
Logic-based Composition of Business Process Models

Valeria Fionda , Antonio Ielo , Francesco Ricca
Department of Mathematics and Computer Science, University of Calabria, Italy

{valeria.fionda, antonio.ielo, francesco.ricca}@unical.it

Abstract

Process mining is a family of techniques that exploit data col-
lected from process execution to analyze and improve process
efficiency, quality, and security. Over the years, many model-
ing languages have been proposed for process model specifi-
cation, with different expressiveness, features, and computa-
tional properties. We propose a new logic-based declarative
formalism, Constraint Formulae, to compose process speci-
fications expressed in heterogeneous process modeling lan-
guages without altering their original semantics. We formal-
ize common process mining tasks for Constraint Formulae,
study their computational properties, and provide an imple-
mentation in Answer Set Programming.

1 Introduction
Process mining aims to extract valuable insights from event
logs recorded by information systems to understand how a
particular process works, identify areas for improvement and
optimize performance (van der Aalst and et al. 2011). Dur-
ing the past few years, process mining found application in
many different fields, including financial services (Jans et
al. 2011), healthcare (Partington et al. 2015), manufactur-
ing (ER et al. 2018), and IT (Sedrakyan, Weerdt, and Snoeck
2016). Process mining techniques can be grouped into three
main categories: discovery, conformance checking, and en-
richment. Discovery aims to analyze the structure of a pro-
cess to identify patterns in the event log and understand the
general flow of the process. Conformance checking aims at
comparing an event log to a process model for identifying
deviations and providing insights into the cause of these de-
viations. Enrichment is related to the suggestion of changes
to be implemented in the process to improve efficiency, re-
duce costs, or improve overall performance.

In recent years several languages have been proposed to
encode process models. Such languages can be broadly clas-
sified into imperative and declarative languages. Imperative
languages, including Petri nets and BPMN (van der Aalst
and et al. 2011), can be used to define process models that
represent the precise sequence of tasks and decisions that
determine the exact process execution flow. Instead, declar-
ative languages, such as DECLARE (Pesic, Schonenberg,
and van der Aalst 2007), allow to define a set of rules and
constraints the process must satisfy without specifying how
it should be executed.

Each modeling language has precise syntax, semantics,
and computational properties that make it more suitable for
use in specific circumstances. To the best of our knowl-
edge, today there is no means to specify different parts of the
same process using different modeling languages and conve-
niently and intuitively compose them. In this paper, we fill
this gap by proposing and studying a logic-based declarative
framework, specific to business process models, to compose
process specifications expressed using heterogeneous pro-
cess modeling languages. In more detail:
• We define the concept of constraint formulae as a mecha-

nism to flexibly compose and reason about heterogeneous
process specifications (Section 3);

• We recast conformance checking, query checking, and
discriminative process discovery (van der Aalst and Car-
mona 2022; Chesani et al. 2022a) into the constraint for-
mulae framework and introduce the new trace clustering
task as a generalization of discriminative process discov-
ery (Section 4).

• We depict a clear picture of the computational complexity
of the above tasks reinterpreted in the Constraint Formu-
lae framework (Section 5);

• We provide an encoding in Answer Set Program-
ming (Brewka, Eiter, and Truszczynski 2011; Gelfond
and Lifschitz 1991; Niemelä 1999) (Section 6) and evalu-
ate empirically a proof-of-concept implementation (Sec-
tion 7) based on CLINGO (Gebser et al. 2016).

Related Work. Discriminative process discovery is gaining
momentum. Indeed, several recent papers studied the prob-
lem in the context of declarative process mining. Notable ex-
amples are NegDis (Chesani et al. 2022a) and a framework
to mine CNF and DNF formulas (Chesani et al. 2022b). Dif-
ferently from NegDis and CNF/DNF mining our framework
does not target only the DECLARE language but it applies
to constraints expressed in arbitrary modeling languages. In
addition, differently from CNF/DNF mining, which learns
formulas by applying a sequence of choices determined by
coverage/rejection criteria over a log of negative traces, our
framework finds an optimal model within a search space
guided by some templates provided by an expert user thus
helping results’ interpretation.

Strictly related to our approach are the recent application
of Answer Set Programming to solve conformance check-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

272

ing, query checking and log generation of data-aware DE-
CLARE models (Chiariello, Maggi, and Patrizi 2022). Dif-
ferently from such approaches our framework is enough
general to be applied to heterogeneous modeling languages,
even if it could also be applied to DECLARE constraints only.

2 Preliminaries on Process Modeling
The main goal of process mining is to extract insights from
event logs (van der Aalst and Carmona 2022). An event log
stores in chronological order the events that occur while a
process is running. Each event in the log contains informa-
tion about the activity that was performed, the time at which
it was performed, and the case identifier that allows group-
ing events related to the same process execution into a trace.
Furthermore, events can refer to additional information such
as the resources that were involved or the cost paid.

In the following, we assume that A is a given alphabet of
symbols, univocally identifying a set of activities. A trace
π over A is a finite succession π[1]...π[l] with π[i] ∈ A,
for each i ∈ {1, ..., l}, and with l ≥ 1 being its length,
denoted by len(π). A trace represents a sequence of events
that occur in a particular process instance. For example, a
trace can record the sequence of activities a user performs
booking a flight online. A log L is a multi-set of traces, each
one corresponding to a different case or process instance.

Process mining tools offer the opportunity to analyze
event logs according to various perspectives (van der Aalst
and Carmona 2022), such as control flow (i.e., the flow
of tasks and activities), time (i.e., timing and frequency of
events), resources (i.e., people, systems, and roles) or data.
As control flow plays a central role in the development of
process-oriented applications, in this paper we will focus on
such a perspective.

3 Contraint Formulae
LetA be a given finite set of symbols that univocally identify
the set of activities of a process, π = π[1], . . . , π[l] with
π[i] ∈ A for each i ∈ {1, . . . , l} be a trace overA, and L be
a multi-set of traces {π1, . . . , πn} over A.

A common task in process mining is process discovery,
which is the problem of characterizing the process behaviors
contained in a log by providing a suitable process model.
To this end, in declarative process mining, it is common to
use some Boolean conditions that can be tested over traces.
Such conditions are usually organized in templates that de-
fine classes of properties of interest, and constraints that are
obtained by instantiating a template. More formally:

Definition 1 (Constraint). A constraint c is a binary predi-
cate over traces, that is a function A∗ 7→ {⊤,⊥}. Given a
trace π, if c(π) = ⊤ we write π |= c, else if c(π) = ⊥ we
write π ̸|= c.

