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Abstract

Model checking of multi-agent systems (MAS) is known to be
hard, both theoretically and in practice. A smart abstraction
of the state space may significantly reduce the model, and
facilitate the verification. We propose and study an intuitive
agent-based abstraction scheme, based on the removal of vari-
ables in the representation of a MAS. This allows to achieve
a desired reduction of a state space without generating the
global model of the system. Moreover, the process is easy
to understand and control even for domain experts with little
knowledge of computer science. We formally prove the cor-
rectness of the approach, and evaluate the gains experimentally
on a family of postal voting models.

1 Introduction
Multi-agent systems (MAS) describe interactions of au-
tonomous agents, often assumed to be intelligent and/or
rational. The theoretical foundations of MAS are mostly
based on modal logic and game theory (Wooldridge 2002;
Shoham and Leyton-Brown 2009). In particular, the tem-
poral logics CTL, LTL, and CTL⋆ provide formaliza-
tions of many relevant properties, including reachability,
liveness, safety, and fairness (Emerson 1990). Algorithms
and tools for verification have been in constant devel-
opment for 40 years, with temporal model checking be-
ing the most popular approach (Baier and Katoen 2008;
Clarke et al. 2018).

Complexity and state-space explosion. However, formal
verification of MAS is known to be hard, both theoretically
and in practice. The state-space explosion is a major obstacle
here, as faithful models of real-world systems are huge and
infeasible even to generate, let alone verify. In consequence,
model checking of MAS with respect to their modular rep-
resentations ranges from PSPACE-complete to undecid-
able (Schnoebelen 2003; Bulling et al. 2010). No less im-
portantly, it is often unclear how to create the input model,
especially if the system to be modelled involves human be-
haviour (Jamroga et al. 2020b). Specification is error-prone
and difficult to debug and validate, and most model-checkers
for MAS do not even have a graphical user interface.1 In

1Notable exceptions include UPPAAL (Behrmann et al. 2004)
and STV (Kurpiewski et al. 2021).

realistic cases, one does not really know if what is verified
and what we think we verify are indeed the same thing.

Dealing with state-space explosion. Much work has been
done to contain the state-space explosion by smart represen-
tation and/or reduction of input models. Symbolic model
checking based on SAT- or BDD-based representations of
the state/transition space (McMillan 1993; McMillan 2002;
Penczek and Lomuscio 2003; Kacprzak et al. 2004; Lomus-
cio and Penczek 2007; Huang and van der Meyden 2014;
Lomuscio et al. 2017) fall into the former group. Model re-
duction methods include partial-order reduction (Peled 1993;
Gerth et al. 1999; Jamroga et al. 2020a), equivalence-
based reductions (de Bakker et al. 1984; Alur et al. 1998;
Belardinelli et al. 2021), and state abstraction (Cousot and
Cousot 1977), see Section 2 for a detailed discussion.

Towards practical abstraction. A smart abstraction of the
state space may reduce the model to manageable size by clus-
tering “similar” concrete states into abstract states, which
should facilitate verification. Unfortunately, such clustering
may remove essential information from the model, thus mak-
ing the verification of the abstract model inconclusive for
the original model. Lossless abstractions can be obtained
by means of abstraction-refinement (Clarke et al. 2000) but,
typically, they are difficult to compute or provide insufficient
reduction of the model – quite often both.

In consequence, one has to live with abstractions that only
approximate the concrete model. Moreover, crafting a good
abstraction is an art that relies on the domain expertise of the
modeller. Since domain experts are seldom computer scien-
tists or specialists in formal methods, the theoretical formula-
tion of abstraction as an arbitrary mapping from the concrete
to the abstract state space has little appeal. Moreover, model
checking tools typically do not support abstraction, so doing
one would require to manipulate the input specification code,
which is a difficult task in itself. What we need is a simple
and intuitive methodology for selecting information to be
removed from a MAS model, and for its automated removal
that preserves certain guarantees. Last but not least, practical
abstraction should be applied on modular representations of
MAS, unlike the theoretical concept that is usually defined
with respect to explicit models of global states.

Contribution. In this paper, we suggest that the conceptually
simplest kind of abstraction consists in removing a domain
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variable from the specification of the input model. This can be
generalized to the merging of several variables into a single
one, and possibly clustering their valuations. It is also natural
to restrict the scope of abstraction to a part of the input graph.
As the main technical contribution, we propose a correct-by-
design method to generate such abstractions. We prove that
the abstractions preserve the valuations of temporal formulae
in Universal CTL⋆ (ACTL⋆). More precisely, our may-
abstractions preserve the falsity of ACTL⋆ properties, so if
φ ∈ ACTL⋆ holds in the abstract model, it must also hold in
the original one. Conversely, our must-abstractions preserve
the truth of ACTL⋆ formulae, so if φ ∈ ACTL⋆ is false
in the abstract model, it must also be false in the original
one. We evaluate the efficiency of the method by verifying a
scalable model of postal voting in UPPAAL. The experiments
show that the method is user-friendly, compatible with a
state of the art verification tool, and capable of providing
significant computational gains.

2 Related Work
State abstraction was introduced in the 1970s (Cousot and
Cousot 1977), and studied intensively in the context of tempo-
ral properties (Clarke et al. 1994; Godefroid and Jagadeesan
2002). Automatically generated lossless abstractions have
been defined through abstraction-refinement (Dams and
Grumberg 2018; Clarke et al. 2000; Shoham and Grumberg
2004). In particular, counterexample-guided abstraction re-
finement was proposed in (Clarke et al. 2000; Clarke et al.
2003), and implemented in NuSMV (Cimatti et al. 2002).
Unfortunately, lossless abstraction often results in abstract
models that are still too large for practical verification. In
this paper, we focus on lossy may/must abstractions, based
on user-defined equivalence relations.

This kind of abstractions have been studied in (Dams et al.
1997; Godefroid et al. 2001; Godefroid and Jagadeesan 2002;
Godefroid 2014), and implemented in Yasm (Gurfinkel et al.
2006) and YOGI (Godefroid et al. 2010). More specific vari-
ants for multi-agent systems were also proposed in (Enea and
Dima 2008; Cohen et al. 2009; Lomuscio et al. 2010b). More-
over, abstractions for strategic properties have been investi-
gated in (de Alfaro et al. 2004; Ball and Kupferman 2006),
and specifically for MAS in (Kouvaros and Lomuscio 2017;
Belardinelli and Lomuscio 2017; Belardinelli et al. 2019).
In all those cases, the abstraction method is defined directly
on the concrete model, i.e., it requires to first generate the
concrete global states and transitions, which is exactly the
bottleneck that we want to avoid.2 In contrast, our method
operates on modular (and compact) model specifications,
both for the concrete and the abstract model. Data abstrac-
tion methods for infinite-state MAS (Belardinelli et al. 2011;
Belardinelli et al. 2017) come somewhat close in that respect,
but they still generate explicit abstract models. Moreover,
they can be only used to falsify universal CTL⋆ formulae,
which is arguably the less interesting kind of approximation.

