9 96.4 78.6 56.3 88.6 89.2 84.3 94.5 87.2 46.1

ComplEx 81.4 81.4 81.4 81.3 52.7 43.7 80.8 81.1 80.4 81.9 65.2 29.2
DistMult 83.2 83.2 83.4 82.9 45.0 44.9 88.4 88.2 89.8 88.6 75.3 36.3

BoxE 94.2 94.2 94.1 94.2 78.7 32.8 93.0 93.5 92.8 94.2 91.3 53.2
R-GCN 84.3 84.3 83.7 84.8 56.2 35.7 96.9 96.9 99.7 94.2 87.9 65.6

AnyBURL 93.9 94.3 90.0 98.9 80.8 56.9 99.8 99.9 99.7 100.0 90.3 67.2
RuleN 86.0 84.2 96.3 74.8 62.9 41.9 85.8 83.5 99.6 71.9 73.1 42.0

hier pa

SimpBL - 36.1 39.5 33.2 - - - 31.8 35.7 28.6 - -
TransE 90.1 90.4 87.9 93.0 29.6 17.2 99.4 99.4 99.3 99.5 33.4 27.8
RotatE 91.9 92.1 89.3 95.1 42.7 26.5 98.8 98.8 98.4 99.2 66.4 69.1

ComplEx 81.3 80.5 84.0 77.3 26.4 16.7 81.0 80.1 84.0 76.5 53.3 16.5
DistMult 80.5 80.9 79.5 82.3 27.0 19.7 83.6 84.1 81.8 86.4 59.6 28.5

BoxE 94.9 94.9 94.2 95.7 77.2 32.9 99.9 99.9 99.9 99.9 86.7 57.6
R-GCN 84.5 85.6 79.9 92.2 72.5 34.5 65.5 67.9 63.4 73.2 95.5 61.1

AnyBURL 91.8 92.4 86.0 99.9 82.1 56.2 99.9 99.9 99.9 100.0 94.4 73.5
RuleN 85.3 83.4 96.4 73.4 60.6 39.1 82.5 79.0 99.0 65.7 67.7 35.8

comp pa

SimpBL - 25.8 30.9 22.2 - - - 31.6 29.8 33.6 - -
TransE 86.9 87.1 79.9 95.7 13.9 8.2 99.7 99.7 99.7 99.7 32.4 49.9
RotatE 88.1 89.0 83.5 95.2 24.6 16.3 99.0 99.0 99.4 98.6 45.2 84.2

ComplEx 68.6 70.9 66.1 76.5 9.7 7.3 84.5 85.1 81.7 88.9 45.2 9.5
DistMult 70.4 72.6 67.6 78.4 9.8 8.2 95.4 95.3 98.2 92.5 50.9 64.7

BoxE 90.1 90.6 87.0 94.5 39.3 23.7 99.7 99.7 99.7 99.7 81.3 61.9
R-GCN 73.6 74.9 71.3 79.0 8.2 9.8 75.2 76.6 72.6 81.1 41.9 9.0

AnyBURL 91.7 92.3 86.3 99.2 39.4 34.1 99.3 99.3 98.7 99.9 92.9 93.4
RuleN 86.5 85.1 94.3 77.6 31.7 26.1 91.7 91.0 98.7 84.5 75.7 69.0

inter qg

SimpBL - 65.5 90.8 51.2 - - - - - - - -
TransE 87.1 87.3 86.2 88.4 20.9 44.6 - - - - - -
RotatE 89.3 89.4 89.1 89.6 33.4 78.4 - - - - - -

ComplEx 83.4 82.0 89.3 75.8 17.7 65.1 - - - - - -
DistMult 85.7 86.1 83.6 88.7 20.3 63.2 - - - - - -

BoxE 85.3 88.9 85.3 95.1 60.7 40.5 - - - - - -
R-GCN 85.9 85.3 89.0 81.9 61.1 44.2 - - - - - -

AnyBURL 88.2 88.4 87.5 89.3 76.4 71.0 - - - - - -
RuleN 80.2 78.1 87.5 70.5 58.9 52.8 - - - - - -

trian qg

SimpBL - 52.2 49.4 55.2 - - - 56.3 87.7 41.5 - -
TransE 91.7 92.1 88.2 96.3 23.5 18.9 80.2 79.2 88.9 71.4 36.7 48.8
RotatE 93.1 93.1 90.8 95.6 31.0 31.5 89.1 88.5 93.4 84.1 43.0 48.2