In the following, when π |= c holds, we will also write
that π satisfies c or that c holds in π.

Definition 2 (Template). A template of arity k ∈ N (a k-
template) is a function that maps k-tuples of activities to
constraints, Ak 7→ (A∗ 7→ {⊤,⊥}). Given a template t,
we denote by ar(t) = k the arity of t.

Figure 1: State machine Ma,b accepting traces satisfying the con-
straint of Example 1. Edges labeled with ∗ represent transitions for
any symbols in A for which no other explicit transitions exist.

We assume there exists a finite set T of templates that can
be partitioned into subsets {T0, T1, T2, . . . } such that t ∈ Tk
if and only if ar(t) = k.
Definition 3 (Constraint instantiation). A constraint c is an
instance of a template t if there exists a tuple (a1, . . . , ak) ∈
Ak, where k = ar(t), such that for all π ∈ A∗ we have that
c(π) = t(a1, . . . , ak)(π).

Example 1. If we are interested in checking that activ-
ity a is always immediately followed by activity b (i.e., if
π[i]=a then π[i+1]=b; that is the DECLARE pattern chain-
response(a,b)), we can use the finite state machine Ma,b re-
ported in Figure 1. Thus, we can define the constraint chain-
responsea,b such that π |= chain-responsea,b if and only if
π∈L(Ma,b). Such constraint can be generalized to what-
ever pair of activities (by overloading the notation) by the
2-template chain-response: (x, y) 7→ Mx,y with x, y∈A.
Clearly, chain-responsea,b is a constraint instantiation of the
template chain-response with activities a and b. ◁

The reasoning above can be easily generalized to dif-
ferent types of constraints either declarative (e.g., other
DECLARE patterns or LTLf-based constraints), or non-
declarative (e.g., based on some imperative modeling lan-
guages), or even some procedural constraint definition (e.g.,
Python programs checking for some conditions).
Example 2. Suppose we want to check whether three activ-
ities a, b and c occur in a trace π the same (unbounded)
number of times. Clearly, such constraint cannot be en-
coded neither by a finite state machine nor by a general LTLf
formula. However, it can be easily checked by a procedure
f(a, b, c) (written in whatever programming language) that
receives the trace in input and counts the occurrences of the
three activities. Such procedure can be seen as a 3-template
f : A3 7→ (A∗ 7→ {⊤,⊥}). ◁

We refer to all the constraints that can be instantiated
from templates in T as atomic constraints, and we assume
that there exists a procedure to evaluate them over arbitrary
traces. Atomic constraints are fundamental for defining con-
straint formulae. To this end, let V = VA ∪ VT be a set of
variables (disjoint from A∪ T) where VA represents the set
of activity variables and VT represents the set of template
variables. We assume each variable has associated a domain
D, such that D(X) ⊆ A for each X ∈ VA and D(X) ⊆ Tk
for each X ∈ VT and some k ∈ N. Similarly to T , VT can
be partitioned into disjoint subsets {VT0

,VT1
, . . . } where

each VTk
contains all variables X ∈ VT s.t. D(X) ⊆ Tk.

The building blocks for defining constraints formulae are
constraint terms. Each constraint term is a constraint in
which, possibly, variables appear.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

273

Definition 4 (Constraint term). A constraint term (c-term)
is an expression T (A1, . . . , Ak), where T ∈ Tk ∪ VTk

and
Ai ∈ A ∪ VA for i ∈ {1, . . . , k}. We denote the set of c-
terms by C. In particular, if T ∈ T , and Ai ∈ A for all i, we
say the c-term is ground, otherwise we say it is non-ground.

Example 3. Consider the c-term T (B,C), where D(T) =
{t1, t2}, D(B) = {a, b}, D(C) = {c}. The set of all pos-
sible ground c-terms we can obtain, according to the vari-
ables’ domains, is {t1(a, c), t1(b, c), t2(a, c), t2(b, c)}. ◁

Constraint terms can be composed by using standard
Boolean connectives (∧, ∨ and ¬) to obtain constraint for-
mulae as follows:

Definition 5 (Constraint formula). We define a constraint
formula (or simply a formula) inductively as:

• A c-term c is a formula;
• Given two formulae ϕ, ψ, their conjunction (ϕ ∧ ψ) and

their disjunction (ϕ ∨ ψ) are formulae;
• Given a formula ϕ, its negation ¬ϕ is a formula

We denote the set of variables contained in a formula ϕ as
vars(ϕ). In particular, if vars(ϕ) = ∅, we say ϕ is a ground
formula, otherwise we say it is a non-ground formula. We
denote the set of constraint formulae by F .

Note that shorthands can be used to denote logical impli-
cation (→), equivalence (↔), and exclusive-or (⊕), as usu-
ally done in propositional logic.

Example 4. An example of constraint formula is ϕ =
chain-response(a,b) → f(a, b, c), based on the two
atomic constraints introduced in Example 1 and Exam-
ple 2. Intuitively, such formula states that whenever
chain-response(a,b) holds in a trace π, then activities a, b
and c must occur the same number of times in π. ◁

Given a non-ground c-term, it is possible to obtain a
ground c-term by substituting each variable X with one
value in D(X). This lead to the notion of interpretation,
as defined below:

Definition 6 (Interpretation). An interpretation over the do-
main D is a function ι : V ∪ A ∪ T ∪ C ∪ F 7→ (A∗ 7→
{⊤,⊥}) ∪ A ∪ T ∪ F inductively defined as follows:

• If a ∈ A ∪ T then ι(a) = a;
• If X ∈ VA ∪ VT then ι(X) ∈ D(X)

• If T (A1, . . . , Ak) is a c-term then ι(T (A1, . . . , Ak)) =
ι(T)(ι(A1), . . . , ι(Ak))

• If ϕ is a constraint formula, then its interpretation is de-
fined inductively over the subformulas of ϕ:
– If ϕ = ϕ1 ∧ ϕ2, then ι(ϕ) = ι(ϕ1) ∧ ι(ϕ2)
– If ϕ = ϕ1 ∨ ϕ2, then ι(ϕ) = ι(ϕ1) ∨ ι(ϕ2)
– If ϕ = ¬ψ, then ι(ϕ) = ¬ι(ψ)

Example 5. Consider an interpretation ι such that ι(X) =
a, ι(Y) = b, and t ∈ T . Then for a constraint term t(X,Y),
we have that ι(t(X,Y)) = ι(t)(ι(X), ι(Y)) = t(a, b). ◁

Note that, the interpretation of a formula ϕ is itself a con-
straint – although, in general, not an atomic constraint. In
fact, an interpretation maps c-terms to (atomic) constraints

and such (atomic) constraints are aggregated by means of
some Boolean connectives when subformulas of ϕ are in-
ductively interpreted. Thus, in the following we overload
the operator |= and write π |= ι(ϕ) whenever ι(ϕ)(π) = ⊤.

