
Standpoint Linear Temporal Logic

Nicola Gigante1 , Lucı́a Gómez Álvarez2 , Tim S. Lyon2

1Free University of Bozen-Bolzano, Italy
2TU Dresden, Germany

nicola.gigante@unibz.it, {lucia.gomez alvarez,timothy stephen.lyon}@tu-dresden.de

Abstract

Many complex scenarios require the coordination of agents
possessing unique points of view and distinct semantic com-
mitments. In response, standpoint logic (SL) was introduced
in the context of knowledge integration, allowing one to rea-
son with diverse and potentially conflicting viewpoints by
means of indexed modalities. Another multi-modal logic of
import is linear temporal logic (LTL)—a formalism used to
express temporal properties of systems and processes, having
prominence in formal methods and fields related to artificial
intelligence. In this paper, we present standpoint linear tem-
poral logic (SLTL), a new logic that combines the temporal
features of LTL with the multi-perspective modelling capac-
ity of SL. We define the logic SLTL, its syntax, its semantics,
establish its decidability and complexity, and provide a termi-
nating tableau calculus to automate SLTL reasoning. Conve-
niently, this offers a clear path to extend existing LTL reason-
ers with practical reasoning support for temporal reasoning in
multi-perspective settings.

1 Introduction
Reasoning about systems involving multiple agents is a core
problem in artificial intelligence, with countless applica-
tions studied over the last few decades. A variety of for-
malisms have been introduced to model and reason about
multi-agent scenarios; e.g. STIT (See To It That) logic (Bel-
nap and Perloff 1988; Belnap, Perloff, and Xu 2001), BDI
(Belief-Desire-Intention) logic (Rao and Georgeff 1998;
Bratman 1999), deontic agency logic (van Berkel and Lyon
2021; Murakami 2004), and epistemic logic (Ditmarsch,
Hoek, and Kooi 2007; Plaza 2007). Despite the useful-
ness of such logics in modelling the internal states of an
agent, including the agent’s attitudes, beliefs, and knowl-
edge, such logics tend to be difficult to handle computa-
tionally (Balbiani, Herzig, and Troquard 2008; Lutz 2006;
Rao and Georgeff 1998).

In contrast to these approaches, standpoint logic (SL)
has been recently introduced (Gómez Álvarez and Rudolph
2021) as a relatively low-cost multi-agent logic with ap-
plications in the context of knowledge integration. Within
the framework of standpoint logic, propositions may be
‘wrapped’ within modalities of the form □s and ♢s with s a
standpoint, allowing for declarations of the form □s φ (‘ac-
cording to s, it is unequivocal that φ’) and ♢s φ (‘according

to s, it is conceivable that φ’). Such modalities capture the
semantic commitments occurring at a particular standpoint
and do not require the nesting of semantic commitments
within semantic commitments, which allows for SL to re-
cover favourable computational properties; indeed, the sat-
isfiability problem for SL is NP-complete (Gómez Álvarez
and Rudolph 2021).

A natural application of standpoint-based frameworks
arises in the context of distributed and multi-agent systems,
since they support the establishment of different, possibly
conflicting specifications and their coordination. And, as
temporal considerations often arise when modelling the be-
haviour of a system, it appears worthwhile to enhance stand-
point logic with temporal operators, thus allowing for muta-
ble states-of-affairs and changing standpoints to be explic-
itly described. To endow standpoint logic with the capacity
to express dynamic concepts, we use the preferred formal-
ism for modelling and expressing temporal notions, i.e., lin-
ear temporal logic or LTL (Pnueli 1977).

LTL is a propositional modal logic interpreted over dis-
crete, infinite sequences of states. In the nearly five decades
since its inception, LTL has gained popularity as a speci-
fication language for systems, and has found many appli-
cations in AI. For instance, LTL has been applied in au-
tomated planning, temporally extended goals (Bacchus and
Kabanza 1998), temporal planning (Fox and Long 2003;
Mayer et al. 2007), timeline-based planning (Della Monica
et al. 2017), planning over (partially observable) Markov de-
cision processes (Brafman and De Giacomo 2019; Brafman,
De Giacomo, and Patrizi 2018), reinforcement learning (De
Giacomo et al. 2020; Hammond et al. 2021), temporal de-
scription logics (Artale et al. 2014), and temporal epistemic
logics (van Benthem et al. 2009). Computationally, tem-
poral logics are usually quite hard; e.g. LTL satisfiability
is PSPACE-complete. However, many efficient techniques
and tools exists to deal with LTL specifications (e.g., Geatti,
Gigante, and Montanari (2019); Li et al. (2014); Cavada et
al. (2014)), allowing for the logic to be routinely used in
practice and industry.

In this paper, we fuse the multi-perspective capabilities of
SL with the temporal features of LTL, resulting in stand-
point linear temporal logic (SLTL). SLTL inherits the fea-
tures of both SL and LTL, letting us model both the evo-
lution of a system as well as changing standpoints over

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

311

time. The result is a flexible formalism that maintains the
favourable computational properties of its components. In
particular, we provide:

1. A detailed syntax and semantics for SLTL;
2. A tree-shaped tableau calculus to facilitate and automate

SLTL-reasoning;
3. An analysis of the computational complexity of SLTL,

which is found to be PSPACE-complete (i.e., SLTL is
no harder than LTL).
Our tableau calculus uses quasi-model based meth-

ods (Wolter and Zakharyaschev 1998). It is inspired
by the nested sequent calculus for propositional stand-
point logic (Lyon and Gómez Álvarez 2022) and built
atop the tree-shaped tableau calculus for LTL provided by
Reynolds (Reynolds 2016; Geatti et al. 2021), which has
many interesting features. In particular, the tree shape of
Reynolds tableau calculus allows it to be easily and effi-
ciently traversed symbolically, i.e., by means of Boolean for-
mulas solved by off-the-shelf SAT solvers, as done by the
BLACK satisfiability checker (Geatti, Gigante, and Monta-
nari 2021). By maintaining the tree shape of the tableau
and its overall structure, which is extended to support stand-
points, we pave the way for the adoption of symbolic tech-
niques for efficient reasoning in SLTL.

The paper is structured as follows: In Section 2, we in-
troduce the syntax and semantics of SLTL, as well as ex-
emplify how the logic may be applied. In Section 3, we de-
fine our tableau calculus for SLTL, and describe the tableau-
based algorithm that decides SLTL formulae. Subsequently,
in Section 4 we prove the calculus sound and complete, and
in Section 5, we prove that the satisfiability problem for
SLTL is PSPACE-complete. Section 6 concludes and dis-
cusses future work.

2 Standpoint Linear Temporal Logic
We formally introduce standpoint linear temporal logic
(SLTL), which fuses together propositional standpoint logic
(SL) (Gómez Álvarez and Rudolph 2021) and linear tem-
poral logic (LTL) (Pnueli 1977). We begin by explaining
the various logical operators and modalities included in the
language and demonstrate their applicability by means of an
example. Subsequently, we provide a semantics for SLTL,
defining the models used (temporal standpoint structures)
and clarifying how formulae are interpreted.

2.1 Language
The logic SLTL is built atop classical propositional logic,
and therefore, employs propositional variables along with
the connectives for negation ¬, disjunction ∨, and conjunc-
tion ∧ . In addition, our logic incorporates the temporal
modalities from LTL; in particular, (1) the unary modalities
X, F, and G, and (2) the binary modalities U and R. These
modalities are read as follows: Xφ states ‘at the next mo-
ment φ holds’, Fφ states ‘eventually φ holds’, Gφ states ‘al-
waysφ holds’, φUψ states ‘φ holds untilψ holds’, andφRψ
is interpreted as the dual of φUψ. The formal semantics of
these formulae can be found in Definition 4 below.

We also employ the standpoint modalities □s and ♢s,
where s is taken from a finite set S of standpoints, □s φ
is read as ‘according to s, it is unequivocal that φ’ and ♢s φ
is read as ‘according to s, it is conceivable that φ’. Further-
more, we include formulae of the form s ⪯ s′ indicating that
the standpoint s is sharper than s′, i.e. s complies with s′.
Definition 1 (Formulae). Let V = ⟨P ,S⟩ be a vocabulary,
where P is a non-empty set of propositional variables and S
is a set of standpoint symbols containing the distinguished
symbol ∗, called the universal standpoint. We define the
language LV to be the collection of all standpoint expres-
sions of the form s ⪯ s′ where s, s′ ∈ S , and of all formulae
φ generated via the following grammar in BNF:

φ ::= p | ¬p | (φ ◦ φ) | ▽φ
where ◦ ∈ {∨,∧,U ,R}, ▽ ∈ {X,F,G} ∪ {♢s,□s | s ∈ S}
and p ∈ P . We use p, q, r . . . (potentially annotated) to
denote propositional variables and φ, ψ, χ, . . . (potentially
annotated) to denote formulae from LV .1 We define the for-
mulae ¬φ with φ a complex formula and φ→ ψ as usual.