2(Cohen et al. 2009; Belardinelli et al. 2019) use modular rep-
resentations of the concrete state space, but they do need a global
representation of the concrete transition space, and they generate
the global abstract model explicitly.

Last but not least, most of the existing works have been
defined only theoretically (with the exceptions mentioned
above), and their usability has never been considered from
the perspective of a user with no intimate knowledge of veri-
fication techniques.

3 Preliminaries
We start by introducing the models and formulae which serve
as an input to model checking.

3.1 MAS Graphs
To represent the behaviour of a multi-agent system, we use
modular representations inspired by reactive modules (Alur
and Henzinger 1999), interleaved interpreted systems (Lo-
muscio et al. 2010a; Jamroga et al. 2020a), and in partic-
ular by the way distributed systems are modelled in UP-
PAAL (Behrmann et al. 2004).

Let Var be a finite set of typed variables over finite do-
mains.3 By Eval(Var) we denote a set of evaluations, i.e.,
functions mapping variables v ∈ Var to values from their
domains dom(v). Cond is a set of logical conditions (also
called guards) over Var, possibly involving arithmetic op-
erators. Let Chan be a finite set of asymmetric one-to-one
synchronization channels. We define the set of synchroniza-
tions as Sync = {c!, c? | c ∈ Chan} ∪ {−}, with c! and c?
for sending and receiving on a channel c, respectively, and
“−” for no synchronization.

Definition 1 (Agent graph). An agent graph is a tuple G =
(Loc,Var, l0, g0,Act, Effect, ↪→), consisting of:

• Loc: a non-empty finite set of locations;
• Var: a finite set of typed variables over finite domains;
• l0 ∈ Loc: the initial location;
• g0 ∈ Cond: the initial condition;
• Act: a set of actions, with τ ∈ Act for “do nothing”;
• Effect : Eval(Var) × Act 7→ Eval(Var): the effect of an

action. We assume Effect(η, τ) = η;
• ↪→⊆ Loc × Label × Loc: a set of labelled edges with

labels from Label ⊆ Cond × Sync × Act, which will be
used to define the local transition relation.

Instead of (l, labl , l′) ∈ ↪→, we will often write l
g:chα
↪−−−→ l′,

where g = cond(labl), ch = sync(labl) and α = act(labl).
Also, we will omit ch = −.

Each condition g ∈ Cond can be associated with its set
of satisfying evaluations Sat(g) = {η ∈ Eval(Var) | η |= g}.
An edge labelled by labl ∈ Label is locally enabled for
evaluation η ∈ Eval(Var) iff η |= cond(labl). For simplicity,
we assume that Sat(g0) = {η0}, i.e., each variable v ∈ Var
is initialized by its default value v0 = η0(v).

Furthermore, every action α ∈ Act \ {τ} can be associ-
ated with a non-empty sequence of atomic assignments (also
called updates) of the form α(1)α(2) . . . α(m).

Without loss of generality, we assume that the variables
in Var = {v1, . . . , vk} are ordered in an arbitrary way.
Thus, the evaluation of V ⊆ Var can be seen as a vector

3We consider only variables with finite domains, in line with
most model checking algorithms and tools for MAS.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

385



Figure 1: MAS graph for ASV: Voter graph GVoter (left) and Coercer
graph GCoercer. The set of shared variables is Varsh = {sh}, and
the initial condition g0 = (v=0) for all v ∈ Var

(a)

disobeyedobeyed

voted

idle

c:int[1,NC]
sh=c

(b)

Figure 2: (a) Combined MAS graph of ASV. (b) May-abstraction
Amay

{x}(G
Voter,ASV ) (right).

η(V ) = [η(vi1), . . . , η(vil)] for ij ∈ {1, . . . , k}, ij < ij+1.
Moreover, we say that η1 ∈ Eval(Var1) and η2 ∈ Eval(Var2)
agree on variables V ⊆ Var1 ∩ Var2 (denoted η1 =V η2) if
η1(V ) = η2(V ), i.e., η1(v) = η2(v) for all v ∈ V .

Let V ⊆Var and r ∈ Cond∪Act∪Eval(Var). By r[V = c],
we denote the substitution of all free occurrences of variables
V in r by the constant vector c ∈ dom(V ). The definition of
substitution for guards and updates is straightforward. For an
action α ∈ Act, the substitution α[V = c] is more nuanced;
the details are presented in Alg. 3.

Definition 2 (MAS graph). A MAS graph is a multiset of
agent graphs additionally parameterized by a set of shared
(global) variables. We assume w.l.o.g. that all local variables
have unique names.4 Then, the set of shared variables can be
seen as those that occur in at least two different agent graphs.

Example 1 (ASV). As the running example, we use a
variation of the Asynchronous Simple Voting scenario
of (Jamroga et al. 2020a). Its MAS graph ASV =
{|Varsh, GVoter, GCoercer|} is shown in Fig. 1. The system is
parameterized by the number of candidates NC.

The voter starts by nondeterministically selecting one of
the candidates (i:int[1,NC]), for whom the vote will be cast
(idle→voted). Then, she decides to either give the proof of
how she voted to the coercer (voted→obeyed), or to refuse
it (voted→disobeyed). Both options require executing a
synchronous transition (using channels g and ng) with the

4This can be achieved, e.g., by prefixing the identifiers of local
variable with the name of its agent graph.

coercer. In turn, the coercer either gets the proof and learns
for whom the vote was cast, or becomes aware of the voter’s
refusal.

