
Diagnosis for Post Concept Drift Decision Trees Repair

Shaked Almog , Meir Kalech
Ben Gurion University

shakedal@post.bgu.ac.il, kalech@bgu.ac.il

Abstract

Decision trees are commonly used in machine learning since
they are accurate and robust classifiers. After a decision tree
is built, the data can change over time, causing the classifica-
tion performance to decrease. This data distribution change
is a known challenge in machine learning, referred to as con-
cept drift. Once a concept drift has been detected, usually by
experiencing a decrease in the model’s performance, it can
be handled by training a new model. However, this method
does not explain the drift harming the performance but only
handles the drift’s effects. The main contribution of this pa-
per presents a novel two-step approach called APPETITE,
which applies diagnosis techniques to identify the feature that
has drifted and then adjusts the model accordingly. For the di-
agnosis step, we present two algorithms. We experimented on
73 known datasets from the literature and semi-synthesized
drifts in their features. Both algorithms are better at handling
concept drift than training a new model based on the samples
after the drift. Combining the two algorithms can provide an
explanation of the drift and is a competitive model against a
new model trained on the entire data from before and after
the drift.

1 Introduction
Decision trees and other tree-based models are commonly
used in machine learning and preferred for several tasks
(Rokach and Maimon 2005). They are accurate and ro-
bust classifiers that have been shown to outperform deep
learning techniques, especially in environments where the
data is presented in the tabular form (Gao et al. 2021;
Lee, Cheang, and Moslehpour 2022; Rungskunroch, Jack,
and Kaewunruen 2021). Moreover, these models are eas-
ily explainable since they can be translated into a set of
if-else rules that specify how the model makes decisions
(Došilović, Brčić, and Hlupić 2018).

After a decision tree is built, the data samples used to train
it may change over time, decreasing the classification perfor-
mance. This change in the data distribution over time is one
of the challenges in machine learning, commonly referred
to as concept drift (Gepperth and Hammer 2016). The drift
can cause instances being incorrectly classified, known as
misclassification, and may impact the classification perfor-
mance until the model is changed and re-adapted to fit the
new data distribution.

Using incremental learning can ensure that the model will
adapt to the current concept during the learning process.
Even though it is frequently used on SVM (Klinkenberg
and Joachims 2000), Random Forest (Saffari et al. 2009;
Gomes et al. 2017; Zhukov, Sidorov, and Foley 2016;
Xie, Peng, and Wang 2016) and other ensemble methods
(Castro-Cabrera et al. 2021; Li et al. 2020; Scholz and
Klinkenberg 2005; Kolter and Maloof 2007; Wang et al.
2003), there is no equivalent approach for a decision tree
to overcome the concept drift effects. Additionally, because
incremental learning dynamically updates the model, using
it in cases where concept drifts do not frequently occur in
the data may be highly inefficient. Therefore, when the data
is expected to be mainly drawn from the same distribution,
static models are often used (e.g., decision trees). In these
cases, sudden and unexpected drifts may occur, requiring a
different approach to handle the concept drift.

The method to address concept drifts in static models is by
training a new model (Singhal, Chawla, and Shorey 2020)
that will fit the current concept. The training can be done by
using the data after the drift; however, sometimes, there are
not enough samples from the new distribution for the adapta-
tion when the drift is detected. Therefore, another way is to
combine data from before and after the drift and train a new
model. Still, it can be limited because the samples used to
train the original model are often not saved due to memory
considerations.

A further drawback of both methods mentioned above is
that they do not explain the drift itself. In light of the rise in
explainability research and the increasing significance of its
application in classification models, understanding the drift
that caused the misclassification becomes necessary rather
than merely adjusting the tree. In this study, we suggest
a novel approach, called APPETITE, to diagnose faulty
nodes in the decision tree model that are most likely to be the
ones that caused the misclassification. Unlike the previous
ones, this approach is not incremental, it does not train a new
model and hence does not require many samples to update
the model, and it returns an explanation of the drift.

The contributions of our paper are: (1) defining the
problem of post-concept drift decision tree repair in terms
of a diagnosis problem, (2) presenting novel diagnosis tech-
niques to address the concept drift problem, which aims to
identify the faulty node that caused the problem, and (3) sug-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

23

gesting an algorithm to adjust the model accordingly. The
code for the algorithms and the experiments is available and
can be found in GitHub1.

We propose two diagnosis algorithms to address the de-
cision tree diagnosis problem; both attempt to identify the
faulty node that led to the tree misclassifying new instances.
The first algorithm is based on Spectrum Fault Localization
(SFL) diagnosis (SFL-DT), originally designed to handle
automatic software debugging. The second technique uses
statistical analysis to determine which node has the most
considerable drift by passing instances across each node
(STAT-AN). To adjust the decision tree, we suggest modi-
fying the constraint in the diagnostic node of the decision
tree such that it more accurately reflects the distribution of
the instances that have passed through it.

We ran experiments on 73 known databases from the lit-
erature and semi-synthesized drifts in specific features. The
results show that both diagnosis algorithms outperform a
competitive algorithm that builds a new model from the data
following the drift. Additionally, combining these two al-
gorithms performs significantly better than each separately
both in terms of model performance and diagnosis quality;
moreover, it succeeds in identifying the drifted features cor-
rectly. The combined algorithm is even competitive with a
new model that was trained using the entire data from before
and after the drift.

The rest of the paper is organized as follows: Section
2 covers the SFL background required for understanding
our algorithm. Additionally, we present related work in the
fields of Concept Drift and Formal Explainability. Section 3
defines the problem, and Section 4 describes the methodol-
ogy. Section 5 provides the design of our experiments and
presents the results, and Section 6 concludes.

2 Background and Related Work
This section will present some background to SFL, which
we use as a basis for our first diagnosis algorithm (SFL-DT).
Then, we present related work on two topics: (1) concept
drift and (2) formal explainability.

2.1 SFL Background
Our work is inspired by Spectrum-Based Fault Localization
(SFL), a popular approach for diagnosing software systems,
aiming to detect bugs in the code based on system tests.
We provide a brief background on SFL; for a more com-
prehensive background on SFL, see (Abreu, Zoeteweij, and
Van Gemund 2009).

Definition 1 (SFL Problem). An SFL problem is defined by
a tuple ⟨COMP , T,SPCT , E⟩ where COMP is a set of
system components (e.g., functions), each of which may be
faulty; T is a set of system tests; SPCT is a binary A × B
matrix where SPCTi,j = 1 denotes that component compj
participated in test ti; and E is a vector of length A where
Ei = 1 denotes that the ith test’s run has failed, and Ei = 0
otherwise. An SFL problem arises when ∃i : Ei = 1.