In order to calculate complexity bounds for our tableaux,
it will be helpful to define the size of formulae.
Definition 2 (Subformula, Size). We define the set of sub-
formulae of φ, denoted sufo(φ), recursively as follows:
• sufo(p) := {p} and sufo(¬p) := {¬p};
• sufo(▽ψ) := {▽ψ} ∪ sufo(ψ);
• sufo(ψ ◦ χ) := {ψ ◦ χ} ∪ sufo(ψ) ∪ sufo(χ).
with ◦ ∈ {∨,∧,U ,R}, ▽ ∈ {X,F,G} ∪ {♢s,□s | e ∈
ES}, and p ∈ P . We say that ψ is a subformula of φ
iff ψ ∈ sufo(φ). We define the size of a formula φ in
LV , denoted |φ|, accordingly: |φ| := |sufo(φ)|. Last,
we define the size of a set of formulae Φ, denoted |Φ|, as:
|Φ| := Σφ∈Φ|sufo(φ)|.
Example. Medical devices require testing and certifica-
tion prior to marketing and use by medical professionals.
Albeit, regulations differ from country to country, giving rise
to potentially conflicting standards and safety qualifications.
For instance, Germany (DE) and Italy (IT) may agree that a
medical device X has been deemed safe according to testing
(X TestSafe), so long as it has been found that it never mal-
functions (Malf). This judgement can be expressed by the
SLTL formula shown below, where ∗ is the universal stand-
point which encodes that the formula is unequivocal from all
perspectives (i.e. from the perspective of both DE and IT).

□∗(X TestSafe → G¬Malf) (1)

Yet, despite the agreement on what makes X safe according
to testing, each country may differ in how it considers X to be
safe overall (X Safe). It could be that Italy deems a device
safe so long as it has been deemed safe according to testing
or has been found safe by comparison (X SafeComp). We
could formalise this perspective in our language as:

□IT(X Safe → X SafeComp ∨ X TestSafe) (2)
1We have opted to employ formulae for standpoint LTL in nega-

tion normal form as it will simplify the presentation of our tableaux
later on.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

312

The notion of ‘safe by comparison’ relies on X’s relation to
other devices within its domain of application. If a com-
parable device Y exists in terms of architecture, materials
used, applicability, etc. (X Comp Y), and this device has been
deemed safe by testing (Y TestSafe), then it can be argued
that X is safe by comparison. We can express this as the
formula shown below, where Devices consists of the set of
devices within X’s domain of application (of which there are
only finitely many).

□IT(X SafeComp →
∨

Y∈Devices

X Comp Y ∧ Y TestSafe) (3)

In contrast to Italy’s perspective, Germany may qualify X as
safe, so long as it has been tested safe, that is:

□DE(X Safe → X TestSafe) (4)
We can see that Germany’s standpoint on what counts as safe
is more stringent than, or subsumed by, Italy’s standpoint, a
fact which may be encoded as DE ⪯ IT. As each nation
takes a different stance on what it deems safe, it is clear
that propositions may be inconsistent with one perspective
as opposed to the other. For example, the proposition ‘it is
conceivable that X is safe overall though not safe according
to testing’, i.e. the formula ♢∗(X Safe ∧ ¬X TestSafe) is
consistent with formulae (1)-(4) above. This is due to Italy’s
standpoint, which allows for X to be safe by comparison.
Still, the formula □∗(X Safe ∧ ¬X TestSafe) is inconsis-
tent with formulae (1)-(4) since Germany regards X as not
safe overall if it has not been determined safe by testing.

As demonstrated above, the use of standpoint modalities
permits the modelling of distinct, conflicting perspectives.
Without the use of modalities to ‘wrap’ reasoning, we would
achieve undesirable inconsistencies that are unrepresentative
of the actual (consistent) scenario we aim to model. Thus,
the use of standpoint modalities with LTL improves our ca-
pacity to represent knowledge more faithfully, and as shown
in Sect. 5, this does not come at a cost in terms of com-
plexity. Indeed, an attractive feature of standpoint logic is
its low complexity in relation to other knowledge integra-
tion approaches, being NP-complete (Gómez Álvarez and
Rudolph 2021; Lyon and Gómez Álvarez 2022).

2.2 Semantics
The models used for SLTL are variants of relational models,
employing state sequences (as in LTL) as opposed to worlds
and standpoint interpretations rather than accessibility rela-
tions; cf. (Gómez Álvarez and Rudolph 2021).
Definition 3 (Temporal Standpoint Structure). Let V =
⟨P ,S⟩ be a vocabulary. We define a state sequence (relative
to V) to be an infinite sequence of states σ = ⟨σ0, σ1, . . .⟩,
where each state σi ⊆ P . A temporal standpoint structure
is an ordered-pair M = ⟨Π, λ⟩ such that Π is a non-empty
set of state sequences ⟨σ0, σ1, . . .⟩ and λ : S → 2Π is a
standpoint interpretation mapping each standpoint symbol
to a non-empty subset of Π with λ(∗) = Π.
Definition 4 (Satisfaction). Let φ ∈ LV and M = ⟨Π, λ⟩
be a temporal standpoint structure such that σ ∈ Π. We
recursively define the satisfaction of φ on σ at the time point
n ≥ 0, written σ, n |= φ, as follows:

Rule φ ⊆ ∆ for Γ1(φ) Γ2(φ)

(ϵ)∆ ∈ Γ

DIS α ∨ β {α} {β}
UNT αUβ {β} {α,X(αUβ)}
REL αRβ {α, β} {β,X(αRβ)}
EVE Fα {α} {XFα}
CON α ∧ β {α, β}
ALW Gα {α,XGα}

Table 1: Expansion rules 1: When a singleton φ of the types shown
in the table is found in one indexed set (ϵ)∆ of the set Γ(u) of a
node u, one or two children nodes u′ and u′′ are created, each with
a copy Γ(u′) and Γ(u′′) of Γ(u) in which φ has been replaced by
Γ1(φ) and Γ2(φ) (respectively) in the set indexed (ϵ)∆.

• M, σ, n |= s′ ⪯ s iff λ(s′) ⊆ λ(s);
• M, σ, n |= p iff p ∈ σn;
• M, σ, n |= ¬p iff p ̸∈ σn;
• M, σ, n |= φ ∨ ψ iff M, σ, n |= φ or M, σ, n |= ψ;
• M, σ, n |= φ ∧ ψ iff M, σ, n |= φ and M, σ, n |= ψ;
• M, σ, n |= Xφ iff M, σ, n+ 1 |= φ;
• M, σ, n |= Fφ iff there is a j > n such that M, σ, j |= ψ;
• M, σ, n |= φRψ iff either M, σ, i |= ψ for all i ≥ n, or

there exists a k ≥ n such that M, σ, k |= φ and M, σ, j |=
ψ for all n ≤ j ≤ k;

• M, σ, n |= φUψ iff there exists a j ≥ n such that
M, σ, j |= ψ and for every n ≤ i < j, M, σ, i |= φ;

• M, σ, n |= ♢s ψ iff for some σ′ ∈ λ(s), M, σ′, n |= ψ;
• M, σ, n |= □s ψ iff for each σ′ ∈ λ(s), M, σ′, n |= ψ;
• M, σ |= φ iff M, σ, 0 |= φ;
• M |= φ iff for all σ ∈ Π then M, σ |= φ .

We say that that a set of formulas Φ is valid, written |= Φ,
iff M |= φ for each φ ∈ Φ and each temporal standpoint
structure M. For a vocabulary V , we define the standpoint
logic SLTLV := {φ ∈ LV | |= φ}.

