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Abstract
The unification of logic and probability has been seen as a
long-standing concern in philosophy and mathematical logic.
In this paper, we propose a new general probabilistic modal
logic of belief and only-believing in the situation calculus.
Our logic can express both continuous and discrete degrees
of belief. More importantly, expressing degrees of belief for
arbitrary first-order formulas in a dynamic setting is possi-
ble for the first time, going well beyond previous proposals
where fluents are assumed to be nullary or discrete. We show
that our notion of belief retains many of the properties known
from the previous related work.

1 Introduction
Starting from Nilsson (1986), there has been a steady body
of work on the unification of logic and probability in AI.
In so much as logic provides the deductive machinery with
certain knowledge, and probability theory serves to capture
the quantitative weighting of hypothesis, such unification is
of fundamental importance to both computer and cognitive
science. Although there were important algebraic efforts by
Carnap (1962), Gaifman (1964), and others, it was Nils-
son (1986), and later Bacchus (1989) and Halpern (1990),
who carefully analyzed the semantics of a logical language
that allowed for representing and reasoning about proba-
bilistic assertions.

Since that early work, especially on the differences
between the possible-worlds model for capturing subjec-
tive knowledge about the domain and the random-worlds
model for capturing statistical assertions and random sam-
ples (Halpern 1990), there have been extensions for meta-
beliefs (Fagin and Halpern 1994), programs (Harel 1984),
time (Halpern and Shoham 1991) and processes (Boyen and
Koller 1998). In the reasoning about actions community,
perhaps the most general model is the work of Bacchus,
Halpern, and Levesque (1999)(BHL henceforth). Although
there are later works such as probabilistic ASP (de Morais
and Finger 2013), probabilistic fluent calculus (Thielscher
2001), and probabilistic dynamic epistemic logic (Kooi
2003), BHL stands out in allowing for a very general defini-
tion of belief expressed in first-order logic over a rich theory
of actions provided by the situation calculus.

∗The title is inspired by the seminal work by Gaifman (1964).
†Corresponding authors; equal contributions

The main advantage of a logical account like BHL is that
it allows a specification of beliefs that can be partial or in-
complete, in keeping with whatever information is available
about the application domain. It does not require specifying
a prior distribution over some random variables from which
posterior distributions are then calculated, as in Kalman fil-
ters, for example (Dean and Wellman 1991). Nor does it re-
quire specifying the conditional independences among ran-
dom variables and how these dependencies change as the
result of actions, as in the temporal extensions to Bayesian
networks (Pearl 1988). In the BHL model, some logical con-
straints are imposed on the initial state of belief. These con-
straints may be compatible with one or very many initial
distributions and sets of independence assumptions. All the
properties of belief will then follow at a corresponding level
of specificity. Put simply: the language allows for multiple
initial distributions, possibly infinitely many, over possibly
infinitely many actions and sensors, each of which might be
characterized by one or more distributions. Formally, The
BHL account provides axioms in the situation calculus re-
garding how the weight associated with a situation changes
as the result of acting and sensing. Then belief in a formula
is defined in terms of all the accessible situations where the
formula is true and summing their weights.

Despite its expressiveness, BHL is still not general
enough. For one thing, when the model was introduced in
the late 90s, probabilistic robotics was just getting off the
ground, so there was not that much immediate interest in
modeling continuous distributions. But nowadays, not al-
lowing for continuous distributions in a planning and action
language would be considered problematic and limited. In
that regard, developments have happened in the last decade:

• In (Belle and Levesque 2013) (BL henceforth), the BHL
model was revisited to allow for continuous distributions.
The key insight for this generalization was to recog-
nize that because integration over situations is not well-
defined, it is possible to integrate over the values of the
fluents instead. However, this necessitates knowing which
fluents to integrate over, only finitely many nullary fluents
were allowed. Thus, there was a loss of expressiveness
from a first-order viewpoint for the initial theory.

• In (Belle and Lakemeyer 2017), the logic DS was intro-
duced, which reconstructs BHL in a modal logic to allow
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for simpler semantical machinery to reason about meta-
beliefs. (Because the classical situation calculus is de-
fined axiomatically, reasoning about knowledge requires
multi-page proofs involving things like Craig’s interpola-
tion lemma (Lakemeyer and Levesque 2011)).

• In orthogonal developments, (Liu and Lakemeyer 2021)
and (Liu and Feng 2021) proposed the logic DS∗ and
DSp to provide a semantics for capturing arbitrary distri-
butions in DS and a definition of regression and progres-
sion (respectively) was considered for DS . This extends
the results of (Belle and Levesque 2020) that developed
regression and progression for BL in allowing for meta-
beliefs in the regression and progression operators.

• Finally, in (Belle 2023), BL was revisited in a modal set-
ting, inspired by DS , to introduce the logic XS . But like
BL, only finitely many discrete and/or continuous fluent
were allowed.

Despite these developments, the question of what a gen-
eral first-order treatment of beliefs and meta-beliefs in the
presence of discrete, continuous, and possibly mixed distri-
butions looks like was still open. It was only recently that
(Feng et al. 2023) introduces the logic OBLc for precisely
this generality but only in a static setting. The static setting
was involved in itself and required the authors to revisit the
notion of measures from first principles. The issue is mainly
how to define measures for uncountably many worlds and
obtain well-defined beliefs in a first-order setting with quan-
tification and introspection.

In this work, we push the envelope further and investigate
how to extend OBLc to account for actions. This requires
some non-trivial treatments. For one thing, one needs to
cast the Tarski-like structure of possible worlds to tree-like
ones to account for actions (analogous to the tree(s) of situ-
ations in the situation calculus (Reiter 2001)). Besides, the
most important question is how to incorporate the likelihood
of stochastic actions and sensing into beliefs so that well-
defined distributions holding initially remain well-defined
after the actions have happened. This involves answering the
question of how to assign likelihood for uncountable many
actions and ensure it is a well-defined probability. To solve
these problems, we introduce the notion of upper and lower
measures in defining actions’ likelihood and the notion of
integral over possible worlds in incorporating actions’ like-
lihood into beliefs after actions. When all of this machinery
is put together, we get a fully general relational situation cal-
culus with degrees of beliefs and meta-beliefs, over arbitrary
distributions, including finite and infinite discrete distribu-
tions (e.g., Poisson), continuous (e.g., Gaussian, log normal)
and combinations of such discrete and continuous proper-
ties (e.g., discrete for some values, and continuous for other
ranges). This is the first time such a model has been intro-
duced. It is worth noting that such distributions are consid-
ered to be extremely useful in machine learning, and so our
approach would bridge the worlds of KR and ML further.
Among other things, for illustrative purposes, we discuss a
set of novel examples, involving an infinite ladder such that
each step gets displaced by actions, and the perturbing of an
infinite set of boxes, each with an unknown number of balls,

by the addition of an unknown number of new balls. Such
examples show the expressive power and flexibility of our
new logic, called PS (for probabilistic situation calculus).