1https://github.com/shakedal/decision tree diagnosis

The matrix SPCT is called a spectrum, and the vector E
is called the error vector. SPCT and E can be combined
into a single table, with E as the table’s rightmost column.
An example shows this in Table 1a. The table shows the
spectrum and error vector for a system with three compo-
nents (c1,c2,c3) executed through 4 tests (t1,t2,t3,t4). For
example, in the second row, components c2 and c3 were in-
volved in the test, and the system test’s run has failed.

A solution to an SFL problem is a set of diagnoses and a
ranking function to prioritize them. A diagnosis in SFL is
a set of components that explain the failed tests. Some SFL
algorithms are designed to diagnose problems with a sin-
gle faulty component, while others are designed to diagnose
problems with multiple faults.

Finding diagnoses in the single-fault case is as follows: a
component compj is a diagnosis if it participated in at least
one failed test. To rank these diagnoses, single-fault SFL
algorithms use Similarity Coefficients (Hofer et al. 2015)
between the spectrum and the error vector to rank the diag-
noses. These similarity coefficients are formulas evaluated
using four Similarity Counters npq(j), p, q ∈ {0, 1} de-
fined as:

∀compj , npq(j) = |{i|SPCT ij = p ∧ Ei = q}| (1)

Table 1b shows these counters with respect to the spec-
trum in Table 1a. We can see, for example, that n11(2) = 2
since the number of test runs for which SPCT i,2 = 1∧Ei =
1 is 2, meaning that component c2 participated in two failed
test.

c1 c2 c3 E
t1 1 1 0 1
t2 0 1 1 1
t3 1 0 0 1
t4 1 0 1 0

(a)

c1 c2 c3
n11 2 2 1
n10 1 0 1
n01 1 1 2
n00 0 1 0

(b)

Table 1: (a) Spectrum and Error Vector describing a system of 3
components that had run 4 tests, and (b) the corresponding similar-
ity counters.

SFL algorithms consider various similarity coefficients
between the observed execution traces and the error vector,
like Ochiai (Abreu, Zoeteweij, and Van Gemund 2007), and
Tarantula (Jones and Harrold 2005) to give scores to diag-
noses involving single components. In this work, we use a
similarity coefficient called Faith (Faith 1983) that will be
described in Section 4.

2.2 Concept Drift
One of the challenges in machine learning is that the data
samples used to build the model can change over time. Con-
cept drift is the term used to describe how the distribution
of data varies over time. Concept drift can be gradual or
abrupt; the latter case is sudden and can cause severe im-
mediate effects on the model’s performance. There are two
types of changes that can be distinguished: changes merely
in the input distribution (p(x)), which is known as virtual

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

24

concept drift or covariate shift, while a change in the under-
lying functionality itself (p(y|x)) is known as real concept
drift (Gepperth and Hammer 2016). Real concept drift is
challenging since it leads to misclassification, for example,
the sudden and unexpected impact of Covid-19 on various
aspects such as medicine (Duckworth et al. 2021) and fi-
nance (Bholat, Gharbawi, and Thew 2020). A study on en-
ergy demand (Gomez-Omella, Esnaola-Gonzalez, and Fer-
reiro 2020) in Spain has shown that during the first weeks
of the pandemic the electric consumption data distribution
changed and the data variability decreased. One of the main
features that were used to predict the demand was the week-
day, but due to the pandemic the electric consumption on the
weekdays became similar, leading the forecasting models to
work unexpectedly. The drift impacts the classification per-
formance, and immediate adaptation in accordance with the
drift is required.

There exist different techniques to address concept drift,
such as passive and active methods. One way to actively
respond after detecting a concept drift is to create a new
model based on the new data after the drift has occurred.
This method is mainly used when a static model is being
used due to the anticipation that the data will not frequently
change. Singhal, Chawla, and Shorey (2020) presented an
example of such work. Although their work is specifically
designed for malicious URL detection, training a new model
is a valid way to ensure that we have a model that fits
the new data in other domains as well. One of the draw-
backs is that we often do not have enough data for train-
ing a good model, as we show in the experiments. Passive
methods can also be used, in which we smoothly adapt the
model’s parameters so that the model reliably represents the
new distribution. One way to do so is to use incremental
learning or online learning techniques. A known example
is the incremental version of SVM introduced by (Klinken-
berg and Joachims 2000), which propose a new method to
recognize and handle concept changes with SVM. Another
technique used to overcome the concept drift problem is us-
ing an incremental version of ensemble learning, which al-
lows us to dynamically add or remove weak learners during
the run (Castro-Cabrera et al. 2021; Scholz and Klinkenberg
2005), and also by re-weighting their voting (Li et al. 2020;
Kolter and Maloof 2007; Wang et al. 2003). Because incre-
mental learning dynamically updates the model, these meth-
ods are time and resources-consuming, and using them in
cases where concept drifts do not frequently occur in the
data may be highly inefficient.

One of the well-known ensemble learning algorithms is
Random Forest, a classification algorithm that consists of
many individual decision trees that operate as an ensemble.
Several works overcome concept drift specifically by using
Random Forest variants. The adaptations of Random Forest
are done by several methods, such as re-sampling the data
(Gomes et al. 2017), creating and removing trees from the
forest (Saffari et al. 2009; Zhukov, Sidorov, and Foley 2016;
Xie, Peng, and Wang 2016), re-weighting trees’ votes
(Zhukov, Sidorov, and Foley 2016), and updating leaves
(Xie, Peng, and Wang 2016). Excluding (Xie, Peng, and
Wang 2016), which updates the leaves, none of the others

changes the tree’s structure. Our approach proposes a way
to adjust the tree nodes based on the new distribution and is
not limited to leaves only but can fit any node type.

There exist dynamic tree algorithms designed for stream-
ing, such as Hoeffding Tree (Domingos and Hulten 2000)
that uses the Hoeffding bound (Hoeffding 1963) to deter-
mine, with high probability, the smallest number of exam-
ples needed at a node when selecting a splitting attribute.
Another dynamic tree suitable for a datastream is the Mon-
drian Tree (Lakshminarayanan, Roy, and Teh 2014) that uses
the Mondrian Process (Roy and Teh 2008) to divide the
space into blocks. A Mondrian Tree is used in a forest and
not as a standalone single tree. Both algorithms assume that
the distribution that generates the examples does not change
over time; therefore, they are not suitable for concept drift
handling. Several works created variations of these trees or
used them as a forest to overcome concept drifts (Hulten,
Spencer, and Domingos 2001; Hoeglinger and Pears 2007;
Rad and Haeri 2019; Khannouz and Glatard 2022). Still,
they are all incremental methods requiring constant learning
and are unsuitable for cases where unexpected drift occurs.