It should be clear by now that constraint formulae allow
to mix heterogeneous formalisms to model process behav-
ior. In our setting, process models consist of a constraint
formula ϕ (or, equivalently, a conjunction of multiple con-
straint formulae ϕ1, . . . , ϕn - the conjunction of formulae is
still a formula). Furthermore, if Φ is a finite set of constraint
formulae, whenever π |=

∧
ϕ∈Φ

ϕ, we will write π |= Φ.

4 Process Mining via Constraints Formulae
In this section we introduce some relevant problems in pro-
cess mining, namely, conformance checking, query check-
ing, variant discrimination and trace clustering, by recast-
ing them in the constraint formulae framework.

Conformance Checking. Conformance checking is the
problem of comparing an execution trace to a process model
in order to identify any deviations from the expected behav-
ior (i.e., the problem of deciding if a trace is conformant
or not to a model). In our setting, process models are repre-
sented as constraint formulae and, thus, conformance check-
ing translates to checking if a trace π is accepted by a (set
of) constraint formula(e):
Problem 1 (CK - Conformance Checking). Given a trace π
and a ground constraint formula ϕ, CK(π, ϕ) is the problem
of deciding if π |= ϕ.

Clearly, the above problem can be easily extended to event
logs (that is, a multiset of traces) instead of a single execu-
tion trace by checking if π |= ϕ holds for each π in the log.

Query Checking. Given an event log L and a non-ground
constraint formula ϕ, an interesting problem in process min-
ing is to compute an interpretation ι such that π |= ι(ϕ) for
each π ∈ L. However, event logs obtained by observing
real business processes are usually affected by data quality
problems such as the presence of anomalous traces and noise
(e.g., erroneous data recordings) (Koschmider et al. 2022).
Clearly, both anomalies and noise can have a negative im-
pact on the query checking problem (e.g., an interpretation
that allows to model all the behaviors reported in the log
might not exist) and in practical applications may be conve-
nient to reason about a relaxed version of the problem that
leverages the notion of support:
Definition 7 (Support). Let ϕ be a ground formula and L
an event log. The support of ϕ in the log L is the fraction of
traces that model ϕwrt the size of the log, defined as follows:

S(ϕ,L) = 1

|L|
·

∑
π∈L,π|=ϕ

#L(π)

where #L(π) is the number of occurrences of π in L.
Problem 2 (QC - Query Checking). Given an event log L,
a non-ground constraint formula ϕ and a support threshold
s ∈ [0, 1], QC(L, ϕ, s) is the problem of computing an inter-
pretation ι such that S(ι(ϕ),L) ≥ s.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

274

Discriminative process discovery. In real business pro-
cesses, it is quite common to have different classes of pro-
cess behaviors that correspond to different variations of the
process that can occur in practice. In this setting, it is of
practical interest to determine what distinguishes and char-
acterizes the different variations, that usually require diver-
gent process models to be explained. Such a problem is
referred to as discriminative process discovery and it has
been recently studied for DECLARE models (Chesani et al.
2022a), by using ASPRIN (Brewka et al. 2015) in order to
compute a DECLARE model which accepts all traces in a log
and reject all traces in another log that is optimal wrt some
preference criteria. Here, we formally characterize discrimi-
native process discovery, not limited to DECLARE formulas.

As in the case of query checking, data quality issues can
have a negative impact on the possibility of identifying a
constraint formula that perfectly characterizes two logs (in
some cases, such a formula might not exist). For this reason,
hereafter, we will rely on some support threshold.
Definition 8 (s-Separates). Let ⟨L,L′⟩ be a pair of logs
and s ∈ [0, 1] a support threshold. A formula ϕ separates
⟨L,L′⟩ with threshold s (i.e., s-separates) if S(ϕ,L) ≥ s
and S(ϕ,L′) = 0.

Separation is one of the key problems underlying discrim-
inative process discovery. Indeed, discriminative process
discovery differs from standard process discovery since it
aims to describe a process variant with respect to the other
variants of the same process. If L contains the traces reg-
istered for a process variant and L′ contains the traces reg-
istered for all the other variants of the same process, a con-
straint formula that separates L and L′ can explain the dif-
ference of one variant with respect to the others.
Problem 3 (k-DISD - k-Discriminative discovery). Let
⟨L1, . . . ,Lk⟩ be a partition of an event log L, Φ be
a finite set of ground constraint formulae, l ∈ N be
an integer and s ∈ [0, 1] a support threshold. k-
DISD(⟨L1, . . . ,Lk⟩,Φ, l, s) is the problem of deciding
whether k subsets Φ1, . . . ,Φk of Φ exist such that for each
i ∈ {1, ...k} it holds that |Φi| ≤ l and

∧
ϕ∈Φi

ϕ s-separates
⟨Li,L \ Li⟩

Strictly related to the k-discriminative discovery is the k-
trace clustering problem, that is the problem of finding a k
sets of constraint formulae able to identify the sublogs cor-
responding to k process variants.
Problem 4 (k-TC - k-Trace clustering). Let L be an event
log, Φ a finite set of ground constraint formulae, and k, l ∈
N. k-TC(L,Φ, k, l) is the problem of deciding weather r
subsets Φ1, . . . ,Φr of Φ exist, with r ≤ k, such that 1 ≤
|Φi| ≤ l for i ∈ {1, ..., r}, and the sets Li = {π ∈ L : π |=∧
ϕ∈Φi

ϕ} for i ∈ {1, ..., r} are a partition of L, where each
Li contains at least one trace.

In the following, we indicate by L[Φi] the subset of traces
that model Φi, that is L[Φi] = {π ∈ L : π |=

∧
ϕ∈Φi

ϕ}.

5 Complexity Results
In this section, we study the computational complexity of
the process mining tasks introduced in Section 4.

Conformance Checking. In the general setting, checking
if a constraint holds over a trace is Turing-complete since
for its evaluation could be necessary to run an arbitrary pro-
cedure encoded in whatever programming language today
available. However, the most used languages for declarative
process specification (e.g., DECLARE or LTLf) are based
on constraints that can be evaluated in polynomial time with
respect to trace length. If we restrict our attention to such
class of constraints then the conformance checking problem
becomes tractable.

