
Succinctness and Complexity of ALC with Counting Perceptrons

Pietro Galliani1 , Oliver Kutz2 , Nicolas Troquard2

1University of Insubria, Italy
2Free University of Bozen-Bolzano, Italy

pietro.galliani@uninsubria.it, {oliver.kutz, nicolas.troquard}@unibz.it

Abstract

Perceptron operators have been introduced to knowledge rep-
resentation languages such as description logics in order to
define concepts by listing features with associated weights
and by giving a threshold. Semantically, an individual then
belongs to such a concept if the weighted sum of the listed
features it belongs to reaches that threshold. Such opera-
tors have been subsequently applied to cognitively-motivated
modelling scenarios and to building bridges between learn-
ing and reasoning. However, they suffer from the basic limi-
tation that they cannot consider the weight or number of role
fillers. This paper introduces an extension of the basic percep-
tron operator language to address this shortcoming, defining
the language ALCP and answering some basic questions re-
garding the succinctness and complexity of the new language.
Namely, we show firstly that in ALCP+, when weights are
positive, the language is expressively equivalent to ALCQ,
whilst it is strictly more expressive in the general case allow-
ing also negative weights. Secondly, ALCP+ is shown to
be strictly more succinct than ALCQ. Thirdly, capitalising
on results concerning the logic ALCSCC, we show that de-
spite the added expressivity, reasoning in ALCP remains
EXPTIME-complete.

1 Introduction
The Felony Score Sheet used in the State of Florida (Florida
Department of Corrections and Florida Office of the State
Courts Administrator 2019), describes various features of
a crime and their assigned points. A threshold must be
reached to decide compulsory imprisonment. For exam-
ple, if the primary offence is possession of cocaine, then it
corresponds to 16 points, one victim injury describable as
“moderate” corresponds to 18 points, and a failure to ap-
pear for a criminal proceeding results in 4 points. Impris-
onment is compulsory if the total is greater than 44 points,
and not compulsory otherwise. As discussed below in de-
tail, this kind of example necessitates an extension to the
knowledge representation languages with threshold opera-
tors introduced by Porello et al. (2019).1 The basic lan-
guage is as follows: If C1, . . . , Cn are concept expressions,
w1, . . . , wn ∈ Z are weights for the individual concepts, and

1This paper is a significantly expanded and revised follow-up
to Galliani, Kutz, and Troquard (2021).

t ∈ Z is a threshold, we can introduce a new concept
∇∇t(C1 :w1, . . . , Cn :wn)

whose extension in a given interpretation I = (∆I , ·I) is the
set of the individuals d ∈ ∆I such that:

n∑
i=1

{wi | d ∈ CI
i } ≥ t .

We call it the threshold or perceptron operator, or “tooth”.
Righetti, Porello, and Confalonieri (2022) verified, in par-
ticular, that perceptron operators are generally more inter-
pretable than DNFs, and that they are perceived as more
understandable by users who are less familiar with logic.
They have been used, e.g., in learning scenarios (Galliani
et al. 2020) and in modelling concept combination problems
(Righetti et al. 2019). Therefore, designing description logic
languages that support the tooth has the potential to help
general practitioners to write ontologies in a more accessible
and agile way.

Adding the perceptron operator to ALC does not increase
the expressivity since every instance of the operator can be
replaced with an equivalent Boolean combination of ALC
concepts that suitably unfolds the tooth into a DNF, as shown
by Porello et al. (2019). Furthermore, adding the perceptron
operator to ALC does not affect the complexity of reasoning
(Galliani et al. 2020), namely, it is still EXPTIME-complete
to do reasoning wrt a general TBox: there exists a linear
transformation such that any instance of an entailment in
ALC using the ∇∇ can be transformed into an equivalent
instance of entailment in pure ALC (although obfuscating
the original readability of the concepts defined with ∇∇).

Coming back to the opening example, a knowledge
base describing the laws of Florida would need to repre-
sent the above score sheet as part of the definition of its
CompulsoryImprisonment concept, for instance as

∇∇44(CocainePrimary : 16,ModerateInjuries : 18, . . .) .

However, on closer inspection, the Felony Score Sheet is
in fact more subtle. Namely, 18 points are added for each
instance (i.e. every count) of a ‘moderate injury victim’.

Of course we can use one concept 1MI, 2MI, 3MI, . . . for
each number of moderate injuries, and all of them pairwise
disjoint and with weights 18, 36, 54, etc. Then we can write

∇∇44(CocainePrimary : 16, 1MI : 18, 2MI : 36, 3MI : 54, . . .) .

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

291

Alternatively, with each (i+1)MI a subset of (i)MI, we can use

∇∇44(CocainePrimary : 16, 1MI : 18, 2MI : 18, 3MI : 18, . . .) .

No matter which encoding one would choose, however, one
must decide what will be the maximum number of moderate
injuries that are taken into account, introduce new concepts
(and possibly axioms in the TBox), multiply weights, and
write them all into a perceptron operator, resulting in a rather
fragile modelling approach.

Is there not a more flexible way to specify these kinds
of concepts? The problem at hand is to investigate how
to extend the ∇∇ operator to accommodate concepts like
CompulsoryImprisonment in the Florida example faithfully
and with simplicity. In this paper, we extend the regular
tooth with the needed role-successor counting abilities, and
study the problems of expressivity, succinctness and com-
plexity of the resulting language.

Related work. There is a number of related proposals
for knowledge representation languages capable to represent
classification tasks symbolically using ‘hybrid’ and ‘count-
ing’ methods. Weighted knowledge has also been studied
in the context of multipreference semantics and defeasibil-
ity, but on the level of knowledge bases, which addresses
therefore a different level of knowledge representation than
the description logic languages studied in this paper (Gior-
dano and Dupré; Giordano and Dupré 2022; 2021). Baader,
Brewka, and Fernandez Gil (2015) introduce a description
logic (DL) to define EL concepts in an approximate way
through a graded membership function. The authors intro-
duce threshold concepts to capture the set of individuals be-
longing to a concept with a certain degree.

Baader and Sattler (1999) introduce a powerful counting
mechanism for description logics. It makes use of number
variables in concepts to say that there is an n, and the num-
ber of role-successors is n or more. Adding this mechanism
to ALC yields an undecidable DL. Ohlbach and Koehler
(1999) present a general method to use arithmetic reasoning
as part of the inference engine of description logics. Useful
counting operators can then be devised and integrated into
DL, and remain decidable.

Baader (2017) introduces the extension ALCSCC of ALC
with expressive statements of constraints on role-successors
(formulas of quantifier-free Boolean algebra with Pres-
burger arithmetic (QFBAPA) (Kuncak and Rinard 2007).2
It is strictly more expressive than ALCQ; it can, e.g.,
express “has as many sons as daughters”, which ALCQ
cannot. Concept satisfiability is EXPTIME-complete, and
PSPACE-complete wrt an empty TBox (hence no harder than
ALC (Schild 1991) or ALCQ (Tobies 2000)). Baader and
Ecke (2017) extend ALC with global expressive cardinal-
ity constraints. ALCQ with global constraints was already
studied by Tobies (2000). Adding global cardinality con-
straints to ALC leads to NEXPTIME-complete complexity
for reasoning tasks in general. In ALCSCC, the interpre-
tations are restricted to finite-branching roles. Baader and

2Here, ‘SCC’ stands for ‘Set and Cardinality Constraints’.