2 The Logic PS
The logic PS is a first-order (FO) many-sorted modal vari-
ant of the situation calculus with modals of (continuous) de-
grees of belief and actions. For simplicity, we only consider
functions with equality (=) and omit predicates. There are
three sorts: object, action, and real number R.

2.1 The Language
The vocabulary consists of standard names, variables, and
function symbols. Standard names can be viewed as a fixed
countable domain with the unique names assumption. Con-
ventionally, we use n with (sub-)superscripts for standard
names, e.g. n1, n2, . . . n

′, n′′, . . . etc. We use a, a′ . . . for
variables of sort action, x, y . . . for sort object or number,
and v, v′ for any sort.
• rigid function symbols of every arity, such as sonar(x), in-

cluding mathematical functions like +,×, ex, and a spe-
cial binary symbol oi;1

• fluent function symbols of every arity, such as dis-
tanceTo(x), heightOf(y), including an unary special sym-
bol l.
Roughly, l specifies the likelihood of actions and oi

describes the observational-indistinguishability (alternative
choices) among actions.

Besides, connectives ∧, ¬, ∀ and modal operators B, O,
[·], □ are used to construct formulas.

Terms (for respective sort) of the language are the least set
of expressions such that

1. every standard name and variable is a term;
2. If t1, ..., tk are terms and f a k-ary function symbol, then
f(t1, ..., tk) is a term of the same sort as f .
A term is said to be rigid, if and only if it does not contain

fluents. Ground terms are terms without variables. Primitive
terms are terms of the form f(n1, ..., nk), where f is a func-
tion symbol and ni are object or number standard names.
We denote the sets of primitive terms of sort action as Pact.
[ta]α should be read as “α holds after action ta” and □α

as “α holds after any sequence of actions”. The epistemic
expression B(α : r) should be read as “α is believed with a
degree r”. Kα means “α is known” and is an abbreviation
for B(α : 1). O(α1 : r1, . . . αk : rk) may be read as “all that
believed are (the conjunction of) αi with degree ri”. Simi-
larly, Oα means “α is only known” and is an abbreviation
for O(α : 1). For action sequence z = a1 · · · ak, we write
[z]α to mean [a1] · · · [ak]α. As usual, we treat α∨β, α ⊃ β,
α ≡ β, and ∃v.α as abbreviations.

A sentence is a formula without free variables. We use
TRUE as an abbreviation for ∀x(x = x), and FALSE for its
negation. A formula with no □ or [ta] is called static. A
formula with no B or O is called objective. A formula with
no fluent, □ or [ta] outside B or O is called subjective. A

1For simplicity, all action symbols are assumed to be rigid.
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formula with no B, O, □, [ta], l, and oi is called a fluent
formula. A fluent formula without fluent functions is called
a rigid formula.

2.2 The Semantics
The semantics is given in terms of possible worlds, where a
world is a tree-like Tarski structure. Formally, we assume a
fixed domain of discourse D = Dobj ∪Dact∪R where Dobj

is a countable infinite set of objects, R the real numbers,
and Dact an uncountable infinite set of actions. The set of
standard names N = Nobj ∪ Nact ∪ Nnum is a countable
subset of D.2 We require that Nobj = Dobj , i.e. object
constants are all named. Additionally, we assume elements
in Dact are of the form fact(d1, d2, . . . , dk) where fact is an
action function symbol and di ∈ Dobj ∪ R. With this, we
assume action standard names are just those action primitive
terms i.e. Nact = Pact. Lastly, we fix Nnum to the set
of computable numbers (Turing 1936), which is a countable
subset of R but still includes important irrational numbers
such as π, e. We denote the discrete sub-domain Nobj ∪
Nnum as D.

Truth of objective formulas Let Z refer to any finite ac-
tion sequences, including the empty sequence ⟨⟩, i.e. Z =
(Dact)

∗. A world is a mapping from all function symbols
and Z to functions of the corresponding sorts.
Definition 1. Formally, a world w satisfies

1. for all k-ary object (likewise for action and number) func-
tion symbol fobj and action sequence z ∈ Z,
w[fobj , z] : (D)k 7→ Dobj;

2. Rigidity: if f is a rigid function symbol, then for all
(w, z), (w′, z′), w[f, z] = w′[f, z′];

3. Correctness in math: elementary function symbols (e.g.
+,×, ex) are rigid and interpreted in the usual sense. For
example, w[+, z](1, 1) = 2 for any w and z. 3

Let W be the set of all such worlds. A variable map θ
maps each variable to an element in D of the right sort. We
write θ ∼v θ′ to mean θ and θ′ agree except perhaps on
variable v. The denotation of terms is defined recursively:
Definition 2. the denotation of a term t under a tuple
⟨w, z, θ⟩ is given as (assuming t, ti are terms)
• ∥t∥zw,θ = t if t ∈ N ;
• ∥t∥zw,θ = θ(t) if t is a variable;
• ∥t∥zw,θ = w[f, z](∥t1∥zw,θ, ..., ∥tk∥zw,θ) if t is of the form
f(t1, ..., tk) where f is a function symbol.
For simplicity, we write ∥t∥θ when t is rigid, ∥t∥zw when t

does not contain variables, and ∥t∥ when t is both rigid and
ground. By a model we mean a triple ⟨w, z, θ⟩. The truth of
objective formulas is then given as:

2Even if the domain is uncountable, we can only assign stan-
dard names to a countable subset of it.

3Sometimes, one might also wish to use the predicate ‘<’ (sim-
ilarly for ‘≤’) in formulas, this can be done by assuming a rigid
function lessthan which takes values from {0, 1}, additionally,
for all worlds w and real number x, y, w[lessthan](x, y) = 1 iff
x < y.

• w, z, θ |= t1 = t2 iff ∥t1∥zw,θ and ∥t2∥zw,θ are identical;

• w, z, θ |= ¬α iff w, z, θ ̸|= α;

• w, z, θ |= α ∧ β iff w, z, θ |= α and w, z, θ |= β;

• w, z, θ |= ∀v.α iff w, z, θ′ |= α for all θ′ ∼v θ;

• w, z, θ |= [ta]α iff w, z · n, θ |= α and n = ∥ta∥zw,θ;

• w, z, θ |= □α iff w, z · z′, θ |= α for all z′ ∈ Z.

