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Abstract

Local search algorithms are well-known methods for solv-
ing large, hard instances of the satisfiability problem (SAT).
The performance of these algorithms crucially depends on
heuristics for setting noise parameters and scoring variables.
The optimal setting for these heuristics varies for different in-
stance distributions. In this paper, we present an approach
for learning effective variable scoring functions and noise pa-
rameters by using reinforcement learning. We consider sat-
isfiability problems from different instance distributions and
learn specialized heuristics for each of them. Our experimen-
tal results show improvements with respect to both a Walk-
SAT baseline and another local search learned heuristic.

1 Introduction

The satisfiability problem (SAT), one of the most studied
NP-complete problems in computer science, consists in de-
termining if there exists an assignment that satisfies a given
Boolean formula. SAT algorithms typically assume that for-
mulas are expressed in conjunctive normal form (CNF). A
CNF formula is a conjunction of clauses; a clause is a dis-
junction of literals; and a literal is a variable or its nega-
tion. SAT has a wide range of practical applications, includ-
ing electronic design automation, planning, scheduling and
hardware verification.

Stochastic local search (SLS) algorithms are well-known
methods for solving hard, large SAT instances (Kautz, Sab-
harwal, and Selman 2009). They are incomplete solvers:
they typically run with a pre-set number of iterations, after
which they produce a valid assignment or return “unsolved.”
Algorithm 1 shows the pseudo-code of a generic SLS algo-
rithm. Like most SLS solvers, it starts by generating a ran-
dom assignment. If the formula is satisfied by this assign-
ment, a solution is found. Otherwise, a variable is chosen by
a variable selection heuristic (pickVar in Algorithm 1) and
that variable is flipped. The loop is repeated until a solution
is found or the maximum number of iterations is reached.

WalkSAT (Selman, Kautz, and Cohen 1993; Selman,
Kautz, and Cohen 1994; McAllester, Selman, and Kautz
1997) and other successful local search algorithms select the
variable to flip from an unsatisfied clause (see Algorithm 2).
After picking a random unsatisfied clause c, the choice of
which variable in ¢ to flip is made in two possible ways:
either a random variable is chosen, or a scoring function
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Algorithm 1 SLS algorithm

Input: A formula F' in CNF form
Parameter: max_flips, max_tries
Output: If found, a satisfying assignment

for i = 1 to max_tries do
flips =0
X be a random initial assignment
while flips < max_flips do
if X satisfies F' then
return X
Pick a variable z using pickV ar
X + flipVar(z)
flips ++
return unsolved

Algorithm 2 pickVar for WalkSAT

Pick a random unsatisfied clause ¢
if rand() < p then
Pick a random variable = from ¢
else
Pick a variable x from ¢ with the smallest break value
return x

is used to select the best variable to flip. The version of
WalkSAT in Algorithm 2 picks a variable with the small-
est “break” value, where break(x) of a variable x given an
assignment X is the number of clauses that would become
false by flipping . Other algorithms and other versions
of WalkSAT use different heuristics (Balint and Schoning
2012; McAllester, Selman, and Kautz 1997) for choosing x.

WalkSAT-type algorithms also use a noise parameter p
(see Algorithm 2) to control the degree of greediness in
the variable selection process. This parameter has a cru-
cial impact on the algorithms’ performance (Hoos 2002;
Selman, Kautz, and Cohen 1994; McAllester, Selman, and
Kautz 1997; Hoos 1999). Hoos et al. (2002) propose a dy-
namic noise adaptation algorithm in which high noise values
are only used when the algorithms appear to not be making
progress.

Designing SLS algorithms requires substantial problem-
specific research and a long trial-and-error process by the



Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

algorithm experts. Also, algorithms seldom exploit the fact
that real-world problems of the same type are solved again
and again on a regular basis, maintaining the same combi-
natorial structure, but differing in the data. Problems of this
type include, for example, SAT encodings of Al Planning in-
stances (Robinson et al. 2008) and Bounded Model Check-
ing instances (Benedetti and Bernardini 2005).