Bortoli (2019) introduce ALCSCC∞ over arbitrary models;
the complexity of reasoning is unaffected. Baader, Bed-
narczyk, and Rudolph (2020), finally, show that combining
the local expressive cardinality constraints of Baader (2017)
with the global expressive cardinality constraints of Baader
and Ecke (2017) does not impact the complexity.

Outline. We present ALCSCC∞ in Section 2, and define
ALC and ALCQ as fragments. In Section 3, we introduce
our extension of the tooth with counting capabilities. In
Section 4, we show how to embed into ALCQ the logic
ALC equipped with the new perceptron operator where the
weights are positive. The embedding is sufficient to show
that reasoning can be done in 2EXPTIME when the thresh-
old is expressed in binary, and that it is EXPTIME-complete
when the threshold is expressed in unary. Having established
that ALC with positive counting teeth has the same expres-
sivity as ALCQ, we show in Section 5 that it is more suc-
cinct. Section 6 provides an embedding into ALCSCC∞,
showing that ALC equipped with the new perceptron opera-
tor is EXPTIME-complete in general. Section 7 concludes.

2 ALC and its Extensions with Cardinality
Restrictions

We present ALCSCC∞ and its well-known fragments ALC
and ALCQ. See the textbook by Baader et al. (2017) for a
general introduction of DL.

QFBAPA∞. The Description Logic ALCSCC∞ uses for-
mulas of the quantifier-free Boolean algebra with Pres-
burger arithmetic (QFBAPA) to express constraints on role-
successors.

QFBAPA over finite integers is presented by Kuncak and
Rinard (2007), and it is extended with infinity by Baader
and Bortoli (2019). It uses a simple arithmetic with a single
(positive) infinity. With z ∈ N, we stipulate that over N ∪
{∞}, the operator + is commutative, and < is a strict linear
order, = is an equivalence relation, and: ∞ + z = ∞, z <
∞, z ≤ ∞, 0 · ∞ = 0, ∞+∞ = ∞, ∞ ̸< ∞.

A QFBAPA∞ formula F is then a Boolean combination
of set constraints AB and numerical constraints AT :

F ::=AT | AB | ¬F | F ∧ F | F ∨ F

AB ::=B = B | B ⊆ B

AT ::=T = T | T < T

B ::=x | ∅ | U | B ∪B | B ∩B | B
T ::= k | K | |B| | T + T | K · T
K ::= 0 | 1 | 2 | . . .

Set terms B are obtained by applying intersection, union,
and complement to set variables and constants ∅ and U . Set
constraints AB are of the form B1 = B2 and B1 ⊆ B2,
where B1, B2 are set terms of type B.

Presburger Arithmetic (PA) expressions T are built from
variables, non-negative integer constants from K, and set
cardinalities |B|, and then closed under addition as well as
multiplication with non-negative integer constants from K.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

292

They can be used to form the numerical constraints AT ,
namely of the form T1 = T2 and T1 < T2, where T1, T2

are PA expressions of type T .
The semantics of set terms B is defined using substitu-

tions σ that assign a set σ(U) to the constant U and subsets
of σ(U) to set variables x. The evaluation of all set terms
under σ is done using the rules of set theory. Set constraints
of the form AB are evaluated to true or false under σ, also
by using the rules of set theory. Then, the domain of σ is ex-
tended to PA expressions T by assigning to them elements of
N∪ {∞} as follows: The cardinality expression |B| is eval-
uated as the cardinality of σ(B) if B is finite, and as ∞ if it
is not. The evaluation of all PA expressions under σ is done
using the rules of addition and multiplication (extended with
infinity as above). Substitutions then also assign elements of
N ∪ {∞} to PA variables k. Numerical constraints AT are
evaluated to true or false under σ, under the rules of basic
arithmetic. Finally, a solution σ of a QFBAPA∞ formula F
is a substitution that evaluates F to true, using the rules of
Boolean logic.

Syntax of ALCSCC∞. Let NC and NR be two disjoint
sets of concept names, and role names, respectively.

The set of ALCSCC concept expressions over NC and
NR is defined as follows:

C ::= A | ¬C | C ⊓ C | C ⊔ C | succ(F) ,

where A ∈ NC , F is a QFBAPA∞ formula using role names
and ALCSCC concept expressions over NC and NR as set
variables.

An ALCSCC∞ TBox over NC and NR is a finite set of
concept inclusions of the form C ⊑ D, where C and D are
ALCSCC∞ concept expressions over NC and NR. We write
C ≡ D to signify that C ⊑ D and D ⊑ C.

Semantics of ALCSCC∞. Given finite, disjoint sets NC

and NR of concept and role names, respectively, an inter-
pretation I consists of a non-empty set ∆I and a mapping ·I
that maps every concept name C to a subset CI ⊆ ∆I and
every role name R ∈ NR to a binary relation RI ⊆ ∆I×∆I .
Given an individual d ∈ ∆I and a role name R ∈ NR, we
define RI(d) as the set of R-successors of d. We define
ARSI(d) =

⋃
R∈NR

RI(d) as the set of all role-successors
of d. The mapping ·I is extended to Boolean combinations
of concept expressions in the obvious way.

Successor constraints are evaluated according to the se-
mantics of QFBAPA∞. To determine if d ∈ (succ(F))I ,
U is evaluated as ARSI(d), the roles R occurring in F are
substituted with RI(d), and the concept expressions C oc-
curring in F are substituted with CI ∩ARSI(d).

Then, d ∈ (succ(F))I is true if and only if this substitu-
tion is a solution of the QFBAPA∞ formula F .

The interpretation I is a model of the TBox T if for every
concept inclusion C ⊑ D in T , it is the case that CI ⊆ DI .

A concept expression C is satisfiable wrt the TBox T if
there exists a model of the TBox such that CI ̸= ∅.
Example 1. In the ALCSCC∞ formula succ(|causes| <
2), 2 is an integer constant (also a PA expression), causes

is a role, but also a set term, |causes| is a set cardinality
(also a PA expression), and |causes| < 2 is a numerical
constraint.

To decide if d ∈ (succ(|causes| < 2))I , we use the sub-
stitution σ with σ(2) = 2, and σ(causes) = causesI(d).

Let I be an interpretation, and suppose that d has 2
causes-successors, namely d1 and d2 (and nothing else).
We then have σ(causes) = {d1, d2}, σ(|causes|) = 2, and
σ(|causes| < 2) = false. There are no other possible sub-
stitutions to consider. So d ̸∈ (succ(|causes| < 2))I .

Suppose that we also have InjuryI = {d2, d3, d4}.
To decide if d ∈ (succ(|causes ∩ Injury| = 1))I , Injury
is a concept description but also a set term, and we build
the substitution σ′ such that σ′(1) = 1, σ′(causes) =
causesI(d) = {d1, d2}, σ′(Injury) = InjuryI ∩ ARSI(d) =
{d2, d3}, σ′(causes ∩ Injury) = σ′(causes) ∩ σ′(Injury) =
{d2}, σ′(|causes ∩ Injury|) = 1, and σ′(|causes ∩ Injury| =
1) = true. Hence σ′ is a solution of the QFBAPA∞ formula
|causes∩Injury| = 1. So d ∈ (succ(|causes∩Injury| = 1))I .