2.3 Formal Explainability
Machine Learning algorithms are vastly used in several do-
mains but are mostly perceived as black boxes. Insights
about the model’s decision-making process are important
for us as humans to trust the models, especially in highly
sensitive areas such as healthcare or finances (Burkart and
Huber 2021). For these reasons, explainability is a rising
research field. Other than the need to explain the reasons
behind the classification, it is important to understand con-
cept drifts and the changes in the data in order to adapt the
actions taken as a result of the model’s decision. Duckworth
et al. (2021) have shown that understanding the changes in
the data during the Covid-19 pandemic can be helpful in life-
supporting decisions.

Many approaches for explaining ML models offer no
guarantees of rigor, hence being referred to as non-formal
(Marques-Silva 2022). Formal Explainability (Marques-
Silva and Ignatiev 2022) uses formal representations to pro-
vide a formally-correct and minimal explanation of a de-
cision taken by a classifier. Several studies have created
these explanations for various model types: Artificial Neu-
ral Networks (Bassan and Katz 2022; Jiang et al. 2022), De-
cision Trees (Audemard et al. 2022), Tree Ensembles (Ig-
natiev et al. 2022); and for non-specific models (Cooper and
Marques-Silva 2022; Huang et al. 2022).

Our approach tries to use the diagnosis as an explanation;
however, we aim to detect faulty nodes to explain the con-
cept drift other than explain the classification itself.

3 Problem Definition
In this section, we define the problem of poSt concePt drIft
Decision trEes Repair (SPIDER) in terms of a diagnosis
problem, starting by defining a classification model.

Definition 2 (Classification Model). Given a set of features
F from the feature space X , a set of classes C from the class
space Y , and a training set of m samples (xj , yj) from some

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

25

distribution D, where xj ∈ X and yj ∈ C, a classification
model is a function ϕ : X → Y .

A wildly used technique to generate a classification model
is building a Binary Decision Tree.

Definition 3 (Binary Decision Tree). A binary decision tree
T = (VT , ET) is a directed acyclic graph where the root
node has no incoming edges, and every other node has ex-
actly one incoming edge. The tree nodes are partitioned into
terminal VT and non-terminal VNT nodes. Terminal nodes
denote the leaf nodes with no outgoing edges (e.g. children)
and are associated with a class taken from C. Non-terminal
nodes represent the internal nodes and have two outgoing
edges. Each non-terminal node nj ∈ VNT is denoted by
a tuple ⟨fj , s⟩, where fj ∈ F and s is a constraint over fj .
We denote the constraint cnst of node nj as cnstnj

. Node nj

has two edges (left and right) connected to other nodes (ter-
minal or non-terminal), such that the right edge represents
that cnstnj

is satisfied, and the left edge represents that it is
not satisfied.

Given a decision tree model and a new instance, we can
assign a class to it by starting at the root node and proceed-
ing to the left or right child, depending on the constraint of
the node, until a terminal node is reached. Once we reach
a terminal node, we assign the class that the node is as-
sociated with. A perfect classification model will classify
each new instance to its correct class. However, in reality,
classification models are not perfect, and as a result, some
instances may be misclassified. The performance of clas-
sification models can be evaluated using different measure-
ments such as accuracy, recall, and AUC. Given a decision
tree model T generated based on a set of samples SD from
a distribution D, we denote the performance of T by the
function ρ : (T , SD) → R.

As described above, the tree and its nodes are built for a
specific data distribution D. However, a concept drift may
occur, and the data distribution can change, causing nodes’
constraints to be irrelevant to the new distribution, and as a
result, decrease the performance of the whole model. That
brings us to the definition of a faulty node in a decision tree.

Definition 4 (Faulty Node). A faulty node is a non-terminal
(or terminal) node ni whose constraint (or class) does not fit
the current distribution D′ due to changes in the data given
to the model.

A non-terminal node’s fault may cause samples that pass
through it to follow a different path than they ought to, lead-
ing to incorrect sample classification by the model. Further-
more, the result of incorrect class assignments due to a faulty
terminal node is misclassifying samples. These misclassifi-
cations may finally reduce the performance of the decision
tree. This leads us to define the Decision Tree Diagnosis
Problem:

Definition 5 (Decision Tree Diagnosis Problem). Given a
binary decision tree model T generated based on a set of
samples SD from a distribution D, and given another set of
new samples SD′ from a distribution D′, the Decision Tree
Diagnosis Problem arises if ρ(T , SD) − ρ(T , SD′) > thr ,
where thr is a predefined threshold.

A Decision Tree Diagnosis is a set of faulty nodes that
can explain the drop in the performance of the decision tree.
As a result of detecting the faulty nodes, we wish to fix
those nodes, which means changing the constraint of the
non-terminal node or changing its associated class in the
case of a terminal node. We expect that the fixed model will
perform better on samples from the distribution D′ than the
original model that was built for distribution D, and more
specifically will retain the model’s performances within the
predefined values.

Definition 6 (Decision Tree Diagnosis). Given a Decision
Tree Diagnosis Problem with respect to the decision tree T ,
a diagnosis ∆ is a set of nodes that adjust the tree T into
T ′ by changing the node’s constraints (or associated class),
and causes ρ(T , SD)− ρ(T ′, SD′) ≤ thr .

4 Method Description
We propose a diAgnosis-based aPproach for Post-concEpt
drifT decIsion Trees rEpair (APPETITE) to solve the SPI-
DER problem. The input of the algorithm is a decision tree
model T and a set of samples SD′ from the new distribu-
tion D′. The output is a decision tree model adjusted to the
distribution D′.

APPETITE is divided into two phases:

1. Diagnosing the decision tree: identify the faulty nodes
that can explain the performance reduction on the new
distribution D′ — the diagnoser.

2. Fixing the decision tree: based on the diagnosis found by
the diagnoser, we fix the faulty nodes in such a way that
will improve the model’s performance on the new distri-
bution D′ — the fixer.

We start by proposing two single-fault diagnosers and
then explain the proposed fixer.

4.1 Diagnosing the Decision Tree (Diagnoser)
Given a decision tree model T and a set of samples SD′ , we
want to detect the faulty nodes and get a diagnosis △ ⊆ VT
that will explain the drift. In this paper, we focus on a single
fault diagnosis, meaning we assume only one component is
faulty, hence the diagnosis algorithm will yield a diagnosis
composed of only one node. A single-fault is a realistic sce-
nario in general, and specifically in our field since we are
looking for the drifted feature.

We present two diagnosis algorithms for diagnosing deci-
sion trees: SFL-DT and STAT-AN.

SFL-Based Diagnosis for Decision Trees (SFL-DT) Our
approach uses the concept of Spectrum Fault Localization
(SFL) to diagnose faulty nodes in the Decision Tree. The
components and tests are mapped to nodes and samples. Un-
like traditional SFL, we define the spectrum and the error
vector differently, based on the notations: Node Path, Node
Participation, Misclassification.