3.2 Models of MAS Graphs
We define the execution of a MAS graph by its unwrapping.

Definition 3 (Combined MAS graph). Let MG =
{|Varsh, G1, . . . , Gn|} be a MAS graph having a set of shared
variables Varsh. The combined MAS graph of MG is the agent
graphGMG = (Loc,Var, l0, g0,Act,Effect, ↪→), where Var =⋃n

i=1 Vari, Loc = Loc1 × . . . × Locn, l0 = (l10, . . . , l
n
0 ),

g0 = g10 ∧ . . . ∧ gn0 , Act =
⋃n

i=1 Acti.
Relation ↪→ is obtained inductively by the following rules

(where li, l′i ∈ Loci, lj , l′j ∈ Locj , c ∈ Chani ∩ Chanj for
two agent graphs Gi and Gj of distinct indices 1 ≤ i, j ≤ n):

li ↪
gi:c!αi−−−−→i l

′
i ∧ lj ↪

gj :c?αj−−−−−→j l′j

(li, lj) ↪
gi∧gj :(αj◦αi)−−−−−−−−−→ (l′i, l

′
j)

li ↪
gi:αi−−−→i l

′
i

(li, lj) ↪
gi:αi−−−→ (l′i, lj)

li ↪
gi:c?αi−−−−→i l

′
i ∧ lj ↪

gj :c!αj−−−−→j l′j

(li, lj) ↪
gi∧gj :(αi◦αj)−−−−−−−−−→ (l′i, l

′
j)

lj ↪
gj :αj−−−→j l′j

(li, lj) ↪
gj :αj−−−→ (li, l

′
j)

Lastly, the effect function is defined by:

Effect(α, η) =

{
Effecti(α, η) if α ∈ Acti

Effect(αi,Effect(αj , η)) if α = αi ◦ αj

Example 2. The combined MAS graph GASV for asyn-
chronous simple voting of Example 1 is depicted in Fig. 2a.

Intuitively, the combined MAS graph is an asynchronous
composition of the agent graphs in MG. Note that by the
construction of combined MAS graph, its edges are always
labelled by labl ∈ Label, s.t. sync(labl) = −. To turn it into
a model, we still need to instantiate the variables in combined
MAS graph with their possible values.

Definition 4 (Model). A model is a tuple M =
(St, I,−→,AP,L), where St is a set of states, I ⊆ St is a
non-empty set of initial states, −→⊆ St × St is a transition
relation, AP is a set of atomic propositions, L : St → 2AP is
a labelling function. We assume −→ to be serial, i.e., there
is at least one outgoing transition at every state. We also
assume that St includes only states reachable from I .

Nodes and edges in an agent graph G correspond to sets
of states and transitions, defined by the unwrapping of G.

Definition 5 (Unwrapping). The unwrapping of an agent
graph G is a model M(G) = (St, I,−→, AP, L), where:

• St = Loc × Eval(Var),
• I = {⟨l0, η⟩ ∈ St | η ∈ Sat(g0)},
• −→ =−→0 ∪{(s, s) ∈ St× St | ¬∃s′ ∈ St . s −→0 s

′},
where −→0 = {(⟨l, η⟩, ⟨l′, η′⟩) ∈ St × St | ∃ l

g:α
↪−−→

l′ . η ∈ Sat(g) ∧ η′ = Effect(α, η)},5
• AP = Loc ∪Cond,
• L(⟨l, η⟩) = {l} ∪ {g ∈ Cond | η ∈ Sat(g)}.

5We add loops wherever necessary to make the relation serial.
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idle,
idle,
vt=0,
sh=0,
Kref=0,
Kvt=0

voted,
idle,
vt=1,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=1,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=1,
sh=1,
Kref=0,
Kvt=1

voted,
idle,
vt=2,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=2,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=2,
sh=2,
Kref=0,
Kvt=2

voted,
idle,
vt=3,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=3,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=3,
sh=3,
Kref=0,
Kvt=3

Figure 3: Unwrapping M(ASV ) for ASV with NC = 3

The unwrapping M(MG) of a MAS graph MG is given
by the unwrapping of its combined graph.

Intuitively, each state in the unwrapping specifies a lo-
cation in the MAS graph plus a tuple of values for all the
variables. Moreover, the atomic statements in AP allows us
to indicate a location, or refer to a Boolean condition. By
AP (V ), we will denote the subset of propositions that do not
use any variables from outside V .

Example 3. The unwrapping of the MAS graph for asyn-
chronous simple voting with 3 candidates is shown in Fig. 3.

Definition 6 (Runs, paths, local domain). Let M be a model.
A run in M is a sequence of states s0s1 . . . , such that si ∈ St
and si −→ si+1 for every i. For a finite run π = s0s1 . . . sn,
let len(π) = n denote its length. By π[k] and π[i, j] we
denote the k-th state of π and the fragment of π from index
i to j. A path is an infinite run. The sets of all runs in
M , all paths in M , and all paths starting from state s are
denoted by Runs(M), Paths(M), and Paths(s). Similarly,
Runst denotes the set of runs of fixed length t ∈ N+ ∪ {∞}.

A local domain is a function d : Loc 7→ P(Eval(Var))
that maps each location l to the set of evaluations reachable
at l (i.e., for which there exists a corresponding state in the
model). By d(l)|V = {η(V ) | η ∈ d(l)} we denote the re-
striction of d(l) that considers only the values of V ⊆ Var.

3.3 Branching-Time Logic ACTL⋆

To specify requirements, we use the universal fragment of
the branching-time logic CTL⋆ (Emerson 1990), denoted
ACTL⋆6 with A (“for every path”) as the only path quanti-
fier. The syntax for ACTL⋆ over a set of atomic propositions
AP is formally given by:

ψ ::= ⊤ | ⊥ | a | ¬a | ψ ∧ ψ | ψ ∨ ψ | Aφ
φ ::= ψ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φRφ

where a ∈ AP , and X,U,R stand for “next”, “until” and
“release” respectively. Formulae ψ are called state formulae,
and φ are called path formulae. The semantics of ACTL⋆

6Not to be confused with “Action CTL” of (Nicola and Vaan-
drager 1990).

is given with respect to states s and paths π of a model M .
M, s |= a iff a ∈ L(s)

M, s |= Aφ iff M,π |= φ for all π ∈ Paths(s)
M,π |= ψ iff M,π[0] |= ψ

M,π |= Xφ iff M,π[1,∞] |= φ

M,π |= φ1 Uφ2 iff ∃j . (M,π[j,∞] |= φ2 ∧
∀0 ≤ i < j .M, π[i,∞] |= φ1)

M,π |= φ1 Rφ2 iff ∀j . (M,π[j,∞]) |= φ2 ∨
∃j . (M,π[j,∞] |= φ1 ∧
∀0 ≤ k ≤ j .M, π[k,∞] |= φ1)

The clauses for Boolean connectives are standard. Additional
temporal operators “sometime” and “always” can be defined
as Fψ ≡ ⊤Uψ and Gψ ≡ ψU⊥. Model M satisfies
formula ψ (written M |= ψ) iff M, s0 |= ψ for all s0 ∈ I .
Example 4. Model M = M(ASV ) in Fig. 3 satisfies the
ACTL⋆ formula AG(¬obeyed ∨ Kvt=vt), saying that if
Voter obeys, Coercer gets to know how she voted, and the
formula AG(¬disobeyed ∨ Kref=1), expressing that she
cannot disobey Coercer’s instructions without his knowledge.
It does not satisfy AF(Kvt>0), saying that Coercer will even-
tually get to know how Voter voted.

