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Abstract

SharpSAT-TD is a recently published exact model counter
that performed exceptionally well in the recent editions of the
Model Counting Competition (https://mccompetition.org/).
Notably, it also features weighted model counting capabil-
ities over commutative semirings. In this work, we show
how to exploit this fact to use SharpSAT-TD as a knowl-
edge compiler to the class of sd-DNNF circuits. Our experi-
mental evaluation shows that the efficiency of SharpSAT-TD
for (weighted) model counting transfers to knowledge com-
pilation since it outperforms other state of the art knowledge
compilers on standard benchmark sets. In addition, we gen-
eralized SharpSAT-TD’s preprocessing to support arbitrary
semirings and consider the utility of auxiliary variables in this
setting.

1 Introduction
The idea behind knowledge compilation is to transform a
logical formula ϕ into a more efficient representation C such
that (i) ϕ is equivalent to C and (ii) we can perform a task
that is intractable on ϕ instead tractably on C (Darwiche
and Marquis 2002). A typical such representation are (s)d-
DNNF circuits, which are successfully applied in a man-
ifold of applications, ranging from probabilistic inference
for Bayesian networks (Chavira and Darwiche 2008; Bart
et al. 2016; Van den Broeck and Suciu 2017) or probabilis-
tic logic programs (De Raedt, Kimmig, and Toivonen 2007;
Eiter, Hecher, and Kiesel 2021; Riguzzi and Swift 2011) to
QBF-solving (Capelli and Mengel 2019), model enumera-
tion in database theory (Amarilli et al. 2017), and uniform
sampling (Sharma et al. 2018), to name only a few of them.

However, while powerful if possible, knowledge compila-
tion is well-known to be a highly costly problem (Amarilli et
al. 2020; Beame and Liew 2015). Thus, many of the appli-
cation areas are limited by the performance of compilation.

In this work, we aim to push the limits of knowledge com-
pilation by enabling the use of SharpSAT-TD (Korhonen and
Järvisalo 2021) as a knowledge compiler. SharpSAT-TD
is a recent exact model counter for propositional formulas
that performed exceptionally well in the latest model count-
ing competitions,1 achieving first place in 2021 and second
place in 2022 on the exact counting track. Additionally, the

1https://mccompetition.org/

winning submission in 2022 was also based on SharpSAT-
TD but used a different preprocessor.

It is well-known that compilation to (s)d-DNNF is pos-
sible by recording the trace of DPLL-based model coun-
ters (Huang and Darwiche 2005). SharpSAT-TD falls into
this category of solvers, meaning we can transform it into
a knowledge compiler in principle. Even further than that,
SharpSAT-TD’s well-thought-out design allows not only
model counting and weighted model counting but also alge-
braic model counting (AMC), i.e., weighted model counting
over any semiring. This gives us the possibility to perform
compilation with SharpSAT-TD via a knowledge compila-
tion semiring similar to that of Kimmig, Van den Broeck,
and De Raedt (2017). Importantly, this means that we can
leave the underlying algorithmic details of SharpSAT-TD
untouched and perform knowledge compilation by record-
ing its trace using an appropriate semiring.

Apart from that, we consider two minor but useful tech-
niques. First, we allow a subset X of the variables in a given
formula ϕ to be projected off during compilation, mean-
ing that the resulting circuit is equivalent to ∃Xϕ instead
of ϕ. Oztok and Darwiche (2017) showed that this tech-
nique could be used to speed up compilation to DNNF, a
tractable circuit class with weaker requirements than sd-
DNNF. Moreover, we show that if these variables are de-
fined, i.e., functionally determined by the other variables in
ϕ, we even obtain an sd-DNNF when applying this tech-
nique.2 This can lead to smaller circuits if the variables in
X are irrelevant, e.g., if they were only used as auxiliary
variables to encode a logical formula into CNF. Notably,
in probabilistic logic programming, the number of auxiliary
variables often vastly exceeds the number of relevant vari-
ables (Fierens et al. 2015), which opens up a promising ap-
plication perspective.

Second, we extend the preprocessor of SharpSAT-
TD with specific focus on the weighted model count-
ing/compilation setting. Mostly, we focus on SharpSAT-
TD’s approach for variable elimination here. While we can
only use it in a limited manner in this general setting, it may
help nevertheless in special cases.

Summarizing, our main contributions are the following:

• We provide a knowledge compilation version of

2In general, the result is only guaranteed to be a DNNF.
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SharpSAT-TD. Interestingly, our proof of correctness
shows that we can perform knowledge compilation using
any AMC solver that performs the same steps indepen-
dently of the semiring and weights.

• Our empirical evaluation shows that the performance of
SharpSAT-TD transfers from model counting to knowl-
edge compilation, solving more instances than c2d (Dar-
wiche 2004) and d4 (Lagniez and Marquis 2017), two
state of the art knowledge compilers.

• Additionally, we allow variables to be projected away dur-
ing compilation, leading to smaller circuits and an inter-
esting use case in DNNF compilation.

• Our changes to SharpSAT-TD’s preprocessing generalize
it to weighted model counting over arbitrary semirings.

By combining a variety of results and ideas from other
works (Korhonen and Järvisalo 2021; Oztok and Darwiche
2017; Ritter 2022; Kimmig, Van den Broeck, and De Raedt
2017; Huang and Darwiche 2005), we can present a knowl-
edge compilation version of SharpSAT-TD that is not only
faster than current state of the art compilers but also comes
with additional interesting features for some settings.