Truth of static beliefs To give the semantics of B and
O, we need the notion of epistemic state. We begin with a
brief recap of some key concepts in probability theory. A
measure space is a tuple ⟨X,X , µ⟩, where X is a set, X is
a σ-algebra on the set X (i.e. a set of subsets containing
X and closed under complementation and countable union),
and µ : X 7→ [0,+∞] is a measure. Typical measure spaces
include the Lebesgue measure spaces ⟨Rn,M,m⟩ where
Rn is a n-dimensional Euclidean space, M is a σ-algebra
on Rn, and m is the Lebesgue measure (m respectively cor-
responds to the length, area, volume, etc of intervals, rect-
angle, cube, etc). A probability space is a special measure
space whose measure is normalized, i.e. µ(X) = 1. For
probability spaces, usually X is called the sample space,
X the event set, µ the probability measure. A probability
space ⟨X,X , µ⟩ is said to be complete if for all B ∈ X with
µ(B) = 0 and allA ⊆ B, it holdsA ∈ X and µ(A) = 0. In-
tuitively, completeness means that if an event has zero prob-
ability, any subset of it is also an event and has zero proba-
bility; likewise, if an event has a probability 1, all its super-
sets are events and have probability 1. We restrict ourselves
to complete probability spaces since each probability space
can be uniquely extended to a complete probability space.

An epistemic state e is then defined as a set of µ s.t.
⟨W,W, µ⟩ forms a probability space, where W is the do-
main of µ and a σ-algebra on W 4. Henceforth, we call
such µ probability spaces (or distributions). We expand the
model with the epistemic state, namely, a model is now a 4-
tuple ⟨e, w, z, θ⟩. For objective formulas, truth is given the
same meaning as before since the epistemic state e plays no
role. Let ∥α∥e,θ = {w′ | e, w′, ⟨⟩, θ |= α}. If e contains only
a single element µ, we write ∥α∥µ,θ instead of ∥α∥{µ},θ. Let
r be a rigid term, the truth for B and O in the static case is
given as:

• e, w, ⟨⟩, θ |= B(α : r) iff ∀µ, µ ∈ e implies
µ(∥α∥µ,θ) = ∥r∥θ;

• e, w, ⟨⟩, θ |= O(α : r) iff ∀µ, µ ∈ e iff
µ(∥α∥µ,θ) = ∥r∥θ;

Intuitively, e, w, ⟨⟩, θ |= B(α : r) if for all the probabil-
ity spaces µ ∈ e, the set of worlds that satisfy α under
µ, i.e. ∥α∥µ,θ, has probability measure ∥r∥θ. Likewise,
e, w, ⟨⟩, θ |= O(α : r) iff e is the maximal set of such prob-
ability spaces. Clearly, beliefs B(α : r) defined in this way
are indeed probabilities over possible worlds.

4Allowing multiple distributions rather than a single distri-
bution in the epistemic state can avoid the problem that de
re knowledge about degrees of belief, i.e. formulas such as
∃x.K(B(ϕ : x)), is valid (Gabaldon and Lakemeyer 2007).
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Truth of beliefs after stochastic actions Unlike the static
case, defining beliefs after actions is more involved in a
stochastic domain. There are at least two questions: 1) how
to specify the non-deterministic effects of stochastic actions;
2) how to incorporate the likelihood of stochastic actions or
sensing into beliefs.

The first question can be solved in the same way as in
BHL. Namely, instead of saying a stochastic action has non-
deterministic effects, we view the stochastic action as a set
of ground actions (mutual alternatives) that are observation-
ally indistinguishable to the agent and each has a determin-
istic effect. This is done via the special rigid function sym-
bol oi.5 For example, oi(fwd(1, 1), fwd(1, 0)) says that the
agent cannot distinguish a successful forward fwd(1, 1) and
a failure one fwd(1, 0).

The second question is more involved. To begin with, one
would wish to express that some effects are more likely than
others. This can be achieved by oi together with a special
fluent l(a) to specify the likelihood of an action a. How-
ever, the problem is how to ensure l is indeed a probability
among potentially uncountably many action alternatives for
stochastic actions. Recall the probability space consists of
three ingredients: sample space, event set, and probability
measures, it is challenging to use the single fluent l to ex-
press such a rich structure. Our solution is as follows:

1. there are finitely many action types, which are function
symbols; Note that this does not imply a finite number
of actions, as the parameters of actions can vary over an
infinite domain, even the uncountable domain R.

2. stochastic actions have at most 3 parameters, namely, they
are of the form sa(x, yd, yc) where x is the controllable
and observable while yd and yc are the uncontrollable
and unobservable to the agent. Additionally, yd ranges
over the discrete domain D while yc ranges over the con-
tinuous domain R. A formalism that allows more pa-
rameters in actions such as sa(x1, x2, . . . xk, yd, yc) or
sa(x, yd, yc1 , yc2 , . . . , yck) is possible. For the simplicity
of presentation, we restrict to three parameters. Never-
theless, actions may contain less than 3 parameters, like
the action fwd(x, yc) does not contain the uncontrollable
discrete parameter yd;

3. the alternative relations oi only exist among actions of the
same action symbols and with the same set of controllable
parameters x.
Formally, we expand the model with an equivalence rela-

tion (or alternative relation) o among actions in Dact. More-
over, for formulas involving oi, we assign truth as:
• e, w, z, θ, o |= oi(ta, t

′
a) = 1 iff ⟨∥ta∥zw,θ, ∥t′a∥zw,θ⟩ ∈ o

For simplicity, we only consider the particular alternative
relation given by:6 o0 := {⟨a, a′⟩|∨i ∃x, yc, yd, y′c, y′d.a =
sai(x, yc, yd) and a′ = sai(x, y

′
c, y

′
d)}. In the rest of the pa-

per, we write e, w, z, θ |= α instead of e, w, z, θ, o0 |= α.
5For simplicity, we set oi to be rigid. Allowing oi to vary would

cause counter-intuitive result, see (Liu and Lakemeyer 2021)
6This amounts to put the following sentence Σoi as a back-

ground theory: ∀a, a′.□(oi(a, a′) = 1 ≡
∨

i ∃x, yc, yd, y
′
c, y

′
d.a

= sai(x, yc, yd) ∧ a′ = sai(x, y
′
c, y

′
d)).

Now, we show how to ensure l is indeed a probability
among potentially uncountably many action alternatives for
stochastic actions.
Definition 3. A world w is called proper if and only if

• for every stochastic action a = sa(x, yd, yc) and action
sequence z,∑

yd∈D

∫
yc∈R

w[l, z](sa(x, yd, yc))dyc = 1. (1)

Implicitly, Eq. (1) requires that the fluent l has to be a
Lebesgue integrable function in terms of parameters yc. Es-
sentially, a worldw is proper if and only if the fluent l indeed
specifies a probability distribution over alternatives (defined
by o0) for stochastic actions. This is better illustrated by the
theorem below.

In the rest of the paper, whenever we mention a world,
we mean a proper one. Meanwhile, by an epistemic state,
we mean a set µ s.t. ⟨Wp,Wp, µ⟩ forms a probability space
whereWp is the set of proper worlds, Wp is the domain of µ
and also a σ-algebra on Wp, and µ is a probability measure.

Given a stochastic action a = sa(x, yd, yc) and a set of its
alternative A′ ⊆ Aa := {a′|⟨a, a′⟩ ∈ o0}, let

DA′ = {y′d|∃y′c.⟨a, sa(x, y′d, y′c)⟩ ∈ A′}
Ryd,A′ = {y′c|⟨a, sa(x, yd, y′c)⟩ ∈ A′}.