4 Variable Abstraction for MAS Graphs
In this section, we propose how to automatically reduce MAS
graphs by simplifying their structure of local variables. As
the starting point, we take the idea of may/must abstrac-
tions (Dams et al. 1997; Godefroid and Jagadeesan 2002).
Typically, they take concrete states and cluster them accord-
ing to a given equivalence relation. The may model includes
transitions of type ∃∃, i.e., [s1] −→ [s2] in the abstract model
iff ∃s′1∈[s1]∃s′2∈[s2]s

′
1 −→ s′2 in the concrete model. The

must model includes transitions of type ∀∃, i.e., [s1] −→ [s2]
iff ∀s′1∈[s1]∃s′2∈[s2]s

′
1 −→ s′2. Correctness of the abstraction

is proved by showing that the concrete model simulates the
must model, and is simulated by the may model.

4.1 Main Idea
In our case, concrete states are pairs ⟨l, η⟩. Arguably the sim-
plest equivalence is given by removing a subset of variables
V ⊆ Var. That is, we will cluster states ⟨l1, η1⟩ and ⟨l2, η2⟩
iff l1 = l2 and η1, η2 agree on the variables in Var \ V .

Moreover, we want the abstraction A to transform the
MAS graph MG = {|Varsh, G1, . . . , Gn|} so that:

(i) computation of the abstraction is agent-based, i.e.,
A(MG) = {|Varsh,A(G1), . . . ,A(Gn)|};

(ii) the abstract agent graphs A(Gi) have the same structure
of locations as their concrete versions Gi;

(iii) the only change results from removal of a subset of local
variables V , or simplifying their domains of values.

The may-abstraction Amay(MG) should over-approximate
MG, in the sense that every transition in MG has its counter-
part in Amay(MG). Consequently, every formula of type Aφ
that holds in the model M(Amay(MG)) must also hold in the
model M(MG). Likewise, the must-abstraction Amust(MG)
should under-approximate MG, in the sense that all transi-
tions in Amust(MG) have their counterparts in MG. Thus,
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Algorithm 1: Abstraction of MAS graph MG wrt V
1 for MG = {|Varsh, G1, . . . , Gn|} compute the combined

graph GMG
2 compute the approximate local domain d for V in GMG

3 foreach agent graph Gi ∈ MG do
4 compute abstract graph A(Gi) w.r.t. di
5 return A(MG) = {|Varsh,A(G1), . . . ,A(Gn)|}

whenever Aφ is false in M(Amust(MG)), it is also false in
M(MG).

The general structure of the procedure is shown in Alg. 1.
First, we approximate the set of reachable evaluations d(l)|V
in every location of the combined MAS graph GMG by
means of Alg. 2, discussed in Section 4.2. Then, the out-
put is used to transform the agent graphs Gi in MG, one
by one, by detecting and transforming the occurrences of
the variables in V ∩ Vari. This is implemented by func-
tion ComputeAbstraction (Algorithm 3), which will be
presented in detail in Sections 4.3–4.5.

4.2 Approximating the Domains of Variables
Given MAS graph MG, the approximation of reachable val-
ues for a set of variables V ⊆ Var is defined in two vari-
ants. The upper-approximation of local domain (denoted d+)
for every l ∈ Loc initializes d+(l)|V = ∅, and then adds
new, possibly reachable values of V whenever they are pro-
duced on an edge coming to l. The lower-approximation (de-
noted d−) initializes d−(l)|V = dom(V ), and iteratively re-
moves the values might be unreachable. To this end, function
ApproxLocalDomain is parameterized by symbols d0 and
⊗, such that d0 = ∅ and ⊗ = ∪ for the upper-approximation,
and d0 = dom(V ) and ⊗ = ∩ for the lower-approximation.
Note that d0 is simply a neutral element of the operation ⊗.

Furthermore, for an approximation of local domain d∗,
where ∗∈ {+,−}, defined on Loc = Loc1 × . . . × Locn,
by d∗i we denote a reduced to the i-th location compo-
nent “narrowing” of that, where 1 ≤ i ≤ n. Intu-
itively, for lj ∈ Loci the value of d∗i (lj) is defined as
⊗l∈Loc1×...×Loci−1×{lj}×Loci+1×...×Locnd

∗(l).

Detailed description of Alg. 2. ApproxLocalDomain takes
the combined MAS graphGMG, and traverses it using a modi-
fied version of a priority-BFS algorithm (Cormen et al. 2009).
It begins with the complement of the coarsest approximation
of the local domain d0, and starting from l0 systematically
explores locations of the graph, iteratively refining d∗(l)|V
for ∗ ∈ {+,−} with each visit at l. This proceeds until a
stable approximation is obtained. Each location l must be
visited at least once, and whenever some of its predecessors
l′ get their approximations d∗(l′)|V refined, the location l
must be processed again.

The max-priority queueQ stores the locations that must be
visited (possibly anew). Within the queue, the higher traversal
priority is given to locations with greater reachability index
r(l), defined as the number of locations l′ ̸= l reachable
from l. This will reduce the number of potential re-visits in
comparison with the generic FIFO variant.