In the rest of the paper, we first introduce preliminaries
in Section 2 before we introduce our approach to knowl-
edge compilation with SharpSAT-TD in Section 3. Next, we
discuss in Sections 4 and 5 two additional features regard-
ing the existential quantification of variables during compi-
lation and our modifications to SharpSAT-TD’s preprocess-
ing. Then, in Section 6 we provide an empirical evaluation,
where we compare to other knowledge compilers and assess
the effect of the additional advancements. We conclude in
Section 7.

2 Preliminaries
We briefly introduce propositional logic, tractable cir-
cuit classes, and semirings and refer the interested reader
to (Biere et al. 2021; Darwiche and Marquis 2002; Kimmig,
Van den Broeck, and De Raedt 2017) for more details.

We use propositional formulas in Conjunctive Normal
Form (CNF). A CNF C, defined for a set V of variables,
is a finite conjunction of clauses Ci, where each clause con-
sists of a finite disjunction of literals ℓ ∈ {v,¬v} for some
v ∈ V . For simplicity, we use the convention that ¬¬v = v.

We represent truth assignments as a subset of I ⊆ V .
Here, if v ∈ I, then the literal v is satisfied. Otherwise, the
literal ¬v is satisfied. As usual, a clause is satisfied by I if
one of its literals is satisfied, and a CNF is satisfied if all of
its clauses are satisfied. We call an assignment that satisfies
a CNF a model.

Additionally, we consider tractable circuit classes based
on special negation normal forms (NNFs). An NNF (Dar-
wiche 2004) is a rooted directed acyclic graph in which each
leaf node is labeled with a literal, true, or false, and each in-
ternal node is labeled with a conjunction ∧ or disjunction ∨.
For any node n in an NNF graph, Vars(n) denotes all vari-
ables in the subgraph rooted at n. By abuse of notation, we
use n also to refer to the formula represented by the graph
n. Then sd-DNNFs are NNFs that satisfy the following ad-
ditional properties:

∨
∧

a ∨
∧

b ∨
c ¬c

∧

¬b c

∧
¬a ¬b ¬c

Figure 1: An sd-DNNF nrun over the variables {a, b, c}.

Decomposability (D): Vars(ni) ∩ Vars(nj) = ∅ for any
two children ni and nj of an and-node.

Determinism (d): ni ∧ nj is logically inconsistent for any
two children ni and nj of an or-node.

Smoothness (s): Vars(ni) = Vars(nj) for any two chil-
dren ni and nj of an or-node.

Accordingly, a DNNF is an NNF that satisfies decompos-
ability.

Example 1 (Running). Consider the CNF Crun = {¬a ∨
b ∨ c, a ∨ ¬b, a ∨ ¬c}. The sd-DNNF shown in Figure 1 is
equivalent to C, since both model that a holds iff b∨ c holds.

We want to enable compilation of CNF to sd-DNNF by
exploiting SharpSAT-TD’s capabilities of weighted model
counting over semirings, where algebraic expressions are
evaluated. Recall that semirings are as follows:

Definition 1 (Semiring). A commutative semiring S =
(S,⊕,⊗, e⊕, e⊗) is an algebraic structure with binary in-
fix operations ⊕,⊗ such that

1. ⊕ and ⊗ are associative,
2. ⊕ and ⊗ are commutative,
3. ⊗ right and left distributes over ⊕,
4. e⊕ (resp. e⊗) is a neutral element for ⊕ (resp. ⊗), and
5. e⊕ annihilates S, i.e., ∀s ∈ S : s⊗e⊕ = e⊕ = e⊕⊗s.

Examples of well-known commutative semirings are

• F = (F,+, ·, 0, 1), where F ∈ {N,Z,Q,R}, the semiring
over the numbers in F with addition and multiplication,

• P = ([0, 1],+, ·, 0, 1), the probability semiring,

• Smax,+ = (R ∪ {−∞},max,+,−∞, 0), the max-plus
semiring.

3 Knowledge Compilation with
SharpSAT-TD

Our main aim is to enable knowledge compilation of CNFs
to sd-DNNF with SharpSAT-TD. It is a well-known result
by Huang and Darwiche (2005) that this is possible since
SharpSAT-TD is based on DPLL (combined with clause
learning, component analysis, and caching). The idea here
is that we can record SharpSAT-TD’s trace, i.e., the way that
the solver traverses the search tree, in such a way that the
resulting recording corresponds to a d-DNNF. While we im-
plicitly use this idea, we can obtain the same result in a much
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simpler manner by making use of SharpSAT-TD’s capabili-
ties for weighted model counting over semirings, a.k.a. Al-
gebraic Model Counting (AMC):
Definition 2 (AMC (Kimmig, Van den Broeck, and
De Raedt 2017)). A triple A = (C,S, α), where C is a CNF
over variables V , S is a commutative semiring, and α is a
labeling function that assigns every literal ℓ from V a weight
α(ℓ) in S , is called an Algebraic Model Counting (AMC) in-
stance. Solving A is to compute

AMC (A) =
⊕

I⊆V,I|=C
⊗

v∈Iα(v)⊗
⊗

v∈V \Iα(¬v).

If S = N and α(ℓ) = 1 for all literals ℓ, then AMC corre-
sponds to counting the models of the CNF C. If S = Smax,+,
then AMC corresponds to maximum satisfiability, i.e., find-
ing the optimal weight of any model of C. Similarly, typi-
cal weighted model counting uses S = R, with an arbitrary
labeling function α. In the special case of probabilistic rea-
soning, the labels can be used for probabilities α(ℓ) ∈ [0, 1].