Definition 7 (Node Path). Given a node ni, a Node Path
is a set of constraints associated with the nodes on the path

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

26

from the root node to ni. Let pi denote the parent of ni:

Path(ni) =


∅ if ni is the root node

Path(pi) ∪ {cnstpi
} if ni is a right child

Path(pi) ∪ {¬cnstpi
} if ni is a left child

(2)

Definition 8 (Node Participation). Given a sample sj and
a node ni, a Node Participation is a predicate np(sj , ni) that
is True if all the constraints in the set Path(ni) are satisfied
by assigning to them sj:

np(sj ,ni) =

{
True if Path(ni)(sj) = True

False otherwise
(3)

Definition 9 (Misclassification). Given a sample sj , mis-
classification is a predicate mis(sj) that is True if the real
class of the sample yj is not the same as the class given by
the model ϕ(sj).

mis(sj) =

{
True if yj ̸= ϕ(sj)

False otherwise
(4)

Using the definitions above, we define SFL’s spectrum
and the error vector as used in our method. The spectrum is
denoted as Node Spectrum and is filled based on the node
participation in the samples:

Definition 10 (Node Spectrum). Given a set of A samples
SD′ , and a tree with a set of B nodes, a Node Spectrum is a
matrix SPCT : {0, 1}A×B defined as follows:

SPCTj ,i =

{
1 if np(sj ,ni) = True

0 otherwise
(5)

The error vector is denoted as Error Vector and is filled
based on the misclassification:

Definition 11 (Error Vector). Given a set of A samples SD′

an Error Vector E : {0, 1}A is a vector defined as follows:

ej =

{
1 if mis(sj) = True

0 otherwise
(6)

Given a spectrum SPCT of size A × B and an error vec-
tor E of size A, we can explain the SFL-DT algorithm. In
particular, we rank all components (nodes) with a similarity
coefficient using a formula that is based on the Similarity
Counters defined in Equation 1. In SFL-DT we use Faith
(Faith 1983), an asymmetric binary similarity measure:

SFaith =
n11 + 0.5 · n00

n11 + n10 + n01 + n00
(7)

STATistical ANalysis Based Diagnosis (STAT-AN) The
main idea behind this algorithm is to use Statistical Analysis
to determine which node has the biggest drift by passing in-
stances across the nodes. To further explain this method,
we say that cnstni

(si) = True means that the constraint
cnstni

is satisfied by assigning sample si. Accordingly,
¬cnstni

(si) = True means that the constraint is violated.

We define a ratio for each node ni that describes the percent-
age of the samples of a given set of samples S that violated
the node’s constraint:

violation(ni ,S) =
|{sj |¬cnstni

(sj) ∧ np(sj ,ni), sj ∈ S}|
|{sj |np(sj ,ni), sj ∈ S}|

(8)
Given a binary decision tree T , and two datasets SD and

SD′ from two distributions D and D′ respectively, we define
the node’s rank as the difference between the violation given
SD and SD′ :

rank(ni) = |violation(ni ,SD)− violation(ni ,SD′)| (9)

Choosing the Best Diagnosis Since we focus on single
fault diagnosis, based on the node ranking given by the di-
agnosis algorithm (SFL-DT or STAT-AN), the chosen diag-
nosis is the node that has the highest rank. This diagnosis
will be used as an input to the fixer, which aims to adjust the
model to fit the new distribution D′.

4.2 Fixing the Decision Tree (Fixer)
Given a decision tree model T and the diagnosis △ ⊆ VT
found in the previous step, we aim to change the decision
tree in a way that will fit better for the distribution D′.

The fix is done for each node in the diagnosis, but the
changes we make in the nodes depend on the node’s type. If
ni is a terminal node (a leaf), the class associated with the
node will be changed to the most frequent class in the node
based on the dataset after the drift (SD′). This is a cautious
fix, and it is possible that the node’s associated class will not
change due to the fix.

If ni is a non-terminal node, we change the constraint
of the node according to the feature type. For nodes associ-
ated with binary or categorical features, we negate the node’s
constraint cnst ′ni

= ¬cnstni . As for nodes associated with a
numeric feature, assume f ∈ ni is fj , we change the con-
straint cnstni = (fj ≤ xj) to be cnst ′ni

= (fj ≤ xj+diffj),
where diffj is the difference between the feature’s fj aver-
age of the samples that pass through the node ni after and
before the drift:

diffj = E[fjD′]− E[fjD] (10)

4.3 Complexity Analysis
Denote S as the number of samples, X as the number of
features, and V as the number of nodes in the tree. The pro-
posed algorithms’ time and space complexity analysis com-
pared to the alternative approach of training a new tree is
presented in Table 2.

5 Evaluation
This section evaluates APPETITE by running it on semi-
synthesized data with concept drift in specific features. We
will evaluate the diagnoser by measuring the diagnosis cor-
rectness and evaluate the fixer by comparing the fixed model
to two alternative re-trained models. We describe the exper-
imental setup, including the datasets and the drift synthesiz-
ing process, and present the results.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

27

Algorithm Complexity
Time Space

SFL-DT Diagnoser O(V · S) O(V · S)
STAT-AN Diagnoser O(V · S) O(V + S)
The Fixer O(1) O(V)
Training a new tree O(S · log(S) ·X) O(V + S)

Table 2: Time and space complexity analysis.

5.1 Experimental Settings
Datasets One of the challenges in the research area of
concept drift is the data used to evaluate the algorithms
handling it. As described in (Li et al. 2020; Brzezin-
ski and Stefanowski 2013), the datasets used to test al-
gorithms are intended for static environments; therefore,
they typically do not contain any concept drift, and even
if they do, the drifts’ locations are not labeled. In terms
of real-world data, some studies (Duckworth et al. 2021;
Wang et al. 2003) have used private data that can not be
replicated, and there is still a lack of suitable benchmark
datasets that are freely accessible. For these reasons, con-
cept drift handling is mainly tested on synthetic datasets
containing drifts in known positions. A popular way to syn-
thesize these datasets is using MOA (Bifet et al. 2010), an
open-source framework for data stream mining, that allows,
among other things, to generate data streams with concept
drifts. The drifts generated with the tool affect the entire
dataset, and since our motivation is to detect the changes
in specific features, the data generated by MOA is not suit-
able for our problem. Tahmasbi et al. (2021) created semi-
synthetic datasets by taking an existing dataset without drifts
and synthesizing drifts within the samples. Similar to that
approach, we used static datasets and synthesized drifts in
specific features, as described below.