Theorem 1. Given a trace π and a ground constraint for-
mula ϕ, CK(π, ϕ) can be solved inO(|ϕ| · t ·γ), where |ϕ| is
the total number of symbols (i.e., Boolean connectives, vari-
ables, activities, templates) that appear in ϕ, t is the number
of c-terms in the formula and γ is the complexity of evaluat-
ing an atomic constraint over π.

Proof. A conformance checking algorithm works by
traversing bottom-up the parse tree of ϕ (whose number of
nodes is linear in |ϕ|) and associating a Boolean value to
each node. In particular, given a trace π, a node n is asso-
ciated the value ⊤ if π satisfies the constraint subformula
rooted at n, and the value ⊥ otherwise. The cost of comput-
ing the value of each leaf isO(γ), and the cost of computing
the value of all the leaves of the tree is O(t · γ) (if ϕ con-
tains t c-terms) – in this respect if the c-terms of the formula
are different in nature, γ is the maximum cost of evalua-
tion overall the c-terms. The value of intermediate nodes
of the parse tree is computed according to the semantics of
Boolean connectives and on the values of the children.

Query Checking. In this section we show that the Query
Checking problem is NP-complete. Membership directly
derives from the fact that conformance checking can be
checked in polynomial time (by restricting our attention to
tractable constraints only). In fact, given (i.e. guessed) a
ι, checking that ι(ϕ) is above the support threshold cor-
responds precisely to conformance checking of a ground
formula. Hardness result is provided via reduction from
the ONE-IN-THREE POSITIVE 3SAT problem (Garey and
Johnson 1979; Schaefer 1978) that, given a formula in con-
junctive normal form with three positive literals per clause,
is the problem of checking whether there exists a satisfying
assignment so that exactly one literal in each clause is true.

Theorem 2. Given an event log L, a non-ground constraint
formula ϕ and a support threshold s ∈ [0, 1], QC(L, ϕ, s) is
NP-hard.

Proof. Let ψ = c1 ∧ ... ∧ cm be a Boolean formula over the
variables V (ψ) = {X1, . . . , Xn}, where each clause con-
tains positive literals only. The symbol Xi

j ∈ V (ψ) with
i ∈ {1, 2, 3}, j ∈ {1, . . . ,m} denotes the i-th literal of the
j-th clause. Consider the Query Checking instance, graphi-
cally depicted in Figure 2a, defined over the set of activities
A = {a⊤, a⊥} and such that:

• There is only one 3-template f(., ., .), whose instantiation
f(a, b, c) is the constraint that checks whether a trace con-
tains exactly one among the activities a, b and c;

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

275

Figure 2: Reductions in the proofs of (a) Theorem 2, (b) Theorem 3 and (c) Theorem 4.

• For each variable Xi ∈ V (ψ), there is an activity variable
Yi ∈ VA such that D(Yi) = A;

• For each clause cj = (X1
j , X

2
j , X

3
j) of ψ, there exists a

c-term Cj = f(Y 1
j , Y

2
j , Y

3
j). The symbols Y ij ∈ VA with

i ∈ {1, 2, 3}, j ∈ {1, . . . ,m} denote the i-th activity term
of the c-term Cj . Furthermore, Xi

j = Xk ⇐⇒ Y ij = Yk;
• The constraint formula is obtained as the conjunction of

all c-terms, i.e., ϕ =
∧

cj in ψ
Cj ;

• The log L contains only one trace π = a⊤;
• The support threshold is s = 1.

We now claim that ONE-IN-THREE POSITIVE 3SAT
has a solution over ψ if, and only if, there exists a solution
to QC(L, ϕ, 1).

(→) Let M be a satisfying assignment of ψ such that,
for each clause cj exactly one variable evaluates true. Let
σj : {1, 2, 3} 7→ {1, 2, 3} be a permutation such that
M(X

σj(1)
j) = 1 and M(X

σj(2)
j) = M(X

σj(3)
j) = 0.

Consider now the interpretation ιM that, for each clause
cj in ψ, assigns ιM (Y

σj(1)
j) = a⊤ and ιM (Y

σj(2)
j) =

ιM (Y
σj(3)
j) = a⊥. Due to the semantics of the tem-

plate f , for each clause cj in ψ, the (ground) c-term
ιM (f(Y 1

j , Y
2
j , Y

3
j)) = f(ιM (Y 1

j), ιM (Y 2
j), ιM (Y 3

j)) is sat-
isfied over the trace π = a⊤ ∈ L. Moreover, since
the constraint formula ϕ is the conjunction of all c-terms
f(Y 1

j , Y
2
j , Y

3
j) for each j ∈ {1, ...,m}, we have that

S(ιM (ϕ),L) = 1 ≥ s holds.
(←) Let ι be an interpretation which solves QC(L, ϕ, 1).

Since ϕ is a conjunction of c-terms and s = 1, this means
that the j-th c-term Cj = f(Y 1

j , Y
2
j , Y

3
j) must hold over

the trace π. In particular, due to the semantics of the tem-
plate f , for each f(Y 1

j , Y
2
j , Y

3
j) exactly one of the variables

is mapped to a⊤ while the other two are mapped to a⊥.
Let σj : {1, 2, 3} 7→ {1, 2, 3} be a permutation such that
ι(Y

σj(1)
j) = a⊤, and ι(Y σj(2)

j) = ι(Y
σj(3)
j) = a⊥. It fol-

lows that the truth assignment M : V (ψ) 7→ {0, 1} such
that M(Xi) = 1 if and only if ι(Yi) = a⊤ is a satisfying as-
signment for ψ. In fact, if ι is a solution to QC(L, ϕ, 1)
in the j-th c-term Cj=f(Y

1
j , Y

2
j , Y

3
j) we have that: (i)

ι(Y
σj(1)
j) = 1 and, hence,M(X

σj(1)
j) = 1; (ii) ι(Y σj(2)

j) =

ι(Y
σj(3)
j) = a⊥ and, hence, M(X

σj(2)
j) = M(X

σj(3)
j) =

0; and, thus, for each clause cj=(X
σj(1)
j , X

σj(2)
j , X

σj(3)
j)

exactly one variable is true in M . We can conclude that M
is a model for ψ since ψ is the conjunction of all clauses cj ,
and each cj is true in M .

k-Discriminative Discovery and k-Trace Clustering. In
this section we show that both k-Discriminative Discovery
and k-Trace Clustering problems are NP-complete. Mem-
bership in NP for k-Discriminative Discovery follows from
Theorem 1, since given a set of constraints formulae and k
logs, the support of each constraint formula w.r.t. the logs
can be computed in polynomial time (under the assumption
that constraints can be evaluated in polynomial time). Then,
in the following we will prove NP-hardness via a reduction
from the Hitting Set problem (Garey and Johnson 1979),
that, given a collection {S1, . . . , Sk} of subsets of the uni-
verse Un = {a1, ..., an} and an integer l, is the problem of
checking if there exists a subset H ⊆ Un such that |H| ≤ l
and H intersects (hits) every set in {S1, . . . , Sk}.
Theorem 3. Given k event logs ⟨L1, ...Lk⟩, a set of ground
constraint formulae Φ, an integer l and a support threshold
s ∈ [0, 1], k-DISD(⟨L1, . . . ,Lk⟩,Φ, l, s) is NP-hard.