We define a knowledge compilation semiring similar to
the ones of (Kimmig, Van den Broeck, and De Raedt 2017).
Definition 3 (Knowledge Compilation Semiring). Let V be
a finite set of propositional variables. Then KC(V ) =
(NNF (V ),∨,∧,⊥,⊤) is the knowledge compilation semir-
ing over V , where, NNF (V ) is the set of NNF circuits over
the variables in V , and for n1, n2 ∈ NNF (V ) we let

n1 ∨ n2 =

{
n1 if n2 = ⊥
n2 if n1 = ⊥

n1 ∨ n2 otherwise

and

n1 ∧ n2 =

{
n1 if n2 = ⊤
n2 if n1 = ⊤

n1 ∧ n2 otherwise

where the “otherwise” case means the NNF obtained by
adding a new root node n with label ∨ (resp. ∧) and chil-
dren n1, n2. The symbols ⊥ and ⊤ correspond to NNF with
a single leaf node labeled with false and true, respectively.

The equality n1 = n2 holds iff n1 and n2 are logically
equivalent.

Clearly, if we used syntactic instead of semantic equality,
KC(V ) would not be a semiring since already n1 ∨ n2 is
unequal to n2 ∨ n1 syntactically.
Corollary 4. For each set of variables, V , KC(V ) is a com-
mutative semiring.

We see that the idea behind the knowledge compila-
tion semiring is simple: if we use it with SharpSAT-TD,
then whenever an addition/multiplication is performed, we
record a new internal node that represents the disjunc-
tion/conjunction of the inputs. Thus, in order to com-
pile a CNF C over variables V to an sd-DNNF n, we
use SharpSAT-TD to solve the AMC instance KC(C) =
(C,KC(V ), αV ), where αV (ℓ) = ℓ for each literal ℓ.
Example 2 (cont’d.). For Crun = {¬a ∨ b ∨ c, a ∨
¬b, a ∨ ¬c}, we consider how a standard DPLL-based al-
gorithm for AMC would solve KC(Crun). We can compute
AMC (KC(Crun)) as the sum (using the addition ∨ from

Algorithm 1 EVAL(A,n)

Input An NNF n and an AMC instance A = (C,S, α).
1: switch n do
2: case ℓ: return α(ℓ)

3: case n1 ∨ n2: return EVAL(A,n1)⊕EVAL(A,n2)

4: case n1 ∧ n2: return EVAL(A,n1)⊗EVAL(A,n2)

5: case ⊥: return e⊕
6: case ⊤: return e⊗

the semiring) of the solutions given that a is true and false,
respectively:

AMC (KC(Crun ∪ {a})) ∨AMC (KC(Crun ∪ {¬a}))
= (a ∧AMC (KC({b ∨ c}))) ∨ (¬a ∧ ¬b ∧ ¬c))

If a is false, then b and c must also be false. In particular, the
second line results from unit propagation. Thus, we obtain
¬a∧¬b∧¬c here. Compare this to the sd-DNNF in Figure 1.
Here, we also have two branches, one where a is true and
b∨ c holds and one where ¬a∧¬v ∧¬c holds. If we further
evaluate AMC (KC({b∨c}))) in this manner, we can obtain
the same sd-DNNF as in the figure.

Consider the following procedure EVAL(A,n).
If we take the syntactic result n = AMC (KC(C)) pro-

duced by SharpSAT-TD and compute EVAL(A,n) for an
arbitrary AMC instance A, then we perform the exact ad-
ditions/multiplications that SharpSAT-TD would have per-
formed in the first place had we solved A instead of KC(C).
Since SharpSAT-TD is correct, EVAL(A,n) = AMC(A).3

Interestingly, this already suffices to prove that the syn-
tactic result of AMC (KC(C)) is an sd-DNNF.
Theorem 5. Suppose n is an NNF such that
• n is logically equivalent to a CNF C and
• n contains no leaf nodes labeled false or true.
Then the following are equivalent:

(i) n is an sd-DNNF
(ii) for every AMC instance A = (C,S, α) it holds that

EVAL(A,n) = AMC (A),
(iii) for every AMC instance A = (C,R, α) it holds that

EVAL(A,n) = AMC (A),
Note that due to the definition of ∨ and ∧, the syntac-

tic result of AMC (KC(C)) (a) contains a leaf node labeled
false iff C is contradictory, and then AMC (KC(C)) = ⊥,
and (b) contains a leaf node labeled true iff C is the empty
set of clauses over the empty set of variables, and then
AMC (KC(C)) = ⊤. Thus, either AMC (KC(C)) is a triv-
ial NNF, or it does not contain leaf nodes labeled false or
true, and we can apply the theorem to obtain that it is an
sd-DNNF.

Proof of Theorem 5. (i) to (ii) is known (Kimmig, Van den
Broeck, and De Raedt 2017, Theorem 2).

(ii) to (iii) is trivially true.
3Note that it is important n is the syntactic result rather than

another NNF, since already C is semantically equivalent to n.
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Figure 2: One step of treeification on n′.

For (iii) to (i), we proceed as follows. First, we “treeify”
n, that is, we replace every node n′ of n that has multiple
incoming arcs by one copy n′

i for each arc (ni, n
′), add the

arc (ni, n
′
i) and keep the children of n′ as children for n′

i.
We do this exhaustively until the resulting NNF ntree is a
(directed) tree. Note that EVAL(A,n) = EVAL(A,ntree).