Algorithm 2: Approximation of local domain for V ⊆ Var
ApproxLocalDomain(G = GMG, V )

1 foreach l ∈ Loc do
2 l.d := d0
3 l.p := ∅
4 l.color := white
5 l0.d := {η(V ) | η ∈ Sat(g0)}
6 Q := ∅
7 Enqueue(Q, l0)
8 while Q ̸= ∅
9 l := ExtractMax(Q)

10 VisitLoc(l, V )
11 if l.color ̸= black then
12 foreach l′ ∈ Succ=1(l) do
13 Q := Enqueue(Q, l′)
14 l′.p := l′.p ∪ {l}
15 l.color = black
16 return {⟨(V, l), l.d⟩ | l ∈ Loc}

VisitLoc(l, V )
17 κ := l.d
18 foreach l′ ∈ l.p, l′

g:α
↪−−→l do

19 l.d := l.d⊗ ProcEdge(l′, g, α, l, V )

20 l.p = ∅
21 if κ ̸= l.d then
22 l.color := grey
23 λ := l.d
24 foreach l

g:α
↪−−→l do

25 l.d := l.d⊗ ProcEdge(l, g, α, l, V )

26 if λ ̸= l.d then
27 l.color := grey
28 go to 23

ProcEdge(l, g, α, l′, V )
29 δ0 := {η ∈ Sat(g) | η(V ) ∈ l.d}
30 let α := α(1) . . . α(m)

31 for i = 1 to m do
32 δi := {η′ = Effect(α(i), η) | η ∈ δi−1}
33 return {η(V ) | η ∈ δmax(m,0)}

enqueue immediate-

neighbours

process incoming edges

process self-loops

The algorithm associates with each location l its attributes
l.colour ∈ {white, grey, black}, the set of relevant predeces-
sors l.p ⊆ Loc \ {l}, and the current approximation of the
local domain l.d. The colour indicates if the location has not
been visited yet (white), its l.d has been refined (grey), or
it has been visited and closed (black). The set l.p indicates
which predecessors of l had their approximations updated,
which may lead to a refined l.d.

In lines 1–5, the locations are initialized with white, the
empty set of predecessors, and the initial approximation
d0. Lines 6–7 initialize the queue with location l0. The
while-loop of lines 7–15 describes the visit in location l. In
VisitLoc, after the edges from l.p were taken into account
for l.d, the l.p is reset (line 20). Self-loops are processed until
l.d stabilizes (lines 23–28). The function ProcEdge explores
the possible transitions, and gradually computes the image
(restricted by V ) associated with updates from α on evalua-
tions satisfying the guard g and having their V counterpart in
l.d. Lastly, if l changes its colour to grey from either black or
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l ∈ Loc r(l) d−(l)
∣∣
vt

d(l)|vt d+(l)
∣∣
vt

⟨idle,idle⟩ 3 {0} {0} {0}
⟨voted,idle⟩ 2 ∅ {1, 2, 3} {1, 2, 3}
⟨obeyed,halt⟩ 0 ∅ {1, 2, 3} {1, 2, 3}
⟨disobeyed,halt⟩ 0 ∅ {1, 2, 3} {1, 2, 3}

Table 1: Reachability index r of locations and reachable values of
vt from lower-approximation d−, exact local domain d and upper-
approximation d+ in ASV with 3 candidates

Algorithm 3: Abstraction by variable removal
1 ComputeAbstraction(G = Gi, V , d = di)
2 ↪→a:= ∅
3 foreach l

g:chα
↪−−−−→l′ do

4 foreach c ∈ d(l)|V do
5 g′ := g[V = c]
6 δ0 = {η ∈ Sat(g) | η(V ) = c}
7 let α′ = α(1) . . . α(m)

8 for i = 1 to m do
9 δi = {η′ = Effect(η, α(i)) | η ∈ δi−1}

10 if lhs(α(i)) ∈ V then
11 α(i) := τ

12 A =
∏m

i=1{α
(i)[V = η(V )] | η ∈ δi}

13 ↪→a:=↪→a ∪(
⋃

α′∈A{l
g′:chα′

↪−−−−−→ l′})
14 ↪→:=↪→a

15 g0 := g0[V = η0(V )]

16 Var i := Var i \ V
17 return G

white, then all the immediate neighbours are enqueued to be
inspected, adding l to the list of their relevant predecessors,
and changing its colour to black (lines 10–15).

The algorithm halts and returns a stable approximation
d (line 16) when the queue is empty and all the locations
are black. It runs in polynomial time w.r.t. the number of
locations and joint valuations of the removed variables. Note
that the subsequent approximations l.d are weakly monotonic
(i.e., l.d ⊆ l.d′ for d+, and l.d ⊇ l.d′ for d−). Since the sets
of locations and edges are finite, and so are the variable
domains, termination is guaranteed.

Example 5. The local domain and its approximations ob-
tained by ApproxLocalDomain for variable vt in the com-
bined ASV graph of Example 2 can be found in Tab. 1.

4.3 Abstraction by Removal of Variables
The simplest form of abstraction consists in the complete
removal of a given subset of variables V ⊆ Var from the
MAS graph. To this end, we use the approximation of reach-
able values of V , produced by ApproxLocalDomain. More
precisely, we transform every edge between l and l′ that in-
cludes variables V ′ ⊆ V in its guard and/or its update into a
set of edges (between the same locations), each obtained by
substituting V ′ with a different value C ∈ d(l)|V ′ , see Alg. 3.
The abstract agent graph obtained by removing variables V

idle,
idle,
sh=0,
Kref=0,
Kvt=0

voted,
idle,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
sh=1,
Kref=0,
Kvt=1

obeyed,
halt,
sh=2,
Kref=0,
Kvt=2

obeyed,
halt,
sh=3,
Kref=0,
Kvt=3

Figure 4: Unwrapping for the may-abstraction Amay
{x}(ASV ) =

{|Varsh, Amay
{x}(G

Voter,ASV ), GCoercer|}

from G in the context of MG is denoted by A{V } (G,MG).
Whenever relevant, we will use Amay (resp. Amust) to indicate
the variant of the abstraction.

Example 6. The result of removing variable vt from the
voter graph, according to the upper-approximation of the
domain presented in Tab. 1, is shown in Fig. 2b. Note that
its unwrapping (shown in Fig. 4) is distinctly smaller than
the original one (Fig. 3). Still, as we will formally prove in
Section 5, all the paths of the model in Fig. 3 are appropriately
represented by the model in Fig. 4.

4.4 Merging Variables and Their Values
A more general variant of variable abstraction assumes a
collection of mappings F = {f1, . . . , fm}. Each mapping
fi : Eval(Xi) 7→ Eval(zi) merges the local variables Xi ⊆
Varj of some agent graph Gj to a fresh variable zi. The
abstraction based on fi removes variables Xi from graph Gj ,
and replaces them with zi that “clusters” the values ofXi into
appropriate abstraction classes. We will use ArgsR(fi) = Xi

and ArgsR(F ) =
⋃m

i=1 ArgsR(fi) to refer to the variables
removed by fi and F . ArgsN (fi) = {zi} and ArgsN (F ) =⋃m

i=1 ArgsN (fi) refer to the new variables.
Note that the procedure in Section 4.3 can be seen as a

special case, with a sole mapping f merging V to a fresh
variable z with the singleton domain dom(z) = {η0(z)}.