Recently, there has been increased interest in applying
machine learning techniques to design algorithms to tackle
combinatorial optimization problems (Bello et al. 2016;
Khalil et al. 2017; Bengio, Lodi, and Prouvost 2021; Zhang
et al. 2020). In line with this work, our paper focuses on
using machine learning to design algorithms for SAT. More
specifically, we investigate the use of reinforcement learning
to learn both adaptive noise strategies and variable scoring
functions for WalkSAT-type algorithms. We call the result-
ing strategy LearnWSAT. The main contributions of this pa-
per are as follows:

* Our technique automatically learns a scoring function and
an adaptive noise strategy for WalkS AT-type algorithms.

* Our scoring functions are simple and interpretable. When
coded efficiently, they would have a running time per it-
eration similar to WalkSAT.

* Our approach outperforms both a WalkSAT baseline al-
gorithm and a previously published learned SLS-type al-
gorithm (Yolcu and P6czos 2019).

* Our technique uses a “warm-up” strategy designed to sub-
stantially decrease training time.

e Qur algorithm, when trained on a specific distribution,
generalizes well to both unseen instances and larger in-
stances of the same distribution.

We remark that our goal in this paper is to show how re-
inforcement learning could be leveraged to make WalkS AT-
type algorithms more efficient and their design more practi-
cal; we do not aim to offer the fastest WalkSAT implemen-
tation, which we leave as future work. !

2 Related Work

The literature regarding SAT is vast. We focus here only on
the following two topics, which are the most pertinent to our
contribution.

2.1 Machine Learning for SAT

Guo et al. (2022) give an in-depth survey of machine learn-
ing for SAT. In their classification, our work falls into the
category described as “modifying local search solvers with
learning modules”. There are two other works (Yolcu and
Pdczos 2019; Zhang et al. 2020) that fall into the same cate-
gory.

Yolcu and Poczos (2019) use reinforcement learning with
graph neural networks to learn an SLS algorithm. The graph
neural network takes a factor graph associated which the
SAT formula and the current assignment to score each vari-
able. Scoring each variable at every iteration incurs a large

'The implementation can be found here https:/github.com/
yanneta/learning_heuristics_sat
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overhead, which leads the authors to run experiments only
on small SAT instances. Our work is similar to Yolcu and
Poczos’s (2019) in that we also use a model to score vari-
ables. On the other hand, our approach differs from theirs
in four ways. Our scoring model is a linear function of a
small set of features, which is simple and interpretable. At
every iteration, we only score variables from one unsatis-
fied clause, which makes our model much more scalable and
practical. Our features are able to encode time dependencies
(e.g. last time a variable was flipped). We learn a separate
noise strategy.

Zhang et al. (2020) propose a system (NLocalSAT) for
guiding the assignment initialization of an SLS solver with
a neural network. Their model feeds the CNF formula into
a Gated Graph neural network for feature extraction. The
neural network predicts an assignment for the SAT formula.
The model is trained to predict a satisfying assignment. The
output of the neural network is used to initialize SLS solvers.
Whereas NLocalSAT modifies the initialization of the SLS
algorithm, our algorithm modifies its internal loop. Those
two improvements are potentially compatible.

Selsam et al. (2018) trained a message-passing neural
network called NeuroSAT to predict the satisfiability (SAT)
or unsatisfiability (UNSAT) of problem instances. The au-
thors trained and evaluated NeuroSAT on random problem
instances that are similar to the ones used in our paper.
NeuroSAT achieved an accuracy of 85% and successfully
solved 70% of the SAT problems. It is worth noting that
our approach focuses on predicting satisfiability and does
not directly address unsatisfiability. However, our approach
demonstrates a significantly higher accuracy on SAT in-
stances.

2.2 Stochastic Local Search for SAT

Various strategies have been proposed for picking the vari-
ables to flip within WalkSAT.