3 Automating Reasoning via Tableaux
This section presents the tableau calculus for SLTL, which
we will later show to be terminating, sound, and com-
plete. The tableau introduces support for standpoint reason-
ing into the structure of a tableau calculus for LTL. This
is done by encapsulating a full set of standpoint interpre-
tations (at a given time) within each node and exploiting
quasi-model based techniques (Wolter and Zakharyaschev
1998). In particular, we extend the tree-shaped tableau
by Reynolds (Reynolds 2016), which proved to be quite
amenable for extensions of LTL to different logics (Geatti et
al. 2021) and for efficient implementations (Geatti, Gigante,
and Montanari 2019). Classic tableaux for LTL (Lichten-
stein and Pnueli 2000) usually build a graph structure and
then, in a second pass, look for models inside it. In contrast,

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

313

Reynolds’ tableau builds a tree structure where each branch
can be explored independently from the others in a single
pass (which also aids parallelization (McCabe-Dansted and
Reynolds 2017)). Furthermore, its modular rule-based struc-
ture and it’s model-theoretic completeness proofs (Geatti et
al. 2021) are easy to extend to different logics.

Here, we exploit these features to obtain a tree-shaped
tableau calculus for SLTL. We remark that the overall struc-
ture of Reynolds’ tableau remains unchanged, but the nodes’
labels are enriched, and additional rules are devised, to deal
with standpoint modalities. Let us begin by presenting a se-
quence of useful definitions.

Definition 5 (Closure). Let Φ ⊆ LV . The closure C(Φ) is
the set defined as follows

1. For every φ ∈ Φ and ψ ∈ sufo(φ), ψ ∈ C(Φ);
2. For every ¬p ∈ P , p ∈ C(Φ) if and only if ¬p ∈ C(Φ);
3. If φ1◦φ2∈C(Φ), for ◦∈{U ,R}, then X(φ1◦φ2)∈C(Φ);
4. If ▽φ ∈ C(Φ), for ▽ ∈ {G,F}, then Xφ ∈ C(Φ).

Intuitiely, the closure of a formula is the set of all the for-
mulas that is sufficient to take care of when reasoning about
the formula. A tableau for Φ is a tree made of sets of con-
straint sets, defined below. Each constraint set is associated
with the set of standpoints to which it belongs and with the
set of formulas (from the closure) that hold for that point.

Definition 6 (Standpoint Encoding). The encoding of a
standpoint s in Φ is defined as enc(s) = {s} ∪ {s′ | s ⪯
s′ ∈ Φ}. We use ϵ, ϵ′, . . . to refer to standpoint encodings.
We let E = {enc(s) | s ∈ Φ} and also ϵ ⪯ ϵ′ iff ϵ′ ⊆ ϵ.

Definition 7 (Constraint Set). Let c, c′, c′′, . . . be constraint
sets of the form ⟨ϵ, ℓ,∆⟩ where:

• ϵ is a standpoint encoding;
• ℓ is a label (that may be empty, in which case ℓ = f, where

f stands for ‘false’.);
• ∆ = {φ1, . . . , φn} is a subset of C(Φ).
We use the shortcut functions ϵ(ci) = ϵi, ℓ(ci) = ℓi and
∆(ci) = ∆i, for ci = ⟨ϵi, ℓi,∆i⟩. Finally, we use ⟨c⟩ to
denote to a constraint set such that ℓ(c) ̸= f (referred to as
a labelled or diamond set) and [c] to denote a constraint set
such that ℓ(c) = f (referred to as an unlabelled or box set).

Definition 8 (Node Constraint Set for Φ). Let u, u′, u′′, . . .
be the nodes of a tableau checking the satisfiability of a set
of formulas Φ. The constraint set of a node u, denoted Γ(u),
is a set Γ(u) := {c1, ..., cn} of constraint sets such that

(a) For each s ∈ S , there is exactly one constraint set [c] ∈
Γ(u) such that ϵ(c) = enc(s) (i.e., there is one unlabelled
set per standpoint);

(b) For each ⟨c⟩ ∈ Γ(u), there is no c′ ∈ Γ(u) with ℓ(c) =
ℓ(c′) (i.e., labels are unique).

We say that Γ(u) = Γ(u′) if for each c ∈ Γ(u) there is some
c′ ∈ Γ(u′) such that ϵ(c) = ϵ(c′) and ∆(c) = ∆(c′) and
vice versa.

Intuitively, Γ(u) represents the structure of standpoints at
a certain time point. Later, we will show how to construct

a model M from a tableau branch. In doing that, each la-
belled set c will correspond to a point in a sequence belong-
ing to the standpoint determined by ϵ(c). Unlabelled sets en-
code ‘standpoint types’ and are necessary to ensure that full
precisification sequences can be reconstructed during model
construction.

Let us define some useful functions. We will use
ι(Γ, ϵ, ℓ) = ∆(c), if there is some c ∈ Γ such that ϵ(c) = ϵ
and ℓ(c) = ℓ; otherwise, ι(Γ, ϵ, ℓ) = ∅. The union and set
difference operations are defined as follows (respectively)
for sets of constraint sets:

• Γ∪Γ′ = { ⟨ϵ, ℓ,∆∪∆′⟩ | ⟨ϵ, ℓ,∆⟩ ∈ Γ, ι(Γ′, ϵ, ℓ) = ∆′};

• Γ \Γ′ = { ⟨ϵ, ℓ,∆ \∆′⟩ | ⟨ϵ, ℓ,∆⟩ ∈ Γ, ι(Γ′, ϵ, ℓ) = ∆′}.

Branches within a tableau will either become ticked (✓)
or crossed (✗) throughout the processing and expansion of
the tableau. Once all branches are ticked or crossed, the
tableau is deemed complete, and a model can be extracted
from each ticked branch. A counter-model can be extracted
if all branches are crossed.

An X-eventuality is defined to be a formula of the form
X(φU ψ), and if such a formula occurs in the constraint set
of a node, this implies that a pending request still needs to
be fulfilled at a future moment. A poised branch is defined
to be a branch u = ⟨u0, . . . , un⟩ such that un contains only
constraint sets with formulae of the form p and ¬p with p ∈
P and Xα with α ∈ LV , and such that no expansion rules
are applicable. Let us now describe how our tableaux are
initialised and how rules are applied to them.

Initialisation: Tableaux are generated by taking r as the
root node with Γ(r) = {⟨{∗}, ℓ0,Φ⟩} ∪ {⟨enc(s), f, ∅⟩ | s ∈
S} as input.

Expansion: We expand a tableau by repeatedly applying
the rules in Fig. 1 as well as the rules defined below.

The expansion rules, shown in Fig. 1, work as follows:
each rule looks for constraint set ⟨ϵ, ℓ,∆⟩ ∈ Γ(u) and a
formula φ ∈ ∆, where u is the current node. By applying
the rules, one or two children u′ and u′′ are created with
Γ(u′) = Γ(u) \ {⟨ϵ, ℓ, {φ}⟩} ∪ Γ1(φ) and Γ(u′′) = Γ(u) \
{⟨ϵ, ℓ, {φ}⟩}∪Γ2(φ), respectively. In addition, we have the
following rules:

BOX1 Given a node constraint set Γ(u) and a constraint set
c ∈ Γ(u) with □s α ∈ ∆(c) and ⊥ /∈ ∆(c), a child
node u′ is created with Γ(u′) = Γ(u)\{⟨ϵ, ℓ, {□s α}⟩}∪
{⟨enc(s), f, {α}⟩}, and if ℓ(c) = f, then a second child
node is created with Γ(u′′) = Γ(u) \ {⟨ϵ, ℓ, {□s α}⟩} ∪
{⟨ϵ, f, {⊥}⟩}.

BOX2 Given a node constraint set Γ(u) and two constraint
sets [c], c′ ∈ Γ(u) with ϵ(c′) ⊇ ϵ(c), α ∈ ∆(c), and
α /∈ ∆(c′), then a child node u′ is created with Γ(u′) =
Γ(u) ∪ {⟨ϵ(c′), ℓ(c′), {α}⟩}.

DIA1 Given a node constraint set Γ(u) and an indexed
set ⟨ϵ, ℓ,∆⟩ ∈ Γ(u) with ♢s α ∈ ∆, then a
child node u′ is created such that Γ(u′) = Γ(u) \
{⟨ϵ, ℓ, {♢s α}⟩}∪{⟨enc(s), ℓi, {α}⟩}, with ℓi = ℓ′ if there
is ⟨enc(s), ℓ′,∆′⟩ ∈ Γ(u) with α ∈ ∆′ and otherwise ℓi
is a fresh label.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

314

{⟨{∗}, ℓ0, {♢∗(p ∧ X¬p),□∗ Xp}⟩}

{⟨{∗}, ℓ0, {♢∗(p ∧ X¬p)}⟩, ⟨{∗}, f, {Xp}⟩}

{⟨{∗}, ℓ0, ∅⟩, ⟨{∗}, f, {Xp}⟩, ⟨{∗}, ℓ1, {p ∧ X¬p}⟩}

{⟨{∗}, ℓ0, ∅⟩, ⟨{∗}, f, {Xp}⟩, ⟨{∗}, ℓ1, {p,X¬p}⟩}

{⟨{∗}, ℓ0, ∅⟩, ⟨{∗}, f, {Xp}⟩, ⟨{∗}, ℓ1, {¬p,Xp,X¬p}⟩}

{⟨{∗}, ℓ0, ∅⟩, ⟨{∗}, f, {p}⟩, ⟨{∗}, ℓ1, {p,¬p}⟩}

✗

Figure 1: We provide an example demonstrating a run of our
tableau algorithm with the input {♢∗(p ∧ X¬p),□∗ Xp}. The
rules applied (in order) are BOX1, DIA1, CON, BOX2, STEP,
and CONTRADICTION, thus showing that the tableau creates a
crossed branch, i.e. the input set is unsatisfiable.