ALC and ALCQ. The Qualified cardinality restrictions
of ALCQ are standardly defined as:

(≤ nR.C)I =
{
d ∈ ∆I

∣∣∣∣{c ∈ ∆I , (d, c) ∈ RI ∧ c ∈ CI}
∣∣ ≤ n

}
and

(≥ nR.C)I =
{
d ∈ ∆I

∣∣∣∣{c ∈ ∆I , (d, c) ∈ RI ∧ c ∈ CI}
∣∣ ≥ n

}
We can also define (= nR.C) = (≥ nR.C) ⊓ (≤ nR.C).
ALCQ can equivalently be described as the fragment of

ALCSCC∞ such that succ(F) is of the form succ(|R∩C| ≤
n) or succ(|R ∩ C| ≥ n), where C is a concept expres-
sion and R ∈ NR, and n ∈ N. Also, ALC can be seen
as the fragment of ALCSCC∞ such that succ(F) is of the
form succ(|R ∩ C| ≥ 1). Namely, we can now define
∃R.C = succ(|R ∩ C| ≥ 1) and proof the semantic equiv-
alence, and likewise for (≤ nR.C) = succ(|R ∩ C| ≤ n)
and (≥ nR.C) = succ(|R ∩ C| ≥ n).

3 ALCP . Counting Teeth: Syntax and
Semantics

Syntax of ALCP . We define a new collection of percep-
tron operators, that we call simply counting teeth:

C = ∇∇t
⊙
(
C1 :w1, . . . , Cp :wp |

(R1, D1) :m1, . . . , (Rq, Dq) :mq

)
, (1)

where w⃗ = (w1, . . . , wp) ∈ Zp, m⃗ = (m1, . . . ,mq) ∈ Zq ,
t ∈ Z, Ci and Dj are concept expressions, and Rj are roles.

The tooth from our previous work, without role-successor
counting is sometimes called a regular tooth. Note that a
regular tooth is just a counting tooth where q = 0.

The language of the new description logic ALCP , i.e. the
basic logic of counting teeth, is just like ALC, but enriched

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

293

d

Felony

CocainePrimary

Injury

ModerateInjury

caused

caused

caused

Figure 1: A simple model in the Florida Score Sheet domain.

with the new concept forming operator defined in (1), where
the concepts Ci, Dj are arbitrary ALCP concepts. Note
that this allows arbitrary nesting of counting teeth.

Example 2. With caused a role, we can now faithfully (par-
tially) define the concept CompulsoryImprisonment of the
Felony Score Sheet:

∇∇44
⊙
(
CocainePrimary : 16, · · · |

(caused,ModerateInjury) : 18, . . .
)
.

Semantics. Let us discuss the semantics of counting teeth
first with a simple case where all the weights are positive.

Recall that for the regular tooth, to determine whether an
individual d belongs to a tooth concept C in interpretation
I we compute its value vIC(d) and verify if it reaches the
threshold. We could extend this value to the counting per-
ceptron, by simply adding a weighted sum as follows:

vIC(d) =
∑

i∈{1,...,p}

{wi | d ∈ CI
i } +

∑
i∈{1,...,q}

(mi ·
∣∣∣{c ∈ ∆I | (d, c) ∈ RI

i ∧ c ∈ DI
i }

∣∣∣) .

Example 3. Consider the model depicted in Figure 1. We
have d ∈ CocainePrimaryI , and d has two successors
through the role caused that are in ModerateInjuryI . Using
the partial definition of CompulsoryImprisonment, we have

vICompulsoryImprisonment(d) = 16 + 18× 2 + . . .

= 52 + . . .

The Felony Score Sheet contains only positive weights, so:
vICompulsoryImprisonment(d) ≥ 44. Hence, we can conclude
that:

d ∈ CompulsoryImprisonmentI .

When the individual d can have an infinite number of suc-
cessors and for some (Ri, Di) the weight is positive and for
some other (Rj , Dj) it is negative, then vIC(d) would be ill-
defined when just adding up the weights simpliciter. I.e.,
what should the value be of ∞ − ∞ in this situation, and
when would it reach the threshold?

To circumvent this problem, instead of a single value
vIC(d) for a general tooth, we introduce two values: the
reward vIC≥0(d), which represents the sum of the non-

negative summands, and the penalty vIC<0(d), which rep-
resents the sum of the negative summands.

vIC≥0(d) =
∑

i∈{1,...,p}
wi≥0

{wi | d ∈ CI
i } +

∑
i∈{1,...,q}

mi≥0

(mi ·
∣∣∣{c ∈ ∆I | (d, c) ∈ RI

i ∧ c ∈ DI
i }

∣∣∣) .

vIC<0(d) =
∑

i∈{1,...,p}
wi<0

{wi | d ∈ CI
i } +

∑
i∈{1,...,q}

mi<0

(mi ·
∣∣∣{c ∈ ∆I | (d, c) ∈ RI

i ∧ c ∈ DI
i }

∣∣∣) .

Clearly vIC≥0(d) ≥ 0 and vIC<0(d) ≤ 0.

Finally, the semantics of a counting tooth C in an (possi-
bly infinite-branching) interpretation I , and extending the
definition of the regular tooth as given by Porello et al.
(2019), is:

Definition 1 (Semantics of Counting Tooth).

CI =
{
d ∈ ∆I | vIC≥0(d) ≥ t− vIC<0(d)

}
.

In the case that vIC≥0(d) = ∞ and vIC<0(d) = −∞, we
have that vIC≥0(d) ≥ t − vIC<0(d) is equivalent to ∞ ≥
t + ∞, with t a finite integer. Because ∞ = t + ∞, the
inequality holds and the statement is true. In particular, CI

in Definition 1 is well-defined.

Example 4. For purposes of illustration we define a ‘Modi-
fied Compulsory Imprisonment’ as MCI =

∇∇44
⊙
(
CocainePrimary : 16 |
(caused,ModerateInjury) : 18),

(preventiveDetention,Month) : − 1
)
,

where only cocaine possession as primary offence and the
number of moderate injuries are kept from the original score
sheet, and where in addition every month of preventive de-
tention lowers the score by one.

We want to decide whether the felony d ∈ ∆I falls within
the definition of this modified compulsory imprisonment,
under the assumptions that d is not in CocainePrimaryI ,
that |preventiveDetentionI(d) ∩ MonthI | = 12, and
|causedI(d) ∩ ModerateInjuryI | = 3.

So, we have: vIMCI≥0(d) = 0 + 3 · 18 = 54 and
vIMCI<0(d) = 12 · (−1) = −12. We must evaluate
vIMCI≥0(d) ≥ t − vIMCI<0(d), which is 54 ≥ 44 + 12, or
54 ≥ 56, which is false. So d does not fall within the modi-
fied compulsory imprisonment.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

294

4 Embedding ALCP+ into ALCQ
In practice, negative weights are not always necessary. As
evidence, one can observe that the Felony Score Sheet does
not contain negative points for computing the total number
of points. In particular, in the case of the regular tooth,
negative weights on concepts can be transformed efficiently
and equivalently into a regular tooth with only non-negative
weights on concepts, as shown by Galliani et al. (2019,
Cor. 1). This, however, is not the case for counting teeth as
allowing negative weights strictly increases the expressive
power, as shown below in Proposition 3.