4.5 Restricting the Scope of Abstraction
The abstraction scheme can be further generalised by con-
sidering a set of mappings F = {(f1, Sc1), . . . , (fm, Scm)},
with each fi : Eval(Xi) 7→ Eval(zi) applied in some agent
graph Gj , and Sci ⊆ Locj defining the scope of fi. That is,
mapping fi is applied only in the locations l ∈ Sci by assign-
ing fi(Xi) to zi, and resetting the value of each v ∈ Xi to
v0. Outside of Sci, the variables in Xi stay intact, and the
new variable zi is assigned an arbitrary default value.

The abstract agent graph obtained by function
ComputeAbstraction from G in the context of MG
via F is denoted by AF (G,MG). Consequently, the
abstraction of MG = {|Varsh, G1, . . . , Gn|} becomes
AF (MG) = {|Varsh,AF (G

1,MG) . . . ,AF (G
n,MG)|}.
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The general algorithm is presented in detail in Section A.2
of the supplementary material (https://tinyurl.com/3eukkrkb).

5 Correctness of Variable Abstraction
We will now prove that the abstraction scheme preserves
the truth values of ACTL⋆ formulae if the computation of
variable domain d produces the right approximation of their
reachable values. In essence, we show that the abstraction
always produces an approximation of the runs in the concrete
MAS graph, which induces an appropriate simulation rela-
tion, and thus guarantees (one-way) preservation of ACTL⋆.

5.1 Simulations between Models
We first recall a notion of simulation between models (Baier
and Katoen 2008; Clarke et al. 2018; Cohen et al. 2009).

Definition 7. Let Mi = (Sti, Ii,−→i,APi, Li), i = 1, 2 be
a pair of models, and let AP ⊆ AP1 ∩ AP2 be a subset of
atomic propositions. Model M2 simulates model M1 over
AP (written M1 ⪯AP M2) if there exists a simulation relation
R ⊆ St1 × St2 over AP, such that:

(i) for every s1 ∈ I1, there exists s2 ∈ I2 with s1Rs2;
(ii) for each (s1, s2) ∈ R:

(a) L1(s1) ∩ AP = L2(s2) ∩ AP, and
(b) if s1 → s′1 then there is s2 → s′2 such that s′1Rs′2.

Additionally, for a pair of reachable states s1, s2 in
M1,M2 such that (s1, s2) ∈ R, we say that the pointed
model (M2, s2) simulates (M1, s1) over AP, and denote it
by (M1, s1) ⪯AP (M2, s2).

Theorem 1. For (M1, s1) ⪯AP (M2, s2) and any ACTL∗

state formula ψ, built of propositions from AP only, it holds
that:

M2, s2 |= ψ implies M1, s1 |= ψ (∗)

The proof is standard, see e.g. (Baier and Katoen 2008).
Remark. In our abstraction scheme, the set of joint atomic
propositions AP , underlying the simulation relation, consists
of Boolean conditions and a subset of variables that are not
removed from the MAS graph.

5.2 May-Abstractions of MAS Graphs
Let M1 = M(MG1),M2 = M(MG2) be models resulting
from unwrapping of MAS graphs MG1,MG2. We start with
a notion of correspondence between states and runs. Then,
we use it to define the concept of may-approximation. The
following is straightforward.

Lemma 2. Let V ⊆ Var and V ′ = Var \ V , α ∈ Act and
Effect(α, η1) = η′1. For any η2 ∈ Eval(Var), we have:
η1 =V η2 ⇒ (Effect(α[V ′ = η1(V

′)], η2) = η′2 ⇒ η′1 =V η′2)

Definition 8. Let si ∈ Sti and si = ⟨li, ηi⟩ for i = 1, 2. State
s2 corresponds to a state s1 over variables V ⊆ Var1 ∩ Var2
(denoted s1 ≃V s2) iff l1 = l2 and η1 =V η2.

Moreover, run π2 ∈ Runs(M2) corresponds to run π1 ∈
Runs(M1) with respect to V (denoted π1 ≃V π2) iff:

(i) len(π1) = len(π2) = t, and
(ii) for every 1 ≤ i ≤ t, it holds that π1[i] ≃V π2[i].

5.3 Variable Abstraction Is Sound
We prove now that the abstraction method, based on upper-
approximation of local domain, is indeed a simulation.

Lemma 3. Let MG be a MAS graph and d+ be an upper-
approximation of a local domain defined on V ⊆ Var. Then,
for any state ⟨l, η⟩ in M(MG), it must be that η(W ) ∈
d+(l)|W for any W ⊆ V .

Remark. if g ∈ Cond and Sat(g) = {η1, . . . , ηk}, then g ∼=∨
1≤i≤k

∧
v∈Var(v = η(v)).

Let MG = {|Varsh, G1, . . . , Gn|}, where
Gi = (Vari, Loci, li0, g

i
0,Acti,Effecti, ↪→i), GMG =

(Var1, Loc, l0, g0,Act,Effect, ↪→), M̂G = Amay
F (MG),

GM̂G = (Var2, Loc, l0, ĝ0,Act,Effect, ˆ↪→).

Theorem 4. LetM1 = M(MG) andM2 = M(Amay
F (MG)),

s.t. Mi = (Sti, Ii,−→i,APi, Li) for i = 1, 2, V =
ArgsR(F ), Z = ArgsN (F ), V ⊆ Var1 ∩ Var2. Then, a
relation R ⊆ St1 × St2, where ⟨l1, η1⟩R⟨l2, η2⟩ iff l1 =
l2∧η1 =V η2, is a simulation relation over AP = AP1(V )∩
AP2(V ) between M1 and M2.

Proof. Here, we will present a proof for a simpler case -
variable removal; proof for a general case is only technically
more involved and can be found in supplementary material.