Proof. Let C = {S1, ..., Sk} be a collection of sub-
sets of the universe U(n) = {a1, ...an} and l ∈
N. Consider the k-Discriminative Discovery instance k-
DISD(⟨L1, . . . ,Lk⟩,Φ, l, s) graphically depicted in Fig-
ure 2b such that:

• The activity set on which constraint formulae are defined
is A = U(n) ∪ {β1, ..., βk}.

• The logs L1, ...,Lk are such that Li = {π(i, Sj) : 1 ≤
j ≤ k}, where π(i, Sj) denotes the trace obtained by
concatenating the activity βi with the activities in Sj
taken in whatever order (e.g, π(i, Sj) = βia1a2...aq if
Sj = {a1, a2, ..., aq});

• There is a 1-template g(·), whose instantiation g(p)
checks whether a trace does not begin with the activity
p; that is π |= g(p) if, and only if, π[0] ̸= p;

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

276

• There is a 1-templates h(·), whose instantiation h(p)
checks whether a trace does not contain the activity p;
that is π |= h(p) if, and only if, p ̸∈ π.

• The set of constraints formulae is Φ =
⋃
p∈U{f i(p) : 1 ≤

i ≤ k}, where f i(p) = (g(βi) =⇒ h(p)). In particular,
the semantics of each f ip is as follows:

– π(i, Sj) |= f i(p) holds for each π(i, Sj). Indeed, since
π(i, Sj)[0] = βi we have that π(i, Sj) ̸|= g(βi);

– For each r ̸= i we have that π(r, Sj) |= f i(p) holds if,
and only if, p ̸∈ π(r, Sj) meaning that p ̸∈ Sj – note
that if r ̸= i we have that π(r, Sj) |= g(βi) holds and,
thus, π(r, Sj) |= h(p) must also hold.

– The support threshold is s = 1.

We now claim that the Hitting Set has a solution over
(C,Un, k) if, and only if, there exists a solution to k-
DISD(⟨L1, . . . ,Lk⟩,Φ, l, s).
(→) Let H be a solution to the hitting set instance.

Consider the sets of constraint formulae {Φ1, ...,Φk} such
that Φi={f i(p) : p∈H} for i ∈ {1, ..., k}. Let Lq be
an arbitrary log in {L1, . . . ,Lk}. Consider the set of
constraint formulae Φq . By definition π(q, Sj) |= fq(p)
for each fq(p)∈Φq and each π(q, Sj)∈Lq and, thus,
S(

∧
ϕ∈Φq

ϕ,Lq)=1. Now, consider an arbitrary log Lr with
r ̸=q and let π(r, St) be an arbitrary trace in Lr. Since H
is a solution to the hitting set instance, it means that there
exists at least one element p ∈ St∩H and by definition
π(r, St) ̸|= fr(p) ∈ Φq and, thus, S(

∧
ϕ∈Φq

ϕ,Lr)=0. The
latter reasoning holds for each log Lr ∈ {Φ1, ...,Φk} \ Lq
and, thus, S(

∧
ϕ∈Φq

ϕ,
⋃

Lr∈{Φ1,...,Φk}\Lq
Lr)=0 also

holds. We can conclude that the sets Φ1, ...,Φk of constraint
formulae are a solution to the k-DISD(⟨L1, . . . ,Lk⟩,Φ, l, s)
instance by noticing that for each Φi it holds that |Φi| ≤ l.

(←) Let {Φ1, ...,Φk} be a solution to k-
DISD(⟨L1, . . . ,Lk⟩,Φ, l, s). Consider an arbitrary set of
constraint formulae Φi, and the set H = {h : f i(h) ∈ Φi}.
Since {Φ1, ...,Φk} is a solution to the k-discriminative
discovery problem, it means that S(

∧
ϕ∈Φi

ϕ,Li)=1 and
S(

∧
ϕ∈Φi

ϕ,Lj)=0 for 1≤j≤k and j ̸=i. In particular,
consider an arbitrary log Lj with j ̸=i. For all traces
π(j, Sq)∈Lj there exists at least one constraint formula
f i(p)∈Φi such that π(j, Sq) ̸|=f i(p) because p ∈ π(j, Sq).
This implies that p ∈ H and, thus, H hits Sq . Recall that
Lj contains exactly one trace π(j, Sq) for each Sq ∈ C.
Thus, we can conclude that H is a solution to the hitting set
instance (C,Un, k) by noticing that |H| = |Φi| ≤ l.

In the following we show k-Trace Clustering to be NP-
complete. If |Φ| = n, then there are

∑k
i=0

(
n
i

)
candidate

solutions. Membership in NP follows from Theorem 1,
since checking a candidate solution Φ1, . . . ,Φr with r ≤ k
can be performed in polynomial time (under the assump-
tion that constraints can be evaluated in polynomial time)
by performing: (i) r conformance checking to compute
L[Φj] – where L[Φj] denotes the set of traces in L that sat-
isfy Φj ; (ii) a polynomial-time check to determine whether

L[Φ1], . . . ,L[Φr] is a partition of L. We next prove hard-
ness by a reduction from the Exact Cover by 3-Sets (Garey
and Johnson 1979), that, given a finite set X of elements
with |X|=3q for some q ∈ N and a finite collection of sets
S, with Si⊆X and |Si|=3 for each Si∈S, is the problem of
checking if there exists a subset of S which partitions X .
Theorem 4. Given a log L, a set of ground constraint for-
mulae Φ and integers k, l ∈ N, k-TC(L,Φ, k, l) is NP-hard.

Proof. Consider the Exact Cover by 3-Sets problem in-
stance (X,S), on the finite set X = {x1, . . . , x3q} and the
collection S = {S1, . . . , Sm} with Si ⊆ X and |Si| = 3 for
i ∈ {1, ...,m}. Starting from (X,S) we build the following
k-Trace clustering instance (depicted in Figure 2c):

• The set of activities on which traces and constraint formu-
lae are defined is A = X .