Namely, DA′ is the set of all possible discrete values in
A′, and Ryd,A′ is the set of all possible real values when
fixing yd in A′.
Theorem 1. Given a proper worldw and a stochastic action
a = sa(x, yd, yc), let Aa = {A′ ⊆ Aa | ∀yd ∈ D,Ryd,A′

is Lebesgue measurable}, for every action sequence z,
defining νw,z : Aa 7→ R≥0 as

νw,z(A′) =
∑
y′
d∈D

∫
y′
c∈Ryd,A′

w[l, z](sa(x, y′d, y
′
c))dy

′
c (2)

then ⟨Aa,Aa, ν
w,z⟩ forms a probability space.

The proof is based on two facts: 1) the Lebesgue mea-
surable sets form a σ-algebra, hence Aa is a σ-algebra on
Aa; 2) by Def. 3 and using Lebesgue integral, one can show
νw,z is a probability measure on Aa. We call a set of actions
A′ ⊆ Aa measurable if A ∈ Aa.

The probability defined above can be extended from a sin-
gle action to sequences in the following way.
Definition 4. We define:

1. l∗ :Wp × Z → R≥0 as
(a) l∗(w, ⟨⟩) = 1 , for every w ∈Wp;
(b) l∗(w, z · a) = l∗(w, z)× w[l, z](a).

2. z ∼ z′ as
(a) ⟨⟩ ∼ z′ iff z′ = ⟨⟩;
(b) z · a ∼ z′ iff z′ = z∗ · a∗, z ∼ z∗, and ⟨a, a∗⟩ ∈ o0

Let
⊙

be the concatenation of actions. Given stochastic
action sequence z =

⊙k
i=1 sai(xi, ydi

, yci), we denote
• the set of alternatives of z as Zz = {z | z ∼ z′};
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• the set of all possible discrete values of y⃗ ′
d in the subset

Z ′ of z’s alternatives as
DZ′ = {y⃗ ′

d | ∃y⃗ ′
c.
⊙k

i=1 ai(xi, y
′
di
, y′ci) ∈ Z ′ ⊆ Zz}

where y⃗ ′
d = [y′d1

; . . . ; y′dk
] and y⃗ ′

c = [y′c1 ; . . . ; y
′
ck
];

• the set of all possible real values of y⃗ ′
c in Z ′ given y⃗ ′

d as
Ry⃗ ′

d,Z
′ = {y⃗ ′

c |
⊙k

i=1 sai(xi, y
′
di
, y′ci) ∈ Z ′ ⊆ Zz}.

Similar to Theorem 1, we have:

Theorem 2. Given a proper world w and a sequence
of stochastic actions z = a1 · · · ak where ai =
sai(xi, ydi , yci), let Zz = {Z ′ ⊆ Zz | ∀y⃗ ′

d ∈ D|y⃗ d|,Ry⃗ ′
d,Z

′

is Lebesgue measurable}, defining νwl∗ : Zz 7→ R≥0 as:

νwl∗(Z
′) =

∑
y⃗ ′

d∈DZ′

∫
y⃗ ′

c∈Ry⃗ ′
d
,Z′
l∗(w,

⊙k
i=1 a

′
i)dy⃗

′
c

where a′i are actions obtained from ai by replacing ydi , yci
with y′di

, y′ci , then ⟨Zz,Zz, ν
w
l∗⟩ forms a probability space.

The proof is similar to the proof of Theorem 1. We call a
set of action sequences Z ′ ⊆ Zz measurable if Z ′ ∈ Z .

A remark is that the definition of νw,z in Theorem 1 re-
quires an action sequence z as a parameter while the defini-
tion of νwl∗ does not. In fact, νwl∗ is implicitly defined wrt the
empty sequence ⟨⟩.

Now, the task remains to incorporate the well-defined
likelihood of actions into the model of belief. For that, we
need two additional notations: the likelihood for an unmea-
surable set of action sequences and the integral over possi-
ble worlds.

Given a proper world w, even if only considering simple
propositions like distanceToWall = 9, there might be an
unmeasurable set of stochastic action sequences z (mutually
alternative) such that w, z |= distanceToWall = 6 holds.
Hence, inevitably, one needs to assign likelihoods for un-
measurable sets of action sequences. To do so, we borrow
ideas from inner and outer Lebesgue measures. Formally,

Definition 5. Given a proper world w and a sequence of
stochastic action z, let νwl∗ be as in Theorem 4, for any Z ′ ⊂
Zz , we define νw+

l∗ and νw−
l∗ as:

νw+
l∗ (Z ′) = inf{νwl∗(Z ′′) |Z ′′ measurable, Z ′ ⊆ Z ′′}
νw−
l∗ (Z ′) = sup{νwl∗(Z ′′) |Z∗ measurable, Z ′′ ⊆ Z ′}.

νw+
l∗ (Z ′) is called the outer measure of Z ′ while νw−

l∗ (Z ′) is
called the inner measure of Z ′. Fig. 1 provides a conceptual
illustration of νw+

l∗ and νw−
l∗ . Dashed dots in the grid repre-

sent the measurable sets and the arrow on the left represents
the direction of inclusion relations among sets. The set Z ′

(gray dot) is unmeasurable and its inner measure equals the
measure of Zin (black dot) while its outer measure equals
the minimal of measures between Zout

1 and Zout
2 (hollow

dots). A remark is that νw+
l∗ (Z ′) = νw−

l∗ (Z ′) iff Z ′ is mea-
surable.

The last ingredient is the notion of integral over possi-
ble worlds. Let fX(x) = 1 if x ∈ X else 0 be a char-
acteristic function of the set X . Given a probability space
⟨X,X , µ⟩, the integral of a characteristic function of a mea-
surable set X ′ ⊆ X is defined in the standard way as:

Z′
Zout
1 Zout

2

Zin

upper

lower

Figure 1: Illustration of νw+
l∗ (Z′) and νw−

l∗ (Z′).

