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Abstract

Answer Set Programming is a widely used paradigm in
knowledge representation and reasoning, which strongly re-
lates to the satisfiability (SAT) of propositional formulas.
While in the area of SAT, the last couple of years brought
significant advances and different techniques for solving hard
counting-based problems (e.g., #SAT, weighted counting,
projected counting) that require more effort than deciding sat-
isfiability, ASP still falls short. Intuitively, one explanation
for this lies in the structure of a program, that – compared to
SAT – was shown to yield strong evidence for being slightly
less useful during solving. Indeed, for the structural measure
treewidth that plays an important role in #SAT, ASP is ex-
pected to be at least slightly harder than SAT. The underlying
source of this hardness increase lies in cyclic dependencies
in the positive dependency graph. In this work, we consider
which strategies are appropriate to tackle counting-based
problems for ASP depending on cycle lengths. We present
different encodings to counting-based variants of SAT that
utilize recent advances. For small cycle lengths, we demon-
strate a novel strategy based on feedback vertex sets. While
medium cycle lengths leave room for future improvements,
surprisingly, if cycles are significantly larger than structural
dependencies (treewidth), we obtain a polynomial algorithm.

1 Introduction
Counting the satisfying interpretations of a logical theory
is a notoriously hard problem but has especially recently
gained relevance due to its relation to probabilistic reason-
ing (Raedt, Kimmig, and Toivonen 2007; Lee and Yang
2017; Eiter, Hecher, and Kiesel 2021), parameter learn-
ing in neuro-symbolic reasoning (Manhaeve et al. 2019;
Skryagin et al. 2021; Yang, Ishay, and Lee 2020), knowledge
compilation (Huang and Darwiche 2005; Darwiche 2004;
Lagniez and Marquis 2017), and other fields.

While there have been significant advances in recent years
for #SAT, i.e., model counting if the considered logical the-
ory is a propositional formula, the question remains open
how #ASP, i.e., the corresponding problem in the context
of Answer Set Programming (ASP), should be tackled. In-
deed, despite the availability of existing approaches for solv-
ing #ASP (Janhunen and Niemelä 2011; Fichte et al. 2017;
Eiter, Hecher, and Kiesel 2021; Fichte et al. 2022), which
were shown to be effective in some settings, their runtime
guarantees do not imply efficient performance in general.

Conceptually, existing state-of-the-art techniques for
counting #SAT exactly, which are based on knowl-
edge compilation (Darwiche 2004; Lagniez and Marquis
2017), caching (Thurley 2006), or structural measures like
treewidth (Korhonen and Järvisalo 2021), follow a unified
goal, see, e.g., (Fichte, Hecher, and Hamiti 2021): Decom-
pose the instance or find parts of the instance that can be
solved individually, such that individual solution counts can
be combined to obtain the count for the overall solution.

For ASP, the situation seems different. Indeed, there
exists evidence that treewidth, which intuitively mea-
sures “treelikeness”, is at least slightly less useful for
#ASP (Hecher 2022). Further, the best known algorithm for
#ASP, whose runtime is fixed parameter tractable with re-
spect to the treewidth k is double exponential in k (Pichler
et al. 2014), whereas for #SAT it is single exponential.

In this work, we take a closer look at the underlying
source of this increased hardness of answer set counting
(#ASP) for treewidth compared to #SAT, namely the positive
cyclic dependencies between atomic variables introduced by
the stable model semantics of ASP. These lead to the fact that
any translation from ASP to SAT that does not make use of
auxiliary variables is expected to have an exponential blow
up in general (Lifschitz and Razborov 2006). Additionally,
the typical strategy that does not make use of auxiliary vari-
ables adds so-called loop formulas (Lin and Zhao 2004b),
which can lead to an unbounded increase of treewidth.

We tackle the cyclic dependencies by identifying different
strategies that come with promising runtime and treewidth
guarantees. Thereby, the relation of the length of cyclic de-
pendencies (SCC size) compared to the treewidth of the pro-
gram turns out to be a useful criterion to decide for appro-
priate strategies. Our main contributions are:
• We establish an overview and a characterization of dif-

ferent strategies, depending on cycle sizes (SCC sizes).
We distinguish three different ranges of SCC sizes and
we propose corresponding solving techniques.

• For small cycles, we present a new approach that com-
bines two techniques from the literature (Janhunen and
Niemelä 2011; Eiter, Hecher, and Kiesel 2021). Here, we
consider the feedback vertex set size (FVS size), which
is strictly smaller than SCC size. This allows us to pro-
vide strictly better upper bounds combined with matching
lower bounds under ETH (exponential time hypothesis).
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• Interestingly, the proposed approach for small cycles also
works for medium-sized cycles. While a small gap re-
mains open to our ETH-based lower bounds, we discuss
the challenges associated with the closing of it and possi-
ble techniques for achieving this.

• Finally, we establish new strategies for large cycles. First,
we show how to apply projected model counting (PMC)
for counting answer sets. The second approach uses a
novel encoding to #SAT that bijectively preserves the an-
swer sets. This encoding even works for disjunctive pro-
grams; it is based on a novel approach that is single-
exponential only in the program’s treewidth. However,
due to large cycles, the encoding is polynomial in the in-
stance size. Further, we show that with our encoding an-
swer set counting can be carried out in polynomial time.

Our work shows that while there are still gaps between the
upper and lower bounds for #ASP with medium SCC size,
we have efficient strategies for both small and large SCC
size that cannot be significantly improved under ETH. Ad-
ditionally, our novel encoding based on a fine grained cycle
analysis that exploits FVS size pushes the limits of tractabil-
ity in the presence of cycles even further.

Related Work. For disjunctive programs and extensions
thereof, algorithms have been proposed (Jakl, Pichler, and
Woltran 2009; Fichte et al. 2017) running in time linear in
the instance size, but double exponential in the treewidth.
Under ETH, one cannot significantly improve this runtime,
using a result (Lampis and Mitsou 2017) for QBFs with
quantifier depth two and a standard reduction (Eiter and Got-
tlob 1995) from this QBF fragment to disjunctive ASP. The
consistency of normal programs for treewidth is expected
to be slightly harder than SAT (Hecher 2022). This even
holds in case the largest SCC size is bounded (Fandinno and
Hecher 2021). Also programs, where the number of even
and/or odd cycles is bounded, have been analyzed (Lin and
Zhao 2004a), which is orthogonal to largest SCC size.

2 Preliminaries
We assume familiarity with SAT and denote by #SAT(φ)
the number of models of a Boolean formula φ. Further,
PMC(φ,A) for a set A of variables corresponds to the pro-
jected model count |{M ∩A |M ⊆ var(φ),M |= φ}|.