DIA2 Given a node constraint set Γ(u) and two indexed sets
⟨ϵ, ℓ,∆⟩, ⟨ϵ, ℓ′,∆′⟩ ∈ Γ(u) with ∆′ ⊆ ∆ and ℓ′ ̸= f,
then a child node u′ is created with Γ(u′) = Γ(u) \
{⟨ϵ, ℓ′,∆′⟩}.

STEP Given a poised branch u = ⟨u0, . . . , un⟩, a child u′
is added to u with Γ(u′) = {⟨ϵ, f, {α | Xα ∈ ∆}⟩ |
⟨ϵ, f,∆⟩ ∈ Γ(u)} ∪ {⟨ϵ, ℓ, {α | Xα ∈ ∆}⟩ | ⟨ϵ, ℓ,∆⟩ ∈
Γ(u),∆ ̸= ∅}

CONTRADICTION If c ∈ Γ(un) and ⊥ ∈ ∆(c), then un
is crossed.2

EMPTY Given a branch u = ⟨u0, . . . , un⟩, if for all c ∈
Γ(un) we have ∆(c) = ∅, then un is ticked.

LOOP If there exists a poised node ui such that ui < un,
Γ(ui) = Γ(un), and all X-eventualities requested in ui
are fulfilled in u[i+1...n], then un is ticked.

PRUNE If two positions i and j exist such that i < j ≤ n,
Γ(ui) = Γ(uj) = Γ(un), and among the X-eventualities
requested in these nodes, all those fulfilled in u[j+1...n]

are fulfilled in u[i+1...j] as well, then un is crossed.

4 Soundness and Completeness
We now prove soundness, completeness, and termination
of the tableau calculus described above. The proofs are
inspired by (Geatti et al. 2021) and adapted introducing
the quasi-model infrastructure (Wolter and Zakharyaschev
1998) when needed, seldom referring to existing proofs
while being as self-contained as possible.

We start with the definition of pre-models, which are
structures that summarize a set of models of a formula. We
will see that each branch in a tableau is associated with a
pre-model, and vice versa. We start with the notion of atom,
which is a consistent set of formulas from the closure.

2⊥ is a shortcut for {p,¬p} for some p ∈ P .

Definition 9 (Atom). An atom for a set of formulas Φ ⊆ LV
is a set of formulas ∆ such that

1. ∆ ⊆ C(Φ);
2. ⊥ /∈ ∆;
3. If ψ ∈ ∆, then either Γ1(ψ) ⊆ ∆, or Γ2(ψ) ̸= ∅ and

Γ2(ψ) ⊆ ∆, where Γ1(ψ) and Γ2(ψ) are defined as in
Fig. 1;

4. For each ψ,ψ′ ∈ C(Φ), if ψ ∈ ∆ and ψ ⊩ ψ′, then
ψ′ ∈ ∆, i.e., ∆ is closed by logical deduction (as far as
the closure is concerned);
Atoms are assigned to standpoint encodings and collected

into timestamps.
Definition 10 (Timestamp). We define a timestamp T =
{a1, . . . , an} to be a set of indexed atoms, that is, each ai is
of the form ⟨ϵi, ℓi,∆i⟩, with ϵi a standpoint encoding, ℓi a
label, and ∆i an atom such that

T1 For each a ∈ T , if ♢s ψ ∈ ∆(a), then there exists a
a′ ∈ T such that ϵ(a′) ⪯ enc(s) and ψ ∈ ∆(a′);

T2 For each a ∈ T , if □e ψ ∈ ∆(a), then ψ ∈ ∆(a′) for
each a′ ∈ T with ϵ(a′) ⪯ enc(s);

T3 For each ϵ ∈ E with E = {enc(s) | s ∈ S}, there is
aϵ ∈ T such that ϵ(aϵ) = ϵ and ∆(aϵ) =

⋂
{∆(a′) | a′ ∈

T , ϵ(a) ⪯ ϵ}
As with the constraint sets, we use the shortcut functions
ϵ(ai) = ϵi, ℓ(ai) = ℓi and ∆(ai) = ∆i. Moreover, we say
that ai = aj iff ϵ(ai) = ϵ(aj) and ∆(ai) = ∆(aj).

Timestamps are collected in sequences, and runs map
each point in time with an atom of the respective timestamp.
Definition 11 (Run). Let T = ⟨T0, T1, . . . ⟩ be an infinite
sequence of timestamps. A run r on T is a map associating
each i ∈ N with an indexed atom a ∈ Ti in such a way that:
R1 For all ai = r(i) and aj = r(j), ϵ(ai) = ϵ(aj).
R2 If Xψ ∈ ∆(ai) for ai = r(i), then ψ ∈ ∆(ai+1) for
ai+1 = r(i+ 1);

R3 If ψ1Uψ2 ∈ r(i), then there is a j ≥ i with ψ2 ∈ ∆(aj)
for aj = r(j) and ψ1 ∈ ∆(ak) for ak = r(k) for all
i ≤ k < j;
Now, a pre-model is made of a sequence of timestamps

and a set of runs that encode the sequences of a usual model.
Definition 12 (Pre-Model). Let D = ⟨T ,R⟩ be a tuple con-
sisting of an infinite sequence of timestamps T and a set
of runs R such that for every timestamp Ti and every atom
a ∈ Ti there is a run such that r(i) = a. D is a pre-model of
Φ ⊆ LV if the following constraints are satisfied:
P1 There exists an a ∈ T (0) such that ϵ(a) = enc(∗) and

Φ ⊆ ∆(a);
P2 For each i ∈ N and a ∈ Ti, ∆(a) is minimal, i.e. for any
ψ ∈ ∆(a), the set ∆(a) \ {ψ} is (a) not an atom or (b) T
ceases to be a timestamp or (c) there ceases to be a run.
The core feature of pre-models is their correspondence

with actual models of formulae, stated in the following.
Lemma 13. Let φ ∈ LV , then φ has a pre-model iff φ is
satisfiable.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

315

Proof sketch. The proof is articulated but straightforward,
following the definitions of pre-models and the semantics of
SLTL. See ?? for the full proof.

With the concept of pre-models we can now prove sound-
ness and completeness.

4.1 Soundness
Here we prove that the tableau system is sound, that is, if
a complete tableau for a set of formulae Φ has a successful
branch, then Φ is satisfiable. The proof shows how a pre-
model for Φ can be extracted from a successful branch of a
complete tableau. Intuitively, the expansion of non-poised
nodes builds the set of constraint sets that will form the cur-
rent timestamp, and the application of the STEP rule to a
poised node marks the advancement to the next one.

Definition 14 (Step node). Consider a branch u =
⟨u0, . . . , un⟩ of a complete tableau T . A poised node ui
is said to be a step node if either ui = un or ui+1 is the
child of ui added by applying the STEP rule.

Only step nodes will be considered when looking at a
given tableau branch to build the corresponding pre-model
of Φ. Now we can state how exactly to perform this ex-
traction. Let us first define how single timestamps and their
atoms are built from each step node.

Definition 15 (Atom of a tableau node). Let Φ ⊆ LV , ui
be a step node of a tableau for Φ and c ∈ Γ(ui). The atom
extracted from c, written a(c), is the indexed atom ca such
that ϵ(ca) = ϵ(c) and ∆(ca) = ∆ where ∆ is the closure by
logical entailment (within C(Φ)) of ∆(c), ∆ = cl(∆(c)).

Definition 16 (Timestamp of a tableau node). Let ui be a
step node of a tableau for Φ. The timestamp extracted from
Γ(ui) is defined as a(Γ(ui)) = {a(c) | c ∈ Γ(ui)}

Let us now define how to extract a pre-model from a suc-
cessful branch of a complete tableau.