∫
x∈X

fX′(x)dµ = µ(X ′). A simple function g(x) : X 7→ R
over a probability space ⟨X,X , µ⟩ is a finite linear com-
bination of characteristic functions of measurable sets in
that probability space. Namely, g(x) =

∑
i bifXi(x) for

some characteristic functions fXi
(x) andXi are measurable

(bi ∈ R). The integral of simple function g(x) is defined as∫
x∈X

g(x)dµ =
∑

i biµ(Xi). Given an epistemic state e, let
µ ∈ e, we call a function f : Wp 7→ R≥0 measurable on µ
iff for all b ∈ R≥0, {w ∈Wp | f(w) < b} ∈ Wp.
Theorem 3. Given a probability space µ, let f : Wp 7→
R≥0 be a measurable function on Wp where Wp is the do-
main of µ. Then there exists a sequence of non-negative sim-
ple functions {g0, g1, . . . gn, . . .} s.t. ∀w ∈Wp

gn(w) ≤ gn+1(w) and lim
n→∞

gn(w) = f(w)

The theorem suggests that any measurable function can
be approximated arbitrarily close by using a series of sim-
ple functions. Hence, we exploit the limit of the integral
over such simple functions to define the integral over mea-
surable functions. This is in the same spirit as the definition
of Lebesgue integral (Stein and Shakarchi 2009). 7

Definition 6 (Integral over Possible Worlds). The integral
of a measurable function f on µ is defined as∫

w

fdµ = lim
n→∞

∫
w

gndµ

where gn are as in Theorem 3.
For any model ⟨e, w, z, θ⟩ and formula α, let Zα

e,w,z,θ =

{z′ | z′ ∼ z, e, w, z′, θ |= α}. If α is a sentence, we write
Zα
e,w,z . If the context of w and z is clear, we write Zα

e . If
e contains only a single element µ, we write Zα

µ instead of
Zα
{µ}. Clearly, ZTRUE

e,w,z,θ = Zz for all e, w, z, θ.
Now we are ready to define the truth conditions of B and

O after stochastic actions:

• e, w, z, θ |= B(α : r) iff ∀µ, µ ∈ e implies∫
w
νw+
l∗ (Zα

µ,w,z,θ)dµ =
∫
w
νw−
l∗ (Zα

µ,w,z,θ)dµ = ∥r∥θ;

• e, w, z, θ |= O(α : r) iff ∀µ, µ ∈ e iff∫
w
νw+
l∗ (Zα

µ,w,z,θ)dµ =
∫
w
νw−
l∗ (Zα

µ,w,z,θ)dµ = ∥r∥θ;

7The key to the proof is how to construct such gn(w). W.l.o.g.
assume f(w) ∈ [0, 1]. For any n, let fWn,i(w) be the characteris-
tic function of the set Wn,i = {w | i/2n ≤ f(w) < (i + 1)/2n}.

Then it is not hard to show gn(w) =
∑2n

i=1

i− 1

2n
fWn,i(w) is the

desired simple function.
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Henceforth, we write Zα or Zα
µ for Zα

µ,w,z,θ. The seman-
tics above imposes two implicit constraints:

1. the integral
∫
w
νw+
l∗ (Zα)dµ and

∫
w
νw−
l∗ (Zα)dµ requires

that functions νw+
l∗ (Zα) and νw−

l∗ (Zα) have to be mea-
surable;

2. the integrals of outer and inner measure of Zα are equal
implies that the set {w |Zα

{µ},w,z,θ is unmeasurable} has
zero-measure (i.e. zero-probability) under µ. This is cru-
cial to ensure that B is indeed a well-defined probability
(see properties later).
Intuitively, given µ, νw+

l∗ (Zα) (resp. for νw−
l∗ ) repre-

sents the superior (inferior) probability of α after z in the
world w. Furthermore, the integrals, i.e.

∫
w
νw+
l∗ (Zα)dµ

and
∫
w
νw−
l∗ (Zα)dµ, are just the probability of all worlds

where α holds after z.

Truth of belief after sensing actions The story for sens-
ing actions is a bit different. To begin with, sensing out-
comes are all observable to the agent hence sensing does not
have alternatives other than themselves, yet one would still
wish to express that some outcomes are more likely than oth-
ers. Besides, after observing some sensing outcomes, some
unrealistic epistemic states should be ruled out.

To address the first problem, in complying with our pre-
vious assumption on stochastic actions, we assume that:
1) sensing does not have the unobservable parameters yc
or yd but only the observable parameters x, i.e. of the
form sen(x); 2) the alternative relations o0 has to be ex-
panded. That is to say, instead of the alternative rela-
tions o0, we consider the alternative relation o1 now where
o1 = o0 ∪ {⟨a, a⟩|∨i ∃x.a = seni(x)}. This also means
that the satisfaction relation |= is regarding o1 instead of
o0 henceforth. Besides, we redefine the concept of proper
world to cover sensing. Formally,
Definition 7. we call a world w proper if and only if
• for every stochastic action a = sa(x, yd, yc) and action

sequence z, w satisfies the constraint in Equation (1);
• for every action sequence z = a1 · · · ak where ai =
sai(xi, ydi

, yci) or ai = seni(xi), l∗(w, z) is a mea-
surable function in terms of y⃗ c on R|y⃗ c| where y⃗ c =
[yc1 ; . . . ; yck ] is the set of all uncontrollable continuous
parameters in z.
Essentially, the second condition above is to ensure that

the function l∗(w, z) (z may contain sensing) like the one
in Theorem 2 is integrable. With such a definition, we have
a theorem that is similar to Theorem 2. Let the notion Zz ,
DZ′ , and Ry⃗ ′

d,Z
′ be defined exactly the same as before but z

could contain sensing of the form seni(x), then we have:
Theorem 4. Given a proper world w and an action se-
quence z = a1 · · · ak where ai = sai(xi, ydi , yci) or
ai = seni(xi), let Zz = {Z ′ ⊆ Zz | ∀y⃗ ′

d ∈ D|y⃗ d|,Ry⃗ ′
d,Z

′ is
Lebesgue measurable}, defining νwl∗ : Zz 7→ R≥0 as:

νwl∗(Z
′) =

∑
y⃗ ′

d∈DZ′

∫
y⃗ ′

c∈Ry⃗ ′
d
,Z′
l∗(w,

⊙k
i=1 a

′
i)dy⃗

′
c,

where a′i are actions obtained from ai by replacing ydi
, yci

with y′di
, y′ci , then ⟨Zz,Zz, ν

w
l∗⟩ forms a measure space.

The task remains to update the agent’s epistemic state af-
ter sensing. For this, we define the compatibility between
action sequence and epistemic states. Formally, given µ and
z, we require that there exists a value ηµz (or simply η) s.t.
η =

∫
w
µw
l∗(Z

TRUE)dµ . Intuitively, η represents the likeli-
hood of actions sequence z under µ.

We call µ compatible with action sequence z iff 0 < ηµz <
∞. Namely, the sequence z has a positive finite likelihood
in µ. Given z ∈ Z, we denote ez = {µ |µ ∈ e and 0 <
ηµz < ∞} as the compatible subset of e wrt z. For any set
Z ′ ⊂ Zz , the inner measure νw−

l∗ (Z ′) and outer measure
νw+
l∗ (Z ′) can be defined similarly as in Def. 5. Now we

can define the truth conditions of B and O after any action
sequences:

• e, w, z, θ |= B(α : r) iff ∀µ, µ ∈ ez implies
1
η

∫
w
νw+
l∗ (Zα

µ )dµ = 1
η

∫
w
νw−
l∗ (Zα

µ )dµ = ∥r∥θ.