• The log is L = {πx = x : x ∈ X}, that is, L contains a
trace πx = x for each x ∈ X .

• There is one 3-templates f(., ., .) whose instantiation
f(x, y, z) is the constraint whose valuation is defined s.t.
πp |= f(x, y, z) if, and only if, p = x or p = y or p = z.

• The set of constraints is Φ =
⋃m
i=1{f(x1, x2, x3) : Si =

{x1, x2, x3}} – note that wlog we can assume whatever
order among the elements of Si since the valuation of
f(x1, x2, x3) only checks for the presence of an element
without considering their relative order. In the following
we will indicate by ϕSi the constraint f(x1, x2, x3) such
that {x1, x2, x3} = Si ∈ S.

• The bound on the size of subsets of formulae is l = 1.
• The integer k = |X|/3.

We now claim that the Exact Cover by 3-Sets has a solu-
tion over (X,S) if, and only if, there exists a solution to
k-TC(L,Φ, l, k).
(→) Let S∗ ⊆ S be a solution to the Exact Cover problem
over (X,S), that is, S∗ is a partition of X . Let us consider
an arbitrary order of the subsets in S∗ and indicate by S∗

i the
i-th set in S∗. Consider the set of constraints Φ1, ...,Φ|S∗|
such that each Φi = {ϕS

∗
i } for each i ∈ {1, ..., |S∗|} (note

that |Φi| = 1 for all i ∈ {1, ..., |S∗|} and |S∗| is |X|/3). Let
πx be an arbitrary trace in L. Since S∗ solves Exact Cover
by 3-Sets, then there exists S∗

i ∈ S∗ such that x ∈ S∗
i . Thus,

we also have that πx |= ϕS
∗
i and πx ∈ L[Φi] hold. We can

conclude that Φ1, ...,Φ|S∗| cover the entire log L. Then, let
Φi,Φj be two sets of constraint formulae in {Φ1, ...,Φ|S∗|}.
Suppose that there exists a trace πx ∈ Φi ∩ Φj , this implies
that πx |= ϕS

∗
i ∧ϕS

∗
j - due to the semantics of ϕS

∗
i and ϕS

∗
j .

This means that x ∈ Si ∩ Sj . However, since S∗ is a parti-
tion of X we know that Si∩Sj = ∅ for each i, j and we can
conclude that L[Φi] ∩ L[Φj] = ∅ for each i, j. This prove
that L[Φ1], ...,L[Φ|S∗|] is a partition of L and, thus, the set
Φ1, ...,Φ|S∗| is a solution to k-TC(L,Φ, l, k).
(←) Let Φ1, . . . ,Φr, with r ≤ k and |Φi| = 1 for i ∈
{1, ..., r} be a solution to the k-Trace Clustering problem. It
means that L[Φ1], . . . ,L[Φr] induce a partition on L. Con-
sider now the set S∗ =

⋃r
i=1{Sj : Φi = {ϕSj}}. For each

element x ∈ X , and the corresponding trace πx ∈ L, we
have that there exists exactly one set of constraint formulae

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

277

Figure 3: Encoding of (a) ground formula; (b) non-ground formula.

Φ = {ϕSj} ∈ {Φ1, . . . ,Φr} such that πx ∈ L[Φ]. Due
to the semantics of ϕSj it means that πx |= ϕSj and, thus,
x ∈ Sj . By construction, Sj is included in S∗. Thus, we
can conclude that the set S∗ =

⋃r
i=1{Sj : Φi = {ϕSj

}} is
a solution to Exact Cover by 3-Sets over (X,S).

6 ASP Encodings
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011; Gelfond and Lifschitz 1991; Niemelä
1999) is a logic programming paradigm, that allows to
model in a declarative way problems up to the ΣP2 complex-
ity class (Dantsin et al. 2001). In this paper, we assume the
reader is familiar with the syntax of and semantics of ASP
(a nice introductions to ASP is given by (Gebser et al. 2012;
van Harmelen, Lifschitz, and Porter 2008; Baral 2010)). The
solutions presented in the following are encoded according
to the in input language of GRINGO (Gebser et al. 2015;
Gebser, Schaub, and Thiele 2007), and resort to externally-
evaluated atoms available in CLINGO (Gebser et al. 2016).
We refer the reader to (Gebser et al. 2012) for more details.
Encoding of constraint formulae in ASP. We model con-
straint formulae as anonymous nested function symbols
which encode the formula’s parse tree, where neg, and, or
constants represent logical operators. The predicate root/1
(as usual in ASP we denote by p/k a predicate p of arity k)
encodes the input formula, and the following ASP program
computes its subformulae (predicate node/1), and identifies
atomic constraints (predicate atomic/1).

Example 6. Figure 3a reports the encoding of the formula
t1(x, y) ∧ ¬t2(z) and the output of the above program. ◁

Conformance checking. As outlined in Theorem 1, we can
perform conformance checking of a constraint formula by
traversing its tree structure in a bottom-up fashion and aggre-
gating previously computed evaluations according to each
subformula semantics. This is obtained as follows:

Where trace/2 models a control-flow process variant,
where the first term is a unique identifier and the sec-
ond term is the number of occurrences in the event log,
and the holds/2 predicate models that a formula ac-
cepts a given control-flow variant uniquely identified by
trace/2. Atomic constraints are evaluated (the last rule
of the program above) by using external backends, such as
Declare4Py (Donadello et al. 2022) or Python’s regex
regular expression matching library, to be injected into the
main program. This is done exploiting CLINGO’s @-terms,
where atomic check identifies a Python procedure, which
evaluates the atomic constraint C over all the event log. In
alternative, atomic constraints can be evaluated in a pre-
processing step and added as facts to the program.

If answer set of the program above contains the atom
holds(root(...),TID) then the control-flow variant
identified by TID is conformant to the formula in input.
Query checking. In query checking, the input formula
contains variables, and the domain of variables is modeled
by predicate domain/2. Variables of the constraint for-
mula are identified in ASP using string terms of the form
"X" for each variable X , ı.e., atoms domain("X", x) for
x ∈ D(X) – at the encoding level, there is no difference
between activity variables and domain variables.

The following choice rule guesses one assignment (mod-
eled by iota/2) for each variable in the constraint formula:

1 {iota(X,Y): domain(X,Y)} 1 :- domain(X,_).

Next, a rule of the following form is added to select the
instantiation of the input formula corresponding to the as-
signment in iota/2:
root(F) :- iota("X1",X1),...,iota("Xn",Xn).

where F is the parse tree of the input formula, as in the con-
formance checking encoding, and Xi, with i ∈ {1, . . . , n},
is the i-th variable of the n that occurs in the constraint for-
mula in input.