Below, we give the background on ASP, graph represen-
tations of programs, and their associated structural parame-
ters. An answer set program Π (Eiter, Ianni, and Krennwall-
ner 2009) is a finite set of rules r of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bn, not c1, . . . , not cm, (1)
where ai, bj , cj are propositional atoms. Given a rule r, let
Hr = {a1, . . . , ak}, B+

r = {b1, . . . , bn},
B−

r = {c1, . . . , cm}, Br = {b1, . . . , bn,¬c1, . . . ,¬cm}.
A program Π is normal if k = 1 and disjunctive, otherwise.

By slight abuse of notation, we write ←
b1, . . . , bn, not c1, . . . , not cm for ⊥ ← b1, . . . , bn, not c1,
. . . , not cm, not⊥, where ⊥ is a fresh atom not in Π.

Further, we allow choice rules {a} ← B+
r , B−

r as a short-
hand for the two rules a ← B+

r , B−
r , notna and na ←

B+
r , B−

r , not a, where na is a fresh propositional atom. We
denote by A(Π) the set of atoms occurring in Π.

An interpretation, denoted I, is a subset of A(Π); it sat-
isfies an atom a ∈ A(Π) (resp. not a for a ∈ A(Π)), written
I |= a (resp. I |= not a), if a ∈ I (resp. a ̸∈ I). It sat-
isfies Π (is a model of Π), if for each rule r ∈ Π it holds
that either I |= Hr, i.e., there exists some a ∈ Hr such that
I |= a, or I ̸|= Br, i.e., there exists some l ∈ Br such
that I ̸|= l. Furthermore, I is an answer set of Π if it is
a ⊆-minimal model of its GL-reduct (Gelfond and Lifschitz
1988) ΠI = {Hr ← B+

r | r ∈ Π, B−
r ∩ I = ∅}.

Schematic rules with variables X,Y, . . . are implic-
itly universally quantified and their semantics is given by
grounding (instantiation) with concrete values (constants).
Example 1 (Reachability). We consider a standard problem
that can easily be modelled using cyclic programs but is
harder to model with a Boolean formula, namely reachabil-
ity in a directed graph, as a running example.

i(X)← t(X) {t(X)} ← v(X)
i(Y )← i(X), t(X,Y ) {t(X,Y )} ← e(X,Y )

Here, we guess for each vertex (v(X)), whether we take
it (t(X)), and for each edge e(X,Y ), whether we take it
(t(X,Y )). If a vertex x is taken, then it is included (i(x)). If
a vertex x is included and edge x, y is taken, y is included.

By taking the complete graph over vertices in {0, 1, 2},
we can ground and simplify the program to obtain Πg:

{t(0)} {t(1)} {t(2)}
i(0)← t(0) i(1)← t(1) i(2)← t(2)

{t(0, 1)} {t(1, 2)} {t(2, 0)}
{t(0, 2)} {t(2, 1)} {t(1, 0)}

i(0)← i(2), t(2, 0) i(0)← i(1), t(1, 0)

i(1)← i(2), t(2, 1) i(1)← i(0), t(0, 1)

i(2)← i(1), t(1, 2) i(2)← i(0), t(0, 2)

We consider graphs and digraphs, using the following no-
tation. The vertex- and edge-set of a (di)graph G = (V,E)
is denoted by V (G) and E(G), respectively. For V ⊆ V (G)
we let G[V ] be the (di)graph obtained by removing all ver-
tices not in V from V (G) (i.e. V (G[V ]) = V (G) ∩ V )
and removing all edges which use a vertex not in V (i.e.
E(G[V ]) = E(V ) ∩ V × V ). Further, we define G \ V as
G[V (G) \ V ]. Subgraph C = G[V ] is strongly connected if
every vertex in C is reachable from any other vertex in C.

We denote by SCC(G) the set of strongly connected com-
ponents (SCCs) of a digraph G, which are strongly con-
nected subgraphs G[V ], where V is subset-maximal. Based
on this, the condensation of G is the graph (SCC(G), E∗)
such that there is an edge (V, V ′) ∈ E∗ if V ̸= V ′ and for
some v ∈ V, v′ ∈ V there is an edge (v, v′) ∈ E(G).

The (positive) dependency graph DΠ of a program Π is
the digraph G with V (G)=A(Π) and (b, a) ∈ E(G) if there
is a rule r∈Π such that a∈Hr and b∈B+

r . The primal graph
GΠ of Π is the graph G with V (G)=A(Π) and (x, y)∈E(G)
if there is a rule r ∈ Π with x, y ∈ Hr ∪B+

r ∪B−
r .

A feedback vertex set of a graph G is a set F ⊆ V (G)
such that (i) G \ F is acyclic, i.e., there is no node that is
reachable from itself, and (ii) F is minimal with respect to
cardinality among the sets satisfying (i).
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Example 2 (cont.). The dependency graph of Πg is shown
in Figure 1. It is the graph we used to ground the program,
when reduced to the atoms of the form i(x) for x = 0, . . . , 2.
The digraph has exactly one SCC S = {i(0), i(1), i(2)} and
thus its condensation is the digraph ({S}, ∅).

i(0) i(1)

i(2)

Figure 1: Dependency graph of Πg reduced to atoms of the form
i(x) for x = 0, . . . , 2.

Next, we recall the definition of treewidth.

Definition 1. Let G be a graph. A tree decomposition (TD)
(Robertson and Seymour 1986) is a pair (T, χ), where T is a
rooted tree, chld(t) is the set of child nodes for every node t
in T , and χ is a labeling of V (T ) by subsets of V (G) s.t.

• for all nodes v ∈ V (G) there is t ∈ V (T ) s.t. v ∈ χ(t);
• for every edge {v1, v2} ∈ E(G) there exists t ∈ V (T ) s.t.
v1, v2 ∈ χ(t);

• for all nodes v ∈ V (G) the set of nodes {t ∈ V (T ) | v ∈
χ(t)} forms a (connected) subtree of T .

The width of (T, χ) is maxt∈V ′ |χ(t)|−1. The treewidth of a
graph is the minimal width of any of its tree decompositions.

Intuitively, treewidth is a measure of the distance of a
graph from a tree. It is motivated by the fact that many
computationally hard problems are tractable on trees. Cor-
respondingly, trees are the only graphs that have treewidth 1.
For low treewidth it is often possible to generalize tractabil-
ity results by decomposing problems into smaller subprob-
lems using a TD witnessing the low width.

2.1 Binary Counter Cycle Breaking
Cycle breaking is a technique that allows the translation of
normal programs to propositional formulas. We use the cy-
cle breaking by (Janhunen and Niemelä 2011) as the basis
for an improved cycle breaking. The idea here is based on
the insight that for a given interpretation I and a program Π
it is determined for each atom a ∈ A(Π) how many steps
the shortest derivation of a in ΠI takes.