ComplEx 77.0 77.9 74.9 81.2 23.5 18.9 74.4 70.8 82.2 62.2 27.1 12.6
DistMult 81.2 81.9 78.7 85.4 20.3 25.4 83.8 82.3 90.3 75.6 30.7 31.8

BoxE 82.7 85.0 75.0 98.0 36.3 21.1 58.9 70.0 54.9 96.3 69.5 55.5
R-GCN 85.3 87.0 78.6 97.3 35.1 22.5 86.6 85.7 91.9 80.2 75.8 71.3

AnyBURL 86.4 87.1 83.3 91.2 33.5 26.6 89.7 89.8 89.2 90.4 86.3 81.7
RuleN 84.8 84.5 86.6 82.5 27.4 19.8 82.5 80.8 89.3 73.9 79.5 64.1

diam qg

SimpBL - 60.2 67.6 54.2 - - - 48.7 69.3 37.5 - -
TransE 77.9 80.4 72.1 91.0 20.3 13.8 52.2 67.5 51.1 99.5 23.2 26.8
RotatE 83.4 84.9 77.9 93.2 25.5 21.4 77.5 80.2 71.8 90.8 53.4 71.6

ComplEx 64.2 70.3 60.1 84.8 8.4 6.2 55.0 67.0 52.8 91.6 35.7 1.6
DistMult 77.6 79.6 73.0 87.4 11.9 15.5 69.3 74.4 63.8 89.1 45.6 23.4

BoxE 77.5 80.5 71.2 92.5 17.3 16.8 72.8 76.5 67.5 88.2 80.5 58.8
R-GCN 86.6 87.3 83.1 92.0 20.5 18.2 94.5 94.4 95.3 93.5 89.6 70.9

AnyBURL 67.8 73.3 57.9 99.9 39.5 35.2 73.8 77.2 63.9 97.5 87.3 61.5
RuleN 69.6 71.8 62.1 84.9 30.2 24.1 61.4 66.9 55.5 84.5 61.8 44.7

Table 3: Evaluation results on LogInfer-FBY
Z and LogInfer-WNY

Z (in %)
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LogInfer-LUBMY
qg

Y Model AUC F1 Precision Recall R-MRR C-MRR

all

SimpBL - 64.3 49.2 92.8 - -
TransE 96.3 96.3 95.6 97.0 75.5 26.8
RotatE 96.3 96.5 95.8 97.3 96.7 49.4

ComplEx 89.7 89.4 93.4 85.8 84.2 58.9
DistMult 92.7 92.4 95.9 89.1 86.9 62.5

BoxE 97.4 97.4 95.7 99.3 100.0 12.5
R-GCN 94.1 94.1 94.1 94.0 82.7 34.9

AnyBURL 98.1 98.4 97.0 99.9 100.0 22.0
RuleN 88.3 91.2 95.0 87.6 89.0 18.1

SimpBL - 62.4 48.2 88.8 - -
TransE 98.2 98.3 96.7 99.9 97.2 45.7
RotatE 98.5 98.4 97.1 99.8 97.6 55.1

no ComplEx 89.9 89.3 94.6 84.6 86.3 49.7
type DistMult 93.3 93.1 95.4 90.9 84.5 63.2

BoxE 99.3 99.3 98.8 99.8 100.0 10.1
R-GCN 94.7 95.2 93.9 96.6 81.5 33.2

AnyBURL 99.9 99.9 100.0 99.8 100.0 83.5
RuleN 92.4 96.5 94.9 98.2 98.5 98.2

Table 4: Evaluation results on LogInfer-LUBMY
qg (in %)

LogInfer-FBsym
Z LogInfer-FBinter

Z
Z rc rb pa rc rb pa qg

TransE 62.6 56.7 47.0 98.9 93.9 94.4 87.1
RotatE 95.7 91.0 86.8 98.7 95.5 93.8 89.3

ComplEx 79.7 78.5 73.0 88.8 86.9 81.1 83.4
DistMult 99.8 99.4 97.5 97.0 92.9 84.9 85.7