McAllester et al. (1997) analyze six strategies. In all the
strategies, a random unsatisfied clause c is selected, and the
variable is chosen within c¢. With probability p, a random
variable is selected from c; otherwise, one of the six follow-
ing strategies is implemented. 1) Pick the variable that min-
imizes the number of unsatisfiable clauses. 2) Pick the vari-
able that minimizes the break value (Algorithm 2). 3) Same
as the previous strategy, but never make a random move if
one with break value 0 exits. 3) Pick the variable that min-
imizes the number of unsatisfied clauses, but refuse to flip
any variable that has been flipped in the last ¢ steps. 5) Sort
the variables by the total number of unsatisfied clauses, then
pick the one with the smallest value. Break ties in favor of
the least recently flipped variable. 6) Pick a variable using a
combination of least recently picked variable and number of
unsatisfied clauses.

ProbSAT (Balint and Schoning 2012) uses a scoring func-
tion based on the values make(z) and break(z) and sam-
ples the variable to pick based on that scoring function.
Given a variable x and an assignment X, make(z) is the
number of clauses that would become true by flipping z.
Note that make(x) — break(z) is the number of unsatisfi-
able clauses after flipping x. Balint and Schoning (2012)
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Algorithm 3 pickVar for LearnWSAT

Pick a random unsatisfied clause ¢
if rand() < p,, then

Pick a random variable x from ¢
else

Compute score fg(z) for each variable z in ¢
fo(2)
€

Eyeu efo(v)

< sample z with prob

return x

experiment with various types of scoring functions based on
make and break and find that make values can be ignored.

Hoos (2002) proposes a dynamic noise strategy that uses
higher values of noise only when the algorithm is in an
“stagnation” stage, which is when there is no improvement
in the objective function’s value over the last ' search steps,
where m is the number of clauses of the given problem in-
stance. Every incremental increase in the noise value is re-
alized as p < 0.8p + 0.2; the decrements are defined as
p < 0.6p where p is the noise level.

The work by McAllester et al. (1997) inspired our selec-
tion of features for the variable ranking, and the paper by
Balint and Schoning (2012) led us to use features based on
break(x) and ignore make(x). Finally, the work in Hoos
(2002) inspired us to learn an automated noise strategy.

3 Methodology

Algorithm 3 shows the pseudo-code for our pickV ar mod-
ule. Our objective is to learn the functions p,, and fy in such
a way that they minimize the number of flips needed to solve
a SAT problem. We now describe these functions in detail.

3.1 Variable Representation

To score each variable, we first compute some features that
represent the state of the variable at the current iteration .
From our discussion of previous work in Section 2.2, we
know that break(x) is an important feature in deciding the
score of a variable. We also know, from previous work, that
we want to avoid flipping variables back and forth. We de-
sign features encoding that information.

Let age; (x) be the last iteration in which = was flipped
and ages(x) the last iteration in which x was flipped and
selected by the algorithm using fy(z). Let lastk(z) = 1
if « was flipped in the last K iterations by fy(z). Let & =
min(z, 10).

Based on this notation, we represent each variable via the
following features:

o bk(z) = log(1 + break(z))

¢ Ay(e) =1 2@

- Dofz) =1 - 25
* lasts(x)
b la8t10($)

We use Z and log in the feature bk(z) to make the fea-
ture independent of the size of the formulas. bk(x) it is also
normalized to be between 0 and 1.

We have selected these features based on an extensive pre-
liminary evaluation performed on a variety of features and
formulas. It would be easy to expand our technique to in-
clude additional features whenever relevant.

Let f(z) = (bk(z), A1(z), Ao(x),lasts(x), lastip(x))
be the vector representing the variable x at iteration t,
given a current assignment X for a formula F'. Note
that, to compute the vector, we keep updating variables
agey,ages,lastyg, which is very cheap. Similar to Walk-
SAT, break(x) is only computed for variables on one clause
at each iteration.

3.2 Models for Scoring Variables and Controlling
Noise

Our goal is to make our algorithm interpretable and fast, so
we use a linear model for scoring variables. Given a feature
vector f = f(x) for a variable z, fp(x) is a linear model on

f:
fo(z) =6y +Z‘9i'fi

Inspired by the dynamic noise strategy discussed in Sec-
tion 2.2, we define the stagnation parameter § as the number
of iterations since the last improvement in the number of sat-
isfied clauses, divided by the number of clauses. Instead of
increasing or decreasing it at discrete intervals as in Hoos
(2002), our noise is a continuous function of 9, defined as

Pw(6) = 0.5 - Sigmoid(wg + w16 + we6?)