To evaluate APPETITE we chose a variety of 73 super-
vised classification data sets taken from the public datasets
TRIO (Cohen-Shapira and Rokach 2021), built for several
machine learning algorithms tasks, such as classification, re-
gression, and clustering. We used the datasets only targeted
for the classification task since our study focuses on deci-
sion trees used for classification. First, since the samples
in most datasets are ordered by their label or feature values,
we shuffled the instances in the dataset to get a better data
distribution. Then, we divided the datasets into three parts,
where the first one (70% of the data) is used to simulate the
data before the drift (original distribution D). The other two
parts are for the data after the drift (D′), where the first part
is used by the different algorithms to update or rebuild the
model (0.5%-10% of the data), and the last one serves as the
test set to evaluate the algorithms after the drift (the last 20%
of the instances).

TRIO contains 138 classification datasets. Still, we used
only 73 datasets since we filtered out datasets (1) that the
decision tree model generated using the first 70% had an
accuracy lower than 75% since we would like to run the al-
gorithm in cases where the original model created for SD is
good enough. In addition, we filtered out datasets (2) that
the drop in the accuracy of the decision tree model T , be-

tween samples from the first part before the drift SD and
from the second part after the drift SD′ is at least 10%:
ρ(T , D) − ρ(T , D′) ≥ 0.1. A lower drop indicates an in-
significant drift. The complete list of datasets we used for
the experiments can be found in Section 6 (Appendix).

Generating Decision Trees All trees were generated us-
ing the Sklearn library. First, we chose the hyper-parameters
splitting criterion [Gini (Tangirala 2020), or Entropy (Loh
2011)] and the maximum number of leaf nodes in the tree
[10, 20, or 30] with Grid Search (Larochelle et al. 2007), us-
ing cross-validation on the training set. The number of splits
is set to the smallest class size, but no greater than 5. After
choosing the best hyper-parameters, we trained the tree until
it was fully grown and used post-pruning (Mansour 1997) to
get the minimal tree that gave a maximum accuracy score on
the validation set.

Concept Drift Synthesizing Process For each feature, we
synthesized concept drift that changed the distribution of
that feature, creating a new dataset for the experiments. We
changed only the last two parts of the data (the 30% as de-
scribed in 5.1); therefore, the initial 70% remains the same.

The changes in the distribution depend on the type of the
feature; the drift of numeric features was done by adding
k to the feature in all samples. The value of k was set to
be [−2σ,−σ,−0.5σ, 0.5σ, σ, 2σ], where σ is the standard
deviation of the feature in all the dataset. As for the drifts
of categorical and binary features, we fixed each value of
the feature and changed a proportion p out of the remaining
samples to that value. We experimented with several pro-
portions p: [0.3, 0.5, 0.7, 0.9]. In total, we created 6 drifts
for each numeric feature, and 4·—unique values— drifts for
binary and categorical features, bringing us to 4194 total
datasets containing varied concept drifts.

We used these distributions to rank the severity of the
drift. The more the distribution differs from the feature’s
original distribution, the greater the severity of the drift.

1. Numeric: k = 0.5σ,−0.5σ Binary/Categorical:
p = 0 .3

2. Numeric: k = σ,−σ Binary/Categorical: p = 0.5, 0.7

3. Numeric: k = 2σ,−2σ Binary/Categorical: p = 0.9

Compared Algorithms To evaluate the diagnosis algo-
rithms, we compare SFL-DT and STAT-AN to a diagnosis
algorithm that combines these two algorithms by multiply-
ing the ranks they return for each node. We call this algo-
rithm SFL+STAT. Preliminary experiments on SFL+STAT
with different similarity measures (Faith, Cosine, Dice, Jac-
card, Intersection, and Inner Product) showed that the sim-
ilarity measure Faith performs the best. Therefore, we
present the results of SFL-DT and SFL+STAT with the Faith
similarity measure.

To evaluate the APPETITE approach, we run the above
three algorithms with the fixer (Section 4.2). In addition,
we compare these algorithms to algorithms that train a new
model since it is the known alternative in the literature to

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

28

handling concept drifts in a non-incremental approach (Gep-
perth and Hammer 2016). There are two ways to train a new
model that will fit the new distribution D′. One is to train
a new model only on the samples from the new distribution
(SD′) (e.g., the second part of the data). We call this algo-
rithm NEWDRIFT. The second way is to train the model
on all data up to this point, including the data from both D
and D′ (SD ∪ SD′). We call this algorithm NEWALL. It is
worth mentioning that the second alternative is not always
possible because, in many cases, the data used to train the
model is not stored but only the model itself due to memory
considerations.

Evaluation Metrics To measure the diagnoser’s perfor-
mance, and verify if it could be used as an explanation for
the essence of the drift, we checked if the feature associ-
ated with the node in the diagnosis is the same as the one
we changed. We reported the percentage of the cases where
we correctly identified the feature in our diagnosis. Addi-
tionally, we compute the average Wasted Effort (Elmishali,
Stern, and Kalech 2018): assume that we repair the compo-
nents in the diagnoses in the order of the diagnoses’ rank,
Wasted Effort is the number of healthy components exam-
ined until all faulty components are repaired. In our case,
the diagnosis is a single fault, and our fault is a feature (not
a node), so Wasted Effort is the number of nodes with a dif-
ferent associated feature that will be fixed until we reach a
node with the faulty feature.

To evaluate the performances of the algorithms as an ap-
proach for handling the SPIDER problem, we measured the
accuracy of the different algorithms and compared them to
the accuracy of the original model on the same test set. We
report on the Accuracy Diff — the difference between the
two in terms of percentage.

Research Questions We define three research questions
that will be examined through the evaluation:
RQ1. Which one of the diagnosis algorithms returns the best
diagnosis?
RQ2. Does APPETITE approach perform better than al-
gorithms that retrain a new classification model?
RQ3. How do parameters such as the percentage of in-
stances used to fix the model or the severity of the drift affect
the diagnosis algorithms and the algorithms that solve the
SPIDER problem?

5.2 Results
Table 3 shows the results. The first column addresses RQ2
and shows the average Accuracy Diff. The last two columns
address RQ1 and present the performance of the diagnosis
in terms of Wasted Effort (lower values are better) and the
percentage of cases we Identified the faulty feature. The
best values are shown in bold. The first two rows show the
results of training new models based on data before and after
the drift (NEWALL) and only after (NEWDRIFT). The last
three rows present the results of our diagnosis and repair al-
gorithms: SFL-DT, STAT-AN, and the combined algorithm,
SFL+STAT.

To better observe the results, we examined the perfor-
mances of the different algorithms based on the type of fea-
ture that had a drift. Results can be seen in Table 4, where
we present the same information as in Table 3 but separated
based on the feature’s type.

Algorithm Accuracy Diff Wasted Effort Identified
NEWALL 10.06% — —
NEWDRIFT -6.24% — —
SFL-DT -0.44% 2.64 31.79%
STAT-AN 2.49% 2.01 38.85%
SFL+STAT 8.40% 0.97 71.36%

Table 3: Average performances of the algorithms across all modi-
fied datasets (addressing RQ1 and RQ2).