Lemma 17. Let Φ ⊆ LV and let T be a complete tableau
for Φ. If T has a successful branch, then there exists a pre-
model for Φ.

Proof. Let u = ⟨u0, . . . , un⟩ be a successful branch of T
and let v = ⟨v0, . . . , vm⟩ be the subsequence of step nodes
of u. Intuitively, a pre-model for Φ can be obtained from
v by building the atoms from the labels of the step nodes,
and extending them to infinite sequences. If the branch has
been accepted by the LOOP rule, we can identify a posi-
tion 0 ≤ k ≤ m in v such that Γ(vk) = Γ(vm) and all
the X-eventualities requested in vk are fulfilled in v[k...m]. If
instead v has been accepted by the EMPTY rule and in par-
ticular there are no X-eventualities requested, hence setting
k = m we obtain the same effect.

Therefore, we can extract from v the periodic se-
quence of timestamps T = T 0T

ω

t , where T 0 =

⟨a(Γ(v0)), . . . , a(Γ(vk))⟩, and either T ω

t = ⟨a(Γ(vk +

1)), . . . , a(Γ(vm))⟩ or T ω

t = ⟨a(Γ(vm))⟩ depending on
which rule accepted the branch, respectively the LOOP or
the EMPTY rule. In other words, we build a periodic pre-
model that infinitely repeats the fulfilling loop identified by

the LOOP rule, or the last empty node otherwise. Then let
K : N → N be the map from positions in the pre-model
to their original positions in the branch, which is defined as
K(i) = i for 0 ≤ i < k, and for i ≥ k is defined either as
K(i) = k+((i−k)modT), with T = m−k (LOOP rule),
or as K(i) = k (EMPTY rule).

Then, we set R to be the set of all possible runs on T and
we show that D = ⟨T ,R⟩ is a pre-model of Φ. Notice that
by the initialisation of the tableau we have Φ ∈ ∆(a0) for
some a0 ∈ T (0) and atoms are minimal by definition.

First, we show that the three conditions of timestamp in
Definition 10 are satisfied for T (i) with i ≥ 1. It is easily
checked that T1 is satisfied by the non-applicability of DIA1,
T2 by the non-applicability of both BOX1 and BOX2 and T3
by the non-applicability of DIA2.

Let us now show that each r ∈ R fulfils the conditions
in Definition 11 of a run for i ≥ 1. For condition R1, we
notice that for every ϵ ∈ E there is some a ∈ T (i) by the
construction of the tableau, since during initialisation one
box-indexed atom is created per standpoint expression and
such atoms are always propagated by the STEP rule. Hence
for each i ≥ 1 there is some aj ∈ T (j) such that r(i) = a
and r(j) = aj and ϵ(a) = ϵ(aj).

Assume now that Xψ ∈ ∆(r(i)). Being an elementary
formula, we can observe that we must have Xψ ∈ ∆(c)
for some c ∈ Γ(ui). Two cases have to be considered.
If vK(i+1) = vK(i)+1, i.e., the next atom comes from the
actual successor of the current one in the tableau branch,
then, by the STEP rule, there is ai+1 ∈ T (i + 1) such
that ϵ(ai+1) = ϵ(a) and ψ ∈ ∆(ai+1). Otherwise, T (i) =
T (m) = a(Γ(vm)), and vm was ticked by the LOOP rule
(since at least ∆(a) is not empty), and thus T (i + 1) =
a(Γ(vk + 1)) for some k < m such that Γ(vk) = Γ(vm).
Hence Xψ ∈ ∆(c′) with c′ ∈ Γ(vk), and by the step rule ap-
plied to vk we obtain that ψ ∈ ∆(c′′) with c′′ ∈ Γ(vk + 1),
hence there is a′′i+1 ∈ T (i+1) such that ϵ(a′′i+1) = ϵ(a) and
ψ ∈ ∆(a′′i+1) as well in this case, hence condition R2 is also
satisfied. Finally, the case of ψ1Uψ2 ∈ ∆(r(i)) (condition
R3) is then straightforward in view of the expansion rules
definition. With this, we have shown that a run can be cre-
ated for each a ∈ Ti and i ≥ 0 satisfying all the conditions,
and hence D is a pre-model.

The above results let us conclude the soundness of the
tableau system.

Theorem 18 (Soundness). Let Φ ⊆ LV and let T be a com-
plete tableau for Φ. If T has a successful branch, then Φ is
satisfiable.

Proof. Extract a pre-model for Φ from the successful branch
of T as shown in Lemma 17, and then obtain from it an actual
model for the formula as shown by Lemma 13.

4.2 Completeness
We now prove the completeness of the tableau system, i.e., if
a set of formulae Φ is satisfiable, then any complete tableau
T for it has an accepting branch. The proof uses a pre-model
for Φ, which we know exists if the formula is satisfiable,

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

316

as a guide to suitably descend through the tableau to look
for an accepted branch. We first describe how to perform
such a descent. Then, we will show how to make sure that
this descent must obtain an accepted branch. The descent is
performed as follows.
Lemma 19 (Extraction of the branch). Let D = ⟨T ,R⟩ be
a pre-model for a set of formulae Φ. Then, any complete
tableau T for Φ has a label mapping L and a branch u, with
a sequence of step nodes v = ⟨v0, . . . , vm⟩, such that for
0 ≤ i ≤ m and a ∈ T (i), we have one c ∈ Γ(vi) such that
a = a(c).

Proof. Let D = ⟨T ,R⟩ be a pre-model. To find u, we tra-
verse the tree using T as a guide, starting from the root u0,
building a sequence of branch prefixes ui = ⟨u0, . . . , ui⟩,
suitably choosing ui+1 at each step among the children of
ui. We maintain a non-decreasing function J : N → N
that maps positions in ui to positions in T such that for
each a ∈ T (J(k)), there is some c ∈ Γ(uk) such that
ϵ(ca) = ϵ(a) and ∆(ca) ⊆ ∆(a) with a(c) = ca, for each
0 ≤ k ≤ i. Moreover, we maintain a labelling function L
witnessing that relation, L(c) = a We start from u0 = ⟨u0⟩
and J(0) = 0. Let c0 = ⟨{∗}, ℓ0,Φ⟩ Notice that the tableau
is initialised with

Γ(r) = {c0} ∪ {cϵ = ⟨ϵ, f, ∅⟩ | ϵ ∈ E}

Moreover, we have Φ ⊆ ∆(a0) for some a0 ∈ T (0), and
there is some aϵ ∈ T (0) for each ϵ ∈ E, by the definition of
a pre-model. Thus, we set L(c0) = a0, and for each ϵ ∈ E
we set L(cϵ) = aϵ. Thus, the base case clearly holds.

Then, at each step i > 0, we choose ui+1 among the
children of ui as follows, depending on the expansion rule.
We show that for each a ∈ T (J(i)), there is some c ∈ Γ(uk)
such that ϵ(ca) = ϵ(a) and ∆(ca) ⊆ ∆(a) with a(c) = ca.
We show the main cases and direct the reader to (Geatti et
al. 2021) for the rest.

BOX1 If ui is not a step node and was expanded by the
BOX1 rule then it has a single child which is chosen as
ui+1. We leave L unchanged and define J(i+1) = J(i),
since we do not advance to the next position in the pre-
model; We show that for the node ui+1 the condition
holds. By the definition of BOX1 we have Γ(ui+1) =
Γ(ui) \ {⟨ϵ, ℓ, {□e ψ}⟩} ∪ {⟨enc(s), f, {ψ}⟩}. By the
definition of a pre-model, if □e ψ ∈ ∆(a) for some
a ∈ T (J(i)), then ψ ∈ ∆(a′) for each a′ ∈ T (J(i))
with ϵ(a′) ⪯ enc(s), and hence the condition will still be
satisfied.

BOX2 If ui is not a step node and was expanded by the
BOX2 rule then it has a single child which is chosen as
ui+1. We leave L unchanged and define J(i + 1) =
J(i), since we do not advance to the next position in
the pre-model; We show that for the node ui+1 the
condition holds. By the definition of BOX2 we have
Γ(ui+1) = Γ(ui) ∪ {⟨ϵ(c′), ℓ(c′), {ψ}⟩} for two con-
straint sets [c], c′ ∈ Γ(ui) with ϵ(c′) ⪯ ϵ(c), ψ ∈ ∆(c),
and ψ /∈ ∆(c′). And again by the definition of a pre-
model, this means that ψ ∈ ∆(aϵ) and thus for all

a′ ∈ T (J(i)) with ϵ(a′) ⪯ ϵ then also ψ ∈ ∆(a′), and
hence the condition will still be satisfied.