We use the sigmoid function to ensure p,, being between 0
and 0.5. Those are commonly used values for noise. Pa-
rameters wg, wi,ws are learned together with parameters
{6;}5_, by using reinforcement learning.

After running our initial experiments, we noticed that the
effect of the stagnation parameter 4 was almost negligible.
Therefore, in most of our experiments, we use a noise pa-
rameter that is a constant learned for each instance distribu-
tion, that is, p,, = 0.5 - Sigmoid(wo).

3.3 Simplicity and Interpretability of Models

Domingos (1999) states that one interpretation of Occam’s
razor in machine learning is the following: “Given two
models with the same generalization error, the simpler one
should be preferred because simplicity is desirable in itself.”
Following this basic principle, in our technique, we use
simple functions (linear and sigmoid functions) involving a
small set of input variables and show that we get better re-
sults than related algorithms that use much more complex
models, e.g. Yolcu and Poczos’s one (2019). Simplicity is
also valuable because simple linear models are very fast to
evaluate, which is crucial to practical SAT solvers.
Interpretability refers to a model’s capacity to be “ex-
plained or presented in understandable terms to a human”
(Doshi-Velez and Kim 2017). Linear models that use only
a few simple variables are typically considered highly in-
terpretable. Our variable-scoring model, which has just six
coefficients, is therefore highly interpretable. The inter-
pretability of a model is useful because it allows us to iden-
tify which features are significant and important and thus
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size 01 0 03 0, 05 0o Algorithm 4 Reinforce
rand Input: Training set (Train_ds) from a problem distribution
3 D, policy my, discount rate vy, learning rate o
(50,213) -21.1 -1.8 -29 -09 -13 0.1
(75,320) 190 -18 23 -08 -1.1 05 Initialize parameters of the policy 7y
(100,426) -18.1 -17 -2.0 -12 -14 0.6 Wam-up 7y by fitting it to WalkSAT scoring function
(200,852) -194 -24 26 -1.0 -15 -02 for i = 1 to Epocs do
randy Initialize g < 0;
(30,292) 202 -12 32 09 25 028 f"rFJ ::Tlr;?nle&‘s%ra‘“*ds) do
(50,487) -143 -1.0 -14 07 -2.1 -031 -

Table 1: Coefficients of the scoring variable model learned for
randg(n,m). The first column specifies the size of the formu-
las (n,m). o is the model’s bias.

make decisions about adding or subtracting features. If a
feature has a coefficient close to 0, we can infer that the fea-
ture lacks statistical significance and should be eliminated.
By providing insight into the impact of each model fea-
ture, interpretability can help algorithm designers simplify
the process of adding, removing, and designing features.

Table 1 provides an example of the scoring parameters
associated with random 3-SAT formulas of various sizes.
The absolute value of each coefficient in the table allows
us to gauge the contribution of each variable to the model.
As demonstrated by the coefficients in Table 1, the bk(z)
feature has a notably negative impact on the variable score,
indicating its strong influence compared to other features.
Conversely, the coefficients associated with the noise func-
tion p., (0) showed that § was not a crucial feature, allowing
us to simplify our assumptions regarding the noise parame-
ter. This kind of insight can be extremely valuable.

3.4 Training with Reinforcement Learning

To learn heuristics by using reinforcement learning (Sutton
and Barto 2018), we formalize local search for SAT as a
Markov Decision Process (MDP). For clarity, we describe
the MDP assuming that the noise parameter is 0, that is, the
algorithm always picks a variable  from a random unsatis-
fied clause c using features f(x).

For each problem distribution D, we have an MDP repre-
sented as a tuple (S, A, P, R, ) where:

* S is the set of possible states. The state encodes the infor-
mation needed at iteration ¢ to pick a variable to flip. In
our setting, a state is a tuple (X, ¢, {f(z)}sec, t), where X
is our current assignment, c is a clause unsatisfied by X,
and {f(z)},c.) are the set of features for all variables in
c and t is the current step. The formula F' uniformly sam-
pled from D is also part of the state, but it is fixed through
the episode. There are also two end states: ends,; and
endunsolved~

* A is the set of actions. Given a state s
(X, e, {f()}sec,t), the set of actions corresponds to
picking a variable to flip from the state’s clause c.