• e, w, z, θ |= O(α : r)iff ∀µ, µ ∈ ez iff
1
η

∫
w
νw+
l∗ (Zα

µ )dµ = 1
η

∫
w
νw−
l∗ (Zα

µ )dµ = ∥r∥θ.

For a sentence α, we write e, w |= α to mean e, w, ⟨⟩, θ |=
α for all variable maps θ. When Σ is a set of sentences and
α is a sentence, we write Σ |= α (read: Σ logically entails
α) to mean that for every e and w, if e, w |= α′ for every
α′ ∈ Σ, then e, w |= α. We say that α is valid (|= α) if
{} |= α. Satisfiability is then defined in the usual way (wrt
o1). If α is an objective formula, we write w |= α instead of
e, w |= α. Similarly, we write e |= α instead of e, w |= α if
α is subjective.

3 Properties
Now that we have introduced the semantics, let us exam-
ine the properties of our logic. Despite the increasing ex-
pressiveness, our notions of belief and only-believing retain
many of the properties known from its static predecessor, the
logic OBLc, and its discrete predecessor, the logic DS .

3.1 Additivity and Equivalence
We show that the notion of belief B satisfies the properties
of probability as in DS . 8

• If |= □α ≡ β then |= □B(α : r) ≡ B(β : r)

• |= □B(α : r) ⊃ B(¬α : 1− r)

This means B satisfies the complement law of probability.
The proof is based on the fact that for all w, νw+

l∗ (Z¬α) =

µw
l∗(Z

TRUE)− νw−
l∗ (Zα), which can be derived from the

definition of νw+
l∗ and νw−

l∗ .
• |= □B(α ∧ β : r) ∧B(α ∧ ¬β : r′) ⊃ B(α : r + r′)

This can be proved in the same spirit as above with the
fact that (likewise for νw−

l∗ ) νw+
l∗ (Zα) = νw+

l∗ (Zα∧β) +

νw+
l∗ (Zα∧¬β).

• |= □B(α : r) ∧B(β : r′) ∧B(α ∧ β : r′′)
⊃ B(α ∨ β : r + r′ − r′′)

8Conventionally, free variables are implicitly universally quan-
tified outside. The modality □ has lower syntactic precedence than
the connectives, and [·] has the highest priority.
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The above properties are stemming from the fact that B is
indeed a probability over the possible world.

3.2 Knowledge
Now, let us turn to the properties of knowledge K. Recall
that Kα is an abbreviation for B(α : 1). We show that our
K enjoys many properties of its qualitative counterpart in
the logic ES (Lakemeyer and Levesque 2011) and its quan-
titative yet discrete counterpart in the logic DS (Belle and
Lakemeyer 2017), including the universal and existential
versions of the Barcan formula.

• |= □Kα ⊃ K(α ∨ β)
The proof is based on the fact that for all w, Zα ⊆ Zα∨β .

• |= □Kα ∧Kβ ⊃ K(α ∧ β)

Proof. Suppose that e, z |= Kα ∧ Kβ. By the comple-
ment law e, z |= B(¬α : 0) ∧ B(¬β : 0). Additionally,
|= □Kα ⊃ K(α ∨ β), which means e, z |= B(¬α ∧
¬β : 0). According to the addition law, |= B(¬α : 0) ∧
B(¬β : 0) ∧B(¬α ∧ ¬β : 0) ⊃ B(¬α ∨ ¬β : 0). Thus,
e, z |= K(α ∧ β).

• |= □Kα ∧K(α ⊃ β) ⊃ Kβ

Proof. Suppose e, z |= Kα ∧ K(α ⊃ β). It suffice to
prove e, z |= K((α ∨ β) ∧ (¬α ∨ β)). By the first prop-
erty of knowledge, e, z |= K(α ∨ β). K(¬α ∨ β) is
equivalent to K(α ⊃ β). Based on the second property
of knowledge, e, z |= Kβ.

• |= □∃x.Kα ⊃ K∃x.α

Proof. Henceforth, we write Zα
θ for Zα

{µ},w,z,θ.
Suppose e, z, θ |= ∃x.Kα. By semantics, ∃θ′ s.t. θ′ ∼x

θ, e, z, θ′ |= Kα. Namely, for all µ ∈ ez ,
η =

∫
w
νw+
l∗ (Zα

θ′)dµ =
∫
w
νw−
l∗ (Zα

θ′)dµ. Meanwhile,
Z∃x.α
θ =

⋃
{θ′′ | θ′′∼xθ} Z

α
θ′′ . Therefore, Zα

θ′ ⊆ Z∃x.α
θ .

Hence (likewise for νw−
l∗ )

η =

∫
w

νw+
l∗ (Zα

θ′)dµ ≤
∫
w

νw+
l∗ (Z∃x.α

θ )dµ

≤
∫
w

νw+
l∗ (ZTRUE

θ )dµ = η.

Thus, η =
∫
w
νw+
l∗ (Z∃x.α

θ )dµ =
∫
w
νw−
l∗ (Z∃x.α

θ )dµ.

The converse of the above formula does not hold: knowing
that α holds for someone does not imply knowing that indi-
vidual. For the universal version, it holds

• |= □K∀x.α ⊃ ∀x.Kα

This can be proved in a similar spirit as above and based
on the fact that Z∀x.α =

⋂
θ Z

α
θ ⊆ Zα

θ .

The converse of the above formula, i.e. □∀x.Kα ⊃
K∀x.α, is not valid as already shown in (Feng et al. 2023)
for the static cases. The reason is that in a probability space
with uncountably many samples, there could be uncountably
many distinct events where each of them has probability 1
(those satisfying Kα), any countable intersection of them

has probability 1, yet an uncountable intersection does not
have probability 1.

Besides Barcan formula, we have the following properties
in terms of introspection:

• |= □Kα ⊃ KKα

• |= □B(α : r) ⊃ KB(α : r)

That is, the agent has knowledge about what is known or
believed. However, negative introspection is not valid as in
(Feng et al. 2023), i.e. ⊭ □¬B(α : r) ⊃ K¬B(α : r). This
is because there exists µ ∈ e that satisfies ¬B(α : r) does
not imply for all µ ∈ e satisfies ¬B(α : r), which is exactly
the condition of e |= K¬B(α : r).

3.3 Only-Believing
Lastly, we examine the properties of O here. Only-knowing
(or only-believing) captures the intuition that the beliefs and
non-beliefs of an agent are precisely those that follow from
its knowledge base. Hence it is useful to characterize a
knowledge base.

To begin with, the unique model theorem holds for only-
believing as in the work (Liu and Lakemeyer 2021).

Theorem 5 (Uniqe Model Theorem). For any sentence α
and rigid ground term r, there is a unique epistemic state e
such that e |= O(α : r).

Proof. By the semantics, we have e |= O(α : r) iff e =
{µ |µ(∥α∥µ) = ∥r∥}. Clearly, there is only one such e.