Type Algorithm Acc. Diff WasEff Identified
Categorical/ NEWALL 2.25% — —

Binary NEWDRIFT -11.93% — —
SFL-DT -37.06% 1.85 59.36%
STAT-AN -3.19% 1.76 33.69%
SFL+STAT -11.54% 0.98 62.57%

Numeric NEWALL 11.27% — —
NEWDRIFT -5.36% — —
SFL-DT 5.22% 2.76 27.53%
STAT-AN 3.37% 2.05 39.65%
SFL+STAT 11.48 % 0.97 72.71%

Table 4: Average performance of the algorithms for drifts on cate-
gorical/binary and numeric features.

[RQ1:] Table 3 and Table 4 show that the combined algo-
rithm (SFL+STAT) is much better than SFL-DT and STAT-
AN separated. This can be seen by the lower wasted effort
and the higher %Identified. The difference is significant and
tested using a T-test with α = 0.05. The rest of the results
were tested with the same statistical test. In terms of diag-
nosis, we can say that SFL+STAT provides a good diagnosis
that can explain the drift in more than 71% of the cases. The
algorithm is better when it comes to numeric features, but
the results are also satisfying for categorical features.

[RQ2:] As for the improvement in the model’s perfor-
mance after the fix, we can see that both STAT-AN and
SFL+STAT algorithms (last two rows) improve the original
model, with a statistically significant difference. If we differ
by feature type, we can see that all three algorithms perform
better when fixing a numeric drift, even though they have
similar results in the diagnosis phase. We can assume that
our fixer is not suitable for categorical/binary features and an
alternative solution should be proposed. The numeric results
in Table 4 show that all three algorithms improve the original
model’s result. Additionally, all three algorithms are better
than training a new model on the samples only after the drift
(NEWDRIFT), and the difference is statistically significant.
One of the possible explanations for that is the fact that we
do not use many samples, and the new model might suffer
from overfitting. The combined algorithm (SFL+STAT) is
even better than training a new model on all available data
(NEWALL), but the difference is not statistically significant.
This result can justify not saving the samples used to train

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

29

the model and save memory. Additionally, according to the
complexity analysis in Table 2, our algorithm is not more
complex than the alternative. Moreover, the advantage of
our approach is that it is more explainable since it does not
only fix the model but also identifies the drifted feature.

Figure 1: Diagnosis quality as a function of the drift severity. The
full line is Wasted Effort, and the dashed line is % Identified.

Figure 2: Accuracy difference of the algorithms on numeric drifts
as a function of the drift data size.

To address RQ3, we present results of (1) the impact of
the drift severity on the diagnosis and (2) the impact of the
amount of data after the drift used to fix the model.

In Figure 1 the x-axis is the drift severity as described
in 5.1, and the y-axis is the average Wasted Effort (for full
lines) or %Identified (dashed). Results show that the quality
of the diagnosis has a correlation to the severity of the drift.
The three algorithms have better diagnoses as the drift is
more severe. We can conclude that APPETITE is better
as an active approach to address concept drift, which is the
preferred solution for abrupt drifts as the ones presented in
our experiments.

In Figure 2 we see how the size of SD′ affects all al-
gorithms’ performances, showing results only for numeric
drifts. The x-axis is the percentage of the dataset used by the

algorithms, and the y-axis is the Accuracy Difference. We
can see that all 5 algorithms perform better when they use
larger SD′ . Results also show that SFL+STAT and NEWALL
show the same and most significant improvement, after them
SFL-DT and STAT-AN improve the accuracy of the original
model but do not get the same performance as the former
two. As for NEWDRIFT, it is the worst out of all 5, and
when SD′ is smaller than 5%, it is even harming the original
model and does not improve it at all. In addition, the gap
between NEWDRIFT and all other alternatives shrinks as the
dataset size increases. From this analysis, we can conclude
that our approach has the highest impact in cases when we
do not have many samples from the new distribution D′, and
the old samples from D were not saved.

6 Conclusions
In this paper, we presented a novel approach APPETITE
to address the problem of post-concept drift decision tree
repair. This approach applies two steps. First, a diagnosis
process is run to identify the node whose constraint does not
fit anymore the new data distribution, then a fixer process
is run to fix this node. We presented two algorithms to ad-
dress the diagnosis process, one is based on SFL (SFL-DT),
and the other is based on a statistical analysis of the data
passed through the node (STAT-AN). In addition, we pre-
sented an algorithm that fixes the faulty node. Experiments
on 73 datasets show that these algorithms perform better
than the original model when it comes to numeric drifts.
Moreover, they are even better than an algorithm that trains
a new model based on the data after the drift (NEWDRIFT).
Also, we show that a combination of the two algorithms
(SFL+STAT) performs much better than each one separately;
it can explain the essence of the drift and is competitive with
an algorithm that trains a new model based on the entire data,
before and after the drift (NEWALL).

For future work we suggest extending the diagnosis al-
gorithms to support multi-fault diagnoses, meaning each di-
agnosis can have more than one faulty node. Additionally,
since our suggested algorithm for the fixer did not provide
the outcome we aimed for in categorical and binary features,
we wish to improve it.

Appendix
In table 5, we present a summary of the datasets used for
the experiments, including the classification information for
each decision tree model trained and tested with the respec-
tive data. It includes the number of samples in the dataset
[#S], the number of numerical features [#N], the number
of binary or categorical features [#C], and the type of the
target class in the dataset [CT], i.e., whether it is a binary
(marked as B) or a multi-class (marked as C) classification
task. Moreover, in regards to the trained decision tree, we
include the number of nodes in the tree (tree size [TS]) and
the accuracy [Acc] of the decision tree, tested on the test set,
in terms of percentage.

Acknowledgments
This research was funded by ISF grant No. 1716/17.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

30

Name #S #N #C CT TS Acc
Acute-
Inflammation 120 6 0 B 9 100

Acute-Nephritis 120 7 0 B 5 96
Analcat-
data boxing1 120 1 2 B 21 78

Analcat-
data lawsuit 264 4 0 B 13 100

Annealing 898 31 0 C 51 93
Ar4 107 29 0 B 17 75
Audiology-Std 196 59 0 C 19 87
Bank 4521 16 0 B 17 92
Baseball 1340 15 1 C 5 93
Blood 748 4 0 B 11 80
Bodyfat 252 14 0 B 3 98
Braziltourism 412 1 7 C 7 75
Breast-Cancer-
Wisc-Diag 569 30 0 B 7 89