Therefore, let us first restrict our attention to the case
where all weights are natural numbers, and thus positive:

∇∇t
⊗
(
C1 :w1, . . . , Cp :wp |

(R1, D1) :m1, . . . , (Rq, Dq) :mq

)
(2)

where weights w⃗ ∈ Z+p
, m⃗ ∈ Z+q are all natural numbers,

is called a positive counting tooth.3

We show that the language ALC equipped with positive
counting teeth ∇∇⊗, called ALCP+, has the same expres-
sivity as ALCQ (Proposition 2). As a corollary, we obtain
that ALCP+ is strictly less expressive than ALCP (Propo-
sition 3). Further, we show that concept satisfiability can be
decided in 2EXPTIME when the threshold is expressed in bi-
nary and in EXPTIME when it is expressed in unary (Propo-
sition 4). We will improve upon the 2EXPTIME upper-
bound in Section 6. However, this section has the merit to
show how one can transform the problem of reasoning with
ALC equipped with the counting tooth with positive weights
into a problem of reasoning with ALCQ, for which efficient
reasoning tools already exist.
Iterated elimination of role-successors counting. Con-
sider the positive counting tooth

C = ∇∇t
⊗
(
C1 :w1, . . . , Cp :wp | (R1, D1) :m1, . . . ,

(Rq, Dq) :mq

)
where all wi ∈ w⃗ and all mj ∈ m⃗ are natural numbers.
Now define the positive counting tooth rwt⊗(C), in which
the first occurrence of role counting has been rewritten, as:

rwt⊗(C) = ∇∇t
⊗

(
C1 :w

′
1, . . . , Cp :w

′
p,

E1 :w
′
p+1, . . . , Er :w

′
p+r |

(R2, D2) :m2, . . . , (Rq, Dq) :mq

)
where:
• w′

i = wi, for 1 ≤ i ≤ p

• w′
p+i = i ·m1, for 1 ≤ i ≤ r

• r =
⌈

t
m1

⌉
(ceiling function)

• Ei = (= i R1.D1), for 1 ≤ i ≤ r − 1

• Er = (≥ r R1.D1)

3We here assume that 0 ̸∈ N; weights of value zero could be
trivially allowed, but it has no impact on semantics or results.

Lemma 1.
(C)I = (rwt⊗(C))

I .

Proof. Let ki be the number of Ri-successors of d that are
in Di. That is,

ki =
∣∣{c ∈ ∆I | (d, c) ∈ RI

i ∧ c ∈ DI
i }
∣∣ .

Let α =
∑p

i=1{wi | d ∈ CI
i } and let β =

∑q
i=2 ki ·mi. We

thus have,

vIC(d) = α+ (k1 ·m1 + β) .

All weights in C and rwt⊗(C) are positive, so it suffices to
show that for d ∈ ∆I , we have vIC(d) ≥ t iff vIrwt⊗(C)(d) ≥
t.

• Case k1 = 0. It means that d is in none of the EI
j . So

vIrwt⊗(C)(d) = α + β = vIC(d). So clearly, vIC(d) ≥ t iff
vIrwt⊗(C)(d) ≥ t.

• Case 1 ≤ k1 < r. It means that d is in EI
k1

, and in none of
the other EI

j , j ̸= k1. So vIrwt⊗(C)(d) = (α + w′
p+k1

) +

β = (α + k1 ·m1) + β = vIC(d). So clearly, vIC(d) ≥ t

iff vIrwt⊗(C)(d) ≥ t.

• Case k1 ≥ r. It means that d is in EI
r , and in none of the

other EI
j , j ̸= r. So vIrwt⊗(C)(d) = (α + r ·m1) + β =

(α+
⌈

t
m1

⌉
·m1) + β. Thus, vIrwt⊗(C)(d) ≥ t.

We must show that also vIC(d) ≥ t. By definition,
vIC(d) = α+ (k1 ·m1 + β). But since k1 ≥ r, we have:

vIC(d) ≥ α+ (r ·m1 + β)

= α+ (

⌈
t

m1

⌉
·m1 + β)

≥ α+ (t+ β) ≥ t .

Example 5. With C = ∇∇9
⊗
(
C1 : 3 | (R,D) : 2

)
, we have

r = ⌈9/2⌉ = ⌈4.5⌉ = 5. The rationale is that it is sufficient
for an individual to have 5 R-successors that are D for this
individual to be a C. This is independent of whether that
individual is a C1 or not. We get

rwt⊗(C) = ∇∇9
⊗
(
C1 : 3, (= 1R.D) : 2, (= 2R.D) : 4,

(= 3R.D) : 6, (= 4R.D) : 8, (≥ 5R.D) : 10 | —
)
.

Of course, it is equivalent to the regular tooth

∇∇9
(
C1 : 3, (= 1R.D) : 2, (= 2R.D) : 4,

(= 3R.D) : 6, (= 4R.D) : 8, (≥ 5R.D) : 10
)
.

Expressivity of ALCP . So, a counting tooth with ALC
concepts can be transformed into a regular tooth with ALCQ
concepts whenever only positive weights are allowed. In
turn, we can transform it into an equivalent DNF as shown
by Porello et al. (2019), i.e. into a Boolean combination of
ALCQ concepts which is again an ALCQ concept. This
DNF might be exponentially larger, however. We obtain the
following proposition.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

295

Proposition 2. ALCP+, i.e. ALC with positive counting
teeth, has the same expressivity as ALCQ.

Proof. This is a consequence of Lemma 1, and of the simple
observation, that counting quantifiers can be represented as:

(≥ tR.C)I = (∇∇t
⊗(— | (R,C) : 1))I .

Let us observe that ALC equipped with counting teeth
restricted to positive weights is strictly less expressive than
when negative weights are allowed.
Example 6. One can express “has as many sons as daugh-
ters”: AsMany =

∇∇0
⊙
(

— | (isParentOf,Boy) : 1, (isParentOf,Girl) : − 1
)
⊓

∇∇0
⊙
(

— | (isParentOf,Girl) : 1, (isParentOf,Boy) : − 1
)
.

This cannot be expressed in ALCQ (Baader 2017,
Lemma 2), but ALC equipped with counting teeth with pos-
itive weights has the same expressivity as ALCQ (Proposi-
tion 2).
Proposition 3. ALCP is strictly more expressive than
ALCP+.

In contrast, we recall that, adding the regular tooth of Gal-
liani et al. (2020) to ALC results in logics of the same ex-
pressivity regardless of whether the weights are possibly
negative or not.

Intermediate complexity results. In the rewriting above,
the size of the tooth strictly grows, as one pair (R1, D1) is
removed, but r new concepts are added, each of size larger
than the combined sizes of R1 plus D1. Yet, r is bounded
by the threshold t. So, when the threshold is expressed in
unary, the rewriting only causes a linear expansion. But if
the weights are encoded in binary, the rewriting causes an
exponential blowup. This yields the following partial result.
Proposition 4. Satisfiability of ALCP+ concepts with pos-
itive counting teeth wrt a TBox is in 2EXPTIME. When
the threshold is represented in unary, then it is EXPTIME-
complete.