Example 3 (cont.). A standard simple way to represent the
length of derivations in the program of our running example
is to consider instead the graph given in Figure 2. The idea

i(0)(0) i(1)(0) i(2)(0)

i(0)(1) i(1)(1)i(2)(1)

i(0)(2)i(1)(2) i(2)(2)

Figure 2: Unfolding of the dependency graph of Πg reduced to
atoms of the form i(x) for x = 0, . . . , 2.

is now the following: We can derive i(1)(j) iff we guess it to

be true, i(0)(j−1) and t(0, 1) hold, or i(2)(j−1) and t(2, 1)
hold. Thus, intuitively, the j in i(x)(j) tells us the number
of steps used in this derivation. Note now that for a given
guess I of the take atoms, if i(x) is derived from the origi-
nal program and I, then there is a unique level j such that
i(x)(j) holds but i(x)(j−1) does not (or j = 0).

The idea behind the translation of (Janhunen 2004) is now
the following: introducing |S(a)| copies per atom a, where
S(a) is the SCC of the dependency graph that contains a,
is costly and should be avoided. Instead, each atom a ∈
A(Π) has an associated binary counter that can represent
the numbers 0, . . . , |S(a)| − 1 via c(a) = ⌈log2(|S(a)|)⌉
auxiliary variables b

(c(a))
a , . . . ,b

(1)
a . During cycle break-

ing, constraints are added to ensure that in every answer
set I the number represented by the auxiliary variables
b
(c(a))
a , . . . ,b

(1)
a corresponds to the length of the shortest

derivation of a in ΠI .
The basic cycle breaking proceeds by adding for each nor-

mal rule of the form (1) and atom a ∈ A(Π) additional rules:
a← b1, . . . , bn, not c1, . . . , not cm. (2)

That is, we keep all original rules.
justa ← b1, ltb1,a, . . . , bn, ltbn,a, not c1, . . . , not cm (3)

← a, not justa (4)
That is, we additionally require that if an atom a is true, then
there needs to be a rule deriving it (i) whose body is true and
(ii) the binary counter of every positive body literal b is less
than the binary counter of a. This ensures that a derivation
can only use positive literals that are derived strictly earlier.

nexta ← b1, . . . , bn, not c1, . . . , not cm, succa,bi (5)
for i = 1, . . . , n

← a, notnexta (6)
That is, we require that if an atom a is true, then there needs
to be a rule deriving it (i) whose body is true and (ii) the
binary counter of a is the successor of some positive body
literal b. This means that there must be a rule deriving a
which uses a positive body literal b whose derivation is one
shorter than the one of a.
←b1, ltb1,a, not succa,b1 , . . . , bn, ltbn,a, not succa,bn ,
not c1, . . . , not cm (7)

That is, we require that if a rule justifies the derivation of a,
then (i) a has a shorter derivation than any derivation using
this rule (if not ltb,a holds for some positive body atom b)
or (ii) the shortest derivation for a uses this rule (if succb,a
holds for some positive body atom b). This together with the
two previous formulas enforces that the binary counter of a
represents the length of its shortest derivation, rather than
the length of some derivation.

Note here that ltb,a, succa,b are auxiliary variables whose
truth value is defined in terms of the binary counters of a and
b. For this, we use the following notation. Let:

• S(.) be the function that assigns an atom a the SCC S(a)
of the dependency graph of Π such that a ∈ S(a),

• ≻top be a topological ordering of the condensation of the
dependency graph of Π.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

346



We first define some auxiliary subformulas on the binary
counters. For a, b ∈ A(Π) such that S(a)=S(b) and 1 ≤
i ≤ c(a) we define auxiliary variables [ba = bb]≥i via rules
[ba = bb]≥c(a) ← b(c(a))

a ,b
(c(a))
b

[ba = bb]≥c(a) ← notb(c(a))
a , notb

(c(a))
b

[ba = bb]≥i−1 ← b(i−1)
a ,b

(i−1)
b , [ba = bb]≥i

[ba = bb]≥i−1 ← notb(i−1)
a , notb

(i−1)
b , [ba = bb]≥i

and the auxiliary variables [ba = bb + 1]≥i via the rules

[ba = bb + 1]≥i ←b(j)
a , notb

(j)
b , [ba = bb]≥j+1,

notb(i)
a , . . . , notb(j−1)

a ,b
(i)
b , . . . ,b

(j−1)
b

Based on this, the definition of “less than” and “succes-
sor” are given by the following rules:

← not a,b(i)
a for i = 1, . . . , c(a),

and, if S(a) ≻top S(b)

ltb,a ← succa,b ← notb(1)
a , . . . , notb(c(a))

a ,

if S(b) ≻top S(a) we cannot derive ltb,a or succa,b, and if
S(a) = S(b) we add for i = 1, . . . , c(a)− 1

ltb,a ← b(i)
a ,¬b(i)

b , [ba = bb]≥i+1

succa,b ← [ba = bb + 1]≥1

Note that although the definitions of ltb,a, succa,b, [ba =
bb]≥i, and [ba = bb + 1]≥i are independent of the rule r
that they are used in, we need to obtain a separate variable
v(r) for each of the auxiliary variables v that is used only
for this rule r, in order to prove our theoretical results. We
refrain from adding the superscript (r) to each variable to
reduce syntactic noise.

3 Which Cycles are Bad? – An Overview
While for ASP the complexity of the decision problem, in
terms of treewidth has been established (Hecher 2022), for
problems involving the computation of more than one an-
swer set, e.g., counting all answer sets, there is still a gap.
The reason for this gap is that existing approaches utiliz-
ing structural dependencies (treewidth) are based on com-
puting local (relative) orderings on atom subsets, which are
insufficient for bijectively preserving all the answer sets. In-
stead, these approaches then obtain duplicates, i.e., for one
answer set, several solutions might be computed. As an al-
ternative to reduce the cyclicity of a program, one could use
global orderings, e.g., (Janhunen and Niemelä 2011), where
atoms are ordered globally, thereby precisely preserving the
answer sets. This approach, however, may arbitrarily worsen
the structure in case of large cycles, since in the worst case
the resulting treewidth is increased by a factor that is log-
arithmic in the largest cycle (SCC size). As a result, this
increase is not bounded in the treewidth of the original pro-
gram, since cycles might involve all the program’s atoms.
This is not surprising, as even current state-of-the-art ASP
solvers involve the dynamic addition of constraints (cf. (Lin
and Zhao 2004b)) over major parts of potential answer sets
and are therefore not expected to be restricted to local parts.