Breast-Cancer-
Wisc 699 9 0 B 19 92

Car 1728 6 0 C 55 92
Caradiotocogra-
phy10clases 2126 21 0 C 45 84

Cardiotocogra-
phy3clases 2126 21 0 C 23 93

Chatfield 4 235 12 0 B 17 85
Chscase vine1 52 9 0 B 7 100
Credit-Approval 690 15 0 B 3 85
Dermatology 366 34 0 C 13 92
Diggle table a2 310 8 0 B 3 100
Echocardiogram 131 10 0 B 3 92
Ecoli 336 7 0 C 5 77
Elusage 55 2 0 B 7 90
Energy-Y1 768 8 0 C 19 94
Energy-Y2 768 8 0 C 15 95
Fertility 100 9 0 B 1 79
Heart-Hungarian 294 12 0 B 29 89
Hepatitis 155 19 0 B 11 80
Horse-Colic 368 25 0 B 13 83
Image-
Segmentation 2310 18 0 C 51 95

Ionosphere 351 33 0 B 17 87
Iris 150 4 0 C 9 90
Kc3 458 39 0 B 5 87
Kidney 76 4 2 B 9 93
Low-Res-Spect 531 100 0 C 19 81

Name #S #N #C CT TS Acc
Lowbwt 189 9 0 B 3 89
Mammo-graphic 961 5 0 B 5 82
Meta 528 19 2 B 1 87
Mfeat-Karhunen 2000 64 0 C 57 76
Mfeat-
Morphological 2000 6 0 B 11 100

Molec-Biol-Splice 3190 60 0 C 55 93
Monks-1 556 6 0 B 29 77
Monks-3 554 6 0 B 5 92
Newton hema 140 2 1 B 17 85
Oocytes merlucci-
us states 2f 1022 25 0 C 13 85

Oocytes trispterus-
state 5b 912 32 0 C 15 90

Ozone 2536 72 0 B 1 97
Parkinsons 195 22 0 B 11 82
Pittsburg-Bridges-
MATERIAL 106 7 0 C 13 80

Pittsburg-Bridges-
T-OR-D R 102 7 0 B 25 79

Prnn synth 250 2 0 B 3 88
Rabe 131 50 5 0 B 3 100
Schlvote 38 5 0 B 3 83
Seeds 210 7 0 C 15 95
Socmob 1156 1 4 B 29 94
Solar-Flare 1066 9 3 C 1 99
Soybean 683 35 0 C 57 84
Spect 265 22 0 B 5 77
Spectf 267 44 0 B 5 83
Squash-Unstored 52 22 1 C 3 100
Statlog-Image 2310 18 0 C 51 96
Synthetic-Control 600 60 0 C 41 78
Tic-Tac-Toe 958 9 0 B 51 94
Transplant 131 2 0 B 3 92
Vertebral-Column-
2clases 310 6 0 B 15 77

Vertebral-Column-
3clases 310 6 0 C 13 82

Visualiz-
ing livestock 130 0 2 B 5 96

Vote 435 0 16 B 19 97
Wall-Following 5456 24 0 C 33 99
Wine 178 13 0 C 11 88
Zoo 101 16 0 C 13 95

Table 5: A description of the datasets used in our study to evaluate the APPETITE approach for concept drift handling. This table includes
the dataset names, size, number of features and types, and class type. Moreover, it includes the decision tree model size and its accuracy on
the test set.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

31

References
Abreu, R.; Zoeteweij, P.; and Van Gemund, A. J. 2007.
On the accuracy of spectrum-based fault localization. In
TAICPART-MUTATION 2007, 89–98. IEEE.
Abreu, R.; Zoeteweij, P.; and Van Gemund, A. J. 2009.
Spectrum-based multiple fault localization. In IEEE/ACM
ASE, 88–99. IEEE.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.-M.; and Marquis, P. 2022. On the explanatory power
of Boolean decision trees. Data & Knowledge Engineering
142:102088.
Bassan, S., and Katz, G. 2022. Towards formal approx-
imated minimal explanations of neural networks. arXiv
preprint arXiv:2210.13915.
Bholat, D.; Gharbawi, M.; and Thew, O. 2020. The im-
pact of Covid on machine learning and data science in UK
banking. Bank of England Quarterly Bulletin Q4.
Bifet, A.; Holmes, G.; Pfahringer, B.; Kranen, P.; Kremer,
H.; Jansen, T.; and Seidl, T. 2010. Moa: Massive online
analysis, a framework for stream classification and cluster-
ing. In Proceedings of the first workshop on applications of
pattern analysis, 44–50. PMLR.
Brzezinski, D., and Stefanowski, J. 2013. Reacting to dif-
ferent types of concept drift: The accuracy updated ensem-
ble algorithm. IEEE Transactions on Neural Networks and
Learning Systems 25(1):81–94.
Burkart, N., and Huber, M. F. 2021. A survey on the explain-
ability of supervised machine learning. Journal of Artificial
Intelligence Research 70:245–317.
Castro-Cabrera, P.; Castellanos-Dominguez, G.; Mera, C.;
Franco-Marı́n, L.; and Orozco-Alzate, M. 2021. Adap-
tive classification using incremental learning for seismic-
volcanic signals with concept drift. Journal of Volcanology
and Geothermal Research 413:107211.
Cohen-Shapira, N., and Rokach, L. 2021. Trio: Task-
agnostic dataset representation optimized for automatic al-
gorithm selection. In 2021 IEEE International Conference
on Data Mining (ICDM), 81–90. IEEE.
Cooper, M. C., and Marques-Silva, J. 2022. Tractabil-
ity of explaining classifier decisions. Artificial Intelligence
103841.
Domingos, P., and Hulten, G. 2000. Mining high-speed
data streams. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 71–80.
Došilović, F. K.; Brčić, M.; and Hlupić, N. 2018. Explain-
able artificial intelligence: A survey. In 2018 41st Interna-
tional convention on information and communication tech-
nology, electronics and microelectronics (MIPRO), 0210–
0215. IEEE.
Duckworth, C.; Chmiel, F. P.; Burns, D. K.; Zlatev, Z. D.;
White, N. M.; Daniels, T. W.; Kiuber, M.; and Boniface,
M. J. 2021. Using explainable machine learning to charac-
terise data drift and detect emergent health risks for emer-
gency department admissions during COVID-19. Scientific
reports 11(1):1–10.

