KR2023Proceedings of the 20th International Conference on Principles of Knowledge Representation and ReasoningProceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning

Rhodes, Greece. September 2-8, 2023.

Edited by

ISSN: 2334-1033
ISBN: 978-1-956792-02-7

Sponsored by
Published by

Copyright © 2023 International Joint Conferences on Artificial Intelligence Organization

On Training Neurons with Bounded Compilations

  1. Lance Kennedy(Kennesaw State University)
  2. Issouf Kindo(Kennesaw State University)
  3. Arthur Choi(Kennesaw State University)

Keywords

  1. Explainable AI
  2. Interplay between logic & neural and other learning paradigms
  3. Probabilistic reasoning and learning
  4. Learning tractable probabilistic models

Abstract

Knowledge compilation offers a formal approach to explaining and verifying the behavior of machine learning systems, such as neural networks. Unfortunately, compiling even an individual neuron into a tractable representation such as an Ordered Binary Decision Diagram (OBDD), is an NP-hard problem. In this paper, we consider the problem of training a neuron from data, subject to the constraint that it has a compact representation as an OBDD. Our approach is based on the observation that a neuron can be compiled into an OBDD in polytime if (1) the neuron has integer weights, and (2) its aggregate weight is bounded. Unfortunately, we first show that it is also NP-hard to train a neuron, subject to these two constraints. On the other hand, we show that if we train a neuron generatively, rather than discriminatively, a neuron with bounded aggregate weight can be trained in pseudo-polynomial time. Hence, we propose the first efficient algorithm for training a neuron that is guaranteed to have a compact representation as an OBDD. Empirically, we show that our approach can train neurons with higher accuracy and more compact OBDDs.