Second, we exhaustively apply the distributive law replac-
ing nodes of the form (n1 ∨ n2)∧ n3 (resp. n3 ∧ (n1 ∨ n2))
by (n1 ∧n3)∨ (n2 ∧n3) (resp. (n3 ∧n1)∨ (n3 ∧n1)). This
leads to an NNF of the form

nmods =
∨m

i=1

∧oi
j=1 ℓi,j ,

where ℓi,j are literals over the variables of the CNF C,
since all leaves must be labelled by a literal. Again,
EVAL(A,n) = EVAL(A,nmods) holds since R is a semir-
ing and thus satisfies the distributive law.

Note that this expression is of the same form as the origi-
nal definition of AMC (A), i.e.,⊕

I⊆V,I|=C
⊗

v∈Iα(v)⊗
⊗

v∈V \Iα(¬v).

Note that computing EVAL(A,R, α) corresponds to re-
placing ℓi,j by α(ℓi,j),

∨
by

∑
, and

∧
by

∏
, and evaluat-

ing the resulting expression. That is, both the definition of
AMC (A) and nmods can be seen as a polynomial in multi-
ple variables over R that have a unique representation as a
sum of monomials

α(v1)
k1 · · · · ·α(v|V |)

k|V | ·α(¬v1)k1+|V | · · · · ·α(¬v|V |)
k2|V | .

Since the polynomials are equal, they have the same mono-
mials, which implies the following:

1. Every monomial occurs at most once in nmods.
2. Every monomial of nmods has either a factor v or ¬v for

every v ∈ V .
3. The exponents ki of every factor in every monomial of

nmods are either zero or one.

Thus, n must be an sd-DNNF since 1., 2., and 3. correspond
to (d), (s), and (D), exactly:

• If there is an internal node n1 ∨ n2 such that n1 ∧ n2 are
logically consistent, there is (under the assumption that 2.
holds) a duplicate monomial, contradicting 1.

• If there is an internal node n1 ∨n2 such that V ars(n1) ̸=
V ars(n2), there are (under the assumption that 3. holds)
two monomials with a different set of variables mentioned
in it, contradicting 2.

• If there is an internal node n1 ∧ n2 such that V ars(n1) ∩
V ars(n2) ̸= ∅, there is (under the assumption that 2.
holds) a factor with exponent ≥ 2, contradicting 3.

Note that this result implies two interesting facts for AMC
solvers that are “algebraically agnostic”, i.e., whose evalu-
ation strategy does not depend on the given semiring and
labeling function. First, we see that any such solver can be
modified to compile sd-DNNFs, and second, it follows that
its runtime is at least the size of the smallest sd-DNNF for
the CNF of the AMC instance. This means that to achieve
better efficiency than would be possible with knowledge
compilation, solvers must somehow exploit the semiring and
labeling function of the instance.

3.1 Implementation
We saw that we can produce an sd-DNNF for a CNF C by
recording a new ∧ node whenever a multiplication is per-
formed and by recording a new ∨ node whenever an addi-
tion is performed. In our implementation, we do exactly
this apart from one minor specialization. Namely, when
SharpSAT-TD takes a decision that sets a literal ℓ to true
and derives ℓ1, . . . , ℓn by unit propagation, then we do not
create n new ∧ nodes with two children each but create only
one ∧ node with the n+ 1 children ℓ, ℓ1, . . . , ℓn. This leads
to smaller sd-DNNFs and does not seem to impact perfor-
mance negatively.

To produce the file containing the final sd-DNNF, we offer
two options. Either (a) we immediately write the recorded
nodes to the file, or (b) we keep the recording and write
the whole sd-DNNF after compilation. Option (a) can lead
to performance drops due to the heavy use of blocking I/O
operations but comes with a lower memory footprint since
we do not need to keep a representation of the sd-DNNF in
memory. Accordingly, option (b) requires more memory but
does not suffer more than necessary from I/O limitations. In
our experience, when running one instance of SharpSAT-TD
on a machine with a solid-state disk, there is no noticeable
difference in performance between the two methods. How-
ever, in a benchmarking setting, where we run multiple in-
stances simultaneously on one machine, there is a notable
performance drop when using option (a).

4 Utilizing Existentially Quantified Variables
In this section, we consider and extend upon an idea by Oz-
tok and Darwiche (2017). They showed that there are logical
formulas ϕ over propositional variables V such that (i) it is
impossible to construct a CNF C over V such that current
knowledge compilers can compile a d-DNNF based on C
that is equivalent to ϕ and (ii) they showed that it is possible
to construct a CNF C′ over V ∪X such that current knowl-
edge compilers can compile a d-DNNF n based on C′ such
that ∃Xn is equivalent to ϕ.

On the one hand, this is very convenient since comput-
ing ∃Xn for a d-DNNF n is possible in linear time in n by
simply replacing every literal label v,¬v such that v ∈ X
by the label true. We denote the result of this procedure
by EXISTS(n,X). On the other hand, it is well-known that
EXISTS(n,X) is only guaranteed to be a DNNF in general.

Example 3 (cont’d.). Recall the sd-DNNF nrun in Figure 1.
We consider EXISTS(nrun, {b}) and observe that the partial
evaluation and simplification of (b ∧ (c ∨ ¬c)) ∨ (¬b ∧ c)
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results in (c∨¬c)∨c. Since the conjunction of the disjuncts is
not a contradiction, EXISTS(nrun, {b}) is not deterministic.

Thus, it may initially seem like we can only apply this
strategy to speed up DNNF compilation. However, we can
show that we can use the same strategy to speed up sd-
DNNF compilation, if we can ensure that the variables that
are existentially quantified are defined in terms of the re-
maining variables.