Example 7. Figure 3b reports the rule encoding the formula
t1(X, y) ∧ ¬t2(Z), containing variables X and Z. ◁

Finally, the following constraint discards assignments
with support below the threshold:

Here, supp thr is a CLINGO constant modeling the de-
sired support threshold.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

278

An ASP program performing query checking can be ob-
tained by adding to the above-specified rules the program re-
ported in the previous paragraph that performs conformance
checking of a formula specified by the root/1 fact.
Trace Clustering. The input is modelled by predicates
formula/1, accepts/2, and rejects/2. The first en-
codes the input formulae, whereas the latter two store
whether a given formula accepts or rejects a control-flow
variant. The number of partitions k and the maximum num-
ber of formulae per set of constraints p that will induce a
partition are provided as CLINGO constants. The following
ASP program encodes trace clustering:

The first rule guesses whether at least one and at most
p formula can be assigned to a partition. The next two
rules compute predicates subset accepts(TID,P), and
subset rejects(TID,P) modeling that the conjunction
of constraints in partition P accepts or (resp. rejects) the
control-flow variant with identifier TID. The constraints se-
lect non-trivial partitions. Since each trace is accepted by
precisely one partition, and each trace is either accepted or
rejected, formulae subsets induce disjoint sublogs.
Discriminative discovery. The task is similar to Trace
Clustering, but here the log is already partitioned. The
input predicate log/2 is used to model which control-
flow variants belong to which log partition. As before,
partition/1 predicate models available partitions, and
formula/1 the formulae in input. Input constants p and
sup thr are defined as before. threshold/2 is an input
predicate that models the number of traces that should be
satisfied to be above the support threshold (this is to avoid
using floats for the threshold).

The following program models discriminative discovery:

The first rule computes predicate above support/2
that models constraints above the support threshold on a
given log partition. The subsequent rule defines predicate

rejects something/2 that models constraint rejecting at
least one control-flow variant on a given log partition. The
choice rule guesses an assignment of a subset of formulae
to a log partition. To prune the search space, an assignment
is guessed if a formula (i) has enough support on the given
log partition, and (ii) rejects at least one control-flow vari-
ant in a different partition. The log reject/2 models that
the (conjunction of the) constraint formulae assigned to a
specific log partition reject a specific control-flow variant.
Finally, the constraint discards candidate answer sets where
a control-flow variant is rejected by multiple log partitions.

7 Experimental Evaluation
This section discusses the results of a first experimental anal-
ysis conceived to evaluate the feasibility of our ASP-based
implementation.
Benchmark instances. We run our experiments on a well-
known event log in process mining literature, the Sepsis
Cases Event Log (Mannhardt and Blinde 2017). In the ex-
perimental study, we evaluated our ASP-based prototype’s
performances on randomly generated sets of formulae. In
particular, we considered the following two types of in-
stances. The first one includes sets of n constraint formu-
lae of depth d that contain 2d distinct atomic constraints, de-
noted byCF (n, d). The second type, denoted byQC(b,D),
includes formulae that: (i) are the conjunction of b constraint
terms; (ii) contain b variables with a domain of cardinality
D; and (iii) each formula has a unique solution to the query
checking problem over the log with support s = 1.

The atomic constraints and terms that appear in CF (n, d)
and QC(b,D) were mined by using the Declare4Py tool
with a support threshold of 0.3 over the log.

For conformance checking, trace clustering, and dis-
criminative discovery, we sampled 30 sets of formulae
from CF (n, d) for each n ∈ {10, 20, . . . , 80} and d ∈
{2, 3, 4, 5}, for a total number of 960 sets of formulae. Fur-
thermore, for discriminative discovery and trace clustering,
we set l = 15 as the maximum cardinality for formulae’s
subsets and randomly sampled the log’s labels. For query
checking, we sampled 30 formulae from QC(b,D) for each
b ∈ {1, 2, 3, 4}, and D ∈ {2, 3, 4, 5, 6}, yielding a total of
600 formulae, and set the minimum support threshold to 1.
Execution environment. All experiments were executed on
an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, 512GB
RAM machine, using CLINGO version 5.4.0, Python 3.10,
and Declare4Py 1.0. All experiments were run in paral-
lel using GNU Parallel (Tange 2011). We measured average
execution times over samples of the same size and reported
them in our plots, where bands represent 95% confidence in-
tervals. As described in Sec. 6, atomic constraints are evalu-
ated by running Python procedures exploiting CLINGO’s @-
terms. Conformance checking of atomic formulae is done
during pre-processing to build the input (see Sec. 6) for
query checking, discriminative discovery, and trace cluster-
ing. Scripts and data for reproducibility are available on
GitHub (https://github.com/kr2023-6949/experiments).
Conformance checking. Figure 4a reports the average run-
ning times (in seconds) for conformance checking. The run-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

279

https://github.com/kr2023-6949/experiments

(a) Conformance checking of formulas of depth d. (b) Query checking. D is the variable domains’ cardinality.

(c) Discriminative discovery on k partitions of formulas of depth d. (d) Trace clustering on k partitions of formulas of depth d.

Figure 4: Experimental results: Average running times in seconds.

time grows smoothly while increasing the number of con-
straint formulae in input and their depth. As it can be noted,
in the hardest setting (i.e., 80 constraint formulae of depth
5, thus each one is made of 32 atomic constraints) running
time approaches 60 seconds, that we consider acceptable.
Query checking. Figure 4b reports the average running
times for query checking (log. scale y-axis). Instances with
domain size D = 2 are easily solved (less than 60 sec-
onds on average). As expected, finding a solution becomes
more time-consuming as D increases. This is mainly due
to the exponential number of formula tree instantiations (see
the second rule of the query checking encoding in Sec. 6).
Consequently, the ground ASP program size grows expo-
nentially with D and the solver slows down.
Discriminative discovery. Figure 4c reports average run-
ning times for discriminative discovery with k ∈ {2, 4, 6}
partitions. The average running time grows smoothly with
the number of constraint formulae, and hardness is mostly
influenced by the depth of the formula. Performance seems
unaffected by k, this is probably due to the fact that both
constraint formulae and trace labels were randomly sam-
pled, and the discriminative discovery tasks are likely over-
constrained independently from k. All in all, the hardest
setting (i.e., on CF (80, 5) with k=6) runs in about 30 secs.
Trace clustering. Figure 4d reports average running times
for trace clustering using k ∈ {2, 4, 6} partitions. In this
case, in contrast to discriminative discovery, the average run-
ning time is affected by the formulae’s depth and the num-
ber of partitions. The hardest setting (i.e., 80 formulae with
depth d = 5 and k = 6 partitions) is still feasible and re-
quires less than 60 seconds to be solved.
Tools for basic tasks.There are no tools able to deal with the