Recall that for Sat(g0) = {η0} it holds g0 ∼=∧
v∈Var1 v=η0(v). In variable removal scenario Var2 =

Var1 \V and V = Var2. Therefore g0 ∼= (
∧

v∈V v=η0(v))∧
(
∧

v∈V v=η0(v)), ĝ0 ∼= (
∧

v∈V v=η̂0(v)). The construc-
tion of Amay

F sets ĝ0 = g0[V=η0(V )] (and by assump-
tion there must be at least one evaluation that satisfies
that), which means that g0 ∼= ĝ0 ∧ (

∧
v∈V v=η0(v)) and

ĝ0 ∼= (
∧

v∈V v = η0(v)). From this and the fact that the sets
of locations for MG and Amay

F (MG) are the same, we can
conclude that the condition (i) of Definition 7 must hold.

Now we show that condition (ii) of Definition 7 holds
as well. By construction, each concrete (l, labl , l′) ∈↪→
from MG will have (at least one) matching abstract edge
(l, ˆlabl , l′) ∈ ˆ↪→, where ˆlabl = labl [V=c] for some c ∈
d+(l)|V . Therefore, for any ⟨l, η1⟩R⟨l, η2⟩ and ⟨l, η1⟩ −→1

⟨l′, η′1⟩ that was induced by an edge (l, labl1, l
′) ∈↪→,

where η1 |= cond(labl1) and Effect(act(labl1), η1) =
η′1, there must exist an edge (l, labl2, l

′) ∈ ˆ↪→, where
labl2 = labl1[V=c] for some c ∈ d+(l)|V , that induces
⟨l, η2⟩ −→2 ⟨l′, η′2⟩, and by Lem. 2 η′2 =V η′1 and concludes
⟨l′, η′1⟩R⟨l′, η′2⟩.

We can now state our main theoretical result.

Theorem 5. Let MG be a MAS graph, and F a set of map-
pings as defined in Section 4.5. Then, for every formula ψ of
ACTL⋆ that includes no variables being removed or added
by F :

M(Amay
F (MG)) |= ψ implies M(MG) |= ψ.

Proof. Follows directly from Theorems 1 and 4.
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5.4 Must-Abstractions of MAS Graphs
An analogous result can be obtained for must-abstraction.

Lemma 6. Let MG be a MAS graph and d− be a lower-
approximation of a local domain defined for V ⊊ Var. By
the very nature of d−, for any reachable location l ∈ Loc
it can have at most one element |d−(l)|V | ≤ 1. Moreover,
when d−(l)|V = {c} there must exist reachable in M(MG)
state ⟨l, η⟩, where η(V ) = c.

Theorem 7. Let M1 = M(MG) and M2 =
M(Amust

F (MG)), s.t. Mi = (Sti, Ii,−→i,APi, Li) for i =
1, 2, V = ArgsR(F ), Z = ArgsN (F ), V ⊆ Var1 ∩ Var2.
Then, a relation R ⊆ St2 × St1, where ⟨l2, η2⟩R⟨l1, η1⟩
iff l2 = l1 ∧ η2 =V η1, is a simulation relation over
AP = AP1(V ) ∩ AP2(V ) between M2 and M1.

The proof is analogous to that of Theorem 4, see the sup-
plementary material for details.

Theorem 8. For each formula ψ ∈ ACTL⋆ including no
variables removed by F :

M(Amust
F (MG)) ̸|= ψ implies M(MG) ̸|= ψ.

5.5 Abstraction on MAS Templates
When some agent graphs in the MAS graph are instantiations
of a single template, one can apply abstraction directly on the
template. This typically results in a coarser abstraction of the
original MAS graph, but such abstractions are exponentially
faster to compute, as the size of the model underlying the
MAS graph is exponential in the size of the agent template.

Definition 9 (MAS template). A MAS template is a
compact representation of a MAS graph MG as a tu-
ple MT = (Varsh,Constsh, (GT 1,#1), . . . , (GT k,#k))
which lists pairs of agent templates GT i and the number
of their instances #i in MG, as well as the sets of shared
variables Varsh and shared constants Constsh.

An agent template GT i is just an agent graph, instantiated
in MG by #i copies through adding their id’s j = 1, . . . ,#i

as prefixes to the locations and local variables in GT i.

In order to avoid unfolding the MAS template into a MAS
graph, we approximate the potential synchronization between
instances of agent templates when doing abstraction. More
precisely, the upper-approximation of a local domain di in
agent template GT i is computed on upsync(GT i) that dis-
cards all the synchronisation labels from the edges in GT i.
Analogously, the lower-approximation of a local domain di
in agent template GT i is computed on lowsync(GT i) that
discards all the edges with synchronisation labels from GT i.

Theorem 9. Let MT be a MAS template, corresponding to
the MAS graph MG. Then Amay(upsync(MT )) induces a
may-abstraction of MG, and Amust(lowync(MT )) induces
a must-abstraction of MG.

Proof. Follows directly from the fact that discarding synchro-
nisation labels results in a coarser upper-approximation of the
local domain, and discarding the edges with synchronisation
labels results in a coarser lower-approximation of di.

6 Case Study and Experimental Results
We evaluate our abstraction scheme on a real-life scenario.

6.1 Case Study: Integrity of Postal Voting
As input, we use a scalable family of MAS graphs that specify
a simplified postal voting system. The system consists of a
single agent graph for the Election Authority (depicted in
Fig. 5a) and NV instances of eligible Voters (Fig. 5b).

Each voter can vote for one of the NC candidates. The
voter starts at the location idle, and declares if she wants
to receive the election package with the voting declaration
and the ballot by post, or to pick it up in person. Then, the
voter waits until the package can be collected, which leads to
location has. At that point, she sends the forms back to the
authority, either filled in or blank (e.g., by mistake). The au-
thority collects the voters’ intentions (at location coll dec),
distributes the packages (at send ep), collects the votes, and
computes the tally (at coll vts). A vote is added to the tally
only if the declaration is signed and the ballot is filled.

In the experiments, we verify the formula
φbstuff ≡ AG(

∑NC
i=1 tally[i] ≤

∑NV
j=1 pack sent[j] ≤ NV )

expressing a variant of resistance to ballot stuffing. More
precisely, the formula says that the amount of sent packages
can never be higher than the number of voters, and there
will be no more tallied votes than packages. The formula is
satisfied in all considered instances of our voting model.

Due to space limitations, we only present results for may-
abstraction – arguably, the more important case, since it
can be used to prove an ACTL⋆ formula true in a model.
Experimental results for must-abstraction are shown in the
supplementary material.