P is the transition probability function, defining the prob-
ability of going from a state-action pair (s,a) to the
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Init random assignment X; state Sp; history = ()

for t = 0 to max_flips do
if X satisfies F’' then
break
Sample action a ~ my(St)
Append (S¢, a) to history
X « flip(X,a)
Update state Syy1
Set reward = 1 if X satisfies F' and O otherwise.

for t = 0to T = len(history) do
(St, a) < history(t)
D W@(St%
g g+~"""rViogp(a)
0+ 0+ag

next state s’. Let s = (X, ¢, {f(z)}rec,t) be our
current state, we pick a variable x in ¢ with probabil-

. fo (@)
(&
lty Zch efo(v)?

which gets us X', the assignment ob-

tained from X by flipping variable x. If X' satisfies
the formula F', we move to the end,,; state. If the
max number of steps is reached and X’ does not sat-
isfy F', we move to end,psoived- Otherwise, we move
to (X', ¢, {f(z)}zee, t + 1), where ¢’ is a random unsat-
isfied clause by the new assignment X'.

* R(s) is the immediate reward after transitioning to state
3. R(endsqt) = 1 and 0 otherwise.

* v € (0,1) is the discount factor, which we set to less than
1 to encourage finding solutions in fewer steps.

We reformulate the problem of learning informative
heuristics for SAT into the problem of finding an optimal
policy m for the MDP described above. We use the well-
known REINFORCE algorithm (Williams 1992). Our pol-
icy m(s) is determined by the function fy(x) that we use to
sample the variable to flip based on the feature vector of each
variable.

At each training iteration, we sample a batch of formulas
from the distribution D and generate trajectories for each
formula. We accumulate the policy gradient estimates from
all trajectories and perform a single update of the param-
eters. Algorithm 4 shows the pseudo-code of the REIN-
FORCE algorithm for the case of constant noise and batch
size of one.
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Median Flips over Epochs

10% Training without warm-up

10° :
Training with warm-up

Median Flips (log scale)

Epocs

Figure 1: Comparing median flips (log-scale) over epochs on train-
ing data for LearnWSAT with and without a 5 epoch warm-up.
Training with 1800 formulas of rands (75, 320).

3.5 Training with a Warm-Up Strategy

By performing an extensive experimental evaluation, we
found that the training of our algorithm takes too long for
formulas with over 50 variables when using completely ran-
dom heuristics and not initially finding a satisfying assign-
ment. Trials without satisfying assignments are not useful
for training since they have a reward of zero. To cope with
this problem, we design a warm-up strategy to speed up the
training process. For a few epochs, we train the function fy
in such a way that the sampling mimics the pickVar strat-

fjff}g(w . We cast
this as a classification problem and use log-loss and gradient
descent to train fy. Figure 1 displays the training with and
without warm-up for formulas in rands (75, 320), showing

the benefit of our approach.

egy from WalkSAT with probability >

4 Experimental Setting
4.1 Data

We perform experiments using random formulas generated
from the following problems: random 3-SAT, random 4-
SAT, clique detection, graph coloring and dominating set.
These distributions, except for random 4-SAT, are used in
the evaluation of GnnSLS by Yolcu and Poczos (2019). To
facilitate comparison, we use the same problem distribu-
tions. They also used a vertex covering problem that the
CNFgen package (Lauria et al. 2017) no longer supports, so
we do not include this problem in our experiments.

It has been observed empirically that random K-SAT
problems are hard when the problems are critically con-
strained, i.e. close to the SAT/UNSAT phase boundary
(Mitchell et al. 1992; Selman, Mitchell, and Levesque
1996). These problems are used as common benchmarks
for SAT. The threshold for 3-SAT is when problems have
roughly 4.26 times as many clauses as variables. To gener-
ate hard problems for random 4-SAT, we set the number of
clauses to be 9.75 times the number of variables (Gent and
Walsh 1994). The other three problems are NP-complete
graph problems. For each of these problems, a random
Erdos-Rényi graph G(N,p) is sampled. To sample from
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G(N,p), a graph with N nodes is generated by sampling
each edge with probability p.