The observations above motivate a deeper study on the
different strategies for solving #ASP when considering the

structure of programs and its largest SCC sizes. In the fol-
lowing, we classify the mentioned gap for #ASP, where
we develop a range of cycle lengths (relative to treewidth k)
with different general strategies for obtaining decent runtime
bounds. We provide an overview of these ranges in Table 1.
For acyclic or mildly cyclic programs, i.e., where SCC sizes
are constant, we inherit ETH-tight runtime bounds from
SAT, which yields runtimes of 2Θ(k) · poly(n). These cases
are therefore (almost) identical to #SAT, where we obtain
matching upper and lower bounds (under ETH). Then, for
non-constant SCC sizes s that are polynomial in k, we ob-
tain treewidth runtimes of the form 2Θ(k·log(k)) · poly(n),
which also matches known lower bounds.

For super-polynomial SCC sizes s we obtain treewidth de-
pendencies of the form 2Θ(k·log(s)). While we provide im-
provements for such SCC sizes, there is still a gap in the
worst case. Interestingly, for large SCC sizes s that are at
least double-exponential in k, we obtain actually polyno-
mial runtimes. In other words, programs with SCC sizes
that are superpolynomial in the treewidth and below double-
exponential, are the challenging ones.

4 Coping with Small to Medium Cycles
We show how we can deal with small to medium length cy-
cles by using and extending the approach of (Janhunen and
Niemelä 2011). Our main insight here is that we can ex-
ploit a more fine grained structure of the cyclicity of the de-
pendency graph than SCC size s, namely |fS |, the smallest
feedback vertex set size (FVS size). While Janhunen and
Niemelä’s approach needs a binary counter with ⌈log2(s)⌉
bits, for us ⌈log2(|fS |)⌉ bits suffice. We show this reduction
transferring to derived treewidth and runtime upper bounds.

The basis of our idea is to assign the binary counter the
length of a shortest derivation, however considering a modi-
fied definition of length. Namely, instead of naı̈vely unfold-
ing the graph as in Example 3, we consider an advanced un-
folding technique called TP -Unfolding from (Eiter, Hecher,
and Kiesel 2021). Intuitively, it can exploit low cyclicity of
the dependency graph to produce a more succinct unfolding.

We do so by using the observation that if the dependency
graph is a polytree, then we can fix a root v arbitrarily, first
consider all derivations towards the root and then consider
all derivations away from the root. This means that using
the strategy of copy atoms, we only need two copies for each
atom. However, dependency graphs are not polytrees, thus,
we need to reduce the general case to the case of polytrees.

To achieve this, we observe that if F is a FVS of the undi-
rected version of the dependency graph DΠ, then DΠ \ F
is a polytree. Now, we can alternatingly consider all deriva-
tions of those atoms that are not in F and those that are in F .
By doing this |F |+ 1 times, we can be sure that we covered
every derivation. To cover all derivations of atoms not in F
we only need to consider derivations in a polytree. Thus, to-
gether with the previous observation this means that we only
need to introduce 2 · (|F | + 1) copies of the atoms that are
not in F and |F | atoms that are in F .

While our example graph has high cyclicity and TP -
Unfolding does not provide a benefit on it for that reason, it

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

347



Classification SCC Size s = |S| Solving Approach Upper Bound Lower Bound (ETH)

No Cycles s = 0 TW-Aware Compl. (Hecher 2022) 2O(k) · poly(n) 2o(k) · poly(n)
Tiny Cycles s = O(1) TW-Aw. C. + Ords. (Janhunen 2004) 2O(k) · poly(n) 2o(k) · poly(n)

Small Cycles s ∈ [Ω(1), kO(1)] TW-Aw. C. + Orderings, Section 4 2O(k·log(min(k,|fS|))) · poly(n) 2o(k·log(k)) · poly(n)
Medium Cycles s ∈ [kΩ(1), 22

o(k)

] TW-Aw. C. + Orderings, Section 4 2O(k·log(|fS|)) · poly(n) 2o(k·log(k)) · poly(n)
Large Cycles∗ s = 22

Ω(k)

Disjunctive Encoding, Section 5 poly(n) poly(n)

Table 1: Classification of the complexity of #ASP according to the largest SCC size of the program’s dependency graph. Π is a normal (HCF)
program of size n, k is the treewidth of GΠ, S is the largest SCC of DΠ, and fS is a smallest feedback vertex set of S. New contributions
providing improvements over existing results are highlighted in bold-face. ∗: This construction immediately works for disjunctive programs.

still serves well to illustrate the idea behind TP -Unfolding.
Example 4 (cont.). As the set F we can choose {i(2)}, since
the dependency graph reduced to the vertices i(0), i(1) is a
polytree. For the polytree we choose the root i(1). Then, we
start by covering all derivations of atoms that are not in F
(i.e. that are not i(2)) by adding

i(0)(0,0) ← t(0)

i(1)(0,0) ← t(1) i(1)(0,0) ← i(0)(0,0), t(0, 1)

i(0)(0,1) ← t(0) i(0)(0,1) ← i(1)(0,0), t(1, 0)

Next we cover the derivations of i(2) by adding the rules
i(2)(1,0) ← t(2) i(2)(1,0) ← i(0)(0,0), t(0, 2)

i(2)(1,0) ← i(0)(0,1), t(0, 2) i(2)(1,0) ← i(1)(0,0), t(1, 2)

Again we cover all derivations of atoms different from i(2)
by adding the rules
i(0)(1,2) ← t(0) i(0)(1,2) ← i(1)(0,0), t(1, 0)

i(0)(1,2) ← i(2)(1,0), t(2, 0) i(1)(1,0) ← t(1)

i(1)(1,0) ← i(0)(1,2), t(0, 1) i(1)(1,0) ← i(2)(1,0), t(2, 1)

i(0)(1,3) ← t(0) i(0)(1,3) ← i(1)(1,0), t(1, 0)

i(0)(1,3) ← i(2)(1,0), t(2, 0)

This covers all derivations. Consider the dependency graph

i(0)(0,0)

i(1)(0,0)
Der. outside F
Towards root

i(0)(0,1)
Der. outside F
Away from root

i(2)(1,0)Der. inside F

i(0)(1,0)Der. outside F
Towards root

i(1)(1,0)

Der. outside F
Away from root i(0)(1,1)

Figure 3: TP -Unfolding of the dependency graph of Πg reduced
to atoms of the form i(x) for x = 0, . . . , 2.

of the TP -Unfolded program in Figure 3. We see that we
again introduce copies of atoms with a counter. However,
contrary to before our counter is now a pair of values (n, f),

where n ∈ N and f ∈ {0, 1}. The values signal the follow-
ing: if we are considering derivations in the polytree and f
is 0 the derivations are towards the root; if f is 1, then we
are considering derivations in the polytree away from the
root. For vertices not in the polytree or the root of the poly-
tree, f = 1 does not make sense, which is why we always
assign f = 0 here. The second counter n tells us how many
times we included atoms from F in any derivation branch.