DIA1 If ui is not a step node and was expanded by the DIA1

rule then it has a single child which is chosen as ui+1. We
define J(i+1) = J(i) since we do not advance to the next
position in the pre-model; We show that for the node ui+1

the condition holds. By the definition of DIA1 we have
Γ(u′) = Γ(u) \ {⟨ϵ, ℓ, {♢s ψ}⟩} ∪ {⟨enc(s), ℓi, {ψ}⟩}. If
ℓi is not a fresh label, then L is unchanged and Γ(u′) only
removes ♢s ψ from Γ(u), and hence the condition holds
trivially. Assume ℓi is a fresh label. By construction, we
have ⟨ϵ, ℓ,∆⟩ ∈ Γ(u) with ♢s ψ ∈ ∆, and a newly intro-
duced c′ ∈ Γ(u′) with c′ = ⟨enc(s), ℓi, {ψ}⟩. By induc-
tion, there is some a ∈ σ(J(i)) such that ♢s ψ ∈ ∆(a)
and by the definition of a pre-model, there is some a′ ∈
σ(J(i)) such that ϵ(s) ⪯ enc(s) and ψ ∈ ∆(a′). Thus,
we update L such that L(c′) = a′ and with this the con-
dition is satisfied.

DIA2 If ui is not a step node and was expanded by the DIA2

rule then it has a single child which is chosen as ui+1.
We define J(i + 1) = J(i) since we do not advance to
the next position in the pre-model; We show that for the
node ui+1 the condition holds. By the definition of DIA2

we have Γ(u′) = Γ(u) \ {⟨ϵ, ℓ′,∆′⟩} with ♢s ψ ∈ ∆ for
⟨ϵ, ℓ,∆⟩, ⟨ϵ, ℓ′,∆′⟩ ∈ Γ(u) with ∆′ ⊆ ∆ and ℓ′ ̸= f.
Thus, we update L to the shrunk set and the condition is
still satisfied.

DIS, UNT, REL, CON, EVE ALW These are straightfor-
ward. Refer to Lemma 3 in (Geatti et al. 2021).

STEP If ui is a step node but not a leaf, then it has a sin-
gle child which is chosen as ui+1, leaving L unchanged
and defining J(i + 1) = J(i) + 1 since we need to ad-
vance to the next position in the pre-model as well; We
show that for the node ui+1 the condition holds: For
each atom ca extracted from the tableau node, there is
some a ∈ T (J(i + 1)) such that ϵ(ca) = ϵ(a) and
∆(ca) ⊆ ∆(a). By the definition of STEP we have
Γ(u′) = {⟨ϵ, f, {ψ | Xψ ∈ ∆}⟩ | ⟨ϵ, f,∆⟩ ∈ Γ(u)} ∪
{⟨ϵ, ℓ, {ψ | Xψ ∈ ∆}⟩ | ⟨ϵ, ℓ,∆⟩ ∈ Γ(u),∆ ̸= ∅}. By
the definition of a pre-model, if Xψ ∈ ∆(a) for some
a ∈ T (J(i)) then ψ ∈ ∆(a′) for some a′ ∈ T (J(i)).
Thus the condition follows.

Now, let u = ⟨u0, . . . , un⟩ be the branch found as de-
scribed above, and let v = ⟨v0, . . . , vm⟩ be the sequence of
its step nodes. Since the value of J(i) is incremented only
when an application of the STEP rule is traversed, for each
a ∈ T (i), there is some c ∈ Γ(vi) such that ϵ(ca) = ϵ(a)
and ∆(ca) ⊆ ∆(a) with a(c) = ca. Moreover, for the
minimality of the atoms in the pre-model, required by Def-
inition 12, we know that for all a ∈ Ti then any formula
ψ ∈ ∆(a) is either ψ ∈ Φ and a = a0 or it has been obtained
by the expansion of X, □s or ♢s, or by the closure by logi-
cal entailment. Similarly, by the construction of the tableau,
any φ ∈ ca has been obtained either by an application of a
STEP fulfilling the X-eventualities or by an application of
DIA1, BOX1 or BOX2, fulfilling the standpoint eventuali-
ties, or by an expansion rule fulfilling the closure by logical

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

317

entailment. Finally, DIA2 fulfils the minimality criteria by
deleting subsumed diamond-atoms. Hence we can conclude
that for each a ∈ T (i), there is exactly one c ∈ Γ(vi) such
that ϵ(ca) = ϵ(a) and ∆(ca) ⊆ ∆(a) with a(c) = ca.

The particular branch found as described above might, in
general, be crossed. However, it is immediate to note that
it cannot possibly have been crossed by an application of
the CONTRADICTION rule, since this would imply that the
pre-model itself is contradictory (which cannot happen be-
cause of Lemma 13). Hence, if a crossed leaf is found, it has
been crossed by the PRUNE rule. We can, however, defin
a particular class of models (and their pre-models) such that
when we descend through the tableau following any model
of this class, we cannot possibly find a node crossed by the
PRUNE rule, neither. This class is called greedy pre-models.

To define the notion of greedy pre-models, consider a pre-
model D = ⟨T ,R⟩. Let X ⊂ C(φ) be the set of all the
X-eventualities in C(φ). For each run r ∈ R and each
i ≥ 0, the distance vector dri ∈ NX is a function map-
ping each X-eventuality ψ to the distance dri (ψ) of the first
position where it is fulfilled, if ψ ∈ r(i), or zero other-
wise. For example, if ψ1Uψ2 ∈ r(4), and ψ2 ∈ r(7), then
dr4(ψ1Uψ2) = 3.

Two distance vectors are compared component-wise, i.e.,
we define a partial order such that v ≺ v′ iff v(ψ) < v′(ψ)
for all ψ ∈ X . Then, we compare two runs r and r′ lexi-
cographically, that is, r ≺ r′ iff there is an i ≥ 0 such that
drj = dr

′

j for all j < i and dri ≺ dr
′

i .
Intuitively, if r ≺ r′, there is a point i where r′ uselessly

delays the fulfillment of an X-eventuality, while r fullfils it
before, all the rest being equal before i.
Definition 20 (Greedy pre-models). A run r for a formula φ
is greedy if there is no other r′ such that r′ ≺ r. A pre-model
D for φ is greedy if all its runs are greedy.

One can show that greedy pre-models actually exist.
Lemma 21 (Limit of a sequence of runs). Let r1 ≻ r2 ≻
. . . be an infinite descending sequence of runs. Then, there
exists a run rω such that rω ⪯ ri for all i ≥ 0.

Proof sketch. The proof is combinatorical, exploiting the
properties of the lexicographic ordeding between distance
vectors and the fact that the closure is finite. It is identical to
the proof of Lemma 4 in (Geatti et al. 2021).

Lemma 22 (Existence of greedy pre-models). Let D be a
pre-model for a formula φ. Then, there is a greedy pre-
model D′ ⪯ D.

Proof. A direct consequence of Lemma 21. See also
Lemma 5 in (Geatti et al. 2021).

Now, we can connect greedy pre-models to the tableau,
the PRUNE rule, and the descent through the tree done in
Lemma 19. Consider a pre-model D = ⟨T ,R⟩. We define
the segment D[j,k] = ⟨T [j,k],R[j,k]⟩ as the result of iso-
lating the time points between j and k. That is, T [j,k] =

⟨T (j), . . . , T (k)⟩ and for every r ∈ R, we have r′ ∈ R[j,k]

where r′(i) = r(i− j).

We say that a X-eventuality ψ1Uψ2 is requested in D[j,k]

if there is a r ∈ R[j,k] such that ψ1Uψ2 ∈ r[j,k](0), and that
is is fulfilled in R[j,k] if it is requested and ψ2 ∈ r[k,j](w)
for some 0 ≤ w < (k − j).

Similarly, we define D]j,k[= ⟨T]j,k[,R]j,k[⟩ as the pre-
model where the segment D[j,k] has been cut away. That
is, T]j,k[= ⟨T (0), . . . , T (j), T (k) . . .⟩ and for all and only
r ∈ R, we have r′ ∈ R[j,k] where r′(i) = r(i) for 0 ≤ i ≤ j
and r′(w) = r(w − (k − j)) for w > j.