Proof. When deciding whether the concept C is satisfi-
able wrt T , (1) if there are nested counting teeth (in T
or C), pick the inner-most (breaking ties at random) tooth
concept (T), (2) introduce a fresh concept name FreshT ,
(3) repeat 1–2, with C := C[T/FreshT] is satisfiable wrt
T := T [T/FreshT] ∪ {FreshT ≡ T}, (where X[A/B]
stands for the uniform substitution with B of every occur-
rence of A in X).

The number of teeth in T and C is linear in the size of
T and C, so the procedure above terminates in polynomial
time, and results in a combined size of the T and C that are
linear in the combined size of T and C at the start of the
procedure. Now, observe that:

• C is satisfiable wrt T iff C[T/FreshT] is satisfiable wrt
T [T/FreshT] ∪ {FreshT ≡ T}.

• when the procedure halts, there are no more nested teeth
in T and C.

u

sI(2,3)
v1

v2

w1

w2

w3

AI(2,3) BI(2,3)

Figure 2: A graphical representation of I(2, 3).

It now suffices to transform all the counting teeth in the
resulting T and C into regular teeth applying iteratively the
rewriting rwt⊗() proposed above. Further, by Lemma 1,
each rewriting yields an equivalent concept. We obtain T
and C which are now written in ALCQ equipped with reg-
ular teeth. It causes a blow-up in size exponential in the
largest threshold of an occurring counting tooth, when rep-
resented in binary, and only a polynomial increase when the
thresholds are represented in unary.

Finally, using the transformations of Galliani et al. (2020),
eliminating the regular teeth altogether is efficient, and
we obtain a problem of deciding the satisfiability of an
ALCQ concept wrt an ALCQ TBox, which is EXPTIME-
complete (Tobies 2000).

5 Succinctness of ALCP+ wrt ALCQ
We have established in Proposition 2 that ALC with positive
counting teeth has the same expressivity as ALCQ. A nat-
ural question to ask then is whether it is more succinct. In
this section, we prove that ALC with positive counting teeth
is more succinct than ALCQ.

Definition 2. For any interpretation I, elements c, d ∈ ∆I ,
relation symbols R and ALCQ concepts C, we say that d is
a (R,C)-successor of c if

1. (c, d) ∈ RI (that is, d is an R-successor of c);
2. d ∈ CI .

Definition 3. Let n, n′ ∈ N. Then let I(n, n′) be
the interpretation with domain of discourse ∆I(n,n′) =
{u, v1 . . . vn, w1 . . . wn′}, with a named individual s such
that sI(n,n

′) = u, with one edge relation R such that
RI(n,n′) = {(u, vi) : i ∈ 1 . . . n}∪{(u,wj) : j ∈ 1 . . . n′},
and with two atomic concepts A, B with AI(n,n′) =
{v1 . . . vn} and BI(n,n′) = {w1 . . . wn′}.

Figure 2 shows a graphical representation of I(2, 3). It is
easily verified that all the individuals of I(n, n′) that satisfy
A (or B) satisfy exactly the same ALCQ concepts, even
across different choices of n and n′:

Lemma 5. Let C be any ALCQ concept built out of the
named individual s, the edge relation R, and the two atomic
concepts A and B, and let n0, n

′
0 ∈ N. Then

1. If CI(n0,n
′
0) ∩AI(n0,n

′
0) ̸= ∅ then CI(n,n′) ∩AI(n,n′) =

AI(n,n′) for all n, n′ ∈ N;

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

296

2. If CI(n0,n
′
0) ∩BI(n0,n

′
0) ̸= ∅ then CI(n,n′) ∩BI(n,n′) =

BI(n,n′) for all n, n′ ∈ N.

Proof. Suppose that CI(n0,n
′
0) ∩ AI(n0,n

′
0) ̸= ∅. Then

there exists some element v0 ∈ ∆I(n0,n
′
0) such that v0 ∈

CI(n0,n
′
0) and v0 ∈ AI(n0,n

′
0). Now consider any v ∈

AI(n,n′). Both v0 and v satisfy the same atomic predi-
cates (that is, A but not B) and have no descendants, so
if v0 ∈ CI(n0,n

′
0) it must be the case that v ∈ CI(n0,n

′
0)

(Note: this would not work if our logic had e.g. inverse
roles). Therefore v ∈ CI(n,n′) ∩AI(n,n′), as required.

The case for CI(n0,n
′
0) ∩BI(n0,n

′
0) ̸= ∅ is analogous.

For convenience, in the remainder of this section we will
often use the alternative notation I |= C(d) instead of the
usual DL notation d ∈ CI .
Proposition 6. Let k ∈ N. Then we obtain that

I(n, n′) |= ∇∇k
⊗
(

— | (R,A) : + 2, (R,B) : + 1
)
(s)

if and only if 2n+ n′ ≥ k.

Proof. Observe that sI(n,n
′) has n (R,A)-successors and

n′ (R,B)-successors. Therefore, the value of the threshold
expression is 2n + n′, and the expression is satisfied in s if
and only if 2n+ n′ ≥ k.

Corollary 7. Let i, k ∈ N be such that 2i < k. Then

I(i, k − 2i) |= ∇∇k
⊗
(

— | (R,A) : +2, (R,B) : +1
)
(s)

but

I(i− 1, k − 2i+ 1) ̸|=
∇∇k

⊗
(

— | (R,A) : + 2, (R,B) : +1
)
(s)

Proof. This follows from the previous proposition and the
fact that 2i+ k − 2i = k ≥ k but 2(i− 1) + k − 2i+ 1 =
k − 1 < k.

We will now show that any ALCQ-concept C
that is equivalent to the tooth concept ∇∇k

⊗(— |
(R,A) :+2, (R,B) :+1) must contain many (for some
choice of “many” that will grow linearly with k) counting
quantifiers. To simplify the proof, let us recall first that we
can always assume that C contains only ≥ quantifiers:
Lemma 8. For all ALCQ concepts C, roles R and positive
integers n,
• > nR.C ≡≥ (n+ 1)R.C;
• < nR.C ≡ ¬(≥ nR.C);
• ≤ nR.C ≡ ¬(≥ (n+ 1)R.C).

Corollary 9. Every ALCQ concept C is equivalent to some
concept C≥ that contains only ≥ quantifiers, and further-
more that contains as many occurrences of quantifiers as C.

The next proposition provides the main argument we need
to prove the succinctness of positive teeth:

Proposition 10. Let i, k ∈ N be such that i > 1 and
2i < k, and let C be an ALCQ concept over the signa-
ture {s,A,B,R} in which only ≥ quantifiers appear and in
which the integers i and k − 2i + 1 do not appear in any
quantifier. Then

I(i, k − 2i) |= C(s) iff I(i− 1, k − 2i+ 1) |= C(s).

Proof. We prove this by structural induction on the structure
of C.

• If C is an atomic concept (i.e. A or B) then by the def-
inition of I(n, n′) we have that I(i, k − 2i) ̸|= C(s)
and I(i− 1, k − 2i+ 1) ̸|= C(s), and there is nothing
to prove.