We define the enhanced cycle breaking formally. Assume
that FS is a feedback vertex set of S for each SCC S of the
positive dependency graph of the given program Π. Then,
we can make due with only c(i) = ⌈log2(|FS |+1)⌉+1 bits
for each atom a such that S(a) = S, as follows. Let:
• S(.) be the function that assigns an atom a the SCC S(a)

such that a ∈ S(a),
• ≻top be a topological ordering of the condensation of the

dependency graph of Π,
• RS be an arbitrary but fixed set of vertices from S \ FS

such that every vertex in S \ FS has a path to exactly one
vertex in RS , and

• ≻S be a topological order induced by S \ FS when every
edge is directed away from RS .

Note that our cycle breaking only changes the definition of
ltb,a and succa,b. Namely, ltb,a and succa,b can still hold
if the binary counters of a and b have the same value. In-
deed, in our definition succa,b only requires an increase of
the counter when we are traveling from within the FVS to
outside the FVS or from a vertex outside the FVS to a root.
Conceptually, we model the two counters from Example 4
by using the least significant bit b(1)

a to tell us whether were
going towards a root or away from one (or whether we are
in the FVS), and the rest of the bits to tell us how often we
have visited the FVS any branch of our derivation.

Formally, we adapt the rules that define “less than” and
“successor” to the following:

← not a,b(i)
a for i = 1, . . . , c(a) (8)

if a ∈ FS(a) ∪RS(a)

← b(i)
a for i = 1, . . . , c(a) (9)

if S(a) ≻top S(b)
ltb,a ← succa,b ← notb(1)

a , . . . , notb(c(a))
a (10)

if S(b) ≻top S(a) we cannot derive ltb,a or succa,b, but if
S(a) = S(b), we add for i = 1, . . . , c(a)− 1 the rules
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ltb,a ← b(i)
a ,¬b(i)

b , [ba = bb]≥i+1. (11)

If in addition to S(a) = S(b), we have a ∈ FS(a), we add
succa,b ← [ba = bb + 1]≥2, (12)

or, if in addition a ̸∈ FS(a), b ∈ FS(a), we add
ltb,a ← succa,b succa,b ← [ba = bb]≥1 (13)

or, if in addition a, b ̸∈ FS(a), a ≻S(a) b, we add
ltb,a ← succa,b succa,b ← b(1)

a , [ba = bb]≥2 (14)

or, if in addition a, b ̸∈ FS(a), b ≻S(a) a, we add
ltb,a ← succa,b succa,b ← notb(1)

a , [ba = bb]≥1 (15)

As expected, we see that ltb,a and succa,b hold if they hold
for the original cycle breaking by Janhunen and Niemelä but
they can hold more often, due to Rules (12)–(15).

Correctness, Treewidth-Awareness, and Runtimes.
First, we establish correctness. Here, we denote by
Clark(ΠFV S) the Clark Completion (Fages 1994) of the
cycle breaking ΠFV S of a program Π, as specified in Rules
(2)–(7) and (8)–(15).
Theorem 2 (Correctness). Let Π be a normal program. For
every model I of Π there exists exactly one model Iext of
Clark(ΠFV S) such that Iext ∩ A(Π) = I, and vice versa.

This implies that the number of models of Π and
Clark(ΠFV S) are equal, which implies that we can use
Clark(ΠFV S) as a proxy for model counting of Π.
Proof (Sketch). We obtain the result by combining the re-
sults of (Janhunen and Niemelä 2011) and (Eiter, Hecher,
and Kiesel 2021). (Eiter, Hecher, and Kiesel 2021) showed
that TP -Unfolding satisfies the bijective preservation of
models. Additionally, we can use the same strategy as in
(Janhunen and Niemelä 2011) to show that the encoding
Clark(ΠFV S) determines a unique extended Iext such that
Iext ∩A(Π) = I, if I is a model of Π but has no models I ′
such that I ′ ∩ A(Π) is not a model of Π.

In order to establish treewidth-awareness we establish
treewidth-awareness for the cycle breaking ΠFV S .
Theorem 3 (Treewidth-Awareness). Let Π be a normal pro-
gram of treewidth k. Then, the treewidth of ΠFV S is in
O(k log(|fS |)), where |fS | is the FVS size.

Note that we still need to be careful: by applying the stan-
dard version of Clark’s Completion, we may observe an ar-
bitrary increase of the treewidth. However, by making use
of the ideas in (Hecher 2022), we can avoid this. Thus,
treewidth-awareness follows for the whole translation from
Π to Clark(ΠFV S), as long as Hecher’s treewidth-aware
version of Clark’s Completion is used.
Proof (Sketch). Let T = (T, χ) be a TD for Π of width k.
We construct a TD for ΠFV S satisfying the desired bound.

The idea here is to add to every node t ∈ T whose bag
χ(t) contains a variable a all related auxiliary variables, i.e.,
justa, nexta,b

(i)
a . Since there are O(log(|fS |)) for every

original variable a, this is okay.

Additionally, we however need to take care of the auxil-
iary variables succa,b, ltb,a, [ba = bb]≥i, [ba = bb + 1]≥i.
If we naı̈vely apply the same idea and add all of them,
whenever a, b ∈ χ(t), the resulting TD has a width in
Ω(k2 · log(|fS |)). Instead, we need to make use of one
copy v(r) of each of these auxiliary variables v for each
rule r such that Hr = {a} and b ∈ B+

r . Then, we can
create copies t(r) for a node t ∈ T and rule r such that
Hr ∪Br ⊆ χ(t) and add the variables for the rule r only to
the bag of t(r). This way, χ(t(r)) only contains these auxil-
iary variables for a fixed a and r. Using this limitation, there
are only O(k log(|fS |)) additional variables and the bound
on the width holds. Further, by inspecting the rules, the con-
structed object is indeed a tree decomposition.

Theorem 4 (Runtime for Normal Answer Set Counting).
Let Π be a normal program such that the treewidth of GΠ

is k and the FVS size of DΠ is |fS |. The number of answer
sets of Π can be computed in time 2O(k·log(|fS |)) · poly(n).
Proof. First, we compute a TD of GΠ of width 5k in
time 2O(k) · (|A(Π)| + |Π|) (Bodlaender et al. 2016). By
Theorem 2, the reduction is correct, i.e., #ASP(Π) =
#SAT(Clark(ΠFV S)). By Theorem 3, the treewidth
of ΠFV S is in O(k · log(|fS |)) and by (Hecher 2022), we
can modify Clark(.) to ensure that also the treewidth of
Clark(ΠFV S) is in O(k · log(|fS |)).

Finally, we compute #SAT(Clark(ΠFV S)) in time
2O(k·log(|fS |)) ·poly(|A(Π)|) (Samer and Szeider 2010).