Definition 23 (Redundant segments). Let D = ⟨T ,R⟩ be a
pre-model for φ and let i < j < k be three positions such
that T (i) = T (j) = T (k). Then, the segment D[j+1...k]

of D is redundant if not all the X-eventualities requested in
D[j+1...k] are fulfilled in D[j+1...k], and all those fulfilled in
D[j+1...k] are fulfilled in D[i+1...j] as well.

We notice how Definition 23 is similar to the definition
of the PRUNE rule, but focuses on the pre-model instead
of the branch of the tableau. The core feature of redundant
segments, as the name suggests, is that they can be removed
from any pre-model, obtaining again a pre-model.

Lemma 24 (Removal of redundant segments: correctness).
Let D = ⟨T ,R⟩ be a pre-model for a formula φ with a
redundant segment D[j+1...k]. Then, D]j,k+1[is a pre-model.

Proof. We start by noting that since T (i) = T (j) = T (k),
then r(i) = r(j) = r(k) for all r ∈ R. By Definition 11, for
every Xψ ∈ ∆(r(j)), we have ψ ∈ ∆(r(j + 1)), hence also
ψ ∈ ∆(r(k + 1)). Moreover, for any ψ1Uψ2 ∈ r(k), there
is a w ≤ k such that ψ2 ∈ ∆(r(w)) and ψ2 ∈ ∆(r(ℓ)) for
all k ≤ ℓ < w. Hence, note that in D]j,k+1[, the conditions
of Definition 11 on r(j) are satisfied. Hence D]j,k+1[is a
pre-model.

Now, we can observe that when a redundant segment is
removed from a pre-model, the runs in the resulting pre-
models decrease in the ≺ ordering.

Lemma 25 (Removal of redundant segments: ordering). Let
D = ⟨T ,R⟩ be a pre-model for a formula φ with a redun-
dant segment D[j+1...k]. Let r ∈ R and let r′ be the corre-
sponding run in D[j+1...k]. Then, r′ ≺ r.

Proof sketch. This is a direct consequence of the definition
of the ≺ ordering. When a redundant segment is removed,
all the X-eventualities fulfilled in the removed segment do
not change any distance vector, while those fulfilled later de-
crese their distance from the requesting points. For details,
refer to Lemma 6 in (Geatti et al. 2021).

Theorem 26 (Completeness). Letφ ∈ LV and T a complete
tableau for Φ. If Φ is satisfiable, then T has a successful
branch.

Proof. Let M be a model for Φ. As already noted, it is
straightforward to build a pre-model for Φ from M. Then,
given a pre-model for Φ, Lemma 21 ensures that a greedy
pre-model for Φ exists. We can thus consider D = ⟨T ,R⟩ to
be a greedy pre-model for Φ. Now, given a complete tableau
T for Φ, thanks to Lemma 19 we can obtain a branch from

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

318

T , with a sequence of step nodes v = ⟨v0, . . . , vm⟩ such
that for each a ∈ T (k), there is some c ∈ Γ(vk) such that
ϵ(ca) = ϵ(a) and ∆(ca) ⊆ ∆(a) with a(c) = ca for all 0 ≤
k ≤ m. As already noted, we know that if vm is crossed,
then it has to have been crossed by the PRUNE rule. If this
was the case, however, it would mean there are other two-
step nodes vi and vj with i < j < m and Γ(vi) = Γ(vj) =
Γ(vm), and such that all the X-eventualities requested in the
three nodes and fulfilled between vj+1 and vm are fulfilled
between vi+1 and vj as well. Since for each a ∈ T (k) we
have one c ∈ Γ(vk) such that a = a(c) for all 0 ≤ k ≤ m,
this fact reflects onto the pre-model, hence T (i) = T (j) =
T (k), and all the X-eventualities requested in these atoms
and fulfilled in D[j+1...m] are fulfilled in D[i+1...j] as well.
That is, D[j+1...m] is a redundant segment, which contradicts
the assumption that D is greedy by Lemma 24 and 25.

5 Computational Complexity
We now employ our tableau calculus to show that the sat-
isfiability for SLTL is PSPACE-complete. As SLTL is a
direct extension of LTL, it immediately follows that SLTL
is PSPACE-hard. Hence, we need only show that the satis-
fiability of SLTL formulae can be decided within PSPACE.

If our tableau-based decision procedure were to explicitly
construct tableaux, then the resulting procedure would fail
to be PSPACE as the tableau branches could be exponen-
tially long (but not longer, as we will see) and the entirety
of each branch would need to be kept in memory in order
to check the LOOP and PRUNE rules. However, such lim-
itations can be overcome by incorporating non-determinism
into our tableau-based decision algorithm. Therefore, we
let n be the size of Φ, and we confirm that any branch of a
tableau is at most exponentially long in n.

Lemma 27. Given a set of formulae Φ ⊆ LV , the length of
a branch of the tableau for Φ is at most exponential in |Φ|.

Proof. First, note that the construction of a branch stops
whenever the LOOP or PRUNE rule is triggered. The fol-
lowing two facts imply that the number of possible labels
of a node is exponential: (1) The number of formulas that
can appear in a constraint set is polynomial, (2) The number
of different constraint sets is polynomial as there are no con-
straint sets ⟨c⟩ and ⟨c′⟩ in the same label such that ⟨c⟩ ⊆ ⟨c′⟩.

Hence, in any branch, after at most an exponential num-
ber of nodes, two nodes ui and uj with Γ(ui) = Γ(uj) must
appear. If this pair satisfies the conditions of the LOOP rule,
we are done (and the branch is exponential length). Other-
wise, the branch construction continues. If the LOOP rule is
never triggered, the PRUNE will. Now, suppose by contra-
diction that the PRUNE rule is triggered only 2Ω(p(n)) nodes
later with p(n) a polynomial. Then, an exponential number
of positions j0 < j1 . . . < jk, with k ∈ O(2n), have to exist
such that Γ(uji) = Γ(uj0) for all 0 ≤ i ≤ k. But then, ob-
serve that the set of X-eventualities fulfilled between each ji
and ji+1 can only grow. This means that after a polynomial
number of repetitions of Γ(uj0), the PRUNE rule must be
triggered. Note that since ji+1 − ji ∈ O(2c(n)), this contra-
dicts the assumption.

By means of the above Lemma, we can exploit and em-
ploy non-determinism in our tableau-based decision proce-
dure to determine the complexity of SLTL.

Theorem 28. Satisfiability of SLTL is PSPACE-complete.

Proof. We show the existence of a deterministic procedure
to decide the satisfiability of a set of SLTL formulae Φ, by
providing a non-deterministic one, and then appealing to the
classic theorem by Savitch (Papadimitriou 1994) to state the
existence of a deterministic one.

Our procedure traverses a tableau non-deterministically
by guessing at each step which child of the current node to
visit among the many created following the tableau rules. If
a node accepted by the LOOP rule is found, the procedure
returns yes. If a number of steps that exceeds the exponential
upper bound established in Lemma 27 is reached, the proce-
dure returns no (i.e., the computation branch is rejected). To
be able to do this in polynomial space, the procedure also
guesses at each step a Boolean flag loop that says whether
the current node will be the one checked by the LOOP rule
to find a loop, i.e., if the current position will be the one
with the same label as the leaf. If loop is guessed to be
true, the current label is saved and kept in memory for later.
Also, from now on, the set of eventualities fulfilled is kept
in memory. When any node with the same label as the saved
one is found, it means the LOOP rule triggers on that branch,
and the procedure can return yes. Otherwise, the procedure
proceeds. Note that the procedure illustrated here keeps the
following polynomial amount of data in memory: (1) The
current label, (2) The saved loop label, if any, and (3) The set
of X-eventualities fulfilled since the saved loop point, if any.
Hence, the procedure works in polynomial space, showing
SLTL satisfiability is PSPACE.

6 Concluding Remarks
We have introduced standpoint linear temporal logic
(SLTL)—a logic fusing the multi-perspective reasoning of-
fered by standpoint logic with the dynamic reasoning offered
by LTL. As discussed, SLTL permits one to model diverse
and potentially conflicting semantic commitments held by
a set of agents, while expressing how such commitments re-
late to temporal notions or change throughout time. To auto-
mate SLTL-reasoning, we define a sound, complete, and ter-
minating tableau calculus, which supports (counter-)model
extraction witnessing the (non-)satisfaction of SLTL formu-
lae. We employed our tableau calculus in an analysis of
SLTL’s complexity, finding that the incorporation of stand-
point modalities—despite increasing the modelling capacity
of LTL—preserves the PSPACE-completeness of LTL.