• If C is of the form ¬C ′,

I(i, k − 2i) |= C(s) ⇔ I(i, k − 2i) ̸|= C ′(s)

⇔ I(i− 1, k − 2i+ 1) ̸|= C ′(s)

(by induction hypothesis)
⇔ I(i− 1, k − 2i+ 1) |= C(s).

• If C is of the form C1 ⊓ C2 [C1 ⊔ C2],

I(i, k − 2i) |= C(s) ⇔ I(i, k − 2i) |= C1(s)

and [or] I(i, k − 2i) |= C2(s)

⇔ I(i− 1, k − 2i+ 1) |= C1(s)

and [or] I(i− 1, k − 2i+ 1) |= C2(s)

⇔ I(i− 1, k − 2i+ 1) |= C(s).

• If C is of the form ∃R.C ′, suppose I(i, k − 2i) |= C(s).
Then at least one R-successor v of sI(i,k−2i) satisfies
C ′. But then, by Lemma 5, for any n, n′ ∈ N all
(R,A)-successors of sI(n,n

′) satisfy C ′ or all (R,B)-
successors of sI(n,n

′) satisfy C ′, depending on whether v
is a (R,A)-successor or a (R,B)-successor of sI(i,k−2i).
Since in particular in I(i− 1, k − 2i+ 1) the element
sI(i−1,k−2i+1) has at least one (R,A)-successor (because
i > 1 and so i− 1 ≥ 1) and at least one (R,B)-successor
(because 2i < k and so k − 2i+ 1 > 1) we can conclude
that at least one R-successor of sI(i−1,k−2i+1) satisfies
C ′ and so I(i− 1, k − 2i+ 1) |= C(s).
Conversely, suppose that I(i− 1, k − 2i+ 1) |= C(s).
Then, again by Lemma 5, for all n, n′ ∈ N, all
(R,A)-successors of sI(n,n

′) satisfy C ′ or all its (R,B)-
successors satisfy C ′; and since in particular I(i, k − 2i)
has at least one (R,A)-successor (since i > 1) and one
(R,B)-successor (since k > 2i), I(i, k − 2i) |= C(s).

• The case where C is of the form ∀R.C ′ follows from the
existential and negation cases.

The trickier case is the one in which C is of the form
≥ jR.C ′ for some j ∈ N, j ̸∈ {i, k−2i+1}. Then we have
to consider four subcases, depending on the value of j:

1. j > max(i, k − 2i + 1): Suppose that I(i, k − 2i) |=≥
jR.C ′(s). Then at least j R-successors of s in
I(i, k − 2i) satisfy C ′; and since in I(i, k − 2i) s has

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

297

only i (R,A)-successors and k − 2i (R,B)-successors,
it follows that j ≤ i + (k − 2i) = k − i and (from
Lemma 5 and the fact that at least one (R,A)-successor
and one (R,B)-successor of s must satisfy C ′) that all
(i − 1) + (k − 2i + 1) = k − i R-successors of s in
I(i− 1, k − 2i+ 1) satisfy C ′ and therefore (since as we
just said j ≤ k − i) that
I(i− 1, k − 2i+ 1) |=≥ jR.C ′(s).

Conversely, if I(i− 1, k − 2i+ 1) |=≥ jR.C ′(s), at
least j R-successors of s in I(i− 1, k − 2i+ 1) must
satisfy C ′; but since j > max(i, k − 2i + 1) and in
I(i− 1, k − 2i+ 1) s has only i − 1 (R,A)-successors
and k−2i+1 (R,B)-successors, again we must have that
j ≤ k− i and (by Lemma 5) that all k− i R-successors of
s in I(i, k − 2i) satisfy C ′, and hence I(i, k − 2i) |=≥
jR.C ′(s).

2. i < j < k − 2i + 1: Suppose that I(i, k − 2i) |=≥
jR.C ′(s). Then at least j R-successors of s in
I(i, k − 2i) satisfy C ′; but since this interpretation has
only i (R,A)-successors for s, at least one (R,B)-
successor of s in it must satisfy C ′. But then, by
Lemma 5, all k − 2i + 1 (R,B)-successors of s in
I(i− 1, k − 2i+ 1) satisfy C ′; and since j < k − 2i +
1, this implies at once that I(i− 1, k − 2i+ 1) |=≥
jR.C ′(s).
Conversely, if I(i− 1, k − 2i+ 1) |=≥ jR.C ′(s) then,
since in I(i− 1, k − 2i+ 1) s has only i − 1 (R,A)-
successors, at least one (R,B)-successor of it must satisfy
C ′; and then, by Lemma 5, all k − 2i (R,B)-successors
of s in I(i, k − 2i) satisfy C ′. Since j < k − 2i + 1,
j ≤ k − 2i, and therefore I(i, k − 2i) |=≥ jR.C ′(s).

3. k − 2i + 1 < j < i: This case is similar to the previous
one.
Suppose that I(i, k − 2i) |=≥ jR.C ′(s): then at least
one (R,A)-successor of s in it must satisfy C ′, since it
has only k − 2i (R,B)-successors and j > k − 2i + 1,
and therefore by Lemma 5 all i − 1 (R,A)-successors of
s in I(i− 1, k − 2i+ 1) satisfy C ′; and since j ≤ i− 1,
this implies that I(i− 1, k − 2i+ 1) |=≥ jR.C(s).
Conversely, if I(i− 1, k − 2i+ 1) |=≥ jR.C(s), at least
one (R,A)-successor of s in I(i− 1, k − 2i+ 1) must
satisfy C ′, since j > k − 2i+ 1 and therefore its (R,B)-
successors are not enough. But then by Lemma 5 all the
i (R,A)-successors of s in I(i, k − 2i) must satisfy C ′,
and since j < i we can conclude that I(i, k − 2i) |=≥
jR.C ′(s) as required.

4. j < min(i, k − 2i + 1): If j ≤ 0 there is nothing to
prove, because in this case ≥ jR.C ′(s) is trivially true
of all individuals in all interpretations. Therefore, let us
suppose that 0 < j < min(i, k − 2i+ 1).
Suppose now that I(i, k − 2i) |=≥ jR.C ′(s). Then there
exists at least one R-successor of s in I(i, k − 2i) that
satisfies C ′. If this R-successor is a (R,A)-successor,
again by Lemma 5, all i − 1 (R,A)-successors of s
in I(i− 1, k − 2i+ 1) satisfy C ′; and if instead it is a
(R,B)-successor, all k − 2i + 1 (R,B)-successors of s

in it will satisfy C ′. Since j < i and j < k − 2i + 1, in
either case we will have that
I(i− 1, k − 2i+ 1) |=≥ jR.C ′(s), as required.
Conversely, suppose that I(i− 1, k − 2i+ 1) |=≥
jR.C ′(s) for 0 < j < min(i, k − 2i + 1). Then once
again, in I(i− 1, k − 2i+ 1) the element named by s
will have at least one successor that satisfies C ′; if it is
a (R,A)-successor, all the i (R,A)-successors of s in
I(i, k − 2i) will satisfy C ′, and if instead it is a (R,B)-
successor all the k − 2i (R,B)-successors of s in it will
satisfy C ′. Since j < i and j < k − 2i+ 1, in either case
I(i, k − 2i) |=≥ jR.C ′(s), and this concludes the proof.