Elmishali, A.; Stern, R.; and Kalech, M. 2018. An ar-
tificial intelligence paradigm for troubleshooting software
bugs. Engineering Applications of Artificial Intelligence
69:147–156.
Faith, D. P. 1983. Asymmetric binary similarity measures.
Oecologia 57(3):287–290.
Gao, W.; Bai, Z.; Zhu, F.; Chou, C. C.; and Jiang, B. 2021.
A study on the cyclist head kinematic responses in electric-
bicycle-to-car accidents using decision-tree model. Accident
Analysis & Prevention 160:106305.
Gepperth, A., and Hammer, B. 2016. Incremental learn-
ing algorithms and applications. In European symposium on
artificial neural networks (ESANN).
Gomes, H. M.; Bifet, A.; Read, J.; Barddal, J. P.; Enem-
breck, F.; Pfharinger, B.; Holmes, G.; and Abdessalem, T.
2017. Adaptive random forests for evolving data stream
classification. Machine Learning 106(9):1469–1495.
Gomez-Omella, M.; Esnaola-Gonzalez, I.; and Ferreiro, S.
2020. Short-term forecasting methodology for energy de-
mand in residential buildings and the impact of the COVID-
19 pandemic on forecasts. In Artificial Intelligence XXXVII:
40th SGAI International Conference on Artificial Intelli-
gence, AI 2020, Cambridge, UK, December 15–17, 2020,
Proceedings 40, 227–240. Springer.
Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American statis-
tical association 58(301):13–30.
Hoeglinger, S., and Pears, R. 2007. Use of Hoeffding trees
in concept based data stream mining. In 2007 Third Interna-
tional Conference on Information and Automation for Sus-
tainability, 57–62. IEEE.
Hofer, B.; Perez, A.; Abreu, R.; and Wotawa, F. 2015. On
the empirical evaluation of similarity coefficients for spread-
sheets fault localization. Automated Software Engineering
22(1):47–74.
Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M.; Asher, N.;
and Marques-Silva, J. 2022. Tractable explanations for d-
dnnf classifiers. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 5719–5728.
Hulten, G.; Spencer, L.; and Domingos, P. 2001. Mining
time-changing data streams. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 97–106.
Ignatiev, A.; Izza, Y.; Stuckey, P. J.; and Marques-Silva, J.
2022. Using maxsat for efficient explanations of tree ensem-
bles. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, 3776–3785.
Jiang, J.; Leofante, F.; Rago, A.; and Toni, F. 2022. For-
malising the robustness of counterfactual explanations for
neural networks. arXiv preprint arXiv:2208.14878.
Jones, J. A., and Harrold, M. J. 2005. Empirical evaluation
of the Tarantula automatic fault-localization technique. In
IEEE/ACM ASE, 273–282.
Khannouz, M., and Glatard, T. 2022. Mondrian forest for
data stream classification under memory constraints. arXiv
preprint arXiv:2205.07871.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

32

Klinkenberg, R., and Joachims, T. 2000. Detecting concept
drift with support vector machines. In ICML, 487–494.
Kolter, J. Z., and Maloof, M. A. 2007. Dynamic weighted
majority: An ensemble method for drifting concepts. The
Journal of Machine Learning Research 8:2755–2790.
Lakshminarayanan, B.; Roy, D. M.; and Teh, Y. W. 2014.
Mondrian forests: Efficient online random forests. Advances
in neural information processing systems 27.
Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; and
Bengio, Y. 2007. An empirical evaluation of deep architec-
tures on problems with many factors of variation. In Pro-
ceedings of the 24th International Conference on Machine
Learning, ICML ’07, 473–480. New York, NY, USA: Asso-
ciation for Computing Machinery.
Lee, C. S.; Cheang, P. Y. S.; and Moslehpour, M. 2022.
Predictive analytics in business analytics: decision tree. Ad-
vances in Decision Sciences 26(1):1–29.
Li, Z.; Huang, W.; Xiong, Y.; Ren, S.; and Zhu, T.
2020. Incremental learning imbalanced data streams with
concept drift: The dynamic updated ensemble algorithm.
Knowledge-Based Systems 195:105694.
Loh, W.-Y. 2011. Classification and regression trees. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1.
Mansour, Y. 1997. Pessimistic decision tree pruning based
on tree size. In MACHINE LEARNING-INTERNATIONAL
WORKSHOP THEN CONFERENCE-, 195–201. Citeseer.
Marques-Silva, J., and Ignatiev, A. 2022. Delivering trust-
worthy AI through formal XAI. In Proc. of AAAI, 3806–
3814.
Marques-Silva, J. 2022. Logic-based explainability in ma-
chine learning. arXiv preprint arXiv:2211.00541.
Rad, R. H., and Haeri, M. A. 2019. Hybrid forest: A concept
drift aware data stream mining algorithm. arXiv preprint
arXiv:1902.03609.
Rokach, L., and Maimon, O. 2005. Decision Trees. Boston,
MA: Springer US. 165–192.
Roy, D. M., and Teh, Y. W. 2008. The Mondrian process. In
NIPS, volume 21.
Rungskunroch, P.; Jack, A.; and Kaewunruen, S.
2021. Benchmarking on railway safety performance using
Bayesian inference, decision tree and Petri-net techniques
based on long-term accidental data sets. Reliability Engi-
neering & System Safety 213:107684.
Saffari, A.; Leistner, C.; Santner, J.; Godec, M.; and
Bischof, H. 2009. On-line random forests. In 2009 IEEE
12th international conference on computer vision work-
shops, iccv workshops, 1393–1400. IEEE.
Scholz, M., and Klinkenberg, R. 2005. An ensemble clas-
sifier for drifting concepts. In Proceedings of the Second
International Workshop on Knowledge Discovery in Data
Streams, volume 6, 53–64. Porto, Portugal.
Singhal, S.; Chawla, U.; and Shorey, R. 2020. Machine
learning & concept drift based approach for malicious web-
site detection. In 2020 International Conference on COM-

munication Systems & NETworkS (COMSNETS), 582–585.
IEEE.
Tahmasbi, A.; Jothimurugesan, E.; Tirthapura, S.; and Gib-
bons, P. B. 2021. Driftsurf: Stable-state/reactive-state learn-
ing under concept drift. In International Conference on Ma-
chine Learning, 10054–10064. PMLR.
Tangirala, S. 2020. Evaluating the impact of gini index and
information gain on classification using decision tree classi-
fier algorithm. International Journal of Advanced Computer
Science and Applications 11(2):612–619.
Wang, H.; Fan, W.; Yu, P. S.; and Han, J. 2003. Mining
concept-drifting data streams using ensemble classifiers. In
Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 226–235.
Xie, T.; Peng, Y.; and Wang, C. 2016. hi-rf: Incremental
learning random forest for large-scale multi-class data clas-
sification. arXiv preprint arXiv:1608.08761.
Zhukov, A. V.; Sidorov, D. N.; and Foley, A. M. 2016. Ran-
dom forest based approach for concept drift handling. In
International Conference on Analysis of Images, Social Net-
works and Texts, 69–77. Springer.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

33

	Introduction
	Background and Related Work
	SFL Background
	Concept Drift
	Formal Explainability

	Problem Definition
	Method Description
	Diagnosing the Decision Tree (Diagnoser)
	Fixing the Decision Tree (Fixer)
	Complexity Analysis

	Evaluation
	Experimental Settings
	Results

	Conclusions