For all these problem distributions, we generate random
instances and keep those that are satisfiable. We use the CN-
Fgen package (Lauria et al. 2017) to generate all instances
and Minisat (Eén and Sorensson 2003) to filter out the un-
satisfiable formulas.

4.2 Algorithms

For comparison, we use the SLS algorithm learned via rein-
forcement learning developed by Yolcu and Poczos (2019),
which we call GnnSLS, and follow the same experimental
setup. We also consider one of the WalkSAT versions, as
described in Selman et al. (1993). Again, we follow Yolcu
and Poczos (2019) in using this particular WalkSAT version.

We wrote our algorithms in Python and PyTorch, which
does not make them competitive with state-of-the-art SAT
solvers with respect to running time. Indeed, our goal in this
paper is to explore the power of reinforcement learning for
formulating effective SAT heuristics. To this aim, we offer
a prototype algorithm that proves the concept. Although we
do not try here to beat highly-optimized current SAT solvers,
our results suggest that our technique has the potential to
compete with them if written efficiently.

For each problem distribution, we generate 2500 satisfi-
able formulas. From these, 500 are used for testing, 1900
for training and 100 for validation.

As metrics, we use the median of the median number of
flips, the average number of flips and the percentage of in-
stances solved.

4.3 Training with Reinforcement Learning

We train GnnSLS as described in Yolcu and Poczos (2019)’s
paper and use their code from the related GitHub reposi-
tory. The paper uses curriculum learning, where training
is performed on a sequence of problems of increasing diffi-
culty. For example, to train problems for rands(50,213),
the authors start by first training on rands(5,21), using
the resulting model to subsequently train on rands(10,43),
rands (25, 106) and rands (50, 213).

As mentioned above, for experiments with random for-
mulas, our models are trained using 1900 instances. The
100 validation instances are used to select the model with
the best median number of steps. We train for 60 epochs us-
ing one cycle training (Smith and Topin 2017) and AdamW
(Loshchilov and Hutter 2017) as the optimizer (a link to our
GitHub repository will be provided in due course). Most of
our experiments are run with a discount factor of 0.5.

4.4 Evaluation

For evaluation, we use max_tries = 10 and maz_flips =
10000 unless otherwise specified. As said above, for ran-
domly generated problems, we use 500 instances for testing.
The noise probability for WalkSAT and GnnSLS is set to
p= % as in the experiments by Yolcu and Poczos (2019).

S Experimental Results

Comparison to GnnSLS and WalkSAT. Table 2 summa-
rizes the performance of LearnWSAT compared to GnnSLS
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LearnWSAT GnnSLS  WalkSAT Distribution n m
rands(50,213) randy(n,m) n m
- colors(20,0.5) 100 770
m-flips 119 352 356 cliques(20,0.05) 60 1758
a-flips 384 985 744 domesets(12,0.2) 60 996
solved 100% 99.6% 100%
colors(20,0.5) Table 3: Size of the formula used in our evaluation. The distribu-
tion randy (n, m) has exactly n variables and m clauses. For all
m-flips 103 137 442 the other distributions, we show the maximum number of variables
a-flips 225 497 787 n and clauses m in the sampled formulas.
solved 100% 100% 100%
cliques(20,0.05) of different sizes to assess how well the algorithm general-
m-flips 68 200 176 izes to larger instances after having been trained on smaller
a-flips 91 345 238 ones. We consider random 3-SAT instances of different
solved 100% 100% 100% sizes, rands(n, m). As in Table 2, we consider three met-
rics: median number of flips (m-flips), average number of
domeset4(12,0.2) flips (a-flips), and percentage solved (solved). The second
m-flips 65 72 171 column reports the performance of LearnWSAT (indicated
a-flips 97 242 288 LWSAT for brevity) on instances of different sizes when the
solved 100% 100% 100% algorithm is trained on rand3z (50, 213) only. In the third col-
umn, for comparison, we report the performance of Learn-
rand4(50,487) WSAT when it is trained and evaluated on instances of the
m-flips 685 i 2044 same size. The fourth column reports the performance of
a-flips 1484 ) 3302 GnnSLS when the algorithm is trained on randsz (50, 213)
solved 100% ) 96% only. Finally, the last column reports the WalkSAT (indi-