general problems introduced in this paper, however, if we re-
strict our attention to DECLARE (that is the de facto standard
in declarative process mining) we can do some final consid-
erations for Conformance Checking and Query Checking.
As for Conformance Checking, note that a DECLARE model
is a conjunction of Declare constraints and can be trivially
represented by a constraint formula. Then, the only extra
computation performed by our tool w.r.t. existing tools (e.g.
Declare4Py or RuM) is the evaluation of a very small
stratified program and no significant overhead has been ob-
served. As for Query Checking, the only tools that solve a
similar problem are Declare4Py and (Chiariello, Maggi,
and Patrizi 2022) that perform query checking of a single
DECLARE constraint by considering each of its possible in-
stantiations and, thus, it is a much simpler problem than the
one introduced in this paper. Measuring performance re-
duces again to conformance checking.

8 Conclusion and Future Work
Many languages have been proposed to encode process
models, each featuring some distinctive feature making it
more suitable in specific circumstances. Up to now, there
were no means to combine them in a declarative way. This
paper defines a logic-based framework for the declarative
composition of heterogeneous process models. The com-
putational complexity of some relevant process mining rea-
soning tasks (recast in the proposed framework) has been
studied. An implementation of the framework in ASP has
been provided, and a proof-of-concept evaluation on a well-
known log showed the approach’s feasibility.

As future work, an interesting avenue of further research
is extending the proposed framework to deal with other pro-
cess mining perspectives (e.g., data perspective).

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

280

Acknowledgments
This work is partially supported by the Italian Min-
istry of Research under PRIN project “exPlaInable
kNowledge-aware PrOcess INTelligence” (PINPOINT),
CUP H23C22000280006.

References
Baral, C. 2010. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015. asprin: Customizing answer set preferences without a
headache. In AAAI, 1467–1474. AAAI Press.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Chesani, F.; Francescomarino, C. D.; Ghidini, C.; Grundler,
G.; Loreti, D.; Maggi, F. M.; Mello, P.; Montali, M.; and
Tessaris, S. 2022a. Optimising business process discovery
using answer set programming. In Logic Programming and
Nonmonotonic Reasoning (LPNMR), 498–504.
Chesani, F.; Francescomarino, C. D.; Ghidini, C.; Loreti,
D.; Maggi, F. M.; Mello, P.; Montali, M.; Palmieri, E.; and
Tessaris, S. 2022b. Discovering business processes models
expressed as DNF or CNF formulae of declare constraints.
In Italian Conference on Computational Logic (CILC), vol-
ume 3204, 201–216.
Chiariello, F.; Maggi, F. M.; and Patrizi, F. 2022. Asp-based
declarative process mining. In Conference on Artificial In-
telligence (AAAI), 5539–5547.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Donadello, I.; Riva, F.; Maggi, F. M.; and Shikhizada, A.
2022. Declare4py: A python library for declarative pro-
cess mining. In BPM (PhD/Demos), volume 3216 of CEUR
Workshop Proceedings, 117–121. CEUR-WS.org.
ER, M.; Arsad, N.; Astuti, H. M.; Kusumawardani, R. P.;
and Utami, R. A. 2018. Analysis of production planning
in a global manufacturing company with process mining. J.
Enterp. Inf. Manag. 31(2):317–337.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015. Abstract gringo. Theory Pract. Log. Pro-
gram. 15(4-5):449–463.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with clingo 5. In ICLP (Technical Communications), vol-
ume 52 of OASIcs, 2:1–2:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A
new grounder for answer set programming. In LPNMR, vol-
ume 4483 of Lecture Notes in Computer Science, 266–271.
Springer.
Gelfond, M., and Lifschitz, V. 1991. Classical negation
in logic programs and disjunctive databases. New Gener.
Comput. 9(3/4):365–386.
Jans, M.; van der Werf, J. M. E. M.; Lybaert, N.; and Van-
hoof, K. 2011. A business process mining application
for internal transaction fraud mitigation. Expert Syst. Appl.
38(10):13351–13359.
Koschmider, A.; Kaczmarek, K.; Krause, M.; and van Zelst,
S. J. 2022. Demystifying noise and outliers in event logs:
Review and future directions. In Business Process Manage-
ment Workshops.
Mannhardt, F., and Blinde, D. 2017. Analyzing the tra-
jectories of patients with sepsis using process mining. In
RADAR+EMISA@CAiSE, volume 1859 of CEUR Workshop
Proceedings, 72–80. CEUR-WS.org.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Ann. Math.
Artif. Intell. 25(3-4):241–273.
Partington, A.; Wynn, M. T.; Suriadi, S.; Ouyang, C.; and
Karnon, J. 2015. Process mining for clinical processes:
A comparative analysis of four australian hospitals. ACM
Trans. Manag. Inf. Syst. 5(4):19:1–19:18.
Pesic, M.; Schonenberg, H.; and van der Aalst, W. M. P.
2007. DECLARE: full support for loosely-structured pro-
cesses. In IEEE International Enterprise Distributed Object
Computing Conference (EDOC), 287–300.
Schaefer, T. J. 1978. The complexity of satisfiability prob-
lems. In STOC, 216–226. ACM.
Sedrakyan, G.; Weerdt, J. D.; and Snoeck, M. 2016.
Process-mining enabled feedback: ”tell me what I did
wrong” vs. ”tell me how to do it right”. Comput. Hum. Be-
hav. 57:352–376.
Tange, O. 2011. Gnu parallel - the command-line power
tool. ;login: The USENIX Magazine 36(1):42–47.
van der Aalst, W. M. P., and Carmona, J., eds. 2022. Process
Mining Handbook, volume 448 of Lecture Notes in Business
Information Processing. Springer.
van der Aalst, W. M. P., and et al. 2011. Process min-
ing manifesto. In Daniel, F.; Barkaoui, K.; and Dustdar,
S., eds., Proceedings of the Business Process Management
Workshops (BPM), 169–194.
van Harmelen, F.; Lifschitz, V.; and Porter, B. W., eds. 2008.
Handbook of Knowledge Representation, volume 3 of Foun-
dations of Artificial Intelligence. Elsevier.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

281

	Introduction
	Preliminaries on Process Modeling
	Contraint Formulae
	Process Mining via Constraints Formulae
	Complexity Results
	ASP Encodings
	Experimental Evaluation
	Conclusion and Future Work