Definition 6 (Definability (Lagniez, Lonca, and Marquis
2016)). A variable x is defined by a set of variables V with
respect to a CNF C over variables V ∪X if for every assign-
ment I of V it holds that the variable v is either included in
every model I ′ of C such that V ∩I ′ = I or in none of them.

Intuitively, this means that the truth of a defined variable
x is functionally determined by the variables in V in every
model of a CNF.

Using definability, we obtain the following result:

Lemma 7. Let C be a CNF over variables V ∪ X such
that every variable x ∈ X is defined by V with respect to
C and let n be an sd-DNNF that is equivalent to C. Then
EXISTS(n,X) is an sd-DNNF that is equivalent to ∃XC.

Decomposability of EXISTS(n,X) and equivalence to
∃XC are known (Oztok and Darwiche 2017). Also smooth-
ness is not hard to prove, since for all NNFs n, n′ it
holds that V ars(n) = V ars(n′) implies V ars(n) \ X =
V ars(n′) \X . However, the fact that EXISTS(n,X) is de-
terministic is, to the best of our knowledge, new.

Proof (Sketch). We use that if a variable x is defined in
terms of V and C, then the sets {I ∩ V | I |= C, x ∈ I}
and {I ∩ V | I |= C, x ̸∈ I} are disjoint. Thus, if for
an or-node n1 ∨ n1 the conjunction n1 ∧ n2 is logically in-
consistent due to different values of x, then the conjunction
EXISTS(n1, {x}) ∧ EXISTS(n2, {x}) must still be logically
inconsistent.

It follows that determinism still holds for EXISTS(n,X).

4.1 Applications
This shows that it is, in principle, possible to use auxiliary
variables in a CNF in order to speed up compilation while
maintaining the ability to obtain a d-DNNF from the com-
pilation result by applying EXISTS(.). However, this is not
only of theoretical interest. In fact, it is well-known that
there are propositional formulas ϕ such that every CNF C
over the same variables has exponential size in ϕ. The stan-
dard Tseitin transformation (Biere et al. 2021, Chapter 2)
avoids this by adding auxiliary variables that represent the
truth of subformulas, meaning they are defined.

Another less obvious example are the works of (Hecher
2022; Eiter, Hecher, and Kiesel 2021) that consider transla-
tions of (probabilistic) logic programs to CNF that use aux-
iliary variables to ensure low treewidth of the CNF. Since
low treewidth is known to lead to efficient knowledge com-
pilation (Darwiche 2004; Korhonen and Järvisalo 2021), this
immediately provides a use case for the existential quantifi-
cation of auxiliary variables. Namely, it allows us to compile

DNNFs (resp. d-DNNFs) for logic programs using (Hecher
2022) (resp. (Eiter, Hecher, and Kiesel 2021)).

The resulting d-DNNFs can not only be simplified to
smaller ones than those containing the original variables but
are also of interest because they represent the original logi-
cal theory in the true sense as they only refer to the original
variables.

4.2 Implementation
In our implementation, we do not first compile an sd-DNNF
and apply EXISTS(.) afterwards. Instead, we can revisit
the definition of the AMC instance KC(C) that we use to
compile C. Here, if we aim to existentially quantify the
variables in the set X and compile a CNF C over vari-
ables V , we instead use the AMC instance KC(C, X) =
(C,KC(V \X), αV \X), where KC(V \X) is as before and
for a literal ℓ over V the label αV \X(ℓ) = ℓ, if ℓ = v,¬v for
v ∈ V \X and αV \X(ℓ) = ⊤, otherwise.

5 Semiring-enabled Preprocessing
Our last but not least addition to SharpSAT-TD concerns its
preprocessing. The general idea of preprocessing is to mod-
ify the input CNF so that it is easier to solve afterwards but
leads to the same result.

Here, SharpSAT-TD uses five main techniques interleaved
with regular unit propagation and clause subsumption:

1. Failed Literal Probing (Lynce and Silva 2003),
2. Vivification (Piette, Hamadi, and Sais 2008),
3. Sparsification, i.e., removal of entailed clauses,
4. Equivalent Literal Substitution (Bacchus 2002), and
5. Variable Elimination (Lagniez, Lonca, and Marquis

2016).
Techniques 1. to 3. are applicable in the general setting of
weighted model counting over semirings, and Korhonen and
Järvisalo modified 4. in such a manner that the same holds.
However, 5. only applies to the unweighted case without
changing the result.

We leave 1. to 3. as they are and consider changes to 4.
and 5.

5.1 Changes to Equivalent Literal Substitution
The idea behind here is the following: if there are two vari-
ables v1, v2 ∈ V in a CNF C over V such that for one of the
literals ℓ = v2,¬v2 it holds that for every model I of C we
have v1 ∈ I iff ℓ ∈ I, then we can replace every occurrence
of v1 in C by ℓ and every occurrence of ¬v1 in C by ¬ℓ.

The resulting CNF C[v1 ← ℓ] over V \ {v1} has the same
number of models and can be easier to solve.4 However,
when we perform weighted model counting, this standard
strategy usually leads to a different result since we lose the
information about the weight of the removed variable v1.