At this point we have all the ingredients required to prove
the main result:

Theorem 11. Let k ∈ N and let C be an ALCQ concept
in which only the ≥ quantifier appears that is equivalent to
∇∇k

⊗(— | (R,A) : + 2, (R,B) : +1).
Then for all i ∈ 2 . . . k/2 − 1, at least one quantifier

among ≥ iR and ≥ (k − 2i+ 1)R must appear in C.

Proof. Suppose that this is not the case for some i ∈
2 . . . k/2−1. Then, by Proposition 10, either I(i, k − 2i) |=
C(s) and I(i− 1, k − 2i+ 1) |= C(s) or I(i, k − 2i) ̸|=
C(s) and I(i− 1, k − 2i+ 1) ̸|= C(s).

But then C is not equivalent to our threshold expression,
because as stated in Corollary 7

I(i, k − 2i) |= ∇∇k
⊗
(

— | (R,A) : +2, (R,B) : + 1
)
(s)

but

I(i− 1, k − 2i+ 1) ̸|=
∇∇k

⊗
(

— | (R,A) : +2, (R,B) : + 1
)
(s)

Corollary 12. Let C be an ALCQ concept that is equivalent
to ∇∇k

⊗(— | (R,A) : + 2, (R,B) : + 1).

Then C contains at least (k/2−2)
2 quantifiers.

Proof. Use Corollary 9 to convert C into an equivalent ex-
pression C≥ containing only ≥ quantifiers, and in the same
number as the total number of quantifier distinct in C. By
Theorem 11, C≥ must contain at least (k/2−2)

2 different
quantifiers, and so must C.

As k increases, the length of the positive tooth expression
∇∇k

⊗(— | (R,A) : + 2, (R,B) : +1) will grow logarithmi-
cally in k, but the length of any equivalent ALCQ expres-
sion will grow at least linearly in k.

On the other hand, ≥ j R.C is always equivalent to
∇∇j

⊗(— | (R,C) : + 1); so we can conclude that ALC with
positive counting teeth is strictly more succinct than ALCQ.

Proposition 13. ALCP+ is more succinct than ALCQ.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

298

6 Embedding ALCP into ALCSCC∞

In Section 4, we failed to establish a precise complexity of
ALC with counting teeth, even restricting our attention to
only positive weights. Here we embed it into ALCSCC∞,
showing that the complexity is in EXPTIME.

This approach has a practical drawback: ALCSCC∞ is
not a logic supported by the existing reasoning services, and
algorithms fit for implementation do not exist. But it will
allow us to pin down the complexity of reasoning in ALC
augmented with counting tooth operators. Let

C = ∇∇t
⊙
(
C1 :w1, . . . , Cp :wp |

(R1, D1) :wp+1, . . . , (Rq, Dq) :wq

)
.

Let us assume for now that C does not have nested teeth.
Let T be a TBox. Let us assume for now that T is an ALC
TBox (without teeth).

We want to decide whether the concept description C is
satisfiable wrt the TBox T .

We add a fresh role name zooCi (‘zero-or-one’) adding
the axioms (= 1 zooCi .⊤) ≡ Ci and (= 0 zooCi .⊤) ≡ ¬Ci

for every 1 ≤ i ≤ p to T . We obtain the TBox denoted
rwt⊙(T). Now, we define

summands =
{
w1 · |zooC1

∩ ⊤|, . . . , wp · |zooCp
∩ ⊤|,

wp+1 · |R1 ∩D1|, . . . , wq · |Rq ∩Dq|
}

.

Roughly speaking, C is the set of individuals such that the
sum of the elements of summands is greater or equal to t.
The quantity |zooCi

∩ ⊤| will be 1 if the individual is a Ci

and 0 if it is not.
But some of these summands could be negative, exactly

those where wi < 0, and QFBAPA∞ does not allow using
negative constants. Baader and Bortoli (2019) observe that
“Dispensing with negative constants is not really a restric-
tion since we can always write the numerical constraints of
QFBAPA in a way that does not use negative integer con-
stants (by bringing negative summands to the other side of
a constraint).” We are going to do just that. Consider the
ALCSCC concept

rwt⊙(C) = succ(tl +
∑

wi·xi∈summands
wi<0

|wi| · xi ≤

tr +
∑

wi·xi∈summands
wi≥0

wi · xi)

where |wi| is the absolute value of wi, and tl = max(t, 0)
and tr = −min(t, 0). (In order to be totally rigorous, T1 ≤
T2 represents the QFBAPA∞ formula (T1 < T2) ∨ (T2 =
T1).)
Lemma 14. C is satisfiable wrt T iff rwt⊙(C) is satisfiable
wrt rwt⊙(T).

We can now do better than Proposition 4.
Proposition 15. Satisfiability of ALCP concepts wrt
a TBox, where weights are allowed to be negative, is
EXPTIME-complete, even when the threshold is expressed
in binary.

Proof. Starting from the deepest teeth (in the concept and
the TBox), we rewrite them into an ALCSCC∞ concept us-
ing rwt⊙(), adding zoo role axioms into the TBox as we
go. Those are a series of polynomial transformations, all
equi-satisfiable by Lemma 14. The result follows because
reasoning in ALCSCC∞ can be done in EXPTIME (Baader
and Bortoli 2019).

Proposition 15 generalises the complexity results of Gal-
liani et al. (2020) for ALC with the standard tooth.

7 Conclusions
We extended the tooth with role-successor counting. When
we do not allow negative weights, the extended percep-
tron operator can still faithfully and easily express concepts
like the ‘compulsory imprisonment’ from the Florida Score
Sheet. When adding the positive operator to ALC, the re-
sulting logic, called ALCP+, was shown to have exactly the
same expressivity as ALCQ. We showed also how reason-
ing in ALCP+ can be transformed into reasoning in ALCQ,
allowing one to straightforwardly use state-of-the-art rea-
soning services for ALCQ. On the other hand, we showed
that ALCP+ is strictly more succinct that ALCQ.

When we allow negative weights on roles, however, the
extended perceptron operator can express concepts like “has
more sons than daughters”, “has as many arms than legs”,
etc. When added to ALC, it thus yields a DL that is strictly
more expressive than ALCQ, and is not anymore a fragment
of FOL.

The complexity of the DL obtained by adding the general
counting perceptron operator to ALC, i.e. the logic ALCP ,
is EXPTIME-complete, no matter whether we allow nega-
tive weights or not, or whether the threshold is represented
in unary or binary. This generalises the complexity results
of Galliani et al. (2020) for ALC with the standard tooth.

As illustrated by Galliani et al. (2020), tooth operators
can be seen as linear classification models, and it is pos-
sible to use standard linear classification algorithms (such
as the Perceptron Algorithm, Logistic Regression, or Linear
SVM) to learn weights and threshold when given a set of
assertions about individuals (i.e. an ABox). The proposed
encoding of ALCP+ into ALCQ allows one to apply these
ideas also to the positive counting case, and the future de-
velopment of full automated reasoning support for the ex-
pressive logic ALCP will further push this research line
for concept learning. Thus, the core open problems to be
addressed next include to pinpoint the exact expressivity of
the language ALCP , and to develop an efficient tableau-
based algorithm for this language, capitalising on existing
algorithms and tool infrastructure, and ideally performing
within the EXPTIME bound.