Table 2: Performance of LearnWSAT compared to GnnSLS and
WalkSAT. Three metrics are presented: median (m-flips) and aver-
age number of flips (a-flips), and percentage solved (solved).

and WalkSAT. We present results for five classes of prob-
lems, rands(50,213), rands(30,292), colors(20,0.5),
cliques(20,0.05) and domeset4(12,0.2) and three metrics,
median number of flips (m-flips), average number of flips
(a-flips), and percentage solved (solved). Table 3 indicates
the number of variables and clauses in the sampled formulas
and gives a sense of the size of the SAT problems we tackle.
Table 2 shows that, after training, LearnWSAT requires sub-
stantially fewer steps than GnnSLS and WalkSAT to solve
the respective problems. Our algorithm performs better than
WalkSAT because it optimizes the variable scoring and the
noise parameter to the particular distribution of SAT prob-
lems. Our technique is also better than GnnSLS because of
the following two reasons. First, we speculate that GnnSLS
underfits the problem. The SAT encoding and the model
used by GnnSLS are more sophisticated but also much more
complex than our approach. It is not possible to directly
train the GnnSLS algorithm with problems that have a few
variables (e.g. 50 variables). To get the GnnSLS encoding to
work well, smarter training and more data are needed. Sec-
ond, our approach uses time-dependent variables (the last
time a variable has been flipped), which GnnSLS is unable
to encode.

Generalization to larger instances. In Table 4, we com-
pare the performance of LearnWSAT trained on data sets
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cated WSAT) baseline.

The table shows that our model evaluated on
rands(50,213) performs similarly or better than mod-
els trained on larger instances. Training becomes much
more expensive as a function of the size of the formula, but
this result suggests that we can train on smaller formulas of
the same distribution. GnnSLS trained on smaller instances
can also be evaluated on larger problems of the same
distribution, but the results seem to degrade as the formulas
get larger.

Table 5 shows results on instances that are harder than
the ones shown before. In particular, Minsat is not able
to solve some of the instances of rands(500,2130) and
randy (200, 1950) in less than ten hours. We generated 100
problems from rands(300,1278), rands(500,2130) and
rand, (200, 1950), respectively.

These instances are generated at the SAT/UNSAT thresh-
old, therefore around 50% of them are supposed to be satis-
fiable. In the case of rand,(200,1950), it seems that a few
more are satisfiable since LearnWSAT is able to solve 68%
of them.

Noise parameter. In our initial experiments, we learned
a noise function that depended on the stagnation parame-
ter 0. After inspecting the function, we noticed that the ef-
fect of § is negligible. In Figure 2, we show the learned
noise function as used by the algorithm at evaluation time.
We plot the noise function against the iteration until the for-
mula is solved. The stagnation parameter varies per iter-
ation, but these curves show very little variation. We ran
experiments in which we fixed p,, to be a constant depen-
dent on the distribution and found that the results are similar
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LWSAT LWSAT GnnSLS WSAT
(50, 213) (50, 213)
(50,213)
m-flips 119 119 352 356
a-flips 384 384 985 744
solved 100% 100% 99.6% 100%
(75,320)
m-flips 260 286 969 880
a-flips 904 948 2253 1772
solved 100% 100% 96.6% 98%
(100, 426)
m-flips 503 575 2264 1814
a-flips 1650 1682 3816 3132
solved 100% 100% 85.6% 93%
(200, 852)
m-flips 4272 4005 10000 10000
a-flips 5329 5085 8359 7497
solved 96.2% 95.6% 26% 46.2%