Therefore, Korhonen and Järvisalo do not use the CNF
C[v1 ← ℓ] over V \ {v1} but the CNF C[v1 ← ℓ] ∪ {v1 ∨

4To ensure easier solving, Korhonen and Järvisalo only apply
this technique to variables that occur together in some clause, as
this is guaranteed to prevent an increase of the treewidth.
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¬ℓ,¬v1 ∨ ℓ} over V . This ensures that (i) the information
that v1 and ℓ are equivalent is easily available to the solver
and (ii) the weighted model count remains unchanged re-
gardless of the semiring.

We slightly modify this approach by using preprocessing
in a weight-aware manner.
Lemma 8. Let A = (C,S, α) be an AMC instance, where
C is a CNF over V . If for v1, v2 ∈ V it holds that v1 is
equivalent to l ∈ {v2,¬v2}, then for A[v1 ← ℓ] = (C[v1 ←
ℓ], C, α[v1 ← ℓ]), where

α[v1 ← ℓ](ℓ∗) =

{
α(v1)⊗α(ℓ) if ℓ∗ = ℓ

α(¬v1)⊗α(¬ℓ) if ℓ∗ = ¬ℓ
α(ℓ∗) otherwise

it holds that AMC (A) = AMC (A[v1 ← ℓ]).
Thus, we can use the standard strategy for merging equiv-

alent variables, as long as we update the weights accord-
ingly.

We note that it would be unreasonable to expect a signif-
icant increase in the performance when using the weight-
updating variant of equivalent literal substitution instead of
SharpSAT-TD’s original variant. This is because the size
decrease of the CNF is very marginal. Reasoning does not
become easier since deciding an equivalent variable leads to
an assignment to the others by unit propagation, and also,
the number of avoided multiplications is low.

However, while this change is inconsequential for solving
performance, it has a positive effect when we use SharpSAT-
TD for knowledge compilation. Consider the AMC instance
KC(C)[v1 ← ℓ]. Here, the label of ℓ (resp. ¬ℓ) after sub-
stitution is v1 ∧ ℓ (resp. ¬v1 ∧ ¬ℓ). This reduces the size of
the compiled sd-DNNF by reusing internal nodes instead of
referring to the leaf nodes of all equivalent variables. Since
we compile smooth circuits, we can avoid one edge in every
branch of the circuit per equivalence.

5.2 Changes to Bounded Variable Elimination
Variable elimination is based on binary resolution.
Given two clauses C1 = {x, v1, . . . , vn} and C2 =
{¬x,w1, . . . , wm}, their resolvent (on x) is the clause C1⊙
C2 = {v1, . . . , vn, w1, . . . , wm}. Given a CNF C, we de-
note by Cℓ the set of clauses that contain ℓ. Then we can
define Cresx as the set of all resolvents on x given a CNF C
via

Cresx = {C1 ⊙ C2 | C1 ∈ Cx, C2 ∈ C¬x}
The general idea behind (bounded) variable elimination is

the following (Eén and Biere 2005): let v ∈ V be a variable
in a CNF C over V . If it is expected that solving ∃{v}C over
V \ {v} is easier than solving C, then we compute ∃{v}C as
C \(Cx∪C¬x)∪Cresx . A usual strategy to heuristically check
whether this makes solving easier is to bound the increase in
the number of (non-tautological) clauses that are added this
way.

While this is satisfiability preserving (Eén and Biere
2005), it is easy to see that, in general, it does not preserve
the number of models.
Example 4. The empty CNF C = ∅ over the set of variables
V = {v} has 2 models, while ∃{v}C only has one model.

However, Lagniez, Lonca, and Marquis showed that if a
variable v is defined by V with respect to a CNF C over
V ∪{v}, then C and ∃{v}C have the same number of models.
This insight enabled (bounded) variable elimination also for
model counting and was shown to lead to significant perfor-
mance improvements (Lagniez, Lonca, and Marquis 2016).

Thus, using variable elimination also for weighted model
counting would be desirable. Unfortunately, this is not gen-
erally possible even if the eliminated variable is defined.
Example 5 (cont’d.). Let A = (Crun,R, α) be an AMC in-
stance, where α(a) = 0.2, α(¬a) = 0.8, and α(ℓ) = 1, oth-
erwise. Then AMC (A) = 0.2 + 0.2 + 0.2 + 0.8 = 1.4. But
while a is defined by {b, c}with respect to C, there is no obvi-
ous way how we can modify the weight function α such that
for B = (∃{a}Crun,R, α) it holds that AMC (B) = 1.4.

We use the following modified conditions to perform a
variant of variable elimination that preserves the weighted
model count.
Lemma 9. Let A = (C,S, α) be an AMC instance over the
variables in V ∪ {x} such that
• x is defined by V with respect to C or α(x)⊕α(¬x) =
α(x) and

• α(x) = α(¬x).
Then for B = ({x}∪∃{x}C,S, α) it holds that AMC (A) =
AMC (B).

Here, we do not completely eliminate the variable x but
add it as a unit clause to ensure that its weight is included.

Proof. We consider the following three disjoint sets

Mb = {I ⊆ V | I ∪ {x} |= C and I |= C}
Mx = {I ⊆ V | I ∪ {x} |= C and I ̸|= C}

M¬x = {I ⊆ V | I ∪ {x} ̸|= C and I |= C}

Then, AMC (A) is equal to⊕
I⊆V ∪{x},I|=C

⊗
v∈Iα(v)⊗

⊗
v∈V ∪{x}\Iα(¬v)

= α(x)⊗
⊕

I∈Mx

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

⊕α(¬x)⊗
⊕

I∈M¬x

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

⊕(α(x)⊕α(¬x))⊗
⊕

I∈Mb

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

= α(x)⊗
⊕

I∈Mx

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

⊕α(x)⊗
⊕

I∈M¬x

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

⊕α(x)⊗
⊕

I∈Mb

⊗
v∈Iα(v)⊗

⊗
v∈V \Iα(¬v)

= α(x)⊗
⊕

I|=∃{x}C
⊗

v∈Iα(v)⊗
⊗

v∈V \Iα(¬v)

Here, the first equality holds by definition, the second since
α(x) = α(¬x) and (i) x is defined and Mb is empty or
(ii) α(x)⊕α(¬x) = α(x). The last equation holds be-
cause the set of models of ∃{x}C is the disjoint union of
Mb,Mx,M¬x.