4.1 The Challenge of Medium-Sized Cycles
While (Janhunen and Niemelä 2011)’s cycle breaking and
our improved version of it come with good treewidth upper-
bounds, the bounds are not only in terms of the program’s
treewidth but also have a logarithmic factor that depends
on the cyclicity of the program. Thus, when program has
low treewidth but high cyclicity, the treewidth of the pro-
duced SAT encodings is dominated by the logarithmic fac-
tor, rather than the treewidth of the program. E.g., for
|fS | = 2k

c

, where k is the treewidth and c is a constant,
the binary counter cycle breaking leads to a runtime upper
bound of 2O(kc+1) ·poly(|A(Π)|), however, the lower bound
of 2Ω(k·log(k)) ·poly(|A(Π)|) = 2Ω(k·log(k)+kc) shows a gap.
This is undesirable, and poses the question whether there is
an encoding into SAT that comes with a treewidth upper-
bound of O(kb), where k is the treewidth of the program
and b ∈ N is a constant not depending on the cyclicity.

This question has been open for a while and work on the
fixed parameter tractability of answer set program has only
been able to prove that a satisfiability preserving encoding
with a treewidth upper-bound ofO(k·log(k)) exists (Hecher
2022) but to the best of our knowledge no progress has been
made for a parsimonious encoding.

On the other hand, it may be possible that such an en-
coding does not exist. In this section, we consider this pos-
sibility and recall a key result that may be useful in prov-
ing a lower bound. For this, we briefly explain current
techniques (Wallon and Mengel 2020) for treewidth lower
bounds of SAT encodings with auxiliary variables, which
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make use of size lower bounds for so-called structured (d)-
DNNFs that are tractable circuit representations of Boolean
functions (Darwiche and Marquis 2002).

Theorem 5. Let f be a Boolean function over the set of
variables X and C be a CNF with auxiliary variables Y
such that f ≡ ∃Y C and such that the treewidth of C is k.
(i) Then there exists a structured DNNF D of size |C| ·2O(k)

such that D ≡ f . (ii) If additionally C has the same number
of satisfying assignments as f , then there exists a structured
d-DNNF D of size |C| · 2O(k) such that D ≡ f .

This implies that size lower bounds for structured DNNFs
(resp. d-DNNFs) translate to treewidth lower bounds for sat-
isfiability preserving (resp. parsimonious) encodings.

Proof (Sketch). (i) is known (Oztok and Darwiche 2017).
For (ii), we observe that in this case the truth values of the
variables in X are functionally determined by the assign-
ment to the remaining variables in every model. This implies
that the structured DNNF constructed in the proof by (Oztok
and Darwiche 2017) is also a structured d-DNNF.

Current techniques for lower-bounds use so-called com-
munication complexity of the considered Boolean function.

Theorem 6 (Wallon and Mengel 2020). Let f be a Boolean
function with non-deterministic (resp. deterministic) com-
munication complexity cc. Then any DNNF (resp. d-DNNF)
D such that D ≡ f has size Ω(2cc).

If we want to show that there is no parsimonious encoding
for normal answer set programs that comes with a treewidth
upper-bound of 2O(kb), we need to use deterministic com-
munication complexity. Namely, since there is a satisfiabil-
ity preserving encoding with treewidth inO(k · log(k)), any
lower bound provided by non-deterministic communication
complexity cannot be higher than O(k · log(k)).

While this result may be of use, proving lower-bounds
for the communication complexity of a function is a noto-
riously challenging task (Lee and Shraibman 2009). Addi-
tionally, we know from the previous section that a double
exponential lower bound w.r.t. the treewidth of the program
is not possible on a broad range of programs, i.e., those that
have small SCCs or FVSs compared to their treewidth. This
means that even if there is a family of programs, whose de-
terministic communication complexity grows exponentially
in their treewidth, these programs need to be unusual.

Summarizing, both a better lower bound and a better up-
per bound are likely very hard to derive in this context.
While we consider this problem a pressing matter, we there-
fore restrict ourselves to this short discussion of a possible
point of attack for better lower bounds but leave it open.

5 Polynomial Encodings for Large Cycles
For programs with large cycles in its dependency graph, it
turns out that one can count the number of answer sets in
polynomial time. First, we present a reduction that counts
answer sets via counting interpretations that are not models
of the program, as well as by counting those models that are
not answer sets. To this end, we utilize both #SAT as well

as projected model counting (PMC), which runs in polyno-
mial time in the instance size due to the large cycles. After-
wards, we show a different approach that focuses on directly
counting answer sets by means of a reduction to #SAT that
even works for disjunctive programs.

In the following, we assume a program Π that might be
disjunctive and a tree decomposition T = (T, χ) of GΠ of
width k. Further, we let Π contain a large cycle, i.e., we let S
be an SCC of DΠ such that |S| ≥ 22

k

. The reductions of the
next two subsections carefully take care that the treewidth
increase of the constructed Boolean formulas is bounded in
order to guarantee polynomial-time solvability. For the ease
of presentation we assume for every TD node t in T a bag
program Πt, which is a subset of {r ∈ Π | A(r) ⊆ χ(t)}
with |Πt| ≤ 1 and Π =

⋃
t in T Πt. This is not a restriction,

since it is achievable by adding auxiliary copy TD nodes
such that each bag program contains (at most) one rule.

5.1 Counting Inverse Answer Sets via PMC
In order to ensure that the answer sets of Π containing large
cycles, can be counted in polynomial time, one has to take
care the treewidth increase is bounded. In the following, we
design two reductions. One of these reductions constructs
the formula Funsat, whose models precisely capture those
interpretations of Π that are not models of Π. The second
reduction aims at constructing Fsmaller, whose models re-
stricted toA(Π) correspond to those models of Π, which are
not answer sets of Π. Overall, these two formulas allow us
to indirectly count the number of answer sets by computing
|2A(Π)| −#SAT(Funsat)− PMC(Fsmaller,A(Π)).