Table 4: Performance of our algorithm evaluated on different in-
stances of the same distribution. We consider rands(n, m) formu-
las of different sizes (n and m refer to the number of variables and
clauses in the sampled formulas). The second column corresponds
to evaluating our algorithm (indicated as LWSAT) trained on for-
mulas from rands (50, 213) only. The third column corresponds
to evaluating the algorithm on instances of the same size used for
training. The fourth corresponds to evaluating GnnSLS on the al-
gorithm trained on rands(50,213). The last column reports the
WalkSAT (indicated WSAT) baseline. We consider three metrics:
median (m-flips) and average number of flips (a-flips), and percent-
age solved (solved).

to when the noise function depends on §. In particular, we
optimize p,, = 0.5 - Sigmoid(w) by finding a single param-
eter w per distribution. After these initial experiments, we
ran all the others (as they are reported here) with fixed con-
stants. Note that these constants are small compared to typi-
cal values used for WalkSAT (p = 1/2). This is because our
PickV ar algorithm (shown in Algorithm 3) injects noise by
sampling instead of deterministically picking variables as in
the original PickV ar algorithm of WalkSAT (Algorithm 2).

Impact of the discount factor. ~ We ran experiments to un-
derstand the dependencies of our results on the value of the
discount factor for reinforcement learning. Figure 3 shows
the median flips as a function of the discount factor. The
gray area shows the confidence intervals for each curve. We
find that various discount factors give similar results.

Impact of the size of training data. Figure 4 shows the
median flips as a function of the size of the training data. The
experiment uses formulas from rands(50,213). The plot
shows that we need a training size of at least 40 to learn an
algorithm that is better than WalkSAT. For optimal results,
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LearnWSAT  WalkSAT
rands(300,1278)  48% 26%
rands(500,2130) 36% 9%
randy(200,1950) 68% 0%

Table 5: Performance of our algorithm evaluated on larger in-
stances of randy(n,m). These instances have not been checked
for satisfiability. Around 50% of them are expected to be satisfi-
able. The metric shown is percentage solved. The max_flip param-
eter is set to 50000 for both solvers. LearnWSAT was trained on
rands (50, 213) for the first two rows and on rand4 (50, 487) for
the last row.

Noise Parameter over Iterations

kcligue
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E kcolor
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& r@ndsat
i rands
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0.00
0o 50 100 150 200

Iterations

Figure 2: The data corresponding to each line comes from running
an evaluation on a single formula for each of the five problem distri-
butions (colors(20,0.5), cliques(20,0.05), domesets(12,0.2),
randz(50,213), randa(30,292)) until the SAT assignment is
found. The plot shows the noise parameter as a function of the
iteration.

Median Flips versus Discount
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Figure 3: Comparing median flips as a function of the dis-
count factor for various datasets. The lines correspond to
training and evaluation on instances of the following dis-
tributions:  rands(50,213), rand4(30,292), colors(20,0.5),
cliques(20,0.05) and domeset4(12,0.2)

we need at least 160 formulas. To run the experiments with
smaller datasets, we increased the number of warm-up steps
from 5 to 50 and the amount of epochs from 60 to 200.

6 Conclusions and Future Work

In this paper, we present LearnWSAT, a technique that dis-
covers effective noise parameters and scoring variable func-
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Median Flips versus Size of Training
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Figure 4: Comparing median flips as a function of the size of the
training data. Training with rands(50,213) formulas. Gray re-
gion corresponds to confidence intervals. Gray line corresponds to
median flips for the WalkSAT baseline.

tions for WalkSAT-type algorithms. Thanks to them, Learn-
WSAT uses substantially fewer flips than a WalkSAT base-
line, as well as an existing learned SLS-type algorithm, to
solve the satisfiability problem. Although we do not focus
on optimizing the implementation of LearnWSAT in this pa-
per, our experiments suggest that, when coded efficiently,
our technique could compete with state-of-the-art solvers.

Despite improving over algorithms in the literature, we
note that a limitation of LearnWSAT is the need to pre-
define a set of features. In addition, training is slow for
formulas with 150 variables or more. The last limitation is
mitigated by the fact that, as we have shown in the experi-
ments, models trained on smaller formulas generalize well
to larger ones. Overcoming these limitations is part of our
future work.

Finally, we remark that the ideas presented in this work
are general and could be adapted to solve other hard combi-
natorial problems.
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