Since the last expression equals AMC (B), we are done.

We see that when there are variables v such that their pos-
itive and negative literals have the same weight, we have
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a chance of applying variable elimination. Clearly, if the
weights of literals are chosen randomly, this is unlikely.
However, recall our discussion of existentially quantified
variables in Section 4. Here, we noted that many logical
formalisms require auxiliary and notably defined variables
to avoid an exponential size increase during the translation
to CNF/AMC, as in the case of Tseitin’s transformation. It
is well-known that in order to preserve the value of weighted
model counting, we need to assign these auxiliary variables
weight one for both the positive and negative literal.5

This insight opens up new possibilities to apply variable
elimination as a preprocessing in AMC. Notably, it even
means that if there are existentially quantified variables in a
knowledge compilation instance, we may always eliminate
them during preprocessing without changing the correctness
of the result. These variables x have α(x) = α(¬x) = ⊤
and thus satisfy α(x)⊕α(¬x) = ⊤ = α(x), regardless of
whether they are defined.

It is important to note that variable elimination is not al-
ways beneficial to solving performance. Recall, for example
that the aim of Tseitin transformation is precisely the oppo-
site, i.e., it adds auxiliary variables to ensure small CNF size
and consequently (likely) faster solving. In our implemen-
tation, we therefore only add the conditions of Lemma 9 to
allow for variable elimination in the general setting of AMC
but rely on SharpSAT-TD’s heuristic for choosing variables
to eliminate. Notably, this heuristic is guaranteed not to lead
to an increase in the treewidth.

6 Experimental Evaluation
Here, we evaluate the utility of using our modified version
of SharpSAT-TD for knowledge compilation.6 That is, we
aim to answer the following two questions:

Q1 How does knowledge compilation with SharpSAT-TD
compare to other state of the art knowledge compilers?

Q2 What is the impact of enabling variable elimination
for knowledge compilation with existentially quanti-
fied variables?

For Q1, we expect that the performance of SharpSAT-TD
transfers from (weighted) model counting, where it outper-
formed other knowledge compilation based solvers in recent
editions of the Model Counting Competition. Additionally,
it is interesting to see how large the circuits compiled with
SharpSAT-TD are compared to that of other solvers.

Regarding Q2, it is not clear whether the utility of variable
elimination for model counting transfers to knowledge com-
pilation with existentially quantified variables. In fact, elim-
inating too many variables may even be detrimental since, as
we discussed previously, these auxiliary variables may have
been added to make solving easier.

6.1 Setup
To answer our questions, we used the following setup.

5For knowledge compilation, the weight one is ⊤, correspond-
ing to existential quantification.

6Most data is online: github.com/raki123/KC-benchmarking.

Benchmark Platform We ran all solvers on a cluster con-
sisting of 12 nodes. Each of them is equipped with two Intel
Xeon E5-2650 CPUs of 2.2 GHz clock speed and access to
256 GB shared RAM under Ubuntu 16.04.1 LTS powered
on kernel 4.4.0-139 with no hyperthreading. Per instance,
we always use a memory limit of 32GB and a time limit of
1800 seconds on a single core.

Benchmark Instances We rely on two benchmark sets.
For Q1, we used a standard set of CNFs for knowledge com-
pilation7. For Q2, we need to associate a realistic subset of
existentially quantified variables with the CNF. Therefore,
we introduce a new set of benchmarks using two tools to
translate (probabilistic) logic programs to CNFs (Janhunen
and Niemelä 2011; Eiter, Hecher, and Kiesel 2021) on stan-
dard benchmarks from probabilistic logic programming. For
the resulting CNFs, we know (i) which of the variables are
auxiliary and can be existentially quantified and (ii) know
that the auxiliary variables are defined in terms of the re-
maining ones since the translations are (weighted) model
count preserving.

Solver Configurations In terms of knowledge compilers,
we use the following configurations:

• d4 (Lagniez and Marquis 2017), with default options
but minimal modifications to ensure the compilation of
smooth circuits in order to have a fair circuit size compar-
ison.8

• c2d (Darwiche 2004) version 2.20, with options “-
smooth all”, “-reduce”, “-cache size 32000”, and “-dt in
dtreefile” corresponding to smooth circuits, reduced size
circuits, 32 Gb cache size, and a custom dtree, respec-
tively. We generated the dtree from a tree decomposition
using Korhonen and Järvisalo’s methodology, which they
showed to improve the performance of c2d.

• The knowledge compilation-enabled version of
SharpSAT-TD, with options “-decot 10”, “-decow
10000”, and “-cs 16000” corresponding to 10 seconds of
time to generate a tree decomposition, a decomposition
weight of 10000 and a cache size of 16 Gb.9

On Q1, we ran all solvers and compared the time needed for
compilation as well as the size of the circuits. On Q2, we did
not use d4, since it does not allow for existential quantifica-
tion. Both SharpSAT-TD and c2d do, so we compared stan-
dard compilation and compilation with existentially quanti-
fied variables, with adapted variable elimination in the case
of SharpSAT-TD. For c2d, we replaced option “-smooth all”
with “-smooth” and added option “-exist existfile” to ensure
that the auxiliary variables are existentially quantified.