Computing non-models of Π via formula Funsat. For
computing those interpretations of Π that are not models,
we use variables A(Π), as well as usatt (usat≤t) for every
node t in T to indicate that a rule in Πt (a rule in Π≤t) is un-
satisfied, respectively. Then, we define unsatisfiability of a
rule in a node t by Formulas (16). If Πt = ∅, this is not given
by Formulas (17). Then, this information is propagated from
nodes to parent nodes with the help of Formulas (18). Fi-
nally, to compute non-models, we enforce unsatisfiability up
to the root node of T , by Formulas (19).
Define Unsatisfiability
usatt ↔

∧
a∈B+

r

a
∧

b∈Hr∪B−
r

¬b for every t in T,Πt = {r}
(16)

¬usatt for every t in T,Πt=∅ (17)

usat≤t ↔
∨

t′∈chld(t)

usat≤t′ ∨ usatt for every t in T (18)

Enforce Unsatisfiability
usat≤n for root node n of T (19)

Example 5. Consider the program Π = {a ∨ b ←
; c ∨ e ← d; d ∨ e ← b}. Then, {a}, {b, e} {b, c, d}
are answer sets of Π. Figure 4 (left) depicts the primal
graph of Π and Figure 4 (right) shows a TD T = (T, χ)
of GΠ. Formula Funsat is as follows: For t1, we construct
{usatt1 ↔ d ∧ ¬c ∧ ¬e, usat≤t1 ↔ usatt1}; for t2, we
create {usatt2 ↔ ¬a ∧ ¬b, usat≤t2 ↔ usatt2}; finally,
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e a

d bc {c, d, e}t1 {a, b} t2

{b, d, e}t3

Figure 4: Primal graph GΠ (left) and a TD T of GΠ (right).

for t3 , this results in {usatt3 ↔ b ∧ ¬d ∧ ¬e, usat≤t3 ↔
usat≤t1 ∨usat≤t2 , usat≤t3}. It is easy to see that the mod-
els of Funsat restricted toA(Π) are not models of Π; further,
#SAT(Funsat) gives the number of non-models of Π.

Fsmaller: Compute models of Π that are not answer sets.
For computing models of Π that are not answer sets, we use
variables A(Π) as well as duplicates {ȧ | a ∈ A(Π)} (for
computing reduct models). Further, for every node t in T ,
variable st (s≤t) indicates that the reduct model at node t
(up to t) is strictly ⊆-smaller than the model over vari-
ables A(Π), respectively. Then, Formulas (20) and (21) en-
sure that rules and reduct rules are satisfied, respectively. By
Formulas (22), reduct models are ⊆-smaller than the com-
puted models over A(Π). Formulas (23) and (24) compute
whether the reduct model is strictly ⊆-smaller in t and up to
t, respectively. Finally, Formula (25) ensures that the reduct
model is strictly⊆-smaller than the model (up to the root n).
Satisfiability of Rules∨
a∈B+

r

¬a ∨
∨

b∈B−
r ∪Hr

b for every r ∈ Π (20)

Define Satisfiability of Reduct∨
a∈B+

r

¬ȧ ∨
∨

b∈B−
r

b ∨
∨

c∈Hr

ċ for every r ∈ Π (21)

Define ⊆-Smaller Relation
ȧ→ a for every a ∈ A(Π) (22)

st ↔
∨

a∈χ(t)

a ∧ ¬ȧ for every t in T (23)

s≤t ↔
∨

t′∈chld(t)

s≤t′ ∨ st for every t in T (24)

Enforce Strict ⊆-Inclusion
s≤n for root node n of T (25)

Correctness, Treewidth-Awareness, and Runtimes.
First, we establish correctness as follows.
Lemma 7 (Correctness, ⋆1). Let Π be a program and T =
(T, χ) be a TD of GΠ. Then, every model of formula Funsat

is not a model of Π, and vice versa. Further, every model M
of Fsmaller when restricted toA(Π) corresponds to a model
of Π such that there exists a model M ′ ⊊ M ∩A(Π) that is
a model of ΠM∩A(Π) (and vice versa). As a result, |2A(Π)|−
#SAT(Funsat)−PMC(Fsmaller,A(Π)) corresponds to the
number of answer sets of Π.

Indeed, the reductions linearly preserve treewidth.
Lemma 8 (Treewidth-Awareness). Let Π be a program
and T = (T, χ) be a TD of GΠ of width k. Then, the
treewidths of GFunsat

and GFsmaller
are linear in k.

1Statements marked with “⋆” are proven in the appendix.

Proof. Without loss of generality, we assume
that | chld(t)| ≤ 2 for every node t in T , which can
be achieved by adding O(|A(Π)|) many intermediate
copy nodes, resulting in a normalized (nice) representative
of T (Kloks 1994)[Lem. 13.1.2]. Observe that both Funsat

and Fsmaller can be converted to CNF without additional
auxiliary variables. Then, we construct a TD T ′ = (T, χ′)
of GFunsat

and a TD T ′′ = (T, χ′′) of GFsmaller
,

where χ′, χ′′ are constructed as follows. For every node t
in T , we let χ′(t) = χ(t) ∪ {usatt, usatt′ | t′ ∈ chld(t)}.
Further, for every t in T , we define χ′′(t) = χ(t)∪ {ȧ | a ∈
χ(t)} ∪ {st, s≤t, s≤t′ | t′ ∈ chld(t)}. Indeed, T ′ and T ′′

is a TD of GFunsat and GFsmaller
, respectively. Since

| chld(t)| ≤ 2 for every node t in T , |χ′(t)| is in O(k).

These results yield the following runtime consequences.

Theorem 9 (Runtime for Answer Set Counting, ⋆). Let Π be
a program such that the treewidth of GΠ is k and the largest
SCC size of DΠ is 22

Ω(k)

. Then, the number of answer sets
of Π can be computed in time poly(|A(Π)|).

Below we present a different method that has a similar
runtime behavior, but even works for disjunctive programs.

5.2 Counting Answer Sets with #SAT
For programs with large cycles, it turns out that one can al-
ternatively design a reduction to #SAT, running in polyno-
mial time in the instance size. This approach has the advan-
tage that indeed only one #SAT solver call is enough to di-
rectly count the answer sets. While this reduction increases
the treewidth exponentially (compared to the treewidth of
the program’s primal graph), it turns out that due to the large
cycles, we can still count the satisfying assignments of the
resulting formula in polynomial time in the program size.

For the ease of presentation, we additionally assume for
every TD node t that there is a fresh auxiliary atom ⊂t∈
χ(t). Greek letters α and β are constants that are available
during the generation of the Boolean formula. So, expres-
sions over these constants can be evaluated and simplified at
formula compile time. These constants simplify the presen-
tation and enable a compact notation of case distinctions.

In the reduction, we construct a formula Fdisj using as
variables the program atomsA(Π) as well as usatJt , usatJ<t,
and usatJ≤t to indicate that interpretation J ∈ 2χ(t) dissat-
isfies a rule r ∈ Πt in a node t below t, and up to t, re-
spectively. To this end, we use auxiliary variables usatJ<t,t′ ,
with t′ ∈ chld(t) as well as compJ,K to indicate compatibil-
ity of two assignments J ∈ 2χ(t) and K ∈ 2χ(t

′) for a child
node t′ ∈ chld(t). Then, the reduction uses auxiliary vari-
ables sJt to indicate that in node t, interpretation J is strictly
⊆-smaller than the model over A(Π).