Our contribution has practical implications. Not only it
formally confirms that standpoint and temporal reasoning
can be combined at no cost in complexity, but the employ-
ment of a tree-shaped tableau à la Reynolds paves the way
for its efficient implementation. Indeed, we plan to transfer
the symbolic tableau technique applied in the BLACK sat-
isfiability checker (Geatti, Gigante, and Montanari 2019) to
our tableau, thus providing an efficient SAT-based procedure
to reason in standpoint linear temporal logic.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

319

Acknowledgments
Tim S. Lyon has received funding from the European Re-
search Council (Grant Agreement no. 771779, DeciGUT).
Nicola Gigante acknowledges the support of the PURPLE
project, 1st Open Call for Innovators of the AIPlan4EU
H2020 project, a project funded by EU Horizon 2020 re-
search and innovation programme under GA n. 101016442
(since 2021).

References
Artale, A.; Kontchakov, R.; Ryzhikov, V.; and Za-
kharyaschev, M. 2014. A cookbook for temporal conceptual
data modelling with description logics. ACM Transactions
on Computational Logic 15(3):25:1–25:50.
Bacchus, F., and Kabanza, F. 1998. Planning for temporally
extended goals. Annals of Mathematics in Artificial Intelli-
gence 22(1-2):5–27.
Balbiani, P.; Herzig, A.; and Troquard, N. 2008. Alternative
axiomatics and complexity of deliberative STIT theories. J.
Philosophical Logic 37(4):387–406.
Belnap, N., and Perloff, M. 1988. Seeing to it that: a canon-
ical form for agentives. Theoria 54(3):175–199.
Belnap, N.; Perloff, M.; and Xu, M. 2001. Facing the fu-
ture: agents and choices in our indeterminist world. Oxford
University Press, Oxford.
Brafman, R. I., and De Giacomo, G. 2019. Planning
for ltlf /ldlf goals in non-markovian fully observable non-
deterministic domains. In Kraus, S., ed., Proceedings of
the 28th International Joint Conference on Artificial Intel-
ligence, 1602–1608.
Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018.
Ltlf/ldlf non-markovian rewards. In McIlraith, S. A., and
Weinberger, K. Q., eds., Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence, 1771–1778. AAAI Press.
Bratman, M. 1999. Intention, Plans, and Practical Reason.
The David Hume Series. Cambridge University Press.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mari-
otti, A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta,
S. 2014. The nuXmv symbolic model checker. In Biere,
A., and Bloem, R., eds., Proceedings of the 26th Inter-
national Conference on Computer Aided Verification, 334–
342. Springer.
De Giacomo, G.; Favorito, M.; Iocchi, L.; and Patrizi, F.
2020. Imitation learning over heterogeneous agents with
restraining bolts. In Beck, J. C.; Buffet, O.; Hoffmann,
J.; Karpas, E.; and Sohrabi, S., eds., Proceedings of the
13th International Conference on Automated Planning and
Scheduling, 517–521. AAAI Press.
Della Monica, D.; Gigante, N.; Montanari, A.; Sala, P.;
and Sciavicco, G. 2017. Bounded timed propositional
temporal logic with past captures timeline-based planning
with bounded constraints. In Sierra, C., ed., Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 1008–1014.
Ditmarsch, H.; Hoek, W.; and Kooi, B. 2007. Dynamic
Epistemic Logic, volume 337. Springer.

Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Geatti, L.; Gigante, N.; Montanari, A.; and Reynolds,
M. 2021. One-pass and tree-shaped tableau systems for
TPTL and TPTLb+Past. Information and Computation
278:104599.
Geatti, L.; Gigante, N.; and Montanari, A. 2019. A SAT-
Based encoding of the one-pass and tree-shaped tableau sys-
tem for LTL. In Cerrito, S., and Popescu, A., eds., Pro-
ceedings of the 28th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods,
volume 11714 of Lecture Notes in Computer Science, 3–20.
Springer.
Geatti, L.; Gigante, N.; and Montanari, A. 2021. BLACK: A
fast, flexible and reliable LTL satisfiability checker. In Mon-
ica, D. D.; Pozzato, G. L.; and Scala, E., eds., Proceedings
of the 3rd Workshop on Artificial Intelligence and Formal
Verification, Logic, Automata, and Synthesis, volume 2987
of CEUR Workshop Proceedings, 7–12. CEUR-WS.org.

Gómez Álvarez, L., and Rudolph, S. 2021. Standpoint logic:
Multi-perspective knowledge representation. In Neuhaus,
F., and Brodaric, B., eds., Proceedings of the 12th Interna-
tional Conference on Formal Ontology in Information Sys-
tems, volume 344 of FAIA, 3–17. IOS Press.
Hammond, L.; Abate, A.; Gutierrez, J.; and Wooldridge,
M. J. 2021. Multi-agent reinforcement learning with tem-
poral logic specifications. In Dignum, F.; Lomuscio, A.;
Endriss, U.; and Nowé, A., eds., Proceedings of the 20th
International Conference on Autonomous Agents and Multi-
agent Systems, 583–592. ACM.
Li, J.; Yao, Y.; Pu, G.; Zhang, L.; and He, J. 2014. Aalta: an
LTL satisfiability checker over infinite/finite traces. In Che-
ung, S.; Orso, A.; and Storey, M. D., eds., Proceedings of the
22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 731–734. ACM.
Lichtenstein, O., and Pnueli, A. 2000. Propositional Tempo-
ral Logics: Decidability and Completeness. Logic Journal
of the IGPL 8(1):55–85.
Lutz, C. 2006. Complexity and succinctness of public
announcement logic. In Nakashima, H.; Wellman, M. P.;
Weiss, G.; and Stone, P., eds., Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems, 137–143. Association for Computing Ma-
chinery.

Lyon, T. S., and Gómez Álvarez, L. 2022. Automating
Reasoning with Standpoint Logic via Nested Sequents. In
Kern-Isberner, G.; Lakemeyer, G.; and Meyer, T., eds., Pro-
ceedings of the 19th International Conference on Principles
of Knowledge Representation and Reasoning, 257–266.
Mayer, M. C.; Limongelli, C.; Orlandini, A.; and Poggioni,
V. 2007. Linear temporal logic as an executable semantics
for planning languages. Journal of Logic, Language and
Information 16(1):63–89.
McCabe-Dansted, J. C., and Reynolds, M. 2017. A paral-
lel linear temporal logic tableau. In Bouyer, P.; Orlandini,

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

320

A.; and Pietro, P. S., eds., Proceedings Eighth International
Symposium on Games, Automata, Logics and Formal Verifi-
cation, volume 256, 166–179.
Murakami, Y. 2004. Utilitarian deontic logic. In Schmidt,
R. A.; Pratt-Hartmann, I.; Reynolds, M.; and Wansing, H.,
eds., Advances in Modal Logic 5, Papers from the 5th Con-
ference on Advances in Modal logic, 211–230. King’s Col-
lege Publications.
Papadimitriou, C. H. 1994. Computational complexity.
Addison-Wesley.
Plaza, J. 2007. Logics of public communications. Synthese
158(2):165–179.
Pnueli, A. 1977. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science,
46–57. IEEE Computer Society.
Rao, A. S., and Georgeff, M. P. 1998. Decision Proce-
dures for BDI Logics. Journal of Logic and Computation
8(3):293–343.
Reynolds, M. 2016. A New Rule for LTL Tableaux. In
Cantone, D., and Delzanno, G., eds., Proceedings of the 7th
International Symposium on Games, Automata, Logics and
Formal Verification, volume 226 of EPTCS, 287–301.
van Benthem, J.; Gerbrandy, J.; Hoshi, T.; and Pacuit, E.
2009. Merging frameworks for interaction. J. Philos. Log.
38(5):491–526.
van Berkel, K., and Lyon, T. 2021. The varieties of ought-
implies-can and deontic stit logic. In Liu, F.; Marra, A.;
Portner, P.; and Putte, F. V. D., eds., Proceedings of the 15th
International Conference on Deontic Logic and Normative
Systems, 57–76. College Publications.
Wolter, F., and Zakharyaschev, M. 1998. Satisfiability prob-
lem in description logics with modal operators. In Cohn,
A. G.; Schubert, L. K.; and Shapiro, S. C., eds., Proceed-
ings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning, 512–523. Mor-
gan Kaufmann.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

321

	Introduction
	Standpoint Linear Temporal Logic
	Language
	Semantics

	Automating Reasoning via Tableaux
	Soundness and Completeness
	Soundness
	Completeness

	Computational Complexity
	Concluding Remarks