7https://www.cril.univ-artois.fr/KC/benchmarks.html without
the “Handmade” instances, which all contained empty clauses.

8The modifications are restricted to writing the circuit to file
and can be found at https://github.com/raki123/d4/

9The authors recommend specifying half the available memory.
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Figure 3a. Q1: Scatter plot comparing the number of edges in
the compiled sd-DNNFs produced by SharpSAT-TD and c2d.
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Figure 3b. Q1: Scatter plot comparing the number of edges in
the compiled sd-DNNFs produced by SharpSAT-TD and d4.
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Figure 3c. Q2: Runtime on all instances, for (∃)c2d and
(∃)SharpSAT-TD.
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Figure 3d. Q2: Runtime on instances encoded via Janhunen
and Niemelä (2011), for (∃)c2d and (∃)SharpSAT-TD.
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Figure 3e. Q2: Number of edges in sd-DNNFs produced by
∃SharpSAT-TD and ∃c2d.
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Figure 3f. Q2: Number of edges in sd-DNNFs produced by
∃SharpSAT-TD and SharpSAT-TD.
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Figure 4: Q1: Cactus plot showing the number of solved instances
after a given runtime for c2d, d4, and SharpSAT-TD. Only every
fifth point is marked.

6.2 Results
For the results, we assigned instances a runtime of 1800 sec-
onds, and a circuit size of 1010 edges if they did not finish
within the time or memory limit.

The results for Q1 are shown in Figures 4, 3a, and 3b.
In Figure 4, we see that SharpSAT-TD solves the most in-
stances (1727), followed by d4 (1656) and c2d (1483). This
is in line with the results of Lagniez and Marquis (2017)
and the performance of the respective solvers for (weighted)
model counting in the Model Counting Competitions.

Additionally, we compared the number of edges in the
sd-DNNF circuits produced by the different solvers. Fig-
ures 3a and 3b show similar behavior for d4 and c2d. While
there are also a lot of instances where the circuits pro-
duced by SharpSAT-TD are slightly larger, there are only
a few instances with significantly larger circuits. Addi-
tionally, there are many instances where compilation with
SharpSAT-TD leads to significantly smaller circuits. This
shows that SharpSAT-TD’s performance is not only based
on good engineering but also due to its tree decomposition-
guided heuristic for variable selection.

The results for Q2 are not as clear cut. In 3c, we see
the runtime comparison, where ∃SharpSAT-TD and ∃c2d
denote the runs of SharpSAT-TD and c2d with existentially
quantified variables. As expected (∃)SharpSAT-TD is faster
than ∃c2d. However, the benefit of ∃ is only moderate.
For ∃c2d, this is expected as it only affects the circuit size
that needs to be written to a file and smoothed. But for
∃SharpSAT-TD, it also enables variable elimination, which
can lead to performance improvements.

We took a closer look (see Figure 3d) and found that while
variable elimination does not have any effect on the CNFs
generated according to Eiter, Hecher, and Kiesel (2021),
it leads to a notable runtime decrease and more solved in-
stances on the CNFs generated according to Janhunen and
Niemelä (2011). This makes sense since the encoding of

Eiter, Hecher, and Kiesel (2021) adds auxiliary variables to
achieve low treewidth, whereas the encoding by Janhunen
and Niemelä (2011) adds auxiliary variables to achieve
small CNF sizes. Since SharpSAT-TD’s preprocessing aims
to eliminate variables in order to decrease the treewidth, it
is, therefore, likely to have more success on encodings that
are not optimized for low treewidth already. This shows that
while, unsurprisingly, variable elimination does not always
lead to improved performance, its utility at least partially
transfers to the setting of knowledge compilation with aux-
iliary variables.

Last but not least, we see in Figures 3e and 3f that, as
expected, the existential quantification of auxiliary variables
leads to smaller circuits. Interestingly, in this setting, the cir-
cuits produced by ∃c2d are often slightly smaller than those
produced by ∃SharpSAT-TD.

7 Conclusion
We showed how SharpSAT-TD can be used as a knowledge
compiler, integrated the use of existentially quantified vari-
ables, and adapted its preprocessor to enable its simplifica-
tion capabilities over general semirings and specifically to
make use of variable elimination for knowledge compilation
with existentially quantified variables.

Using SharpSAT-TD’s capabilities for algebraic model
counting significantly simplified our work but also led to an
interesting theoretical side result. Namely, it shows that (i)
we can use our strategy for knowledge compilation on any
algebraically agnostic AMC solver and (ii) the runtime of
any algebraically agnostic AMC solver is lower bounded by
sd-DNNF size.

In our experimental evaluation, we saw that the high per-
formance of SharpSAT-TD for (weighted) model counting
transfers to the knowledge compilation setting. Addition-
ally, it can often lead to smaller sd-DNNFs, although not in
all cases. While enabling SharpSAT-TD’s preprocessing for
knowledge compilation with existentially quantified vari-
ables does not always improve the performance, it also does
not decrease it. It can have a notable positive effect when
the encoding is not already optimized for low treewidth.

Thus, our changes to SharpSAT-TD provide the commu-
nity with a tool that is not only useful for efficient knowledge
compilation but also comes with additional features that can
improve the compilation performance for logical theories
that first need to be translated to CNF.
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