Another exciting future direction of research is further to
replace the simple role counting with more complex non-
linear functions, e.g. polynomials or sigmoids, that take the
number n of roles fillers as input. Such richer families of
operators could offer new perspectives on integrating into
KBs concepts learnt with more advanced algorithms, as they
more closely mimic neural architectures, and thus will pro-
vide a closer link to neuro-symbolic reasoning.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

299

References
Baader, F., and Bortoli, F. D. 2019. On the expressive power
of description logics with cardinality constraints on finite
and infinite sets. In Herzig, A., and Popescu, A., eds., Fron-
tiers of Combining Systems. 12th International Symposium,
FroCoS 2019, London, UK, September 4-6, 2019, Proceed-
ings, volume 11715 of LNCS, 203–219. Springer.
Baader, F., and Ecke, A. 2017. Extending the description
logic ALC with more expressive cardinality constraints on
concepts. In Benzmüller, C.; Lisetti, C. L.; and Theobald,
M., eds., GCAI 2017, 3rd Global Conference on Artificial
Intelligence, Miami, FL, USA, 18-22 October 2017, vol-
ume 50 of EPiC Series in Computing, 6–19. EasyChair.
Baader, F., and Sattler, U. 1999. Expressive number restric-
tions in description logics. Journal of Logic and Computa-
tion 9(3):319–350.
Baader, F.; Bednarczyk, B.; and Rudolph, S. 2020. Satisfia-
bility and query answering in description logics with global
and local cardinality constraints. In 24th European Confer-
ence on Artificial Intelligence (ECAI 2020), volume 325 of
FAIA, 616–623. IOS Press.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baader, F.; Brewka, G.; and Fernandez Gil, O. 2015.
Adding threshold concepts to the description logic EL. In
Lutz, C., and Ranise, S., eds., Frontiers of Combining Sys-
tems, 10th International Symposium, FroCoS 2015, Wro-
claw, Poland, September 21-24, 2015. Proceedings, volume
9322 of LNCS, 33–48. Springer.
Baader, F. 2017. A new description logic with set con-
straints and cardinality constraints on role successors. In
Dixon, C., and Finger, M., eds., Frontiers of Combining Sys-
tems, 11th International Symposium, FroCoS 2017, Brası́lia,
Brazil, September 27–29, 2017, Proceedings, volume 10483
of LNCS, 43–59. Springer.
Florida Department of Corrections, and Florida Office of
the State Courts Administrator. 2019. Florida Crim-
inal Punishment Code: Scoresheet Preparation Manual.
http://www.dc.state.fl.us/pub/sen cpcm/index.html.
Galliani, P.; Kutz, O.; Porello, D.; Righetti, G.; and Tro-
quard, N. 2019. On knowledge dependence in weighted
description logic. In Calvanese, D., and Iocchi, L., eds.,
GCAI 2019. Proceedings of the 5th Global Conference on
Artificial Intelligence, Bozen/Bolzano, Italy, 17–19 Septem-
ber 2019, volume 65 of EPiC Series in Computing, 68–80.
EasyChair.
Galliani, P.; Righetti, G.; Kutz, O.; Porello, D.; and Tro-
quard, N. 2020. Perceptron connectives in knowledge rep-
resentation. In Keet, C. M., and Dumontier, M., eds., Knowl-
edge Engineering and Knowledge Management, 22nd Inter-
national Conference, EKAW 2020, Bolzano, Italy, Septem-
ber 16–20, 2020, Proceedings, volume 12387 of LNCS,
183–193. Springer.

Galliani, P.; Kutz, O.; and Troquard, N. 2021. Percep-
tron operators that count. In Homola, M.; Ryzhikov, V.;
and Schmidt, R. A., eds., Proceedings of the 34th Interna-
tional Workshop on Description Logics (DL 2021), volume
Vol-2954 of CEUR Workshop Proceedings. CEUR-WS.org.
Giordano, L., and Dupré, D. T. 2021. Weighted defeasible
knowledge bases and a multipreference semantics for a deep
neural network model. In Faber, W.; Friedrich, G.; Gebser,
M.; and Morak, M., eds., Logics in Artificial Intelligence,
17th European Conference, JELIA 2021, Virtual Event, May
17–20, 2021, Proceedings, volume 12678 of LNCS, 225–
242. Springer.
Giordano, L., and Dupré, D. T. 2022. An ASP approach for
reasoning on neural networks under a finitely many-valued
semantics for weighted conditional knowledge bases. The-
ory and Practice of Logic Programming 22(4):589–605.
Kuncak, V., and Rinard, M. C. 2007. Towards efficient satis-
fiability checking for Boolean algebra with Presburger arith-
metic. In Pfenning, F., ed., 21st International Conference on
Automated Deduction (CADE-21), Bremen, Germany, July
17–20, 2007, Proceedings, volume 4603 of LNCS, 215–230.
Springer.
Ohlbach, H. J., and Koehler, J. 1999. Modal logics, descrip-
tion logics and arithmetic reasoning. Artificial Intelligence
109(1):1–31.
Porello, D.; Kutz, O.; Righetti, G.; Troquard, N.; Galliani,
P.; and Masolo, C. 2019. A toothful of concepts: Towards
a theory of weighted concept combination. In Proceedings
of the 32nd International Workshop on Description Logics,
Oslo, Norway, June 18–21, 2019.
Righetti, G.; Porello, D.; Kutz, O.; Troquard, N.; and Ma-
solo, C. 2019. Pink panthers and toothless tigers: three
problems in classification. In Cangelosi, A., and Lieto, A.,
eds., Proceedings of the 7th International Workshop on Arti-
ficial Intelligence and Cognition, Manchester, UK, Septem-
ber 10–11, 2019, volume 2483 of CEUR Workshop Proceed-
ings. CEUR-WS.org. 39–53.
Righetti, G.; Porello, D.; and Confalonieri, R. 2022. Eval-
uating the interpretability of threshold operators. In Oscar
Corcho; Hollink, L.; Kutz, O.; Troquard, N.; and Ekaputra,
F. J., eds., Knowledge Engineering and Knowledge Manage-
ment, 23rd International Conference, EKAW 2022, Bolzano,
Italy, September 26–29, 2022, Proceedings, volume 13514
of LNCS, 136–151. Springer.
Schild, K. 1991. A correspondence theory for terminologi-
cal logics: Preliminary report. In Mylopoulos, J., and Reiter,
R., eds., Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence. Sydney, Australia, August
24–30, 1991, 466–471. Morgan Kaufmann.
Tobies, S. 2000. The complexity of reasoning with car-
dinality restrictions and nominals in expressive description
logics. Journal of Artificial Intelligence Research 12:199–
217.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

300

http://www.dc.state.fl.us/pub/sen_cpcm/index.html

	Introduction
	ALC and its Extensions with Cardinality Restrictions
	 ALCP. Counting Teeth: Syntax and Semantics
	Embedding ALCP+ into ALCQ
	Succinctness of ALCP+ wrt ALCQ
	Embedding ALCP into ALCSCC
	Conclusions