Besides, as in the logic OL (Levesque and Lakemeyer
2001), only-knowing implies knowing and not knowing
about what is not entailed by the knowledge base. Below,
let α be an arbitrary sentence and ϕ, ψ objective sentences:

• |= O(α : r) ⊃ B(α : r)

• |= Oϕ ⊃ Kψ iff ϕ |= ψ

• |= O(α : r) ⊃ ¬B(h(n⃗) = m : r′) for all r′, where n⃗,m
are standard names and h is a fluent not in α.

E.g. let Σ := O(weightOf (A) ≤ 50: 0.9), then we have
Σ |= B(weightOf (A) ≤ 50: 0.9) and Σ |= ∀x.¬B(1.7 ≤
heightOf (A) : x). That is, only-believing the person A’s
weight is less than 50kg with a degree 0.9 entails believing
the person’s weight is less than 50kg and also, not believing
A’s height is greater than 1.7m with any degree.

4 Reasoning about Actions and Beliefs
In this section, we show the expressiveness and flexibility of
our logic through examples.

4.1 Expressing Belief Distributions
To reason about beliefs, one needs to specify what is be-
lieved initially. Let us consider the robot moving example
in Fig. 2 from (Belle and Lakemeyer 2017). In the (dis-
crete) logic DS and its extensions, a nullary fluent h is used
to indicate the robot’s horizontal distance toward the wall.
Moreover, the robot’s uncertain belief about h is specified
via a formula of the form ∀x.B(h = x : f(x)). Namely, the
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h

Figure 2: A robot moving towards a wall.

rigid mathematical function f(x) expresses a belief distribu-
tion of the random variable h where

∑
x f(x) = 1. This can

be easily extended for multiple but finite nullary fluents.
In our logic, we could do the same for discrete beliefs,

but to express continuous belief distributions, we exploit a
similar formula: a (potentially continuous) belief distribu-
tion over a finite set of nullary fluents h⃗ = {h1, h2, . . . hk}
is a formula of the form ∀x⃗.B(

∧
i hi ≤ xi : f(x⃗)) where

f is a rigid mathematical function satisfying f(−∞) = 0
and f(+∞) = 1. 9 We write Bf for short. Intuitively,
f(x⃗) represents the joint cumulative distribution function of
random variables h⃗. For example, the formula ∀x.B(h ≤
x : U(x; 10, 11)) expresses the robot believes its distance is
distributed uniformly among the interval [10, 11], where

U(x; 10, 11) =


0 x < 10

x− 10 x ∈ [10, 11)

1 11 ≤ x

Note that Bf could also be a discrete or mixture distri-
bution. The belief distributions ∀x.B(h ≤ x : f ′(x)) and
∀x.B(h ≤ x : f ′′(x)) below respectively express such dis-
tributions.

f ′(x) =


0 x < 1

0.5 x ∈ [1, 2)

1 2 ≤ x

f ′′(x) =


0 x ≤ 0

0.5 x = 0

x+ 0.5 x ∈ (0, 0.5]

1 1 ≤ x
The latter is rather useful since the robot’s belief after ac-

tions is usually a mixture distribution even if it starts with
a pure continuous one. Imagine that the robot cannot get
across the wall and its initial belief distortion is given as
U(x; 10, 11), then after a deterministic action fwd(10.5), it
will end up in Bf ′′

. This is because some probability mass
will accumulate at the point h = 0.

We comment that expressing such mixture distribution is
impossible in the logic DS since it is discrete nor in the BL
framework. The reason is that their notion of belief extends
the BHL formalism and is defined in terms of normalized
sums or integral of weights of situations. Since it is unclear
how to integrate over situations, they map situations to fluent
values which are purely continuous, then belief is given in
terms of integral over the continuous values of fluents that
are pure continuous or pure discrete.

4.2 Basic Action Theories
To infer beliefs after actions, one needs to specify a theory
of action besides the initial beliefs. In our logic, the basic

9Here f(+∞) = 1 should be understand as limx→∞ f(x) = 1
and limx→∞ f(x) = y can be defined as limx→∞ f(x) = y :=
∀u.(u > 0 ⊃ ∃m.∀v.(v > m) ⊃ |y − f(v)| < u).

action theory includes a set of successor state axioms, one
for each fluent, incorporating Reiter’s (2001) solution to the
frame problem, and a set of likelihood axioms, one for each
action symbol 10.

The following is a possible basic action theory for the
robot moving example
• the successor state axiom Σpost for fluent h as:

□[a]h = v ≡∃x, yc.a = fwd(x, yc) ∧ v = h− y

∨ ∀x, yc.a ̸= fwd(x, yc) ∧ v = h

That is, the robot’s new location is always determined by
the actual outcome yc of the action fwd(x, yc);
• the likelihood axioms Σl for stochastic action fwd(x, yc)

and noisy sensing sonar(x)

□l(fwd(x, yc)) = N (yc;x, 1)

□l(sonar(x)) = N (x;h, 0.25)

Namely, always, the likelihood of fwd(x, yc) is given by
a Gaussian density for the outcome yc centered on the in-
tended value x with a spread of 1. Likewise, the sensing
model is given by a Gaussian density for the value read x
centered on the true value h (the fluent that it is measuring)
with a spread of 0.25. Let Σdyn = Σpost ∪ Σl and Σ be as:

∀x.B(h ≤ x : U(x; 10, 11)) ∧KΣdyn

then Σ entails the following:

• [fwd(2, 2.1)]B(h ≤ 9: 0.6844)

Intuitively, when the robot intends to forward 2 units, even
if nature selects 2.1 as an outcome, the robot has no obser-
vation of this and considers fwd(2, yc) possible for all yc
with yc distributed as N (yc; 2, 1). The posterior of h ≤ 9
amounts to the product of the prior of h and the probability
of yc subject to h − y ≤ 9, this is because Σpost says the
locations after action fwd(x, yc) is given by h− yc where h
is the initial location. Hence the posterior amounts to∫

R

∫
R

({
N (y; 2, 1) ψ

0 otherwise

)
dycdx = 0.6844 (3)

here ψ is the conjunction of three conditions: 1) h = x;
2) x ∈ [10, 11] since h distributes uniformly in [10,11]; 3)
x − 9 ≤ yc. Hence, Σ |= [fwd(2, 2.1)]B(h ≤ 9: 0.6844).
Formally,

Proof. Suppose e |= Σ. For all µ ∈ e. By definition,
Zh≤9
µ,w,fwd(2,2.1) = {z′|z′ ∼ fwd(2, 2.1), w, z′ |= h ≤

9)} = {a′|∃yc.a′ = fwd(2, yc), ∥h∥⟨⟩w − yc ≤ 9}.
Hence RZh≤9 = {yc | ∥h∥⟨⟩w − 9 ≤ yc}. By Def. of νw+

l∗ ,

νw+
l∗ (Zh≤9) =

∫
yc∈R

Zh≤9

l∗(w, fwd(2, yc))dyc

=

∫
R

({
N (yc; 2, 1) ∥h∥⟨⟩w − yc ≤ 9

0 otherwise

)
dyc.