6.2 Results of Experiments
We have used the following abstractions:

• Abstraction 1: globally removes variables mem sg and
mem vt, i.e., the voters’ memory of the cast vote and
whether the voting declaration has been signed;

• Abstraction 2: removes the voter’s memory of her deci-
sion (variable mem dec) at locations {has, voted}, and
dec recv at {coll vts};

• Abstraction 3: combines Abstractions 1 and 2.
The verification has been performed with the 32-bit ver-

sion of UPPAAL 4.1.24 on a laptop with Intel i7-8665U 2.11
GHz CPU, running Ubuntu 22.04. The abstract models were
generated using a script in node.js.7 The results are pre-
sented in Table 2. Each row lists the scalability factors (i.e.,
the number of voters and candidates), the size and verifica-
tion time for the original model (so called “concrete model”),
and the results for Abstractions 1, 2, and 3. “Memout” indi-
cates that the verification process ran out of memory. The
columns ‘ta’ and ‘tv’ stand for the abstract model generation
and verification time, respectively. In all the completed cases,
the verification of the abstract model was conclusive (i.e., the
output was “true” for all the instances in Table 2).

7Implementation prototype and utilized models can be found at
https://tinyurl.com/363pvpu5 and https://tinyurl.com/3eukkrkb.
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Figure 5: MAS graph for simplified postal voting: (a) Election Authority graph (left), (b) Voter graph (right).

conf Concrete Abstract 1 Abstract 2 Abstract 3
NV,NC #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec)

1,1 2.30e+1 0 0.03 1.90e+1 0 0.07 1.80e+1 0 0.16 1.60e+1 0
1,2 2.70e+1 0 0.03 2.10e+1 0 0.08 2.00e+1 0 0.06 1.70e+1 0
1,3 3.10e+1 0 0.03 2.30e+1 0 0.06 2.20e+1 0 0.05 1.80e+1 0
2,1 2.41e+2 0 0.02 1.41e+2 0 0.06 1.26e+2 0 0.06 9.30e+1 0
2,2 3.69e+2 0 0.02 1.77e+2 0 0.04 1.66e+2 0 0.03 1.06e+2 0
2,3 5.29e+2 0 0.02 2.17e+2 0 0.06 2.14e+2 0 0.04 1.20e+2 0
3,1 2.99e+3 0.01 0.02 1.14e+3 0 0.07 9.72e+2 0.01 0.05 5.67e+2 0
3,2 6.08e+3 0.01 0.02 1.62e+3 0.01 0.05 1.57e+3 0 0.04 6.93e+2 0
3,3 1.09e+4 0.04 0.02 2.20e+3 0.02 0.03 2.44e+3 0 0.05 8.38e+2 0.01
4,1 3.98e+4 0.12 0.02 9.57e+3 0.05 0.08 7.94e+3 0.03 0.08 3.54e+3 0.02
4,2 1.06e+5 0.55 0.01 1.52e+4 0.08 0.08 1.60e+4 0.05 0.06 4.62e+3 0.04
4,3 2.36e+5 0.95 0.01 2.26e+4 0.12 0.08 2.99e+4 0.07 0.08 5.94e+3 0.06
5,1 5.46e+5 1.48 0.02 8.17e+4 0.36 0.19 6.71e+4 0.18 0.25 2.23e+4 0.13
5,2 1.90e+6 6.42 0.02 1.43e+5 0.76 0.18 1.69e+5 0.50 0.23 3.09e+4 0.23
5,3 5.16e+6 24.95 0.02 2.30e+5 1.43 0.22 3.79e+5 1.16 0.22 4.21e+4 0.39
6,1 7.58e+6 31.34 0.01 7.03e+5 4.39 0.55 5.79e+5 1.92 0.44 1.41e+5 0.92
6,2 3.41e+7 170.25 0.01 1.34e+6 10.87 0.50 1.82e+6 7.64 0.40 2.07e+5 1.83
6,3 memout 0.01 2.31e+6 20.31 0.84 4.87e+6 22.67 0.40 2.97e+5 4.70
7,1 memout 0.01 6.05e+6 46.75 2.34 5.07e+6 22.16 1.91 8.89e+5 8.34
7,2 memout 0.02 1.25e+7 149.84 1.33 1.98e+7 107.95 2.01 1.38e+6 16.11
7,3 memout 0.02 2.28e+7 304.86 2.49 memout 2.35 2.08e+6 30.75
8,1 memout 0.02 5.20e+7 482.66 10.30 memout 8.04 5.61e+6 66.44
8,2 memout 0.19 memout 12.17 memout 7.58 9.15e+6 150.86
8,3 memout 0.07 memout 9.52 memout 7.99 1.44e+7 348.99
9,1 memout 0.12 memout 70.49 memout 64.96 3.53e+7 474.43
9,2 memout 0.06 memout 68.46 memout 71.69 memout

Table 2: Experimental results for model checking of φbstuff in may-abstractions of postal voting

The results show significant gains. In particular, for the
variant with NC = 3 candidates, our may-abstractions al-
lowed to reduce the state space by orders of magnitude, and
increase the main scalability factor by 3, i.e., to verify up to
9 instead of 6 voters.

7 Conclusions
In this paper, we present a correct-by-design method for
model reductions that facilitate formal verification of MAS.
Theoretically speaking, our reductions are agent-based
may/must abstractions of the state space. Crucially, they
transform the specification of the system at the level of agent
graphs, without generating the global model. No less impor-
tantly, they are easy to use, come with a natural methodology,
and require almost no technical knowledge from the user. All
that the user needs to do is to select a subset of variables to
be removed from the MAS graph representing the system. It
is also possible to define mappings that merge information
stored in local variables of an agent module.

We prove that the abstractions always generate a correct
abstract MAS graph, i.e., one that provides a lower (resp. up-
per) bound for the truth values of formulae to be verified.
Moreover, we demonstrate the effectiveness of the method
on a case study involving the verification of a postal voting
procedure using UPPAAL. As shown in the experiments, sim-
ple abstractions allow to verify state spaces larger by several
orders of magnitude. Clearly, the efficiency of the method
depends on the right selection of variables and the abstraction
scope; ideally, that should be provided by a domain expert.

In the future, we want to combine variable abstraction with
abstractions that transform locations in a MAS graph. Even
more importantly, we plan to extend the methodology from
branching-time properties to formal verification of strategic
ability (Alur et al. 2002). We also note that the procedure is
generic enough to be used in combination with other tech-
niques, such as partial-order reduction (Jamroga et al. 2020a).
Finally, an implementation as an extension of the STV model
checker (Kurpiewski et al. 2021) is considered.
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