BoxE 94.0 89.1 92.8 97.5 95.1 95.9 85.3
R-GCN 98.4 96.8 92.8 96.6 93.1 87.4 85.9

AnyBURL 98.1 96.7 96.0 97.5 91.4 90.8 88.2
RuleN 98.6 95.8 98.0 92.8 84.7 85.8 80.2

Table 5: AUC scores with various negative example generation
methods for classification-based evaluation (in %)

previous criticism indicating that such negative examples are
trivial to recognise. In contrast, performance consistently
degraded as we adopted increasingly fine-grained methods:
average scores for relevance-aware corruption drop to 88%
(symmetry) and 91.7% (intersection), and further degrade
to 85.5% and 89.3% respectively for position-aware corrup-
tion. In turn, average performance drops to 85.6% for the
intersection pattern for the query-guided approach.

These results support the effectiveness of our proposed
methods in generating challenging negative examples. Over-
all, our findings indicate that classification performance
heavily relies on the choice of negative examples, and thus
highlights the importance of devising carefully designed
methods for this choice in KG completion benchmarks.

5.4 Analysis of Extracted Rules
AnyBURL and RuleN explicitly construct sets of Datalog
rules; therefore, we can compare the sets of rules returned
by these systems with those in the benchmarks, R, with-
out relying on specific test examples. To this end, we con-
sidered LogInfer-FBY

Z for all patterns Y as representative
benchmarks (note that the value of Z is irrelevant since rule-
based systems do not exploit negative training examples),

Y sym inver hier comp inter trian diam

ϵent
AnyBURL 100.0 98.5 99.0 95.0 90.5 99.5 89.5

RuleN 98.0 93.5 99.0 92.0 97.5 94.0 73.5

ϵcont
AnyBURL 96.0 96.5 95.5 34.0 0.0 0.0 0.0

RuleN 98.0 70.5 69.5 23.0 0.0 0.0 0.0

Table 6: Results for logical entailment on LogInfer-FBY
Z (in %)

and computed the following metrics:

1. the percentage ϵent of benchmark rules R logically en-
tailed by the rule sets generated by the systems; and

2. the percentage ϵcont of rules in R syntactically generated
(and therefore also entailed) by the systems up to variable
renaming and permutations of body atoms.

It is worth emphasising that these systems generate very
large rule sets because rules are extracted by identifying de-
pendencies in the training data, which includes the original
KG; as a result, many generated rules are irrelevant to R.
Therefore, computing the percentages of extracted rules that
are entailed by the benchmark rules is not very meaningful.

The results are summarised in Table 6. Over 95% bench-
mark rules corresponding to simple patterns are syntactically
included in the output rule sets of AnyBURL and RuleN; this
aligns with their superior performance on these patterns.

We further analysed rules for complex patterns. Any-
BURL and RuleN only generate Datalog rules of certain
syntactic form; for instance, AnyBURL and RuleN cannot
syntactically output rules for intersection, triangle, or dia-
mond patterns. A very large proportion of these rules are,
however, entailed by the systems’ output rule sets; this can
be explained by the fact that the systems are generating sim-
pler rules instead. To verify this, we have focused on the tri-
angle pattern and have generated all the rules R− obtained
by selecting subsets of body atoms in the benchmark rules
for the pattern as described in Section 3.3. We could verify
that 99.5% of these rules were entailed by the rules extracted
by AnyBURL, and 89.5% of them were entailed by the rules
extracted by RuleN. This explains the performance drop ob-
served for rule-based systems on complex patterns and fur-
ther supports the identified need for better negative example
generation methods that penalise systems accordingly.

6 Conclusion
In this paper, we have presented a novel approach for gen-
erating challenging inferential KG completion benchmarks.
On the one hand, our approach ensures that models are ex-
posed during training to both premise and conclusion triples
for selected rules, and that triples in the test set have support-
ing evidence in the training set. On the other hand, our meth-
ods for generating negative examples ensure that models are
penalised for learning unintended rules and yield examples
that are both relevant and challenging to classify. Our find-
ings highlight the gaps between theoretical and empirical
results concerning models’ ability to capture inference pat-
terns and open the door to future investigation.
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