10For simplicity, we do not include precondition axioms for ac-
tions and assume all actions are executable yet the usual “impossi-
ble actions” will have a zero likelihood.
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h(0)

h(1)

h(2)

· · ·

h(0)

h(1)

h(2)

· · ·

add(4)

Figure 3: Infinitely many random variables h(x).

Consequently
∫
w
νw+
l∗ (Zh≤9)dµ amounts to∫

w

∫
R

({
N (yc; 2, 1) ∥h∥⟨⟩w − yc ≤ 9

0 otherwise

)
dycdµ (4)

which is essentially the same as Eq.(3) and equal to 0.6844.
(we omit the proof for space reasons) The same result holds
for νw−

l∗ , hence, e |= [fwd(2, 2.1)]B(h ≤ 11: 0.6844).

• [fwd(2, 2.1) · sonar(8)]B(h ≤ 9: 0.9778)

After the sonar reads a value less than 9, i.e. sonar(8),
the robot’s belief of being less than 9 is enhanced. After the
action sequence fwd(2, 2.1) · sonar(8), the robot considers
the set of sequences fwd(2, yc) · sonar(8) possible for all
yc. Moreover, the likelihood of such a sequence is given by
N (yc; 2, 1)×N (8;h, 0.25), the posterior of h ≤ 9 is∫

R

∫
R

({
N (yc; 2, 1)N (8;h, 0.25) ψ′

0 otherwise

)
dycdx

(5)
where ψ′ is the conjunction of: 1) x = h + yc; 2) x ∈
[10, 11]; 3) x− 9 ≤ yc. Condition 1) is because h here rep-
resents the location after the sequence fwd(2, yc)·sonar(8),
hence, its initial values would be h+ yc as sensing does not
change the world. After normalized by η (η can be calcu-
lated in the same way without Condition 3) ), the result is
0.9778. Thus, Σ |= [fwd(2, 2.1)]B(h ≤ 9: 0.9778).

4.3 Beyond Nullary Fluent
Another appealing point of our logic is that when it comes
to expressing degrees of belief, fluents do not have to be
nullary, which goes beyond previous proposals such as BHL,
DS , and XS and their variants.

As a concrete example, imagine there are infinitely many
random variables h(x) with x ∈ N≥0 distributed uniformly
among the interval [x, x + 1] which looks like an infinite
ladder in Fig. 3. Supposing deterministic action increase(b)
will increase the values of h(x) by b, then h(x) should be
distributed uniformly among the interval [x + b, x + b + 1]
after the action increase(b). Formally,
Example 1. let Σdyn be as:
□[a]h(x) = v ≡ ∃x′.a = increase(x′) ∧ v = h(x) + x′

∨ ∀x′.a ̸= increase(x′) ∧ v = h(x)

□l(increase(x′)) = 1. Then, we have that

• |= ∀x, y.B(h(x) ≤ y : U(y, x, x+ 1)) ∧KΣdyn

⊃ [increase(4)]∀x, y.B(h(x) ≤ y : U(y, x+ 4, x+ 5))

We comment that the result does not have to limit to uni-
form distributions and deterministic actions. A more com-
plex example could be as follows: suppose there are in-
finitely many boxes and each has infinitely many balls, yet

the number of balls numOfBall(x) (x ∈ N≥0) is dis-
tributed as Poisson with an expectation of 6. Now the robot
observes some balls are added to the boxes. It cannot tell
the exact number of balls that are added to each box, yet the
number of new balls for each box is another Poisson distri-
bution with an expectation of 3. As a result, the robot would
believe that numOfBall(x) is distributed as Poisson with
an expectation of 9. This can be formulated as:
Example 2. let Σdyn be as:
□[a]numOfBall(x) = v ≡ ∃y.a = add(y) ∧ v =

numOfBall(x) + y ∨ ∀y.a ̸= add(y) ∧ v = h(x)

□l(add(y)) =

{
3ye−3/y! y ∈ N≥0

0 otherwise
Then we have:

• |= ∀x, y.B(h(x) = y : 6ye−6/y!) ∧KΣdyn

⊃ [add(4)]∀x, y.B(h(x) = y : 9ye−9/y!)

To sum up, our logic is capable of capturing interesting re-
sults such as the sum of two Poisson is another Poisson, the
sum of two Gaussian is another Gaussian, and the product
of two log-norms is another log-norm, making it extremely
expressive.

5 Related Work & Conclusion
We have reviewed the most related work in the introduction.
PS could be viewed as a continuous extension to DS and a
dynamic extension to OBLc. Less relevantly, the axiomatic
approach BL (Belle and Levesque 2013; Belle and Levesque
2018) can also express degrees of belief in a dynamic setting
(yet only for the nullary fragments). Recently, the BL frame-
work is recast into the modal logic XS (Belle 2023). BL is
inspired by the well-known work BHL (Bacchus, Halpern,
and Levesque 1999) which integrates previous work in rea-
soning about knowledge and probability (Nilsson 1986;
Bacchus 1989; Halpern 1990).

There are also works on limited forms of probabilistic
logic (see (Belle and Levesque 2018) for a discussion),
such as Bayesian networks (Pearl 1988), relational graph-
ical models (De Raedt, Kimmig, and Toivonen 2007), and
probabilistic databases (Suciu et al. 2011). They emphasize
more on the reasoning side (limiting expressiveness to ob-
tain tractability in reasoning) while our work focuses more
on the representation side.

In conclusion, we propose the logic PS , a modal logic
of (continuous) degree of belief and actions. Our logic is
rich in expressiveness as specifying believing arbitrary first-
order formulas is possible. Our logic also has reasonable
properties.

For future work, developing an account for progression
is promising (Liu and Feng 2021). Moreover, investigat-
ing fragments where reasoning is tractable is also possible.
Besides, it is interesting to see how the logic fits in the con-
text of epistemic programming (Belle and Levesque 2015;
Liu and Lakemeyer 2022).
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Suciu, D.; Olteanu, D.; Ré, C.; and Koch, C. 2011. Prob-
abilistic databases. Synthesis lectures on data management
3(2):1–180.
Thielscher, M. 2001. Planning with noisy actions (pre-
liminary report). In AI 2001: Advances in Artificial Intel-
ligence: 14th Australian Joint Conference on Artificial In-
telligence Adelaide, Australia, December 10–14, 2001 Pro-
ceedings 14, 495–506. Springer.
Turing, A. 1936. On computable numbers, with an applica-
tion to the entscheidungsproblem. J. of Math 58:345–363.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

460


	Introduction
	 The Logic DSc
	The Language
	The Semantics

	Properties
	Additivity and Equivalence
	Knowledge
	Only-Believing

	Reasoning about Actions and Beliefs
	Expressing Belief Distributions
	Basic Action Theories
	Beyond Nullary Fluent

	Related Work & Conclusion