Formulas (26) take care that we compute models over
variables A(Π). Then, Formulas (27) define whether J ∈
2χ(t) is strictly ⊆-smaller than the model over A(Π). Fur-
ther, Formulas (28) define compatibility between mod-
els J ∈ 2χ(t) and K ∈ 2χ(t

′) for a child node t′ ∈ chld(t).
Unsatisfiability of J in node t is defined by Formulas (29),

which is the case whenever J is not a model of the GL reduct
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of Πt with respect to the interpretation over χ(t), or there
is an atom b ∈ J that is set to false in this interpretation
(which implies that J is not even a subset). Then, Formu-
las (30) propagate this information to parent nodes by means
of auxiliary Formulas (31) and (32).

In the end, Formulas (33) ensure that for the root node n
of T , those assignments J ∈ 2χ(n) that are strictly⊆-smaller
(containing ⊂n) dissatisfy at least one rule in Π.

Satisfiability of Rules∨
a∈B+

r

¬a ∨
∨

b∈B−
r ∪Hr

b for every r ∈ Π (26)

Define Strict ⊆-Smaller Reduct Interpretations
sJt ↔

∨
a∈χ(t)\J

a for every t in T, J ∈ 2χ(t)

(27)

compJ,Kt ↔ (α↔ (sJt ∨ β)) for every t in T, t′∈ chld(
t), J ∈ 2χ(t),K ∈ 2χ(t

′),
J ∩ χ(t′) = K ∩ χ(t),
α=(⊂t∈J), β=(⊂t′∈K)

(28)
Define Unsatisfiability of Reduct
usatJt↔

∧
Πt={r},a∈B−

r ,b∈J

(α ∧¬a) ∨¬b for every t in T, J∈2χ(t),
α=(J ̸|={Hr ← B+

r })
(29)

usatJ≤t ↔ (usatJ<t ∨ usatJt ) for every t in T, J∈2χ(t)
(30)

usatJ<t,t′↔
∧

K∈2χ(t′)

J∩χ(t′)=K∩χ(t)

(usatK≤t′∨ for every t in T, t′ ∈
¬compJ,Kt ) chld(t), J ∈ 2χ(t) (31)

usatJ<t ↔
∨

t′∈chld(t)

usatJ<t,t′ for every t in T, J ∈ 2χ(t)
(32)

Enforce Unsatisfiability of Strictly ⊆-Smaller Models
α→ usatJ≤n for root node n of T, J ∈

2χ(n), α=(⊂n∈ J) (33)

Correctness, Treewidth-Awareness, and Runtimes. The
correctness demonstrates a bijective correspondence be-
tween models of the formula and answer sets of the program.

Lemma 10 (Correctness, ⋆). Let Π be a program and T =
(T, χ) be a TD of GΠ. Then, every model of formula Fdisj

restricted to A(Π) is an answer set of Π. Vice versa, every
answer set of Π can be extended to a model of Fdisj .

This reduction cause an exponential increase of treewidth.

Lemma 11 (Treewidth-Awareness). Let Π be a program
and T = (T, χ) be a TD of GΠ of width k. Then, the
treewidth of GFdisj

is bounded by 2O(k).

Proof. Without loss of generality, we assume | chld(t) ≤ 2|
for every node t in T , achieved by adding O(|A(Π)|) in-
termediate copy nodes (Kloks 1994)[Lem. 13.1.2]. For-
mula Fdisj can be easily converted to CNF. We construct
a TD T ′ = (T, χ′) of GFdisj

where χ′ is defined as fol-
lows. For every node t in T , we let χ′(t) = χ(t) ∪ {sJt ,
compJ,Kt , usat

J\{⊂t}
t , usatJt′ , usat

J
<t, usat

J
<t,t′ , usat

J
≤t |

t′ ∈ chld(t), J ∈ 2χ(t)∪{⊂t},K ∈ 2χ(t
′)∪{⊂t′}, J ∩χ(t′) =

K ∩ χ(t)}. Indeed T ′ is a TD of GFunsat , i.e., variables of
every instance of Formulas (26)–(33) are covered by a bag
in T ′. Further, for every t in T , we have |χ(t′)| ≤ 2|χ(t)|. As
a result, the treewidth of GFunsat

is bounded by 2O(k).

However, unfortunately one cannot significantly decrease
this blowup, unless the exponential time hypothesis fails.
Proposition 12. Let Π be a program and T = (T, χ) be a
TD of GΠ of width k. Then, unless ETH fails, there cannot
be a reduction to a Boolean formula that runs in polynomial
time in A(Π) such that the treewidth increase is in 2o(k).
Proof. Assume hat a polynomial-time reduction to SAT
with treewidth increase in 2o(k) exists. Then, we could de-
cide the resulting formula in 2(2

o(k)) · poly(| A(Π)|), which
contradicts the known double-exponential lower bound for
deciding consistency of Π (Fichte et al. 2017).

These findings result in the following runtimes.
Theorem 13 (Polynomial Runtime for Answer Set Count-
ing). Let Π be a program such that the width of GΠ is k and
the largest SCC size of DΠ is 22

Ω(k)

. Then, formula Fdisj al-
lows us to count the answer sets of Π in time poly(|A(Π)|).

6 Conclusion and Future Work
Our work provides new insights into the tractability of
#ASP in terms of the structure (treewidth) of the rules. We
saw that while it is limited by cyclic dependencies, often-
times we are able to overcome the limitations by adapting to
the SCC size in relation to its structural density (treewidth).

For low cyclicity, we provide a new approach for small
cycles based on a more fine-grained structural analysis using
feedback vertex sets. This approach reduces the problem to
counting models of a propositional formula (#SAT), where
significant advances have been presented recently (Korho-
nen and Järvisalo 2021; Soos and Meel 2022).

Additionally, we introduced new #SAT encodings for
large cyclic dependencies, which surprisingly allow for a
polynomial runtime. To the best of our knowledge, such a
direct reduction that enables utilizing the efficiency of mod-
ern #SAT solvers has not been considered before.

While both approaches work for medium-sized cycles,
unfortunately, our results leave a gap. However, we give
compelling arguments why closing this gap is beyond chal-
lenging and outline a methodology we expect to be of use.

So, how hard are cycles for counting? Our theoreti-
cal findings might reveal phase transitions for #ASP from
small over medium to large cycles. Indeed, we expect an
easy-hard-easy pattern, since small cycles admit decent run-
time guarantees that do not carry over to medium-sized cy-
cles, while large cycles again come with polynomial run-
time. For the future, we are interested in empirically com-
paring our new techniques for answer set counting to ex-
isting approaches. There, we also expect to observe such
an easy-hard-easy pattern. For this, we are currently col-
lecting and compiling a large set of reasonable benchmarks
for #ASP, since competition instances do not capture chal-
lenges of quantitative approaches beyond consistency.
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